

Rolling bearings

SKF mobile apps

SKF mobile apps are available from both Apple App Store and Google Play. These apps provide useful information and allow you to make critical calculations, providing SKF Knowledge Engineering at your fingertips.

Apple App Store

To download a PDF document of this catalogue and for information about important updates, go to skf.com/go/17000. Please note product data in this printed catalogue was accurate on the day of printing. The latest and most accurate product data is always available for you on skf.com.

Google Play

skf.com

 SKF, Duoflex, CARB, ICOS, INSOCOAT, KMT, KMTA, Monoflex, Multiflex, NoWear, SensorMount, SKF Explorer, SYSTEM 24 and Wave are registered trademarks of the SKF Group.

AMP Superseal 1.6 Series is a trademark of the TE connectivity family of companies .

Apple is a trademark of Apple Inc., registered in the US and other countries.

Google Play is a trademark of Google Inc.

© SKF Group 2018

The contents of this publication are the copyright of the publisher and may not be reproduced (even extracts) unless prior written permission is granted. Every care has been taken to ensure the accuracy of the information contained in this publication but no liability can be accepted for any loss or damage whether direct, indirect or consequential arising out of the use of the information contained herein.

PUB BU/P1 17000/1 EN · October 2018

This publication supersedes publication 10000 EN.

Rolling bearings

Contents

Unit conversions Foreword What is new in this edition Catalogue information and how to use it Units of measurement Rotating equipment performance SKF Care	6 7 8 10 11 12 13	Size selection based on rating life Size selection based on static load Requisite minimum load Checklist after the bearing size is determined SKF life testing	85 104 106 106 107
Principles of rolling bearing		B.4 Lubrication. Selecting grease or oil. Selecting a suitable grease	109 110 116 120
selection	15	Selecting a suitable oil	124 126
General bearing knowledge	17	B.5 Operating temperature and speed	129
A.1 Bearing basics. Why rolling bearings?. Terminology. Components and materials Internal clearance. Heat and surface treatment. Standardized boundary dimensions Basic bearing designation system. A.2 Tolerances Tolerance values. Tolerance symbols Diameter series identification.	19 20 22 24 26 27 28 29 35 36 36 36	Bearing friction, power loss and starting torque Estimating bearing operating temperature	132 133 135 139 140 140 147 148 153 176 178
Chamfer dimensions. Rounding values	37 55	Axial location of bearing rings	179 179
A.3 Storage	57	B.7 Bearing execution	18 1
Bearing selection process	59	Bearing tolerance classCagesIntegral sealing	187 187 189
Bearing selection process, introduction	60	Additional options	189
B.1 Performance and operating conditions	65	B.8 Sealing, mounting and dismounting External sealing	19 3
B.2 Bearing type and arrangement. Arrangements and their bearing types Selection criteria	69 70 77	Mounting and dismounting	199 211

2 **5KF**.

В	earing selection examples	215	5	Thrust ball bearings	465 467
C.1	Vibrating screen	216		Bearing data	469 469
C.2	Rope sheave	222		Temperature limits	470
				Permissible speed	470
C.3	Centrifugal pump	228		Mounting	470
				Designation system	471 472
Ρ	roduct data	237	Ro	oller bearings	
			6	Cylindrical roller bearings	493
Ba	all bearings			Designs and variants	496
				Bearing data	504
1	Deep groove ball bearings	239		Loads	509
	Designs and variants	241		Temperature limits	511
	Bearing data	250		Permissible speed	511
	Loads	254		Design considerations	512
	Temperature limits	256		Mounting	512
	Permissible speed	256		Designation system	514
	Designation system	258		Product tables	516
	Product tables	260	_		
_		220	7	Needle roller bearings	581
2	Insert bearings (Y-bearings)	339		Designs and variants	583
	Designs and variants	341		Bearing data	598
	Lubrication	348		Loads	606
	Bearing data	350		Temperature limits	608
	Loads	353 355		Permissible speed	608 609
	Temperature limits	355		Design considerations	611
	Permissible speed	356		Mounting	612
	Mounting and dismounting	359		Product tables	614
	Designation system	364		1 Toduct tables	014
	Product tables.	366	8	Tapered roller bearings	665
	Troduct tables	300	O	Designs and variants	669
3	Angular contact ball bearings	383		Bearing data	676
•	Designs and variants	385		Loads	680
	Bearing data	392		Temperature limits	685
	Loads	398		Permissible speed	686
	Temperature limits	402		Design considerations	687
	Permissible speed.	402		Mounting	690
	Design considerations	403		Bearing designations	691
	Designation system	404		Designation system	692
	Product tables	406		Product tables	694
,	Calf alianian hall bearings	/27	0	Cab arisal ralles bearings	770
4	Self-aligning ball bearings	437 439	9	Spherical roller bearings	773 775
	Designs and variants	439 443		Designs and variants	775 781
	Bearing data	443 445		Bearing data Loads	784
	Temperature limits	445		Temperature limits	785
	Permissible speed.	446		Permissible speed	785
	Design considerations	446		Design considerations	786
	Mounting	447		Mounting	788
	Designation system	449		Designation system	790
	Product tables.	450		Product tables	792
					–

10	CARB toroidal roller bearings	841	15	Support rollers	943
	Designs and variants	844		Designs and variants	945
	Bearing data	846		Lubrication	947
	Loads	849		Bearing data	948
	Temperature limits	850		Loads.	949
	Permissible speed	850		Temperature limits	950
	Design considerations	850		Speed limits	950
	Mounting	853		Design considerations	950
	Designation system	855		Mounting	951
	Product tables.	856		Designation system	952
	Troduct tables	030		Product tables.	954
11	Cylindrical roller thrust bearings	877		Troduct tables	754
	Designs and variants	879	16	Cam followers	963
	Bearing data	881	10	Designs and variants	965
		884		Accessories	968
	Loads	884			971
	Temperature limits			Lubrication	
	Permissible speed	884		Bearing data	972
	Design considerations	885		Loads	973
	Designation system	886		Temperature limits	974
	Product table	888		Speed limits	974
				Design considerations	974
12	Needle roller thrust bearings	895		Mounting	975
	Designs and variants	896		Designation system	976
	Bearing data	899		Product table	978
	Loads	902			
	Temperature limits	902	_	uto a sua di sua diviata	
	Permissible speed	902	Er	igineered products	
	Design considerations	903			
	Designation system	904	17	Sensor bearing units	987
	Product tables	906		Motor encoder units	988
	Troduct abics	700		Roller encoder units	996
13	Spherical roller thrust bearings	913		Rotor positioning sensor bearing units	998
13	Designs and variants	915		Rotor positioning bearings	1000
		916		Product table	1000
	Bearing data	917		Flouder (able	1002
	Loads		10	High Assessment was because	4005
	Temperature limits	918	18	High temperature bearings	1005
	Permissible speed.	918		Deep groove ball bearings for high temperature	
	Design considerations	918		applications	1008
	Lubrication	919		Insert bearings for high temperature applications	1010
	Mounting	920		Bearing data	1011
	Designation system	921		Loads and selecting bearing size	1012
	Product table	922		Design considerations	1013
				Relubrication and running in	1014
Т	a alcuellana			Mounting	1014
П	ack rollers			Designation system	1014
				Product tables	1016
14	Cam rollers	931			
	Designs and variants	933	19	Bearings with Solid Oil	1023
	Bearing data	934		Designs and variants	1025
	Loads	935		Bearing data	1025
	Temperature limits	936		Loads	1026
	Speed limits	936		Temperature limits	1026
	Design considerations	936		Speed limits	1026
		930 937			
	Designation system			Friction characteristics	1027
	Product tables	938		Mounting	1027
				Designation system	1027

20	INSOCOAT bearings Designs and variants Bearing data Loads. Temperature limits Permissible speed. Design considerations Mounting. Designation system Product tables.	1029 1031 1033 1034 1034 1035 1035 1035
21	Hybrid bearings. Designs and variants Bearing data Loads. Temperature limits Permissible speed. Designation system Product tables.	1043 1045 1047 1048 1048 1049 1050
22	NoWear coated bearings Designs and variants Bearing data Bearing service life Loads. Temperature limits Permissible speed. Lubrication Designation system	1059 1061 1062 1062 1062 1062 1062 1062
Be	aring accessories	
23	Adapter sleeves Designs and variants Product data Designation system Product tables.	1065 1067 1070 1071 1072
24	Withdrawal sleeves	1087
25	Lock nuts Designs and variants Product data Installation and removal Designation system Product tables	1089 1090 1098 1100 1103 1104
ln	dexes	
Text	t index	1120
Pro	duct index	1136

Unit conversions

Quantity	Unit	Conversion	1		
Length	inch	1 mm	0.03937 in	1 in	25,4 mm
3	foot	1 m	3.281 ft	1 ft	0,3048 m
	yard	1 m	1.094 yd	1 yd	0,9144 m
	mile	1 km	0.6214 mi	1 mi	1,609 km
Area	square inch	1 mm ²	0.00155 in ²	1 in ²	645,16 mm ²
	square foot	1 m ²	10.76 ft ²	1 ft ²	0,0929 m ²
/olume	cubic inch	1 cm ³	0.061 in ³	1 in ³	16,387 cm ³
	cubic foot	$1\mathrm{m}^3$	35 ft ³	1 ft ³	0,02832 m ³
	imperial gallon	11	0.22 gallon	1 gallon	4,5461 l
	US gallon	11	0.2642 US gallon	1 US gallon	3,7854 l
Speed, velocity	foot per second	1 m/s	3.28 ft/s	1 ft/s	0,3048 m/s
	mile per hour	1 km/h	0.6214 mph	1 mph	1,609 km/h
Mass	ounce	1 g	0.03527 oz	1 oz	28,35 g
	pound	1 kg	2.205 lb	1 lb	0,45359 kg
	short ton	1 tonne	1.1023 short ton	1 short ton	0,90719 tonne
	long ton	1 tonne	0.9842 long ton	1 long ton	1,0161 tonne
Density	pound per cubic inch	1 g/cm ³	0.0361 lb/in ³	1 lb/in³	27,68 g/cm ³
orce	pound-force	1 N	0.225 lbf	1 lbf	4,4482 N
Pressure, stress	pounds per square inch	1 MPa	145 psi	1 psi	6,8948 × 10 ³ Pa
		1 N/mm ²	145 psi		0.0400404
		1 bar	14.5 psi	1 psi	0,068948 bar
Moment	pound-force inch	1Nm	8.85 lbf-in	1 lbf-in	0,113 Nm
Power	foot-pound per second	1W	0.7376 ft-lb/s	1 ft-lb/s	1,3558 W
	horsepower	1 kW	1.36 hp	1 hp	0,736 kW
Temperature	degree	Celsius	$t_{\rm C} = 0.555 (t_{\rm F} - 32)$	Eabrophoit	$t_F = 1.8 t_C + 32$

Foreword

This catalogue contains detailed information on SKF rolling bearings that are typically used in industrial applications. It also includes information on engineered products such as:

- motor encoder units, which measure rotation speed and direction
- rolling bearings designed to withstand extreme temperatures
- bearings with electrical insulation
- bearings with balls or rollers made from ceramic materials

Products presented in this catalogue are available worldwide through SKF sales channels. For information about lead times and deliveries, contact your local SKF representative or SKF Authorized Distributor.

The complete assortment of SKF rolling bearings is much larger than what is presented in this catalogue. Visit skf.com or contact SKF to learn more about rolling bearings, including:

- super-precision bearings
- ball and roller bearing units
- · fixed section ball bearings
- large deep groove ball bearings with filling slots
- large angular contact thrust ball bearings
- tapered roller thrust bearings
- multi-row ball or roller bearings
- split roller bearings
- · crossed tapered roller bearings
- slewing bearings
- linear ball bearings
- bearings for inline skates and skateboards

- backing bearings for cluster mills
- indexing roller units for continuous furnaces of sintering plants
- application specific bearings for railway rolling stock
- · application specific bearings for cars and trucks
- triple ring bearings for the pulp and paper industry
- bearings for printing press rollers
- bearings for critical aerospace applications

The information in this catalogue reflects SKF's state-of-the-art technology and production capabilities as of 2018. The information herein may differ from that shown in earlier catalogues because of redesign, technological developments, or revised calculation methods. SKF reserves the right to continually improve its products with respect to materials, design and manufacturing methods, some of which are driven by technological developments.

SKF Explorer bearings

SKF Explorer rolling bearings accommodate higher load levels and provide extended service life. Optimized internal geometry reduces friction, wear and heat generation, allowing heavier loads to be accommodated. Their advanced surface finish reduces friction and enhances lubricating conditions.

Benefits of using SKF Explorer bearings include:

- significantly extended service life
- · increased uptime and productivity
- extended lubricant life
- reduced sensitivity to misalignment
- reduced noise and vibration
- the prospect of downsizing applications

SKF Explorer bearings are shown coloured blue in the product tables.

What is new in this edition

The four main differences in this edition of the SKF catalogue *Rolling* bearings, compared to the previous, are described below.

1. The bearing selection process

When selecting bearings for any purpose, ultimately you want to be certain of achieving the required level of equipment performance — and at the lowest possible cost. In addition to the bearing rating life, there are other key factors you must consider when putting together the bearing specifications for an application. The bearing selection process helps to evaluate these key factors.

Go to section B, page 60, to learn more about bearing selection.

Performance and operating conditions

Bearing type and arrangement

Bearing size

Lubrication

Operating temperature and speed

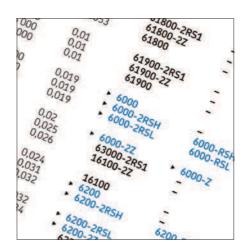
Bearing interfaces

Bearing execution

Sealing, mounting and dismounting

3. Streamlined content and easy online access

This catalogue contains information on rolling bearings commonly used in industrial applications. To reduce the volume of the book and make it more manageable, we have excluded less common bearing types and sizes, though you can readily find these in our online product information.


Short URLs in the product sections provide direct access to related online information.

1	170	0,15	HJ 207 EC	0,033
1	-	0,15	: 	-
1	0,6	0,2	-	-
1		0.2		
1	-			200
	_	0,2	-	-
1,5	1	0,15	HJ 307 EC	0,058
1.5	1	0.12	-	-
1,5	-	0.15	HJ 307 EC	0.058
1.5	-	0.15	· ·	·
Prod	uct dat	a online →	skf.com/go/17	000-6-1

Short URLs in the product sections provide direct access to related online information.

2. Popular items

Popular items are marked in the product tables with the symbol ▶. Bearings marked as popular items are of sizes that SKF produces for many customers and are usually in stock. They have a high level of availability and generally provide a cost-effective solution.

A triangle indicates popular items. They have a high level of availability and generally provide a costeffective solution.

4. Important product updates

Tapered roller bearings

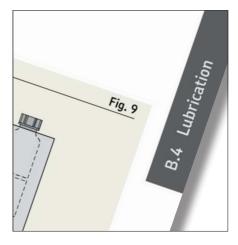
Tapered roller bearings with an outside diameter up to 600 mm have been redesigned. These new bearings have an increased dynamic load rating, and most of the range is available as SKF Explorer bearings. A consolidated catalogue assortment and a simplified designation system provide a clear view of what is available.

These new bearings have a raceway geometry optimized for high speeds and reduced sensitivity to axial loading and misalignment. They can increase robustness when used as the backup bearing in sets that are predominantly loaded in one direction.

INSOCOAT bearings feature electrical insulation on either the inner or outer ring. The upgraded coating provides higher Ohmic resistance, including high Ohmic resistance even in a humid environment, and higher breakdown voltage.

Spherical roller bearings for wind energy applications

Spherical roller bearings for wind energy applications are designed explicitly for wind turbine main shafts. They have an optimized internal geometry with large diameter rollers and increased contact angle for increased axial load carrying capacity.



Catalogue information and how to use it

This catalogue is divided into three parts:

Principles of rolling bearing selection

This part is marked by grey bars at the page edge. It provides general information about rolling bearings (section A), explains the bearing selection process (section B), and presents three examples on how to apply the bearing selection process for various applications (section C).

Grey bars mark the three sections under Principles of rolling bearing selection.

Product data

The part is divided into sections per bearing type. Each product section is marked by blue tabs containing the section number and a descriptive icon.

Sections by bearing type are marked with blue tabs including section number and an icon.

Indexes

The product index and text index are marked with grey bars. The product index lists series designations, relates them to the bearing type, and guides you to the relevant product section and product table. The text index lists entries in alphabetical order, including designation suffixes, and helps you locate specific information quickly.

pearings 396–397, 405
pearings 847–848, 855
ings 506, 515
rings 252–253, 259
r
s 613
ngs 782–783, 791
pearings 847–848, 855
ings 506, 515
rings 252–253, 259
r
ngs 782–783, 791
pearings 846, 855

Indexes are marked with grey bars.

10 **SKF**

Use case: Select a bearing for an application

If you are unsure whether you have adequate knowledge or experience to select a bearing that best suits your application requirements, you will probably find the *Bearing selection process*, page 60, helpful.

If you are an experienced bearing expert, go directly to the section for the relevant bearing type, browse the product tables for the required size, and then look at additional details and information on more specific variants in the text part preceding the product tables.

Use case: Find details of a known bearing

The easiest way to find detailed information about a bearing for which you have the designation is to use the product index, page 1136. Compare the initial characters in a bearing designation with the entries in the product index; each entry specifies the related bearing type, and the relevant product section and product table.

To understand the suffixes used in a bearing designation, go to the text index, page 1120, locate the entry for the suffix and follow the reference to the relevant product section, where you can find detailed information.

Units of measurement

This catalogue is for global use. Therefore, the predominant units of measurement are in accordance with ISO 80000-1. Imperial units are used wherever necessary. Unit conversions can be made using the conversion table, page 6.

For easier use, temperature values are provided in both °C and °F. Specified temperature values are typically rounded. Therefore, values obtained using conversion formulae may not exactly match those specified.

Rotating equipment performance

Every customer is different, with their own drivers and needs, and we have engineered a broad range of products and services to better serve all our customers. So whether you have a problem that needs solving, you want to digitalize your operations, or you want access to design advice, SKF has the right solution to help you get the most out of your rotating equipment.

What does it mean to you?

Performance looks different for every business. We are here to help our customers make choices that deliver against what performance means to them:

· Improve output

By working with SKF to optimise the performance of your rotating equipment you can increase availability, application speed and quality – all driving greater overall equipment effectiveness, and boosting output for your business.

· Trim your total cost of ownership

Poor performance doesn't just affect your output, it can cost you in energy, maintenance, spare parts, labour and more – all adding up to a greater TCO. SKF can help you achieve more reliable rotation, so you can reduce your total cost of ownership.

• Realise your digital ambitions

Make immediate and tangible progress towards your digitalization ambitions. SKF has the digital products, software, services and analytics capabilities to help you gain visibility of the health of your equipment and to turn data into performance-driving insight. Allowing your business to be more agile, deliver greater output, or optimise safety and sustainability.

· Reduce reliance on scarce talent

Work with us to bring rotating equipment expertise into your business, and you can reduce the time and cost burden of recruiting and retaining increasingly scarce and expensive maintenance and diagnostic skillsets.

· Operate more safely

Whether you want to ensure maximum operational safety, reduce hygiene incidents or navigate the minefield of EHSS regulations, SKF can help you drive operational safety, and a reduced incident rate will feed into your productivity too.

· Be more sustainable

SKF can work with you to reduce energy usage, waste output, spare parts consumption and more, helping you to deliver against your sustainability agenda, as well as saving on costs.

The way that works for you

It is not all about the technologies, services and solutions to meet your business needs. Every customer can have different commercial needs. As a result we have created innovative business models for delivering our rotating equipment performance solutions, which in themselves can contribute towards the performance that matters to your business.

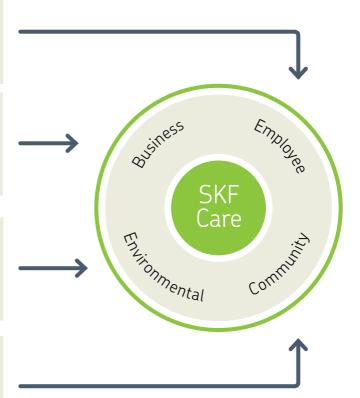
Delivered through our distribution partners

Many of our distribution partners are now delivering greater value to their customers through maintenance, reliability and operations services powered by SKF digitalization capabilities.

Find out how SKF Authorized Distributors and SKF Certified Maintenance Partners could support you on this journey via our support network and services tailored for distributor enablement.

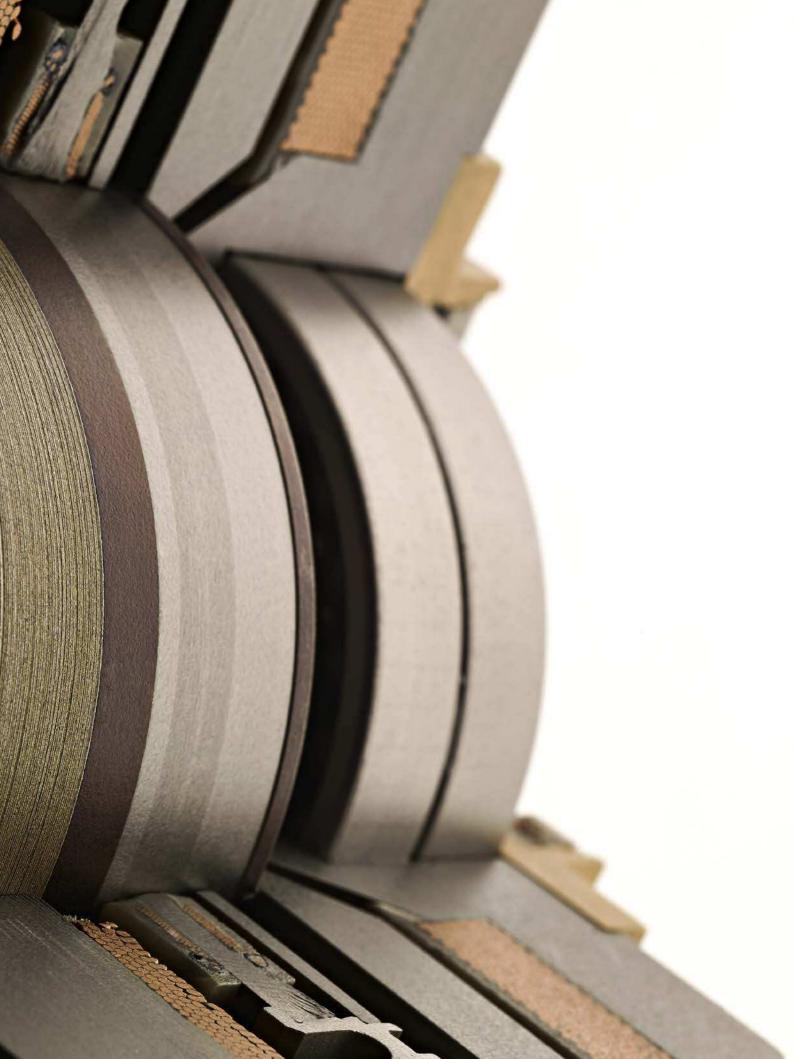
12 **SKF**

SKF Care


SKF Care is our definition of sustainability. The framework comprises four main perspectives that help us to create value for business partners, the environment, our employees, and the communities around us.

The employee perspective is about ensuring a safe working environment and promote health, education and well-being of employees at SKF and in the supply chain.

The business perspective is about customer focus, financial performance and returns for shareholders – with the highest standards of ethical behaviour.


The environmental perspective is about continually reducing the environmental impact from the Group's operations, as well as actions to significantly improve customers' environmental performance through the products, solutions and services that SKF supplies.

The community perspective is about making positive contributions to the communities in which we operate and guides us to run our business in a way that supports positive development.

SKF BeyondZero


SKF BeyondZero is our mindset to integrate environmental concern into the way we do business. It includes actions to reduce the environmental impact resulting from SKF's operations and those of our suppliers, while at the same time providing customers with solutions to reduce the impact of their products or operations.

Principles of rolling bearing selection

A. General bearing knowledge	17
B. Bearing selection process	59
C. Bearing selection examples	215

5KF. 15

General bearing knowledge

General bearing knowledge

A.1	Bearing basics	19
A.2	Tolerances	35
A.3	Storage	57

This section provides general information that is valid for rolling bearings.

Bearing basics contains information that all readers should know. When you have read that

Bearing basics contains information that all readers should know. When you have read that section you will:

- know what rolling bearings are
- know about their components
- have a basic understanding about materials used for rolling bearings
- be familiar with the terminology
- understand the system of standardized boundary dimension
- be able to determine information about a bearing from its designation (part number)

Tolerances provides information that enables you to identify and determine the tolerances of practically every bearing presented here. This is possible because bearing tolerances are standardized internationally, predominantly by ISO. The individual product sections refer to the information in this section, where needed.

Storage provides advice on how to deal with SKF bearings and how to administer them while in storage.

Bearing basics

A.1 Bearing basics

Why rolling bearings?	20
Ball and roller bearings	20
Radial and thrust bearings	21
Terminology	22
Shaft-bearing-housing system	22
Radial bearings	23
Thrust bearings	23
Components and materials	24
Bearing rings	24
Rolling elements	24
Cages	25
Integral sealing	26
Internal clearance	26
Heat and surface treatment	27
Hardening	27
Dimensional stability	27
Surface treatment and coatings	27
Standardized boundary dimensions	28
Bearings with inch dimensions	28
Basic bearing designation system	29
Basic designations	31
Bearing series	31
Prefixes and suffixes	32
Bearing designations not covered by the basic system	32
Insert bearings	32
Needle roller bearings	32
Tapered roller bearings	32
Customized bearings	32
Other rolling bearings	32
Designation system	33

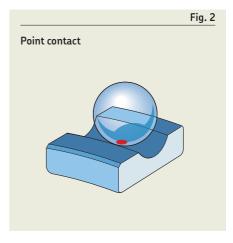
5KF: 19

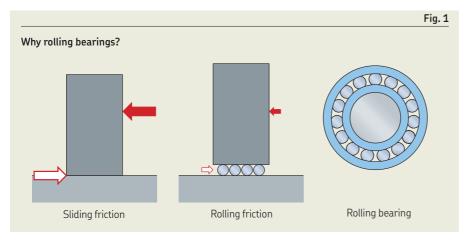
A.1 Bearing basics

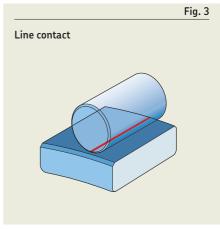
Why rolling bearings?

Rolling bearings support and guide, with minimal friction (fig. 1), rotating or oscillating machine elements – such as shafts, axles or wheels – and transfer loads between machine components. Rolling bearings provide high precision and low friction and therefore enable high rotational speeds while reducing noise, heat, energy consumption and wear. They are cost-effective and exchangeable machine elements that typically follow national or international dimension standards.

Ball and roller bearings


The two basic types of rolling element distinguish the two basic types of rolling bearing:


- ball → ball bearing
- roller → roller bearing


Balls and rollers are different in how they make contact with the raceways.

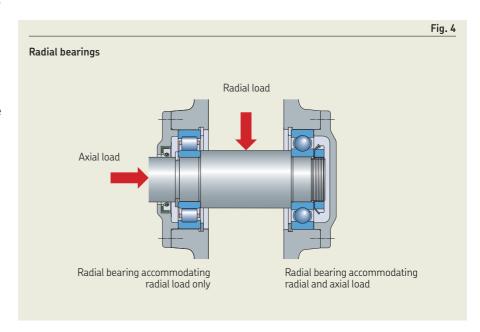
Balls make point contact with the ring raceways (fig. 2). With increasing load acting on the bearing, the contact point becomes an elliptical area. The small contact area provides low rolling friction, which enables ball bearings to accommodate high speeds but also limits their load-carrying capacity.

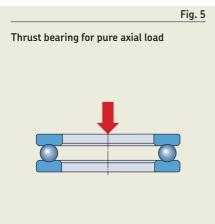
Rollers make line contact with the ring raceways (fig. 3). With increasing load acting on the bearing, the contact line becomes somewhat rectangular in shape. Because of the larger contact area and the consequently higher friction, a roller bearing can accommodate heavier loads, but lower speeds, than a same-sized ball bearing.

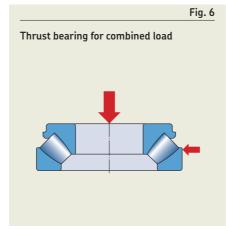
20 **SKF**

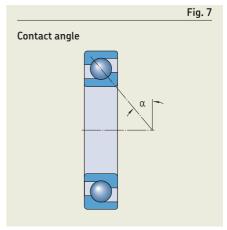
Radial and thrust bearings

Rolling bearings are classified into two groups based on the direction of the load they predominantly accommodate:

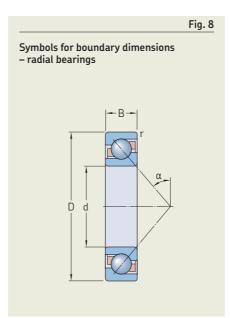

· Radial bearings

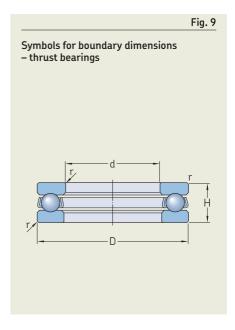

Radial bearings accommodate loads that are predominantly perpendicular to the shaft. Some radial bearings can support only pure radial loads, while most can additionally accommodate some axial loads in one direction and, in some cases, both directions (fig. 4).


• Thrust bearings


Thrust bearings accommodate loads that act predominantly along the axis of the shaft. Depending on their design, thrust bearings may support pure axial loads in one or both directions (fig. 5), and some can additionally accommodate radial loads (combined loads, fig. 6). Thrust bearings cannot accommodate speeds as high as same-sized radial bearings.

The contact angle (fig. 7) determines which group the bearing belongs to. Bearings with a contact angle $\leq 45^{\circ}$ are radial bearings, the others are thrust bearings.

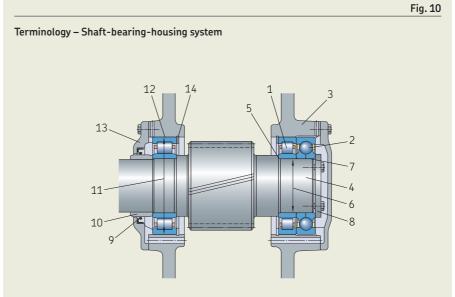




Terminology

Some frequently used bearing terms are explained here. For a detailed collection of bearing-specific terms and definitions, refer to ISO 5593 *Rolling bearings – Vocabulary*. Symbols used in this catalogue are mainly in accordance with ISO standards. The most common symbols are (fig. 8 and fig. 9):

- d Bore diameter
- **D** Outside diameter
- **B** Bearing width
- **H** Bearing height
- r Chamfer dimension
- α Contact angle

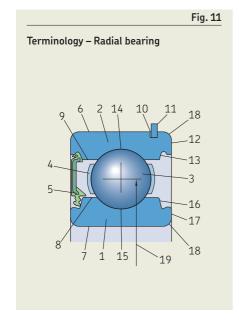


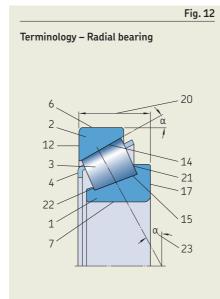
Shaft-bearinghousing system

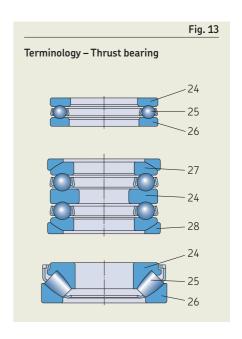
(fig. 10)

- 1 Cylindrical roller bearing
- 2 Four-point contact ball bearing
- 3 Housing
- 4 Shaft
- 5 Shaft abutment shoulder
- 6 Shaft diameter
- 7 Shaft seat
- 8 End plate
- 9 Radial shaft seal
- 10 Seal wear ring
- 11 Housing bore diameter
- 12 Housing seat
- 13 Housing cover
- **14** Snap ring

Radial bearings


(fig. 11 and fig. 12)


- 1 Inner ring
- 2 Outer ring
- 3 Rolling element: ball, cylindrical roller, needle roller, tapered roller, spherical roller, or toroidal roller
- 4 Cage
- 5 Capping device Seal – made of elastomer Shield – made of sheet steel
- 6 Outer ring outside surface
- 7 Inner ring bore
- 8 Inner ring shoulder surface
- 9 Outer ring shoulder surface
- 10 Snap ring groove
- 11 Snap ring
- 12 Outer ring side face
- **13** Recess for capping device
- **14** Outer ring raceway
- **15** Inner ring raceway
- **16** Recess for capping device
- 17 Inner ring side face
- 18 Chamfer
- 19 Bearing pitch circle diameter
- 20 Total bearing width
- 21 Guide flange
- 22 Retaining flange
- 23 Contact angle


Thrust bearings

(fig. 13)

- 24 Shaft washer
- 25 Rolling element and cage assembly
- 26 Housing washer
- **27** Housing washer with a sphered seat surface
- 28 Seat washer

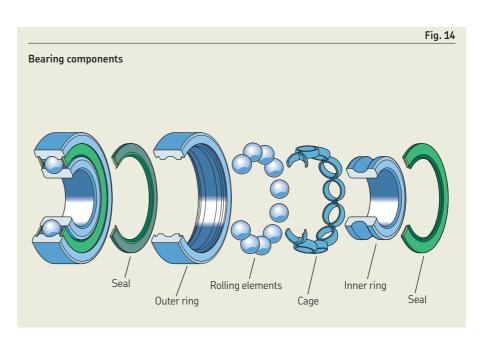
Components and materials

A typical rolling bearing consists of the following components (fig. 14):

- an inner ring
- an outer ring
- balls or rollers, as rolling elements
- a cage

SKF supplies several bearing types capped with a seal or shield on one or both sides. Bearings capped on both sides are factory-filled with grease. They provide an economic and space-saving solution compared to external sealing.

Rolling elements


The rolling elements (balls or rollers) transfer the load between inner and outer rings. Typically, the same steel is used for rolling elements as for bearing rings and washers. When required, rolling elements can be made of ceramic material. Bearings containing ceramic rolling elements are considered hybrid bearings and are becoming more and more common.

Bearing rings

The pressure at the rolling contact area and the cyclic overrolling creates fatigue in the bearing rings when the bearing is in operation. To cope with such fatigue, rings that are made of steel must be hardened.

The standard steel for bearing rings and washers is 100Cr6, a steel containing approximately 1% carbon and 1,5% chromium.

SKF bearing rings and washers are made of steel in accordance with SKF specifications. They cover all aspects that are relevant to providing a long service life for the bearing. Depending on specific requirements, SKF uses stainless steels or high-temperature steels.

Cages

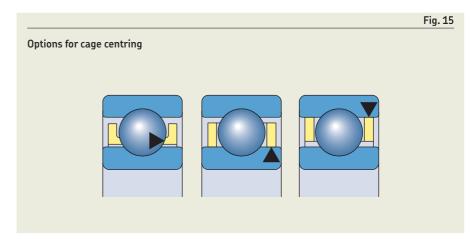
The primary purposes of a cage are:

- separating the rolling elements to reduce the frictional heat generated in the bearing
- keeping the rolling elements evenly spaced to optimize load distribution
- guiding the rolling elements in the unloaded zone of the bearing
- retaining the rolling elements of separable bearings when one bearing ring is removed during mounting or dismounting

Cages are radially centred (fig. 15) either on:

- the rolling elements
- the inner ring
- the outer ring

Cages centred on the rolling elements permit the lubricant to enter the bearing easily. Ring centred cages, which provide more precise guidance, are typically used when bearings must accommodate high speeds, high vibration levels or inertia forces stemming from movements of the whole bearing.


The main cage types are:

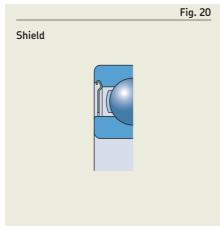
- Stamped metal cages (fig. 16)
 Stamped metal cages (sheet steel or sometimes sheet brass) are lightweight and withstand high temperatures.
- Machined metal cages (fig. 17)
 Machined metal cages are made of brass or sometimes steel or light alloy. They permit high speeds, temperatures, accelerations and vibrations.
- Polymer cages (fig. 18)

Polymer cages are made of polyamide 66 (PA66), polyamide 46 (PA46) or sometimes polyetheretherketone (PEEK) or other polymer materials. The good sliding properties of polymer cages produce little friction and, therefore, permit high speeds. Under poor lubrication conditions, these cages reduce the risk of seizure and secondary damage because they can operate for some time with limited lubrication.

• Pin-type cages (fig. 19)

Steel pin-type cages need pierced rollers and are only used together with large-sized roller bearings. These cages have relatively low weight and enable a large number of rollers to be incorporated.

Integral sealing


Integral sealing can significantly prolong bearing service life because it keeps lubricant in the bearing and contaminants out of it. SKF bearings are available with various capping devices:


• Shields

There is a small gap between the shield and inner ring. Bearings fitted with shields (fig. 20) are used where the operating conditions are relatively clean, or where low friction is important because of speed or operating temperature considerations.

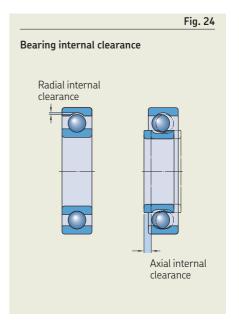
Seals

Bearings with seals are preferred for arrangements where contamination is moderate. Where the presence of water or moisture cannot be ruled out, contact seals (fig. 21) are typically used. These seals make positive contact with the sliding surface on one of the bearing rings. Lowfriction seals (fig. 22) and non-contact seals (fig. 23) can accommodate the same speeds as bearings with shields, but with improved sealing effectiveness.

Contact seal

Fig. 21

Internal clearance


Bearing internal clearance (fig. 24) is defined as the total distance through which one bearing ring can be moved relative to the other in the radial direction (radial internal clearance) or in the axial direction (axial internal clearance).

In almost all applications, the initial clearance in a bearing is greater than its operating clearance. The difference is mainly caused by two effects:

- Bearings are typically mounted with an interference fit on the shaft or in the housing. The expansion of the inner ring or the compression of the outer ring reduces the internal clearance.
- Bearings generate heat in operation. Differential thermal expansion of the bearing and mating components influences the internal clearance.

Sufficient internal clearance in a bearing during operation is important. Preload (clearance below zero) is possible for certain bearing types.

To enable selection of the appropriate initial internal clearance to achieve the desired operational internal clearance, bearings are available in different clearance classes. ISO has established five clearance classes for many bearing types. SKF uses designation suffixes to indicate when the bearing internal clearance differs from Normal (table 1).

Heat and surface treatment

Rolling bearing rings and rolling elements must:

- be hard enough to cope with fatigue and plastic deformations
- be tough enough to cope with applied loads
- be sufficiently stable to experience only limited changes of dimensions over time

The required properties are achieved by heat and surface treatments.

Hardening

There are three typical hardening methods that may be applied to bearing components:

· Through-hardening

This is the standard method for most bearings and provides good fatigue and wear-resistance, as hardening is applied over the full cross section.

· Induction-hardening

Surface induction-hardening is used to selectively harden a component's raceway to limit rolling contact fatigue, leaving the remainder of the component unaffected to maintain structural strength.

· Case-hardening

Case-hardening provides hardness to the surface. It is used, for example, where bearing rings are subjected to high shock loads causing structural deformations.

Dimensional stability

Heat treatment is used to limit dimensional changes caused by metallurgical effects at extreme temperatures. There is a standardized classification system for dimensional stability (table 2). The various SKF bearing types are stabilized to different classes as standard.

Surface treatment and coatings

Coating is a well-established method for providing bearings with additional functional benefits to accommodate specific application conditions. Widely used coatings are zinc chromate and black oxide.

Two other methods developed by SKF have proven successful in many applications:

- INSOCOAT bearings are standard bearings that have the external surfaces of their inner or outer ring coated with an aluminium oxide layer. This coating increases resistance to electric current through the bearing.
- NoWear enhances wear-resistance of the raceway or rolling element surfaces. It can help the bearing withstand long periods of operation under poor lubrication conditions and to reduce the risk for low load damage.

ISO clearance class	SKF designation suffix	Internal clearance	
-	C1	Smaller than C2	
Group 2	C2	Smaller than Normal	
Group N	-	Normal	
Group 3	C3	Greater than Normal	
Group 4	C4	Greater than C3	
Group 5	C5	Greater than C4	

Dimensional stabil	ity	Table 2
Stabilization class	Stabili	zed up to
_	°C	°F
SN S0 S1 S2 S3 S4	120 150 200 250 300 350	250 300 390 480 570 660

Standardized boundary dimensions

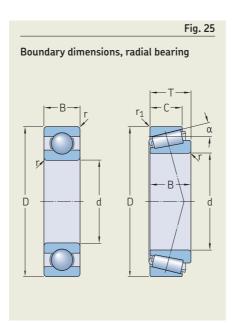
Boundary dimensions are the main dimensions of a bearing (fig. 25 and fig. 26). They comprise:

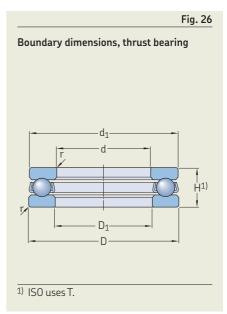
- the bore diameter (d)
- the outside diameter (D)
- the width or height (B, C, T or H)
- the chamfer dimensions (r)

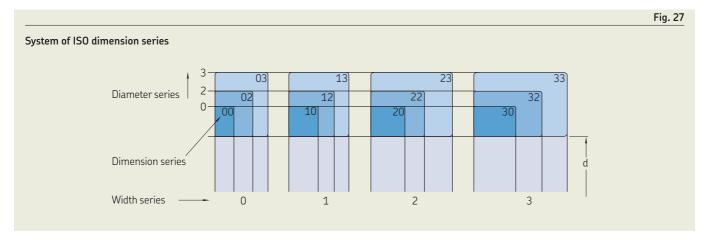
The boundary dimensions for metric bearings are standardized in the ISO (International Organization for Standardization) general plans:

- ISO 15 for radial rolling bearings, except insert bearings, some types of needle roller bearings and tapered roller bearings
- ISO 104 for thrust bearings
- ISO 355 for tapered roller bearings

Most rolling bearings follow ISO standard dimensions, which is a prerequisite to enable interchangeability.

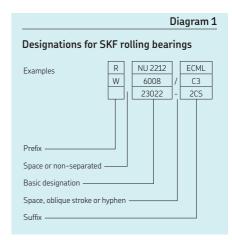

The ISO general plan for radial bearings provides several series of standardized outside diameters for every standard bore diameter. They are called diameter series and are numbered 7, 8, 9, 0, 1, 2, 3 and 4 (in order of increasing outside diameter). Within each diameter series, different width series exist (width series 8, 0, 1, 2, 3, 4, 5 and 6 in order of increasing width). The diameter series 0, 2 and 3, combined with width series 0, 1, 2 and 3, are shown in fig. 27.

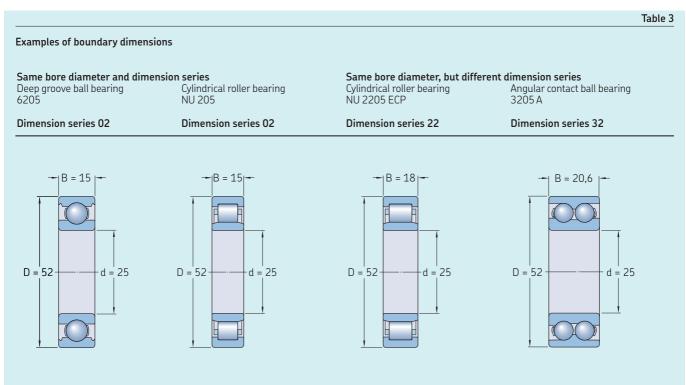

For thrust bearings, height series are used instead of width series. Height series are numbered 7, 9, 1 and 2.


Bearings to ISO general plans have the same boundary dimensions when they share the same bore diameter and dimension series (table 3). If not, they have different boundary dimensions.

Bearings with inch dimensions

In addition to the bearings in accordance with ISO dimensions, SKF has a comprehensive assortment of bearings with inch dimensions following American and British standards.


28 **SKF**


Basic bearing designation system

The designations of most SKF rolling bearings follow a designation system. The complete bearing designation may consist of a basic designation with or without one or more supplementary prefixes and suffixes (diagram 1). The basic designation identifies:

- the bearing type
- the basic design
- the boundary dimensions

Prefixes and suffixes identify design features or bearing components.

														Table
	lesignation	system fo	or SKF sta	ndard me	etric ball a	and rolle	r bearing:	5						
earin _.	(0)33 (0)32	139 130 (1)23 1(0)3 (1)22 1(0)2 1(1)0	223 213 232 222 241 231 240 230 249 239 248 238 294 293 292	323 313 303 332 322 302 331 330 320 329	4(2)3 4(2)2	544 524 543 523 542 522 534 514 533 513 532 512 511 510 591 590	6(0)4 623 6(0)3 622 6(0)2 630 6(1)0 16(0)0 639 619 609 638 628 618 608 637 627 617	7(0)4 7(0)3 7(0)2 7(1)0 719 718 708	814 894 874 813 893 812 811	23 32 22 41 31 60 50 40 30 69 59 49 39	(0)4 33 23 (0)3 22 12 (0)2 31 30 20 10 39 29 19 38 28 18	41 31 60 50 40 30 69 49 39 48	23 (0)3 12 (0)2 10 19	
	Bearing typ	pe									NC, NCF	:		
	(0)	1	2	3	4	100 100 5	6	7	8	C	NF, NFP NJ, NJF, NP, NPF NU, NUI NUP, NU	, NJP NNC : NNCF H NNCL	a)	
	8[0 1	Radial Widt	bearings th (B, T)	5	6			hrust be Height		2			
	H T B	D					Diam	eter serie	es					
					7	8	9 (2 .					
	Dimen serio									3 4				
>	$\langle X \rangle$	XX	X	,										
	Bearing ser	ries	Size d/5											
ıde	Bearing ty	pe			Code	Bearin	g type				Code Be	aring type		
	Double rov Self-alignin Spherical r thrust bear Tapered ro Double rov Thrust ball Single row	ng ball bearing ller bearing v deep gro bearing	aring ing, spheri ng pove ball bo	cal roller	7 8 C N	Cylindri CARB t Cylindri letters a the row	row angula ical roller to oroidal rol ical roller to are used to sor the co , e.g. NJ, N	hrust bear ler bearing bearing. Tv bidentify tonfiguration	ring g vo or mor the numb on of the	T re	- Tap	ur-point contact pered roller beari 355		ance wit

30 **5KF**.

Basic designations

A basic designation typically contains three to five digits. The basic designation system is shown in **table 4**. The number and letter combinations have the following meaning:

- The first digit or letter or combination of letters identifies the bearing type and eventually a basic variant.
- The following two digits identify the ISO dimension series. The first digit indicates the width or height series (dimensions B, T or H). The second digit identifies the diameter series (dimension D).
- The last two digits of the basic designation identify the size code of the bearing bore.
 The size code multiplied by 5 gives the bore diameter (d) in mm.

The most important exceptions in the basic bearing designation system are:

- 1 In a few cases the digit for the bearing type or the first digit of the dimension series identification is omitted. These digits are shown in brackets in table 4.
- **2** Bearings with a bore diameter of 10, 12, 15 or 17 mm have the following size code identifications:

00 = 10 mm

01 = 12 mm

 $02 = 15 \, \text{mm}$

 $03 = 17 \, \text{mm}$

3 For bearings with a bore diameter < 10 mm, or ≥ 500 mm, the bore diameter is generally given in millimetres (uncoded). The size identification is separated from the rest of the bearing designation by an oblique stroke, e.g. 618/8 (d = 8 mm) or 511/530 (d = 530 mm). This is also true for standard bearings in accordance with ISO 15 that have a bore diameter of 22, 28 or 32 mm, e.g. 62/22 (d = 22 mm).

- 4 For some bearings with a bore diameter < 10 mm, such as deep groove, selfaligning and angular contact ball bearings, the bore diameter is also given in millimetres (uncoded) but is not separated from the series designation by an oblique stroke, e.g. 629 or 129 (d = 9 mm).
- **5** Bore diameters that deviate from the standard bore diameter of a bearing are uncoded and given in millimetres up to three decimal places. This bore diameter identification is part of the basic designation and is separated by an oblique stroke, e.g. 6202/15.875 (d = 15,875 mm = 5/8 in).

Bearing series

Bearing series designations consist of an identification for the bearing type and the dimension series. The most common series designations are shown in table 4. The digits in brackets belong to the system, but are not used in the series designation in practice.

5KF. 31

Prefixes and suffixes

The designations of most SKF rolling bearings follow a system that consists of a basic designation with or without one or more prefixes and/or suffixes, as shown in diagram 2.

Prefixes and suffixes provide additional information about the bearing.

Prefixes are mainly used to identify components of a bearing. They can also identify bearing variants.

Suffixes identify designs or variants, which differ in some way from the original design or from the current basic design. The suffixes are divided into groups. When more than one special feature is to be identified, suffixes are provided in the order shown in diagram 2.

Details of the significance of specific prefixes and suffixes are given in the relevant product sections.

Bearing designations not covered by the basic system

Insert bearings

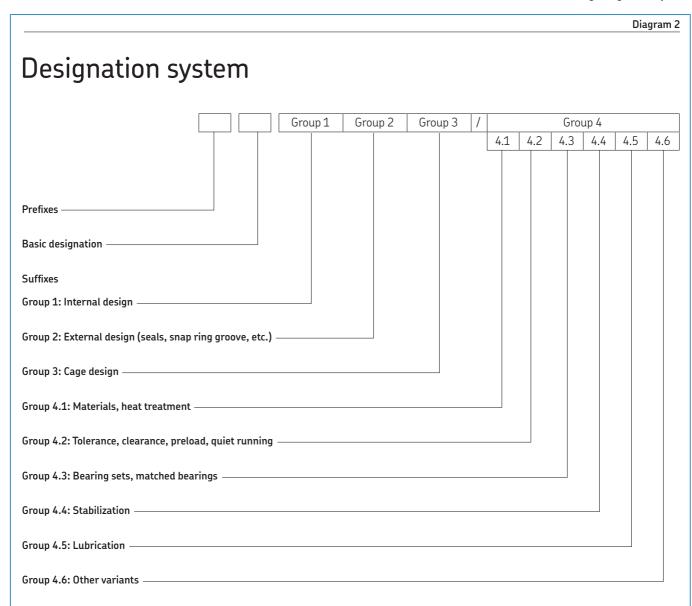
The designations for insert bearings differ somewhat from those described in the basic designation system and are described under *Insert bearings*, page 339.

Needle roller bearings

The designations for needle roller bearings do not fully follow the basic designation system and are described under *Needle roller* bearings, page 581.

Tapered roller bearings

The designations for metric tapered roller bearings follow either the basic designation system or a designation system, established by ISO in 1977, covered in ISO 355. Inch tapered roller bearings are designated in accordance with the relevant ANSI/ABMA standard. The designation system is explained under *Tapered roller bearings*, page 665.


Customized bearings

Bearings designed to meet a specific customer requirement are typically designated by a drawing number. The drawing number does not provide any information about the bearing.

Other rolling bearings

Rolling bearings not covered in the ball bearings and roller bearings sections, such as super-precision bearings, thin section bearings, slewing bearings or linear bearings, follow designation systems that can differ significantly from the basic designation system.

32 **SKF**

Tolerances

A.2 Tolerances

Tolerance values	36
Tolerance symbols	36
Diameter series identification	37
Chamfer dimensions	37
Minimum chamfer dimensions	37
Maximum chamfer dimensions	37
Rounding values	55
Shoulder diameters	55
Load and speed ratings and fatigue load limits	55
Masses	55
Temperatures	55

5KF. 35

Tolerance classes and the corresponding values for certain tolerance characteristics are specified in ISO 492 (for radial bearings) and ISO 199 (for thrust bearings). In 2014 these standards were aligned with general ISO GPS (Geometrical Product Specification) standards such as ISO 1101 and ISO 5459. For additional information on ISO 492 and ISO 199, and the changes that have been made to their previous editions, refer to the SKF e-learning platform (skf.com/go/17000-learnGPS).

There are three common tolerance classes for SKF ball and roller bearings (table 1).

The product sections for the various bearing types provide information on compliance with applicable tolerance classes. The tolerance class of a bearing cannot always be determined from its designation suffixes. Where the tolerance class is standard for the bearing, it is not specified in the designation suffixes.

For information about SKF bearings that have a tolerance class better than class 5, refer to the SKF catalogue *Super-precision bearings* or skf.com/super-precision.

Tolerance values

Actual tolerance values are listed in the following tables.

Metric radial bearings, except tapered roller bearings:

- Normal tolerances (table 2, page 38)
- P6 class tolerances (table 3, page 39)
- P5 class tolerances (table 4, page 40)

Metric tapered roller bearings:

- Normal and CL7C class tolerances (table 5, page 41)
- CLN class tolerances (table 6, page 42)
- P5 class tolerances (table 7, page 43)

Inch radial bearings, except tapered roller bearings:

• Normal tolerances (table 8, page 44)

Inch tapered roller bearings:

 Normal, CL2, CL3 and CL0 class tolerances (table 9, page 45)

Thrust bearings:

 Normal, P6 and P5 class tolerances (table 10, page 46)

Tapered bore, taper 1:12:

 Normal, P6 and P5 class tolerances (table 11, page 47)

Tapered bore, taper 1:30:

• Normal tolerances (table 12, page 48)

Where standardized, the values are in accordance with ISO 492, ISO 199 and ANSI/ABMA Std. 19.2.

Tolerance symbols

The tolerance symbols that we use are in line with ISO 492 and ISO 199 and are explained in **table 13**, **page 49**. The symbols normally refer to dimensional tolerances, only Kia, Kea, Sd, SD, Sia and Sea refer to geometrical tolerances.

Common tolerance c	lasses for SKF ball	Table 1
ISO tolerance class	SKF designation suffix	Description
Normal	-	Minimum standard for all SKF ball and roller bearings.
Class 6	P6	Tighter tolerances than Normal.
Class 5	P5	Tighter tolerances than class 6.

Diameter series identification

The bore and outside diameter variation tolerances t_{Vdsp} and t_{VDsp} for metric radial bearings (table 2, page 38, to table 4, page 40) vary depending on the diameter series to which the bearing belongs. To determine the diameter series, refer to table 14, page 52.

Chamfer dimensions

Minimum chamfer dimensions

Minimum chamfer dimensions (fig. 1) are listed in the product tables, for the radial (r_1 , r_3) and axial (r_2 , r_4) directions. For metric SKF bearings, these values are in accordance with the general plans listed in the following standards:

- ISO 15, ISO 12043 and ISO 12044 for radial bearings
- ISO 355 for radial tapered roller bearings
- ISO 104 for thrust bearings

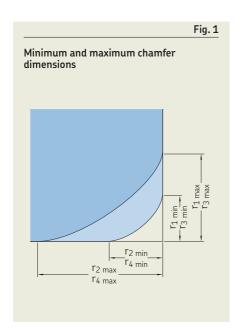
Maximum chamfer dimensions

The maximum chamfer dimensions (fig. 1) for the radial (r_1, r_3) and axial (r_2, r_4) directions, appropriate to the respective minimum values and the bore or outside diameter, are listed in the following tables:

- Metric radial and thrust bearings, except radial tapered roller bearings (table 15, page 53)
- Metric radial tapered roller bearings (table 16, page 53)
- Inch tapered roller bearings (table 17, page 54)

The maximum chamfer dimensions for metric SKF bearings are in accordance with ISO 582.

Example


What is the largest radial and axial value $(r_{1 \text{ max}} \text{ and } r_{2 \text{ max}})$ for the chamfer of a 6211 deep groove ball bearing?

From the relevant product table,

 $r_{1.2 \text{ min}} = 1.5 \text{ mm}$ and d = 55 mm.

From **table 15**, with $r_{s min} = 1,5$ mm and d < 120 mm, the largest radial value $r_{1 max} = 2,3$ mm and the largest axial value

 $r_{2 \text{ max}} = 4 \text{ mm}.$

Normal	tolerances fo	or radial h	pearings e	xcept taner	ed roller h	earings						Ta
Inner ri		, radiat s	ocurrings, c	Accet taper	u rouer b	curings						
d		t _{∆dm]}	p ¹⁾	t _{V,dsp} 1)			t_{Vdmp}	t _{∆Bs}	NI I	M 1.C 13)	t_{VBs}	t _{Kia}
>	≤	U	L	Diameter 7, 8, 9 ²⁾	series 0, 1	2, 3, 4		All U	Normal L	Modified ³⁾ L		
mm		μm		μm			μm	μm			μm	μm
- 2,5 10	2,5 10 18	0 0 0	-8 -8 -8	10 10 10	8 8 8	6 6 6	6 6 6	0 0 0	-40 -120 -120	- -250 -250	12 15 20	10 10 10
18 30 50	30 50 80	0 0 0	-10 -12 -15	13 15 19	10 12 19	8 9 11	8 9 11	0 0 0	-120 -120 -150	-250 -250 -380	20 20 25	13 15 20
80 120 180	120 180 250	0 0 0	-20 -25 -30	25 31 38	25 31 38	15 19 23	15 19 23	0 0 0	-200 -250 -300	-380 -500 -500	25 30 30	25 30 40
250 315 400	315 400 500	0 0 0	-35 -40 -45	44 50 56	44 50 56	26 30 34	26 30 34	0 0 0	-350 -400 -450	-500 -630 -	35 40 50	50 60 65
500 630 800	630 800 1 000	0 0 0	-50 -75 -100	63 - -	63 - -	38 - -	38 - -	0 0 0	-500 -750 -1 000	- - -	60 70 80	70 80 90
1 000 1 250 1 600	1 250 1 600 2 000	0 0 0	-125 -160 -200	- - -	- - -	- - -	- - -	0 0 0	-1 250 -1 600 -2 000	- - -	100 120 140	100 120 140
Outer ri	ina											
D	iiig	$t_{\Delta m Dm}$	n	$t_{VDsp}^{4)}$					$t_{ m VDmp}^{4}$	$t_{\Delta Cs}, t_{VCs}$		t _{Kea}
				Open bea Diameter	series	2 2 7		bearings ⁵⁾	, , , , , ,	203 703		
> mm	≤	U μm	L	7, 8, 9 ²) μm	0,1	2, 3, 4	2, 3, 4		μm	μm		μm
		<u> </u>								<u> </u>		<u> </u>
2,5 18 30	18 30 50	0 0 0	-8 -9 -11	10 12 14	8 9 11	6 7 8	10 12 16		6 7 8	Identical to t _{VBs} of an i of the sam	nner ring le bearing	15 15 20
	80	0	-13	16 19	13 19	10 11	20 26		10 11	as the out	er ring	25 35 40
50 80 120	120 150	0	–15 –18	23	23	14	30		14			
80		0		23 31 38 44	23 31 38 44	14 19 23 26	38 - -		19 23 26			45 50 60
80 120 150 180 250 315 400	150 180 250	0 0 0	-18 -25 -30	31 38	23 31 38	19 23	38		19 23			50
80 120 150 180	150 180 250 315 400 500	0 0 0 0 0 0 0 0	-18 -25 -30 -35 -40 -45	31 38 44 50 56	23 31 38 44 50 56	19 23 26 30 34	38 - -		19 23 26 30 34			50 60 70 80

¹⁾ Tolerances for tapered bores (table 11, page 47 and table 12, page 48).
2) Diameter series 7 and 8 not covered by ISO 492.
3) Applies to inner rings and outer rings of bearings of matched bearing sets consisting of two or more bearings. Does not apply to universally matchable angular contact ball bearings.
4) Applies to bearings prior to mounting and after removal of internal or external snap ring.
5) Capped bearings are sealed or shielded bearings.

nner rii	tolerances fo	or radial i	vearings, e	ехсерс сареге	ea roller	bearings						
i	· J	$t_{\Delta m dmp}$	1)	$t_{\sf Vdsp}^{-1)}$			$t_{ m Vdmp}$	t_{\DeltaBs}			t_{VBs}	t _{Kia}
>	≤	U	L	Diameter 7, 8, 9 ²⁾	series 0, 1	2, 3, 4	vamp	All	Normal	Modified ³⁾	V D3	Να
mm		μm		μm			μm	μm			μm	μm
- 2,5 10	2,5 10 18	0 0 0	-7 -7 -7	9 9 9	7 7 7	5 5 5	5 5 5	0 0 0	-40 -120 -120	- -250 -250	12 15 20	5 6 7
18 30 50	30 50 80	0 0 0	-8 -10 -12	10 13 15	8 10 15	6 8 9	6 8 9	0 0 0	-120 -120 -150	-250 -250 -380	20 20 25	8 10 10
30 120 180	120 180 250	0 0 0	-15 -18 -22	19 23 28	19 23 28	11 14 17	11 14 17	0 0 0	-200 -250 -300	-380 -500 -500	25 30 30	13 18 20
250 315 400	315 400 500	0 0 0	-25 -30 -35	31 38 44	31 38 44	19 23 26	19 23 26	0 0 0	-350 -400 -450	-500 -630 -	35 40 45	25 30 35
500 630 800	630 800 1 000	0 0 0	-40 -50 -60	50 - -	50 - -	30 - -	30 - -	0 0 0	-500 -750 -1 000	- - -	50 60 60	40 45 50
1 000 1 250 1 600	1 250 1 600 2 000	0 0 0	-75 -90 -115	- - -	- - -	- - -	- - -	0 0 0	-1 250 -1 600 -2 000	- - -	70 70 80	60 70 80
Outer ri	ng											
D		t _{∆Dmj})	t _{VDsp} ⁴⁾ Open bea			Capped	bearings ⁵⁾	t _{VDmp} 4)	$t_{\Delta Cs}$, t_{VCs}		t _{Kea}
>	≤	U	L	Diameter 7, 8, 9 ²)	series 0, 1	2, 3, 4	0, 1, 2, 3	3, 4				
mm		μm		μm					μm			μm
2,5 18 30	18 30 50	0 0 0	-7 -8 -9	9 10 11	7 8 9	5 6 7	9 10 13		5 6 7	Identical to $t_{\rm VBs}$ of an in of the sam	nner rıng e bearing	8 9 10
50 80 120	80 120 150	0 0 0	-11 -13 -15	14 16 19	11 16 19	8 10 11	16 20 25		8 10 11	as the oute	er ring	13 18 20
150 180 250	180 250 315	0 0 0	-18 -20 -25	23 25 31	23 25 31	14 15 19	30 - -		14 15 19			23 25 30
315 400 500	400 500 630	0 0 0	-28 -33 -38	35 41 48	35 41 48	21 25 29	=		21 25 29			35 40 50
30	800 1 000 1 250	0 0 0	-45 -60 -75	56 75 -	56 75 -	34 45 -	- - -		34 45 -			60 75 85
000			-90		_	_						100

¹⁾ Tolerances for tapered bores (table 11, page 47).
2) Diameter series 7 and 8 not covered by ISO 492.
3) Applies to inner rings and outer rings of bearings of matched bearing sets consisting of two or more bearings. Does not apply to universally matchable angular contact ball bearings.
4) Applies to bearings prior to mounting and after removal of internal or external snap ring.
5) Capped bearings are sealed or shielded bearings.

													Ta
		for rad	lial bear	ings, except	tapered roller	r bearings							
nner ri: I	ng		1)	± 1)									+ 3)
>	≤	t _{∆dmr} U	p [±] /	t_{Vdsp}¹⁾ Diamet 7, 8, 9 ²	ter series 0, 1, 2, 3,	t _{Vdmp}	t _{ΔBs} All U	Normal L	Modified ⁴⁾ L	t _{VBs}	t _{Kia}	t _{Sd}	t _{Sia} 3)
nm		μm		μm		μm	μm			μm	μm	μm	μm
- 2,5 10	2,5 10 18	0 0 0	-5 -5 -5	5 5 5	4 4 4	3 3 3	0 0 0	-40 -40 -80	-250 -250 -250	5 5 5	4 4 4	7 7 7	7 7 7
18 30 50	30 50 80	0 0 0	-6 -8 -9	6 8 9	5 6 7	3 4 5	0 0 0	-120 -120 -150	-250 -250 -250	5 5 6	4 5 5	8 8 8	8 8 8
30 120 180	120 180 250	0 0 0	-10 -13 -15	10 13 15	8 10 12	5 7 8	0 0 0	-200 -250 -300	-380 -380 -500	7 8 10	6 8 10	9 10 11	9 10 13
250 315 400	315 400 500	0 0 0	-18 -23 -28	18 23 28	14 18 21	9 12 14	0 0 0	-350 -400 -450	-500 -630 -	13 15 18	13 15 17	13 15 18	15 20 23
500 530 300	630 800 1 000	0 0 0	-35 -45 -60	35 - -	26 - -	18 - -	0 0 0	-500 -750 -1 000	- - -	20 26 32	19 22 26	20 26 32	25 30 30
L 000 L 250 L 600	1 250 1 600 2 000	0 0 0	-75 -90 -115	- - -	- - -	- - -	0 0 0	-1 250 -1 600 -2 000	- - -	38 45 55	30 35 40	38 45 55	30 30 30
Outer ri	ng												
ס		t,	ΔDmp		t_{VDsp}⁵⁾ Diameter s	eries	t_{VDmp}	$t_{\Delta Cs}$		t_{VCs}	t_{Kea}	t _{SD} ⁶⁾	t _{Sea} 3)
>	≤	U	J	L		0, 1, 2, 3, 4							
nm		μ	m		μm		μm			μm	μm	μm	μm
2,5 18 30	18 30 50	0 0	1	-5 -6 -7	5 6 7	4 5 5	3 3 4	an inner same be	to $t_{\Delta Bs}$ of ring of the earing as the	5 5 5	5 6 7	4 4 4	8 8 8
50 30 120	80 120 150	0 0 0	1	-9 -10 -11	9 10 11	7 8 8	5 5 6	outer rir	iy	6 8 8	8 10 11	4 4,5 5	10 11 13
150 180 250	180 250 315	0 0 0	1	-13 -15 -18	15	10 11 14	7 8 9			8 10 11	13 15 18	5 5,5 6,5	14 15 18
315 400 500	400 500 630	0 0 0	1	-20 -23 -28	20 23 28	15 17 21	10 12 14			13 15 18	20 23 25	6,5 7,5 9	20 23 25
300 300 1 000	800 1 000 1 250	0 0 0	1	-35 -50 -63	35 50 -	26 29 -	18 25 -			20 25 30	30 35 40	10 12,5 15	30 - -
L 250	1 600 2 000	0) 	-80 -100	-	_	_			35 38	45 55	17,5 20	-

¹⁾ Tolerances for tapered bores (table 11, page 47).
2) Diameter series 7 and 8 not covered by ISO 492.
3) Applies to groove ball bearings only, except for self-aligning ball bearings.
4) Applies to inner rings and outer rings of bearings of matched bearing sets consisting of two or more bearings. Does not apply to universally matchable angular contact ball bearings.
5) No values have been established for capped (sealed or shielded) bearings.
6) Tolerance values have become half the values in accordance with the revised ISO standard because SD is defined as perpendicularity of outer ring outside surface axis with respect to datum established from the outer ring face.

Normal	l and CL7C cl	ass tolera	nces for r	netric tap	ered rolle	r bearii	ngs								
	ing, bearing														
d		t _{∆dm;}	p	t_{Vdsp}	$t_{ m Vdmp}$	$t_{\Delta Bs}$		t_{Kia} Tolera	ance classes	$t_{\Delta Ts}$		t _{∆T1s}		t _{∆T2s}	
>	≤	U	L			U	L	Norm	al CL7C ¹⁾	U	L	U	L	U	L
mm		μm		μm	μm	μm		μm		μm		μm		μm	
10 18 30	18 30 50	0 0 0	-12 -12 -12	12 12 12	9 9 9	0 0 0	-120 -120 -120	15 18 20	7 8 10	200 200 200	0 0 0	100 100 100	0 0 0	100 100 100	0 0 0
50 80 120	80 120 180	0 0 0	-15 -20 -25	15 20 25	11 15 19	0 0 0	-150 -200 -250	25 30 35	10 13 -	200 200 350	0 -200 -250	100 100 150	0 -100 -150	100 100 200	0 -10 -10
180 250 315	250 315 400	0 0 0	-30 -35 -40	30 35 40	23 26 30	0 0 0	-300 -350 -400	50 60 70	- - -	350 350 400	-250 -250 -400	150 150 200	-150 -150 -200	200 200 200	-10 -10 -20
Outer r D	ring	t			t		t		t _{∆Cs}			t.			
		t _{∆Dmi}	р		t _{VDsp}	1	t _{VDr}	np	CΔCs			To	ea blerance c ormal	lasses CL7C ¹)	
>	≤	U	L						U	L					
mm		μm			μm		μm		μm			μι	m		
18 30 50	30 50 80	0 0 0	-12 -14 -16	4	12 14 16		9 11 12		0 0 0	-1 -1 -1	20	18 20 21)	9 10 13	
80 120 150	120 150 180	0 0 0	-18 -20 -25)	18 20 25		14 15 19		0 0 0	-2 -2 -2	50	3! 40 4!)	18 20 23	
180 250 315	250 315 400	0 0 0	-30 -35 -40	5	30 35 40		23 26 30		0 0 0	-3 -3 -4	50	50 60 70)	- - -	
400 500 630	500 630 800	0 0 0	-45 -50 -75		45 60 80		34 38 55		0 0 0	-4 -5 -7	00		00	- - -	

 $[\]overline{ ext{1}}$ Tolerances are not in accordance with any ISO tolerance class and are for high-performance design tapered roller bearings.

LN clas	ss tolerances	¹⁾ for met	ric tapere	ed roller b	pearings										Tab
	ng, bearing v														
	≤	<i>t</i> ∆dmp U	L	t _{Vdsp}	t _{Vdmp}	t ΔBs U	L	t _{Kia}	t _{ΔTs} U	L	$t_{\Delta T1s}$	L	t _{ΔT2s} U	L	
nm		μm		μm	μm	μm		μm	μm		μm		μm		
0 8 0	18 30 50	0 0 0	-12 -12 -12	12 12 12	9 9 9	0 0 0	-50 -50 -50	15 18 20	100 100 100	0 0 0	50 50 50	0 0 0	50 50 50	0 0 0	
0 0 20	80 120 180	0 0 0	-15 -20 -25	15 20 25	11 15 19	0 0 0	-50 -50 -50	25 30 35	100 100 150	0 0 0	50 50 50	0 0 0	50 50 100	0 0 0	
80 50 15	250 315 400	0 0 0	-30 -35 -40	30 35 40	23 26 30	0 0 0	-50 -50 -50	50 60 70	150 200 200	0 0 0	50 100 100	0 0 0	100 100 100	0 0 0	
uter ri	ng														
		$t_{\Delta \mathrm{Dmp}}$)		t_{VDsp}	1	t _{VD}	mp	$t_{\Delta Cs}$				t _{Kea}		
	≤	U	L						U	L					
nm		μm			μm		μm		μm				μm		
8 0 0	30 50 80	0 0 0	-12 -14 -16		12 14 16		9 11 12		0 0 0	-:	100 100 100		18 20 25		
0 .20 .50	120 150 180	0 0 0	-18 -20 -25	1	18 20 25		14 15 19		0 0 0	-:	100 100 100		35 40 45		
80 50 15	250 315 400	0 0 0	-30 -35 -40		30 35 40		23 26 30		0 0 0	-:	100 100 100		50 60 70		
00 00	500 630	0	-45 -50		45 60		34 38		0	=; =;	100 100		80 100		

 $\overline{\mbox{\ ^{1)}}}$ Tolerance class CLN is in accordance with ISO tolerance class 6X.

															Table
	tolerances fo		tapered ro	ller bea	rings										
Inner rii	ng and bearir														
u >	≤	t _{∆dmp} U	L	t _{Vdsp}	t _{Vdmp}	t _{ΔBs}	L	t _{Kia}	t _{Sd}	t _{ΔTs} U	L	<i>t</i> ∆T1s U	L	t _{ΔT2s} U	L
mm		μm		μm	μm	μm		μm	μm	 μm		 μm		μm	
10 18 30	18 30 50	0 0 0	-7 -8 -10	5 6 8	5 5 5	0 0 0	-200 -200 -240	5 5 6	7 8 8	+200 +200 +200	-200 -200 -200	+100 +100 +100	-100 -100 -100	+100 +100 +100	-100 -100 -100
50 80 120	80 120 180	0 0 0	-12 -15 -18	9 11 14	6 8 9	0 0 0	-300 -400 -500	7 8 11	8 9 10	+200 +200 +350	-200 -200 -250	+100 +100 +150	-100 -100 -150	+100 +100 +200	-100 -100 -100
180 250 315	250 315 400	0 0 0	-22 -25 -30	17 19 23	11 13 15	0 0 0	-600 -700 -800	13 13 15	11 13 15	+350 +350 +400	-250 -250 -400	+150 +150 +200	-150 -150 -200	+200 +200 +200	-100 -100 -200
400 500 630	500 630 800	0 0 0	-35 -40 -50	28 35 45	17 20 25	0 0 0	-900 -1100 -1600	20 25 30	17 20 25	+450 +500 +600	-450 -500 -600	+225 - -	-225 - -	+225 - -	-225 - -
800 1 000 1 250	1 000 1 250 1 600	0 0 0	-60 -75 -90	60 75 90	30 37 45	0 0 0	-2 000 -2 000 -2 000	37 45 55	30 40 50	+750 +750 +900	-750 -750 -900	- - -	- - -	- - -	- - -
0															
Outer ri	ng												+ 1)		
>	≤	t _{ΔDmp} U	L		t _{VDsp}		t _{VDmp}	t _{∆Cs}				t _{Kea}	<i>t</i> _{SD} ¹⁾		
mm		μm			μm		μm					μm	μm		
18 30 50	30 50 80	0 0	-8 -9 -11		6 7 8		5 5 6	inne	r ring of	ABs of an the same		6 7 8	4 4 4		
80 120 150	120 150 180	0 0 0	-13 -15 -18		10 11 14		7 8 9					10 11 13	4,5 5 5		
180 250 315	250 315 400	0 0 0	-20 -25 -28		15 19 22		10 13 14					15 18 20	5,5 6,5 6,5		
400 500 630	500 630 800	0 0 0	-33 -38 -45		26 30 38		17 20 25					24 30 36	8,5 10 12,5		
800 1 000 1250	1 000 1 250 1 600	0 0 0	-60 -80 -100		50 65 90		30 38 50					43 52 62	15 19 25		

65

120

1600

2 000

0

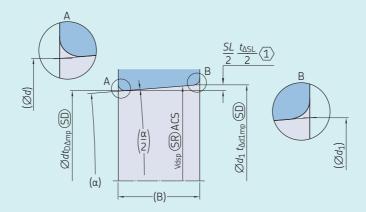
-125

32,5

73

¹⁾ Tolerance values have become half the values in accordance with the revised ISO standard (2014) because SD is defined as perpendicularity of the outer ring outside surface axis with respect to datum established from the outer ring face.

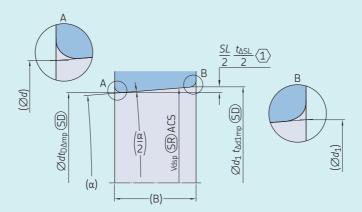
										Table 8
Normal	tolerances for i	nch radial be	earings, exce	pt tapered roll	er bearings					
Inner rir	ng									
d		$t_{\Delta m dmp}$		t_{Vdsp}	t_{\DeltaBs}		t_{VBs}	t _{Kia}	t _{Sia}	
>	≤	U	L		U	L				
mm		μm		μm	μm		μm	μm	μm	
- 25,4 50,8	25,4 50,8 76,2	+5 +5 +5	-5 -8 -8	10 10 13	0 0 0	-127 -127 -127	13 13 13	10 10 15	15 20 30	
76,2 152,4 203,2	152,4 203,2 304,8	+5 +5 +5	-8 -13 -13	18 33 33	0 0 0	-127 -127 -254	15 15 20	20 25 30	38 51 51	
304,8	381	+5	-20	51	0	-406	25	38	64	
Outer ri	ng									
D		$t_{\Delta m Dmp}$		t_{VDsp}	$t_{\Delta Cs}$		t_{VCs}	t _{Kea}	t _{Sea}	
>	≤	U	L							
mm		μm		μm			μm	μm	μm	
- 25,4 50,8	25,4 50,8 76,2	-8 -8 -13	-18 -20 -25	10 10 13	an inne same b	al to $t_{\Delta Bs}$ of er ring of the pearing as the	13 13 13	10 13 15	15 15 20	
76,2 127 203,2	127 203,2 304,8	–20 –33 –33	-33 -46 -46	18 33 33	outerr	illy	15 15 20	18 20 25	30 38 51	
304,8 381	381 508	-33 -33	-58 -58	51 51			25 30	30 38	51 64	


										Tabl
	s for inch tapere	d roller beari	ngs							
nner ring	J									
d		<u>t_{∆dmp}</u> Toleran	ce classes			t _{Kia} , t _{Sia}				
>	≤	Normal U	, CL2 L	CL3, CL0 U	L					
mm		μm		μm						
	76,2	+13	0	+13	0	Values a	re given in out	ter ring table		
76,2 101,6	101,6 266,7	+25 +25	0 0	+13 +13	0					
266,7	304,8	+25	0	+13	0					
304,8 609,6	609,6 914,4	+51 +76	0	+25 +38	0					
Outer ring	9									
D		$t_{\Delta Dmp}$				t_{Kia} ,	t _{Kea} , t _{Sia} , t _{Sea} ance classes			t _{Kea}
		Normal		CL3, CL0		Toler Norr	rance classes nal CL2	CL3	CLO	Tolerance class CL7C
> 	≤	H	L	Н	L					um
mm		μm 				μm				μm
- 304,8	304,8 609,6	+25 +51	0	+13 +25	0	51 51	38 38	8 18	4 9	→ table 5,
504,8 609,6	914,4	+76	0	+38	0	76	51	51	26	page 41
Abutment	t width of single	row bearings								
d		D		t_{∆Ts} Tolerance	classes					
>	≤	>	≤	Normal U	L	CL2 U	L	CL3, CL0 U	L	
mm		mm		μm						
-	101,6	_	_	+203	0	+203	0	+203	-203	
101,6 266,7	266,7 304,8	- -	-	+356 +356	-254 -254	+203 +203	0	+203 +203	-203 -203	
304,8	609,6	_	508	+381	-381	+381	-381 201	+203	-203	
304,8 609,6	609,6	508 -	_	+381 +381	-381 -381	+381 -	–381 –	+381 +381	-381 -381	

5KF. 45

IDIETANO	es for thru	st bearing	15										
	l diameter		ift washer						Housing	washer			
d, d ₂ , D ¹	1) ≤	Tole	_{np} , t _{Δd2mp} erance classes mal, P6, P5 L		t _{Vd2sp}	t _{Si} ²⁾³⁾ Tolerance Normal	t _{Si} ²⁾³⁾ classes P6	t si ²⁾³⁾ P5	t_{∆Dmp} Tolerand Normal, U		t _{VDsp}	t Se ²⁾	
mm		μm							μm				
- 18 30	18 30 50	0 0 0	-8 -10 -12	6 8 9		10 10 10	5 5 6	3 3 3	0 0 0	-11 -13 -16	8 10 12	shaft	tical to t _{Si} of washer of bearing
50 80 120	80 120 180	0 0 0	-15 -20 -25	11 15 19		10 15 15	7 8 9	4 4 5	0 0 0	-19 -22 -25	14 17 19		
180 250 315	250 315 400	0 0 0	-30 -35 -40	23 26 30		20 25 30	10 13 15	5 7 7	0 0 0	-30 -35 -40	23 26 30		
400 500 630	500 630 800	0 0 0	-45 -50 -75	34 38 55		30 35 40	18 21 25	9 11 13	0 0 0	-45 -50 -75	34 38 55		
800 1 000 1 250	1 000 1 250 1 600	0 0 0	-100 -125 -160	75 95 120		45 50 60	30 35 40	15 18 25	0 0 0	-100 -125 -160	75 95 120		
1 600	2 000	0	-200	150		75	45	30	0	-200	150		
2 000	2 500	0	-250	190		90	50	40	U	-250	190		
2 000 Bearing		0 t_{ATs} Single o	-250 direction is without	t _{AT1s} ⁴⁾ Single dir bearings washer		<i>t</i> ∧⊤1s Double	e direction gs without	t_{∆T3s}⁴⁾ Double	direction gs with seat	t_{∆T4s}^{4)E} Spherio	190 (5) Cal roller thro		
2 000 Bearing d, d ₂ 1)		0 t _{∆Ts} Single of the searing	-250 direction is without	t _{AT1s} ⁴⁾ Single dir bearings washer		t∆T1 s Double t bearin	e direction gs without	t_{∆T3s} ⁴⁾ Double bearin	direction gs with seat				ings Explorer L
2 000 Bearing d, d ₂ 1)	height	t∆Ts Single of bearing seat wa	–250 direction s without sher	t ∆T1s ⁴⁾ Single dir bearings v washer	with sea	t _{ΔT1s} Double t bearin seat w	e direction gs without ashers	t ∆T3s ⁴⁾ Double bearing washe	direction gs with seat 's	t _{ΔT4s} ^{4)E} Spherio	s) cal roller thru	SKF E	xplorer
2 000 Bearing d, d ₂ 1) > mm - 30	height	t _{ATs} Single of bearing seat wa	–250 direction s without sher	t _{ΔT1s} ⁴⁾ Single dir bearings washer U μm 100	with sea	t ∆T1s Double t bearin seat w U	e direction gs without ashers	t_{ΔT3s}⁴⁾ Double bearing washed	direction gs with seat 's	t ∆T4s ^{4)E} Spherid SKF U	s) cal roller thru	SKF E	xplorer
2 000 Bearing d, d ₂ 1) > mm - 30 50 80 120	height ≤ 30 50	t _{ΔTs} Single of bearing seat was U μm	-250 direction swithout sher L -250 -250	t _{ΛΤ1s} ⁴⁾ Single dir bearings washer U μm 100 - 100 - 100 - 150 - 150 - 150 - 150	with seat L -250 -250	t _{ΔT1s} Double t bearin seat w U μm 150 150	e direction gs without ashers L –400 –400	t _{ΔT3s} ⁴) Double bearing washed U μm	direction gs with seat s L -400 -400	t _{ΔT4s} ^{4)g} Spherio SKF U μm	s) cal roller thro L	SKF E U	xplorer L – –
2 000 Bearing d, d ₂ 1) > mm - 30 50 80 120 180 250 315	height ≤ 30 50 80 120 180	t _{ΔTs} Single obearing seat was U μm 20 20 20 25 25	-250 direction is without sher L -250 -250 -250 -300 -300 -400	t _{AT1s} ⁴⁾ Single din bearings washer U μm 100 - 100 - 150 - 1	-250 -250 -300 -400	tatis Double bearin seat w U µm 150 150 200 200	e direction gs without ashers L -400 -400 -500 -500 -600	t _{ΔT3s} ⁴⁾ Double bearing washed U μm 300 300 300 400 400	-400 -400 -500 -500 -600	t _{ΔT4s} ⁴⁾⁵ Spherio SKF U μm – 0	L L - -125 -150 -175	SKF E U 0 0 0	- - -100 -100 -125
2 000 Bearing d, d ₂ 1) > mm - 30 50 80 120 180 250 315 400 500 630	sheight ≤ 30 50 80 120 180 250 315 400	tATs Single of bearing seat was U µm 20 20 20 25 25 30 40 40	-250 direction swithout sher L -250 -250 -250 -300 -400 -400 -400 -500	t _{ΔT1s} ⁴⁾ Single dir bearings washer U μm 100 - 100 - 100 - 150 - 1	-250 -250 -300 -300 -400 -400	t _Δ T1s Double bearin seat w U μm 150 150 150 200 200 250	e direction gs without ashers L -400 -400 -500 -500 -600 -600	t _{ΔT3s} ⁴⁾ Double bearing washed U μm 300 300 300 400 400 500	-400 -400 -500 -600 -600	t _{ΔT4s} ^{4)ξ} Spherio	5) tal roller thru 125 -150 -175 -200 -225 -300	SKF E U	- - -100 -125 -125 -150 -200
	separate	t _{ΔTs} Single of bearing seat was U μm 20 20 20 20 40 40 50 60 70	-250 direction s without sher L -250 -250 -250 -300 -400 -400 -400 -500 -500 -600 -750	t _{AT1s} ⁴⁾ Single din bearings washer U μm 100 - 100 - 100 - 150 - 1	-250 -250 -250 -300 -400 -400 -	t _Δ T1s Double bearin seat w U μm 150 150 150 200 200 250	e direction gs without ashers L -400 -400 -500 -500 -600 -6	t _{ΔT3s} ⁴⁾ Double bearing washed U μm 300 300 300 400 400 500	-400 -400 -400 -500 -600 -6	t _{ΔT4s} ⁴⁾⁵ Spherio SKF U μm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- - -125 -150 -175 -200 -225 -300 -400 -500 -630	SKF E U	- - -100 -125 -125 -150 -200 -

¹⁾ For double direction bearings, the values apply only for $d_2 \le 190$ mm and $D \le 360$ mm.
2) Applies only to thrust ball bearings and thrust cylindrical roller bearings, each with 90° contact angle.
3) Not applicable for central shaft washers.
4) Not included in ISO 199.
5) ISO 199 uses symbol T.


Normal, P6 and P5 class tolerances for tapered bores, taper 1:12

Bore dia	ameter	Toleran Normal	ce classes				P5				
d >	≤	$t_{\Delta extsf{dmp}}$	L	$t_{Vdsp}^{2)}$	$t_{\Delta SL}$	L	t _{Δdmp} U	L	$t_{Vdsp}^{(2)}$	$t_{\Delta SL}$	L
mm		μm		μm	μm		μm		μm	μm	
18	30	+21	0	13	+21	0	+13	0	13	+13	0
30	50	+25	0	15	+25	0	+16	0	15	+16	0
50	80	+30	0	19	+30	0	+19	0	19	+19	0
80	120	+35	0	22	+35	0	+22	0	22	+22	0
120	180	+40	0	31	+40	0	+25	0	25	+25	0
180	250	+46	0	38	+46	0	+29	0	29	+29	0
250	315	+52	0	44	+52	0	+32	0	32	+32	0
315	400	+57	0	50	+57	0	+36	0	36	+36	0
400	500	+63	0	56	+63	0	+40	0	-	+40	0
500	630	+70	0	70	+70	0	+44	0	-	+44	0
630	800	+80	0	-	+80	0	+50	0	-	+50	0
800	1 000	+90	0	-	+90	0	+56	0	-	+56	0
1 000	1 250	+105	0	-	+105	0	+66	0	-	+66	0
1 250	1 600	+125	0	-	+125	0	+78	0	-	+78	0
1 600	2 000	+150	0	-	+150	0	+92	0	-	+92	0

¹⁾ Smaller tolerance zones than ISO 492. 2) Applies in any cross section of the bore.

Normal tolerances for tapered bores, taper 1:30

Bore dian	neter	Tolerance Normal	class				
d >	≤	$t_{\Delta ext{dmp}}$	L	t_{Vdsp}^{-1}	t∆sl U	L	
mm		μm		μm	μm		
- 80 120	80 120 180	+15 +20 +25	0 0 0	19 22 40	+30 +35 +40	0 0 0	
180 250 315	250 315 400	+30 +35 +40	0 0 0	46 52 57	+46 +52 +57	0 0 0	
400 500 630	500 630 800	+45 +50 +75	0 0 0	63 70 –	+63 +70 +100	0 0 0	
800 1 000 1 250	1 000 1 250 1 600	+100 +125 +160	0 0 0	- - -	+100 +115 +125	0 0 0	
1 600	2 000	+200	0	_	+150	0	

¹⁾ Applies in any cross section of the bore.

	Table Table
Tolerance symbols	
Tolerance symbol	Definition
	Radial bearings inner ring – cylindrical and tapered bore
d	1 Cylindrical bore: Nominal bore diameter2 Tapered bore: Nominal bore diameter at the theoretical small end
Δdmp	 1 Cylindrical bore: Deviation of a mid-range size (out of two-point sizes) of bore diameter in any cross section from its nominal size 2 Tapered bore: Deviation of a mid-range size (out of two-point sizes) of bore diameter at the theoretical small end from its nominal size
Δds	Deviation of a two-point size of bore diameter of a cylindrical bore from its nominal size
Vdsp	Range of two-point sizes of bore diameter in any cross section of a cylindrical or tapered bore
Vdmp	Range of mid-range sizes (out of two-point sizes) of bore diameter obtained from any cross section of a cylindrical bore
В	Nominal inner ring width
ΔBs Nomal, Modified ¹⁾	 Symmetrical rings: Deviation of a two-point size of inner ring width from its nominal size Asymmetrical rings, upper limit: Deviation of a minimum circumscribed size of inner ring width, between two opposite lines, in any longitudinal section which includes the inner ring bore axis, from its nominal size Asymmetrical rings, lower limit: Deviation of a two-point size of inner ring width from its nominal size
VBs	 Symmetrical rings: Range of two-point sizes of inner ring width Asymmetrical rings: Range of minimum circumscribed sizes of inner ring width, between two opposite lines, obtained from any longitudinal section which includes the inner ring bore axis
Kia ²⁾	Circular radial run-out of inner ring bore surface of assembled bearing with respect to datum, i.e. axis, established from the outer ring outside surface
Sd ²⁾	Circular axial run-out of inner ring face with respect to datum, i.e. axis, established from the inner ring bore surface
Sia ²⁾	Circular axial run-out of inner ring face of assembled bearing with respect to datum, i.e. axis, established from the outer ring outsissurface
	Radial bearings inner ring – tapered bore only
d ₁	Nominal bore diameter at the theoretical large end of a tapered bore
Δd1mp	Deviation of a mid-range size (out of two-point sizes) of bore diameter at the theoretical large end from its nominal size
SL	Taper slope, the difference between nominal diameters at the theoretical large end and small end of a tapered bore $(d_1 - d)$
ΔSL	Deviation of taper slope of a tapered inner ring bore from its nominal size

¹⁾ Modified applies to inner rings and outer rings of bearings of matched bearing sets consisting of two or more bearings. Does not apply to universally matchable angular contact ball bearings. 2) Geometrical tolerances

Tolerance symbols	5
Tolerance symbol	
•	Radial bearings outer ring
D	Nominal outside diameter
ΔDmp	Deviation of a mid-range size (out of two-point sizes) of outside diameter in any cross section from its nominal size
ΔDs	Deviation of a two-point size of outside diameter from its nominal size
VDsp	Range of two-point sizes of outside diameter in any cross section
VDmp	Range of mid-range sizes (out of two-point sizes) of outside diameter obtained from any cross section
С	Nominal outer ring width
ΔCs Nomal, Modified ¹⁾	 Symmetrical rings: Deviation of a two-point size of outer ring width from its nominal size Asymmetrical rings, upper limit: Deviation of a minimum circumscribed size of outer ring width, between two opposite lines, in any longitudinal section which includes the outer ring outside surface axis, from its nominal size Asymmetrical rings, lower limit: Deviation of a two-point size of outer ring width from its nominal size
VCs	 Symmetrical rings: Range of two-point sizes of outer ring width Asymmetrical rings: Range of minimum circumscribed sizes of outer ring width, between two opposite lines, obtained from any longitudinal section which includes the outer ring outside surface axis
Kea ²⁾	Circular radial run-out of outer ring outside surface of assembled bearing with respect to datum, i.e. axis, established from the inn ring bore surface
SD 2)	Perpendicularity of outer ring outside surface axis with respect to datum established from the outer ring face
Sea ²⁾	Circular axial run-out of outer ring face of assembled bearing with respect to datum, i.e. axis, established from the inner ring bore surface
	Chamfer limits
r _s	Single chamfer dimension
r _{s min}	Smallest single chamfer dimension of r _s , r ₁ , r ₂ , r ₃ , r ₄
r ₁ , r ₃	Radial direction chamfer dimensions
r ₂ , r ₄	Axial direction chamfer dimensions
	Tapered roller bearings
т	Nominal assembled bearing width
ΔTs	Deviation of minimum circumscribed size of assembled bearing width from its nominal size
Т 1	Nominal effective width of cone (inner ring, with roller and cage assembly) assembled with a master cup (outer ring)
	Nominal effective width of cup assembled with a master cone
Γ ₂	
T ₂ Δ T1 s	Deviation of minimum circumscribed size of effective width (cone assembled with a master cup) from its nominal size

¹⁾ Modified applies to inner rings and outer rings of bearings of matched bearing sets consisting of two or more bearings. Does not apply to universally matchable angular contact ball bearings. 2) Geometrical tolerances

Tolerance symbol	Definition
	Thrust bearings shaft washer
d	Nominal bore diameter of shaft washer, single direction bearing
Δds	Deviation of a two-point size of shaft washer bore diameter from its nominal size
Δdmp	Deviation of a mid-range size (out of two-point sizes) of shaft washer bore diameter in any cross section from its nominal size
Vdsp	Range of two-point sizes of shaft washer bore diameter in any cross section
d ₂	Nominal bore diameter of central shaft washer, double direction bearing
Δd2mp	Deviation of a mid-range size (out of two-point sizes) of central shaft washer bore diameter in any cross section from its nominal size
Vd2sp	Range of two-point sizes of central shaft washer bore diameter in any cross section
Si	 1 Range of two-point sizes of thickness between shaft washer raceway and the back face, cylindrical roller thrust bearing 2 Range of minimum spherical sizes between the raceway and the opposite back face of the shaft washer, obtained from any long tudinal section which includes the shaft washer bore axis, thrust ball bearing
	Thrust bearings housing washer
D	Nominal outside diameter of housing washer
ΔDs	Deviation of a two-point size of housing washer outside diameter from its nominal size
ΔDmp	Deviation of a mid-range size (out of two-point sizes) of housing washer outside diameter in any cross section from its nominal sizes.
VDsp	Range of two-point sizes of housing washer outside diameter in any cross section
Se	 1 Range of two-point sizes of thickness between housing washer raceway and the back face, cylindrical roller thrust bearing 2 Range of minimum spherical sizes between the raceway and the opposite back face of the housing washer, obtained from any longitudinal section which includes the housing washer outside surface axis, thrust ball bearing
	Thrust bearings assembled bearing height
Т	Nominal assembled bearing height, single direction thrust bearing (except spherical roller thrust bearing $\rightarrow T_4$)
ΔTs	Deviation of minimum circumscribed size of assembled bearing height from its nominal size, single direction thrust bearing (except spherical roller thrust bearing $\rightarrow \Delta T4s$)
T ₁	1 Nominal assembled bearing height, double direction thrust bearing2 Nominal assembled bearing height, single direction thrust bearing with a seat washer
ΔT1s	 Deviation of minimum circumscribed size of assembled bearing height from its nominal size, double direction thrust bearing Deviation of minimum circumscribed size of assembled bearing height from its nominal size, single direction thrust bearing with seat washer
T ₃ 3)	Nominal assembled bearing height, double direction thrust bearing with seat washers
ΔT3s ³⁾	Deviation of minimum circumscribed size of assembled bearing height from its nominal size, double direction thrust bearing with seat washers
T ₄ ⁴⁾	Nominal assembled bearing height, spherical roller thrust bearing
ΔT4s ⁴⁾	Deviation of minimum circumscribed size of assembled bearing height from its nominal size, spherical roller thrust bearing

³⁾ Not included in ISO 199. 4) In ISO 199, the symbol T is used.

			Table 14
Diameter series (radial bearings)			
Bearing type	Diameter series 7, 8, 9	0,1	2, 3, 4
Deep groove ball bearings ¹⁾	617, 618, 619 627, 628 637, 638, 639	60 160,161 630	2, 3 42, 43 62, 63, 64, 622, 623
Angular contact ball bearings		70	32, 33 72, 73 QJ 2, QJ 3
Self-aligning ball bearings ²⁾	139	10,130	12, 13, 112 22, 23
Cylindrical roller bearings		NU 10, 20 NJ 10	NU 2, 3, 4, 12, 22, 23 NJ 2, 3, 4, 22, 23 NUP 2, 3, 22, 23 N 2, 3
Full complement cylindrical roller bearings	NCF 18, 19, 28, 29 NNC 48, 49 NNCF 48, 49 NNCL 48, 49	NCF 30 NNF 50 NNCF 50	NCF 22 NJG 23
Needle roller bearings	NA 48, 49, 69		
Spherical roller bearings	238, 239 248, 249	230, 231 240, 241	222, 232 213, 223
CARB toroidal roller bearings	C 39, 49, 59, 69	C 30, 31 C 40, 41	C 22, 23 C 32

¹⁾ Bearings 604, 607, 608, 609 belong to diameter series 0, bearings 623, 624, 625, 626, 627, 628 and 629 to diameter series 2, bearings 634, 635 and 638 to diameter series 3, bearing 607/8 to diameter series 9.

2) Bearing 108 belongs to diameter series 0, bearings 126, 127 and 129 to diameter series 2, bearing 135 to diameter series 3.

Chamfer dimensi	on lim	its for metric	radial ar	nd thrust be	Table 1 arings,
except tapered ro Minimum single chamfer	oller bearings Nominal bearing bore diameter				
dimension			Radial b	Thrust bearings	
r _{s min}	d >	≤	r _{1,3}	r _{2, 4}	r _{1, 2, 3, 4}
mm	mm		mm		
0,05 0,08 0,1	- - -	_ _ _	0,1 0,16 0,2	0,2 0,3 0,4	0,1 0,16 0,2
0,15 0,2 0,3	- - - 40	- - 40 -	0,3 0,5 0,6 0,8	0,6 0,8 1 1	0,3 0,5 0,8 0,8
0,6 1	- 40 - 50	40 - 50 -	1 1,3 1,5 1,9	2 2 3 3	1,5 1,5 2,2 2,2
1,1 1,5	- 120 - 120	120 - 120 -	2 2,5 2,3 3	3,5 4 4 5	2,7 2,7 3,5 3,5
2,1	- 80 220 - 280	80 220 - 280	3 3,5 3,8 4 4,5	4,5 5 6 6,5 7	4 4 4 4,5 4,5
2,5	- 100 280	100 280 -	3,8 4,5 5	6 6 7	- - -
3	- 280	280	5 5,5	8	5,5 5,5
4 5 6	- - -	- - -	6,5 8 10	9 10 13	6,5 8 10
7,5 9,5 12	- - -	- - -	12,5 15 18	17 19 24	12,5 15 18

Minimum single chamfer dimension		nal bearing bore/ de diameter	Maximum chamfer dimensions	
r _{s min}	d, D >	≤	r _{1,3}	r _{2, 4}
mm	mm		mm	
0,3	- 40	40	0,7 0,9	1,4 1,6
0,5	- 40	40	1,1 1,2	1,7 1,9
0,6	- 40	40 -	1,1 1,3	1,7 2
1	- 50	50 -	1,6 1,9	2,5 3
1,5	- 120 250	120 250 -	2,3 2,8 3,5	3 3,5 4
2	- 120 250	120 250 -	2,8 3,5 4	4 4,5 5
2,5	- 120 250	120 250 -	3,5 4 4,5	5 5,5 6
3	- 120 250 400	120 250 400	4 4,5 5 5,5	5,5 6,5 7 7,5
4	- 120 250 400	120 250 400	5 5,5 6 6,5	7 7,5 8 8,5
5	- 180	180 -	6,5 7,5	8
6	- 180	180	7,5 9	10 11

5KF. 53

Chamfe	r dimension lir	nits for incl	h tapered roller b	earings						
		Inner ri	ng			Outer ring)			
Minimum single chamfer dimension		Nominal bearing bore diameter		Maximum chamfer dimensions		Nominal b diameter	Nominal bearing outside diameter		Maximum chamfer dimension	
s min	≤	d >	≤	r ₁	r ₂	D >	≤	r ₃	r ₄	
nm		mm		mm		mm		mm		
0,6	1,4	- 101,6 254	101,6 254 -	r _{1 min} + 0,5 r _{1 min} + 0,6 r _{1 min} + 0,9	r _{2 min} + 1,3 r _{2 min} + 1,8 r _{2 min} + 2	- 168,3 266,7 355,6	168,3 266,7 355,6	r _{3 min} + 0,6 r _{3 min} + 0,8 r _{3 min} + 1,7 r _{3 min} + 0,9	r _{4 min} + 1,2 r _{4 min} + 1,4 r _{4 min} + 1,7 r _{4 min} + 2	
1,4	2,5	- 101,6 254	101,6 254 -	r _{1 min} + 0,5 r _{1 min} + 0,6 r _{1 min} + 2	$r_{2 \min} + 1,3$ $r_{2 \min} + 1,8$ $r_{2 \min} + 3$	- 168,3 266,7 355,6	168,3 266,7 355,6	r _{3 min} + 0,6 r _{3 min} + 0,8 r _{3 min} + 1,7 r _{3 min} + 2	$r_{4 \text{ min}} + 1,2$ $r_{4 \text{ min}} + 1,4$ $r_{4 \text{ min}} + 1,7$ $r_{4 \text{ min}} + 3$	
2,5	4,0	- 101,6 254 400	101,6 254 400	r _{1 min} + 0,5 r _{1 min} + 0,6 r _{1 min} + 2 r _{1 min} + 2,5	$r_{2 \min} + 1,3$ $r_{2 \min} + 1,8$ $r_{2 \min} + 4$ $r_{2 \min} + 4,5$	- 168,3 266,7 355,6 400	168,3 266,7 355,6 400	r _{3 min} + 0,6 r _{3 min} + 0,8 r _{3 min} + 1,7 r _{3 min} + 2 r _{3 min} + 2,5	r _{4 min} + 1,2 r _{4 min} + 1,4 r _{4 min} + 1,7 r _{4 min} + 4 r _{4 min} + 4,5	
4,0	5,0	- 101,6 254	101,6 254 -	$r_{1 \text{ min}} + 0,5$ $r_{1 \text{ min}} + 0,6$ $r_{1 \text{ min}} + 2,5$	$r_{2 \min} + 1,3$ $r_{2 \min} + 1,8$ $r_{2 \min} + 4$	- 168,3 266,7 355,6	168,3 266,7 355,6	r _{3 min} + 0,6 r _{3 min} + 0,8 r _{3 min} + 1,7 r _{3 min} + 2,5	r _{4 min} + 1,2 r _{4 min} + 1,4 r _{4 min} + 1,7 r _{4 min} + 4	
5,0	6,0	- 101,6 254	101,6 254 -	$r_{1 \text{ min}} + 0.5$ $r_{1 \text{ min}} + 0.6$ $r_{1 \text{ min}} + 3$	$r_{2 \min} + 1,3$ $r_{2 \min} + 1,8$ $r_{2 \min} + 5$	- 168,3 266,7 355,6	168,3 266,7 355,6	r _{3 min} + 0,6 r _{3 min} + 0,8 r _{3 min} + 1,7 r _{3 min} + 3	r _{4 min} + 1,2 r _{4 min} + 1,4 r _{4 min} + 1,7 r _{4 min} + 5	
5,0	7,5	- 101,6 254	101,6 254 -	$r_{1 \text{ min}} + 0,5$ $r_{1 \text{ min}} + 0,6$ $r_{1 \text{ min}} + 4,5$	$r_{2 \min} + 1,3$ $r_{2 \min} + 1,8$ $r_{2 \min} + 6,5$	- 168,3 266,7 355,6	168,3 266,7 355,6	r _{3 min} + 0,6 r _{3 min} + 0,8 r _{3 min} + 1,7 r _{3 min} + 4,5	r _{4 min} + 1,2 r _{4 min} + 1,4 r _{4 min} + 1,7 r _{4 min} + 6,5	
7,5	9,5	- 101,6 254	101,6 254 -	$r_{1 \text{ min}} + 0.5$ $r_{1 \text{ min}} + 0.6$ $r_{1 \text{ min}} + 6.5$	$r_{2 \min} + 1,3$ $r_{2 \min} + 1,8$ $r_{2 \min} + 9,5$	- 168,3 266,7 355,6	168,3 266,7 355,6	r _{3 min} + 0,6 r _{3 min} + 0,8 r _{3 min} + 1,7 r _{3 min} + 6,5	r _{4 min} + 1,2 r _{4 min} + 1,4 r _{4 min} + 1,7 r _{4 min} + 9,5	
9,5	12	- 101,6 254	101,6 254 -	r _{1 min} + 0,5 r _{1 min} + 0,6 r _{1 min} + 8	$r_{2 min} + 1,3$ $r_{2 min} + 1,8$ $r_{2 min} + 11$	- 168,3 266,7 355,6	168,3 266,7 355,6	r _{3 min} + 0,6 r _{3 min} + 0,8 r _{3 min} + 1,7 r _{3 min} + 8	r _{4 min} + 1,2 r _{4 min} + 1,4 r _{4 min} + 1,7 r _{4 min} + 11	

54 5KF.

Rounding values

Shoulder diameters

The dimensions for the shoulder diameters of radial bearings are rounded up or down to a level that is suitable for general machinery applications. Diameter dimensions of the inner ring are rounded down, whereas those of the outer ring are rounded up.

Load and speed ratings and fatigue load limits

The values of these parameters are rounded to a level that fits the accuracy of the calculations they are intended to be used in.

Masses

Masses are rounded to approximately ±5% of the actual value. They do not include the weight of any packaging.

Temperatures

Temperatures are typically rounded to 5 °C and are presented in both units (°C and °F). Because of the rounding, temperature values may not match when using unit conversion formulae.

Storage

A.3 Storage

Storage time is the period that a bearing can remain in storage in order to avoid adverse effects on operational performance of the bearing. SKF bearings are coated with a high-quality preservative oil to protect them from corrosion. Long storage times can be attained by storing bearings in their original, unopened and undamaged, packaging. The storage time of bearings also depends on their storage environment conditions. To maintain the potential operating performance of a bearing, SKF recommends a "first in, first out" inventory policy.

Storage time for open bearings

Typical storage times for open (unsealed) bearings are listed in table 1.

Storage time for capped bearings

Capped bearings (bearings with seals or shields) should be stored for a maximum of three years to avoid deterioration of their grease fill.

Additional storagerelated factors

To avoid deterioration of your bearings while in storage, consider these factors:

- Store indoors, in a frost- and condensationfree environment, at a maximum ambient temperature of 40 °C (105 °F), avoiding air flow
- Store in vibration-free conditions. Vibration can cause damage to raceways.
- Store horizontally, preferably, to avoid damage that could be caused by the bearing falling over.
- Do not open or damage the original packaging.

Storage environment Relative air humidity		erature	Storage time
%	°C	°F	years
65 75 75	20 to 25 20 to 25 35 to 40	70 to 75 70 to 75 95 to 105	10 5 3
Uncontrolled tropical c	onditions ¹⁾		1

Bearing selection process

Bearing selection process

В.1	Performance and operating conditions	65
B.2	Bearing type and arrangement	69
B.3	Bearing size	85
B.4	Lubrication	109
B.5	Operating temperature and speed	129
B.6	Bearing interfaces	139
B.7	Bearing execution	181
B.8	Sealing, mounting and dismounting	193

Bearing selection process

When selecting bearings for any purpose, ultimately you want to be certain of achieving the required level of equipment performance - and at the lowest possible cost. Robustness also is very important because the conditions in which your equipment is assembled, operated and maintained may not be precisely known and may, in fact, vary over time.

In addition to the bearing rating life, there are key factors you must consider when putting together the bearing specifications for an application, including:

- lubricant and supply method
- shaft and housing fits
- bearing clearance class
- cage material and guidance
- dimensional stability
- precision requirements
- bearing sealing
- mounting method and maintenance

To help evaluate these key factors, we recommend following the selection process shown on the right.

The process provides a straightforward step-by-step approach that shows the general relationship between each step. By clearly defining and naming the steps in this way, it should be easier to find information on a specific topic. In reality, however, you will find interdependencies that require you to loop back and forth between the steps.

Bearing selection process

Performance and operating conditions

Bearing type and arrangement

Bearing size

Lubrication

Operating temperature and speed

Bearing interfaces

Bearing execution

Sealing, mounting and dismounting

SKF support

SKF application engineering service

The SKF application engineering service provides expertise to help and support you with your technical needs.

Drawing on a wealth of experience, and supported by a global network of experts in a wide range of industries, local SKF application engineers work with original equipment manufacturers and end users to help and support them with their challenges.

Following a step-by-step application analysis process, and using SKF online and proprietary calculation tools, SKF application engineers can evaluate correct bearing type and size, and other requirements such as lubrication, fits and sealing, in order to obtain the right application solution and achieve reliable rotating equipment performance.

Contact the SKF application engineering service through your local SKF representative if you have any questions, or require any assistance, when using the bearing selection process guidelines or information in the product sections.

Supporting calculation tools

In the early stages of the application analysis and design process, bearing selection is initially made using various assumptions and, as the process progresses, additional input is included to fine tune results.

SKF can support you throughout this process with our engineering software tools (Engineering software tools, page 63), ranging from easy-to-use online tools, based on formulae provided in this catalogue, to our most sophisticated simulation systems incorporating the latest theories.

SKF is constantly developing its engineering software tools for SKF engineers and customers to support them in obtaining solutions that are technically, commercially and environmentally optimal.

Online tools

The SKF online engineering tools (*Engineering* software tools, page 63) provide functionality to:

- search for bearing data based on designation or dimensions
- calculate many useful bearing and application related parameters, including bearing basic rating life, SKF rating life, minimum load limit, shaft/housing tolerances and fits, relubrication intervals
- evaluate simple bearing arrangements
- generate drawings of bearings and housings that can be used in most commercially available CAD programs

5KF

SKF SimPro Quick

SKF SimPro Quick (*Engineering software tools*) is bearing simulation software that provides functionality to rapidly evaluate the design of bearing arrangements, and their field performance, based on relevant application requirements and conditions. In addition to the basic analysis provided by the online tools, it enables you to determine bearing load distribution and the effects of bearing stiffness and bearing clearance.

SKF SimPro Quick is intuitive, quick to learn, follows the SKF process for application analysis and bearing selection, and enables you to take greater advantage of SKF engineering know-how. It is fully compatible with the SKF SimPro platform, thus allowing you to easily exchange and discuss results with your SKF representative.

SKF SimPro Expert

SKF SimPro Expert (*Engineering software tools*) is the mainstream bearing application program used within the SKF application engineering community. It is a sophisticated bearing simulation system that enables analysis of muti-shaft systems at a deeper level than SKF SimPro Quick. It provides a wealth of functionality including:

- most of the needed modelling functionality for rotational analysis in general industry applications
- extensive analysis options for system behaviour, such as clearance effects, detailed rolling contact stress distribution
- design of experiments (DOE)

SKF SimPro Expert has also the option to add advanced modules for further analysis, as for example impact of bearing performance with a flexible support.

For additional information regarding SKF SimPro Expert and how it could help you, contact your local SKF representative.

SKF BEAST

SKF BEAST (Bearing Simulation Tool) (Engineering software tools) is a software simulation tool that enables SKF engineers to study the detailed dynamic behaviour within a mechanical sub-system, such as a bearing, under virtually any load condition.

It is a multibody system with special focus on transient conditions and detailed geometry and contacts, thus enabling detailed analysis, for example, of bearing cage behaviour and its wear mechanisms.

This enables the "testing" of new concepts and designs in a shorter time and with more information gained compared with traditional physical testing.

62

Engineering software tools

SKF tool Software capabilities User needs SKF BEAST SKF internal use • Bearing design verification Advanced analysis, bearing dynamics • Detailed, dynamic bearing and system Examples: evaluation advanced contact models • Evaluation of surface and contact • dynamic behaviour of bearing components structural fatigue behaviours • Bearing performance verification SKF SimPro Expert Advanced analysis, complex systems Examples: • Detailed bearing and system evaluation on complex models or multi-shafts • clearance optimization • flexible systems • detailed contact pressure distribution Level of complexity • influence on gear meshing SKF. • Bearing performance verification SKF SimPro Quick Advanced analysis, single shaft • Detailed bearing and system evaluation on Examples: **Customer accessible** modified rating life according to ISO/TS16281 bearing load distribution single shaft · bearing stiffness impact clearance effect • Initial selection Online tools Standard analysis, single bearing, single shaft SKF Bearing Calculator • Basic performance evaluation Examples: SKF Bearing Select SKF rating life SKF LubeSelect basic rating life • grease life minimum load limit

Performance and operating conditions

B.1 Performance and operating conditions

The first step in the bearing selection process is to understand and document:

- the required performance
- the operating conditions and assumptions of them
- any other application prerequisites

An application can set various requirements on the bearing solution. Common factors include:

- bearing life
- speed capability and ability to withstand applied acceleration levels
- precision of the radial and axial position of the shaft
- ability to cope with low or high temperatures or temperature gradients
- generated noise and vibration levels

The relative importance of these performance factors can influence the nature of the path you take through the steps of the bearing selection and application analysis process.

You should evaluate the operating conditions in as much detail as possible. The most important operating parameters are:

- load
- speed
- temperature
- lubricant and lubricant cleanliness

Usually these can be determined from physical and mechanical analysis of the application, or from experience with similar applications. Make sure that any assumptions made are clearly documented.

Operating conditions typically vary over time, e.g. in variable speed applications or because of seasonal temperature changes or increased output power. The range of the variation is important. In some cases, both

limits of the range may be important, whereas in others, only the lower or the upper limit may be.

In order to optimize a design, you may need to loop through various steps of the bearing selection process. To minimize these, review and prioritize any application prerequisites, such as:

- available radial or axial space
- shaft diameters defined by shaft strength requirements
- lubricant choice determined by other components in the application

The relationship between principal operating conditions, application requirements and various aspects of a bearing arrangement's design are shown in *Factors to consider* when translating operating conditions and application requirements into a bearing solution, page 66. The lists are not comprehensive and you may have to consider other factors and interrelationships, like cost and availability, when striving to obtain a robust and cost-effective solution.

Use the *Application data sheet*, at the end of this catalogue, to help when contacting the SKF application engineering service.

Factors to consider when translating operating conditions and application

Precision Bearing type Clearance • Space • Position control • Load • Run-out • Component temperature Speed Speed Speed Preload Peak load Friction Vibration Dimensional stability Misalignment Noise Rigidity • Friction Easy mounting Operating conditions and application requirements • Shaft and housing deformation • Cleanliness • Ease of mounting and Viscosity replacement • Operating temperature Speed Minimum load • Operating temperature • Permissible axial load Precision Lubricant Static load Shaft/housing material Vibration • Dynamic load Load direction Required life Load • Operating temperature Bearing size Cage

requirements into a bearing solution

Sealing • Operating temperature • Speed Environment • Seal temperature • Lubricant • Frictional moment • Necessity of relubrication Load Contamination Environment Corrosion • Lubricant Coatings • Load • Pressure differential • Run-out Bearing solution • Lubricant life • Relubrication interval • Seal type • Ease of replacement Environment Accessibility Vibration Tooling Mounting/dismounting Speed • Operating temperature procedure Mounting

Bearing type and arrangement

B.2 Bearing type and arrangement

Arrangements and their bearing types	70
Locating/non-locating bearing arrangements	70
Bearings for the locating support	70
Bearing combinations for the locating support	7:
Bearings for the non-locating support	72
Suitability of rolling bearing for industrial apllications	72
Typical combinations of bearing supports	74
Adjusted bearing arrangements	76
Floating bearing arrangements	76
Selection criteria	77
Available space	7.
Loads	78
Combined radial and axial loads	78
Speed and friction	79
Misalignment	80
Temperature	80
Precision	82
Stiffness	82
Mounting and dismounting	82
Separable bearings	82
Tapered bore	82
Integral sealing	82
Cost and availability	82
Popular items	82
Large bearings	82
Capped bearings	82
Availability of standard housings and sleeves	82

5KF 69

B.2 Bearing type and arrangement

Each bearing type has characteristic properties that make it more or less suitable for use in a given application. An overview is provided in *Suitability of rolling bearings for industrial applications*, page 72, of the main bearing types (including their major features and design variants) and their degree of suitability for certain aspects of use.

This section provides information on what to consider when selecting a bearing arrangement and the types of bearing to use with it. It also provides guidelines on choosing bearing types to satisfy specific demands of an application, such as accommodating available space, loads, misalignment, and more.

Arrangements and their bearing types

A bearing arrangement supports and locates a shaft, radially and axially, relative to other components such as housings. Typically, two bearing supports are required to position a shaft. Depending on certain requirements, such as stiffness or load directions, a bearing support may consist of one or more bearings.

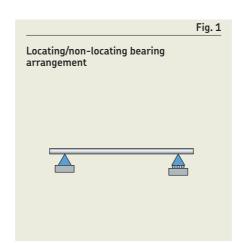
Bearing arrangements comprising two bearing supports are:

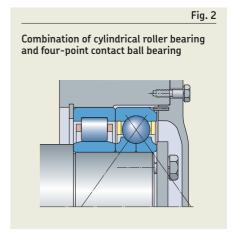
- locating/non-locating bearing arrangements
- · adjusted bearing arrangements
- floating bearing arrangements

An overview is provided in *Suitability of rolling bearings for industrial applications*, page 72, of the suitability of various bearing types for different bearing arrangements.

A single bearing arrangement consists of just one bearing that supports radial, axial and moment loads.

Locating/nonlocating bearing arrangements


In locating/non-locating bearing arrangements (fig. 1):


- The locating support provides axial location of the shaft relative to the housing.
- The non-locating support accommodates axial displacements that occur when thermal expansion of the shaft relative to the housing changes the distance between the two bearings. Additionally, it compensates for the accumulation of tolerances of the components, which affects the distance between the two bearings.

Bearings for the locating support

Radial bearings that can accommodate combined (radial and axial) loads are used for the locating bearing support. These include:

- deep groove ball bearings (page 239)
- two universally matchable single row angular contact ball bearings, arranged back-to-back or face-to-face (page 386)
- double row angular contact ball bearings (page 386)
- self-aligning ball bearings (page 438)
- spherical roller bearings (page 774)
- matched tapered roller bearings, arranged back-to-back or face-to-face (page 670)
- cylindrical roller bearings with flanges on both rings or cylindrical roller bearings mounted with an angle ring (thrust collar) (page 494)

70 **SKF**

Bearing combinations for the locating support

The locating bearing support can consist of a combination of bearings. For example (fig. 2):

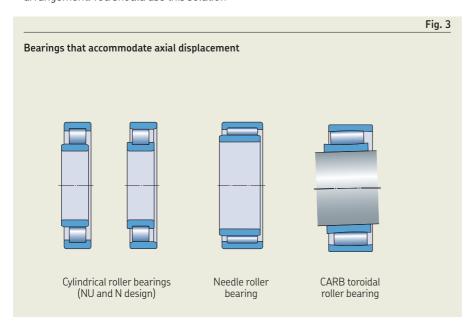
- To accommodate the radial load, a cylindrical roller bearing that has one ring without flanges may be used.
- To provide the axial location, a deep groove ball bearing, a four-point contact ball bearing, or a pair of angular contact ball bearings may be used.

The outer ring of the axial locating bearing must be mounted radially free and should not be clamped. Otherwise, this bearing can be subjected to unintended radial loads.

where an interference fit is required for both rings.

- 2 Use a loose fit between one bearing ring and its seat. Suitable bearing types include:
 - deep groove ball bearings (page 240)
 - self-aligning ball bearings (page 438)
 - spherical roller bearings (page 774)
 - pairs of angular contact ball bearings (page 385) or tapered roller bearings (page 670)

Axial movements of a bearing on its seat cause axial loads, which might have an impact on the bearing service life.


When using other bearing types, you may need to take additional design considerations into account.

Bearings for the nonlocating support

There are two ways to accommodate axial displacements at the non-locating bearing support:

- 1 Use a bearing type that enables axial displacement within the bearing (fig. 3):
 - cylindrical roller bearings with flanges on one ring only (page 494)
 - needle roller bearings (page 582)
 - CARB toroidal roller bearings (page 842)

When these bearings are rotating, they accommodate axial displacement and induce almost no axial load on the bearing arrangement. You should use this solution

Suitability of rolling bearings for industrial applications

Symbols		Load carry	ying capabil	ity	Misalignm	ent
++ good ← single + fair □ non-lo	e direction direction ocating displacement on the seat ocating displacement within the bearing	Radial load	Axial load	Moment load	Static misalignment	Dynamic misalignment (few tenths of a degree)
Deep groove ball bearings	□ A □ B	+	+ ↔	A-, B+	-	
Insert bearings	A PB A C	+	+ ↔		++	
Angular contact ball bearings, single row		+1)	++ ←		-	
matched single row	Ø A Ø B Ø C	A, B ++ C ++1)	A, B ++ ↔ C ++ ←	A++, B+ C	A, C, B -	
double row	A B	++	++ ↔	++		
four-point contact		+1)	++ ↔			
Self-aligning ball bearings	<u></u>	+	-		+++	+2)
Cylindrical roller bearings, with cage	□ _A □ _B	++			-	
	A B C D	++	A, B + ← C, D + ↔		-	
full complement, single row	A B	+++	+ ←		-	
full complement, double row	A B C C D	+++	A, B + ← C + ↔		-	
Needle roller bearings, with steel rings	A B B C	++			A, B – C ++	
assemblies / drawn cups	Maria Barana	++	A, B C -		-	
combined bearings	A CHAB CHAC	++	A –, B + C ++			
Tapered roller bearings, single row		+++1)	++ ←		-	
matched single row	A B C	A, B +++ C +++1)	A, B ++ ↔ C ++ ←	A+, B++ C	A- B, C	
double row	A B	+++	++ ↔	A+ B++	A-, B	
Spherical roller bearings		+++	+ ↔		+++	+2)
CARB toroidal roller bearings, with cage		+++		_	++	_
full complement		+++		-	++	-
Thrust ball bearings	PA PPA B		A + ← B + ↔			
with sphered housing washer	ROLA ROLPHB		A + ← B + ↔		++	
Cylindrical roller thrust bearings			++ ←			
Needle roller thrust beairngs	Д		++ ←			
Spherical roller thrust bearings		+1)	+++ ←		+++	+2)

 $^{^{1)}\,}$ Provided the $\mathrm{F_{a}/F_{r}}$ ratio requirement is met

²⁾ Reduced misalignment angle – contact SKF

³⁾ Depending on cage and axial load level

Arrangem	ient			Suitable f	or				Design fea	atures		
Locating	Non-locating	Adjusted	Floating	Long grease life	High speed	Low run-out	High stiffness	Low friction	Integral sealing	Separable ring mounting	Tapered bore	Standard housings and accessories available
\leftrightarrow		X	✓	A +++ B ++	A +++ B +	A +++ B ++	+	+++	A 🗸	×	X	X
\leftrightarrow	\leftrightarrow	X	×	+++	++	A, B + C ++	+	++	1	×	×	✓
Х	Х	/	X	++	++	+++	++	++	✓	X	Х	X
A, B ↔ C ←	A, B 🗆 C 🗶	Х	Х	++	++	+++	++	++	Х	Х	Х	X
\leftrightarrow		Х	×	++	++	++	++	++	A 🗸	В ✔	Х	Х
↔1)				+	+++	++	++	++	×	1	×	×
\leftrightarrow		Х	/	+++	++	++	+	+++	/	X	1	/
Х	•	Х	Х	++	+++	+++	++	+++	X	1	Х	X
$\begin{array}{c} A,B \leftarrow \\ C,D \leftrightarrow \end{array}$	A, B ■ ← C, D X	X	A ✓ B, C, D ✗	++3)	+++	++	++	+++	×	1	×	×
←	A, B ←	Х	/	-	+	+	+++	-	×	A X B ✓	X	×
B ← C, D ↔	A ■ ↔ B ■ ←	X	×	-	+	+	+++	-	D✓	×	×	×
Х	■ ↔	X	×	++	++	+	++	+	A 🗸	1	×	×
A, B X C ←	A, B ■ C ■ ←	Х	X	++	++	+	++	+	В, С 🗸	1	×	×
←	Х	/	Х	+	+	+	++	+	×	1	X	X
←	Х	/	Х	+	++	+++	++	+	Х	✓	Х	X
A, B ↔ C ←	A, B 🗆 C 🗶	A, B X C √	Х	+	+	++	+++	+	Х	✓	Х	X
\leftrightarrow		Х	Х	+	+	++	+++	+	1	✓	В ✓	X
\leftrightarrow		Х	/	+	++	+++	++	+	1	Х	/	/
Х	•	Х	X	+	++	+++	++	+	Х	X	/	/
Х	•	Х	Х	-	+	+++	++	-	1	×	1	✓
A ← B ↔	Х	Х	Х	+	-	++	+	+	×	✓	Х	×
A ← B ↔	Х	Х	Х	+	-	+	+	+	Х	✓	Х	Х
←	Х	Х	Х	-	-	+	+++	+	Х	✓	Х	X
←	Х	Х	Х	-	-	+	+++	+	Х	✓	Х	X
←	X	1	×	-	+	+	+++	+	×	1	×	×

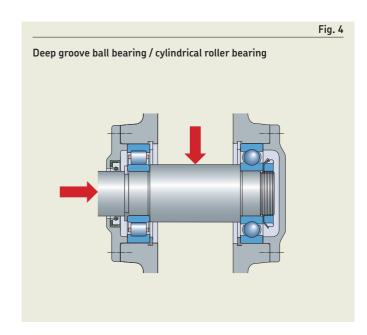
5KF. 73

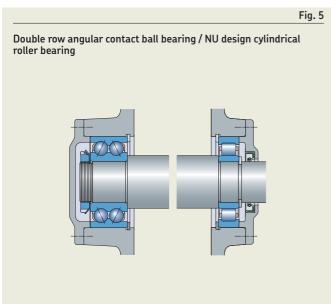
Typical combinations of bearing supports

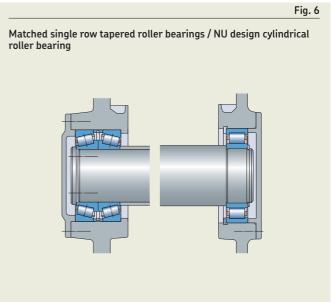
From the large number of possible locating/ non-locating bearing combinations, the following are the most popular.

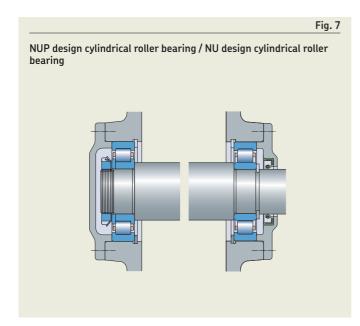
For bearing arrangements where the axial displacement is accommodated within the bearing

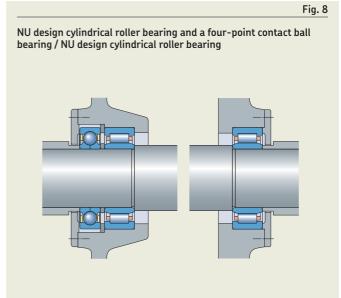
Conventional bearing arrangements in which limited angular misalignment occurs include:

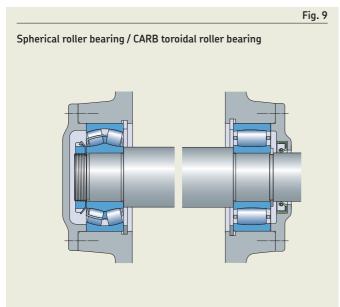

- deep groove ball bearing / cylindrical roller bearing (fig. 4)
- double row angular contact ball bearing / NU or N design cylindrical roller bearing (fig. 5)
- matched single row tapered roller bearings / NU or N design cylindrical roller bearing (fig. 6)
- NUP design cylindrical roller bearing / NU design cylindrical roller bearing (fig. 7)
- NU design cylindrical roller bearing and a four-point contact ball bearing / NU design cylindrical roller bearing (fig. 8)


SKF self-aligning bearing systems, which can compensate for more misalignment, are:

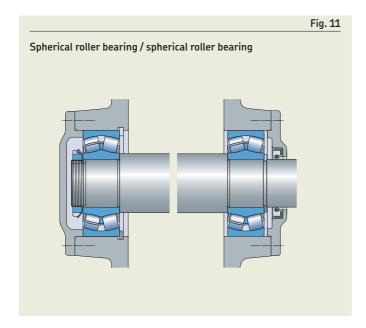

- spherical roller bearing / CARB toroidal roller bearing (fig. 9)
- self-aligning ball bearing / CARB toroidal roller bearing

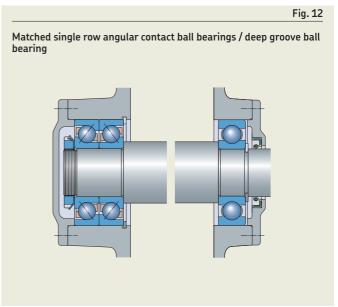

For bearing arrangements where the axial displacement is accommodated between a bearing ring and its seat


- deep groove ball bearing / deep groove ball bearing (fig. 10)
- self-aligning ball bearings or spherical roller bearings (fig. 11) for both bearing positions
- matched single row angular contact ball bearings / deep groove ball bearing (fig. 12)









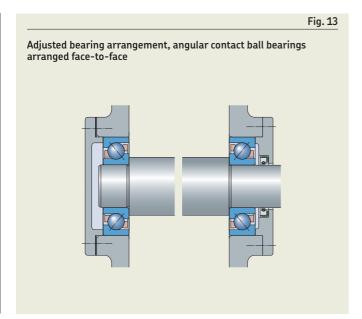
Adjusted bearing arrangements

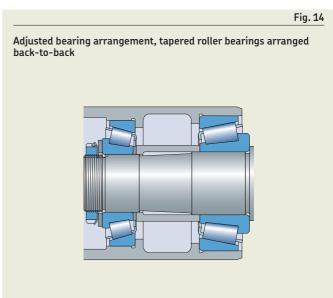
In adjusted bearing arrangements, the shaft is located axially in one direction by one bearing support and in the opposite direction by the other (cross-located). Adjusted bearing arrangements require proper adjustment of clearance or preload during mounting.

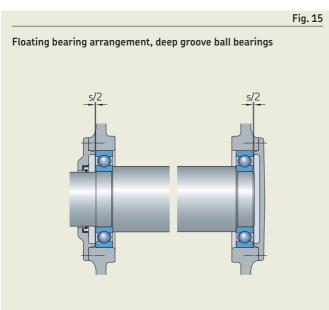
These bearing arrangements are generally used for short shafts, where thermal expansion has only a little effect. The most suitable bearings are:

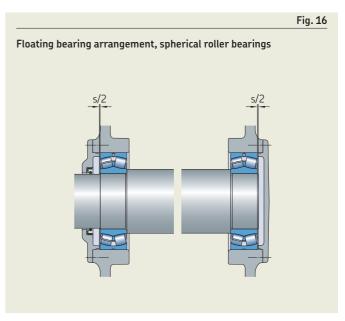
- angular contact ball bearings (fig. 13)
- tapered roller bearings (fig. 14)

Floating bearing arrangements


In floating bearing arrangements the shaft is cross-located, but is able to move axially a certain distance between the two end positions, i.e. "float".

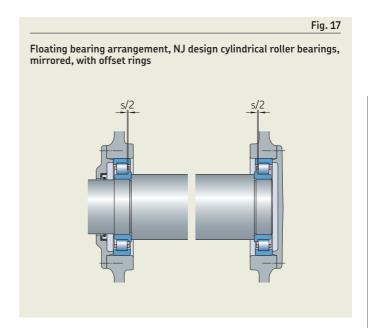

When determining the required "float" distance, consider thermal expansion of the shaft relative to the housing and tolerances of the components, which affect the distance between the two bearings.

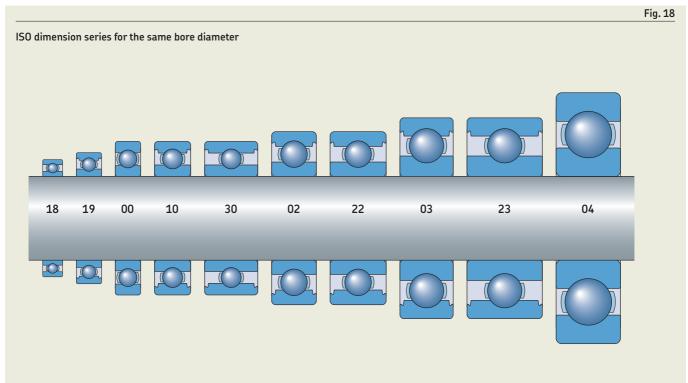

With this arrangement, the shaft can also be axially located by other components on


the shaft, e.g. a double helical gear. Most common bearings are:

- deep groove ball bearings (fig. 15)
- self-aligning ball bearings
- spherical roller bearings (fig. 16)
- NJ design cylindrical roller bearings, mirrored, with offset rings (fig. 17)

Selection criteria


Available space


Often the boundary dimensions of a bearing are predetermined by the machine's design. Typically, the shaft diameter determines the bearing bore diameter. For the same bore diameter, different outside diameters and widths may be available (fig. 18). The availability of bearings in a certain ISO dimension series depends on bearing type and bore diameter.

Other space-related criteria that influence the selection of bearing type include:

- shafts with small diameter (approx. d < 10 mm)
 - deep groove ball bearings
 - needle roller bearings
 - self-aligning ball bearings
 - thrust ball bearings
- shafts with normal diameter
 - all bearing types

- very limited radial space
 - needle roller bearings
 - deep groove ball bearings in the 618 or 619 series
 - CARB toroidal roller bearings in the C49,
 C59 or C69 series
 - bearings without inner or outer ring and raceways machined directly on the shaft or in the housing

5KF 77

Loads

When selecting bearing type based on load criteria, you should bear in mind that:

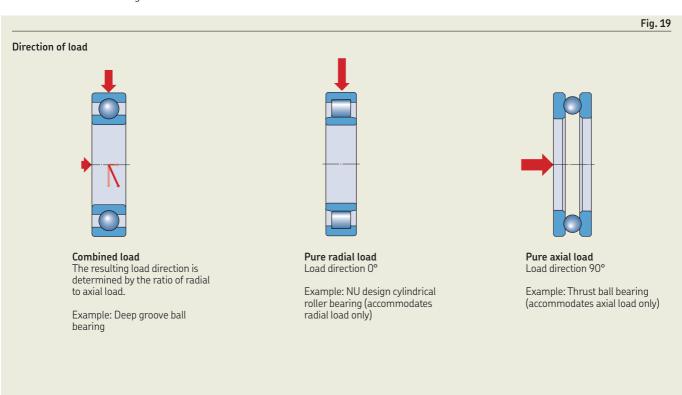
- Roller bearings accommodate heavier loads than same-sized ball bearings.
- Full complement bearings accommodate heavier loads than the corresponding bearing with a cage.

An overview is provided in *Suitability of rolling bearings for industrial applications*, page 72, the radial, axial and moment load capability of various bearing types.

Combined radial and axial loads

The direction of load is a primary factor in bearing type selection. Where the load on a bearing is a combination of radial and axial load, the ratio of the components determines the direction of the combined load (fig. 19).

The suitability of a bearing for a certain direction of load corresponds to its contact angle α (diagram 1) – the greater the contact angle, the higher the axial load carrying capacity of the bearing. You can see this indicated in the value of the calculation factor Y (refer to individual product sections), which decreases as the contact angle increases.


ISO defines bearings with contact angles $\le 45^{\circ}$ as radial bearings, and the others as thrust bearings, independent of their actual use.

To accommodate combined loads with a light axial component, bearings with a small contact angle can be used. Deep groove ball bearings are a common choice for light to moderate axial loads. With increasing axial load, a larger deep groove ball bearing (with higher axial load carrying capacity) can be used. For even higher axial load, bearings with a larger contact angle may be required, such as angular contact ball bearings or tapered roller bearings. These bearing types can be arranged in tandem to accommodate high axial loads.

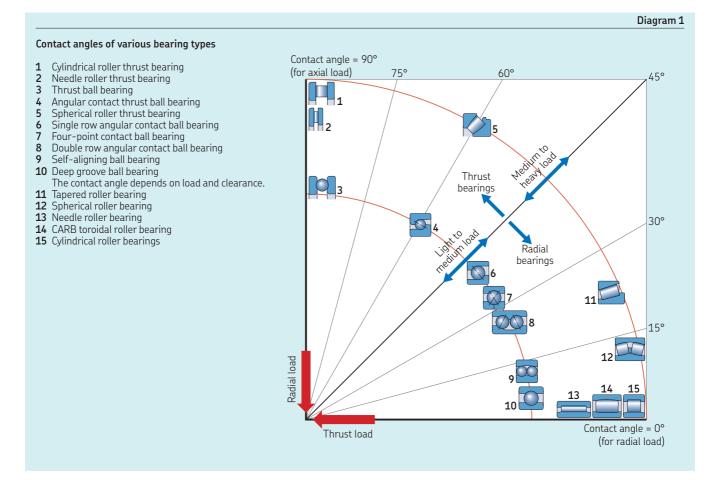
When combined loads have a large alternating axial load component, suitable solutions include:

- a pair of universally matchable angular contact ball bearings
- matched sets of tapered roller bearings
- double-row tapered roller bearings

Where a four-point contact ball bearing is used to accommodate the axial component of a combined load (fig. 2, page 70), the bearing outer ring must be mounted radially free and should not be clamped axially. Otherwise, the bearing may be subjected to unintended radial load.

78 **SKF**

Speed and friction


The permissible operating temperature of rolling bearings imposes limits on the speed at which they can be operated. The operating temperature is determined, to a great extent, on the frictional heat generated in the bearing, except in machines where process heat is dominant.

An overview is provided in *Suitability of rolling bearings for industrial applications*, page 72, of the speed capability of various bearing types.

When selecting bearing type on the basis of operating speed, you should consider the following:

- Ball bearings have a lower frictional moment than same-sized roller bearings.
- Thrust bearings cannot accommodate speeds as high as same-sized radial bearings.
- Single row bearing types typically generate low frictional heat and are therefore more suitable for high-speed operation than double or multi-row bearings.

 Bearings with rolling elements made of ceramics (hybrid bearings) accommodate higher speeds than their all-steel equivalents.

Misalignment

An overview is provided in Suitability of rolling bearings for industrial applications, page 72, of the capability of various bearing types to accommodate misalignment. The different types of misalignment are explained in table 1.

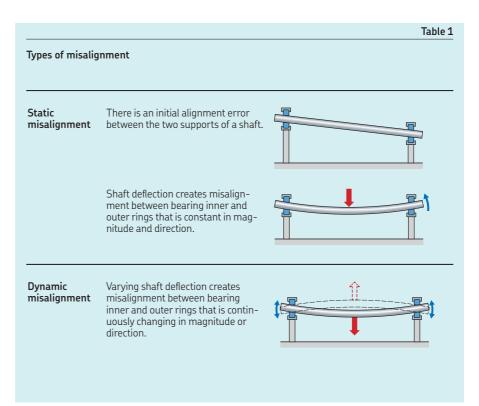
Bearing types vary in their ability to compensate for misalignment between the shaft and housing:

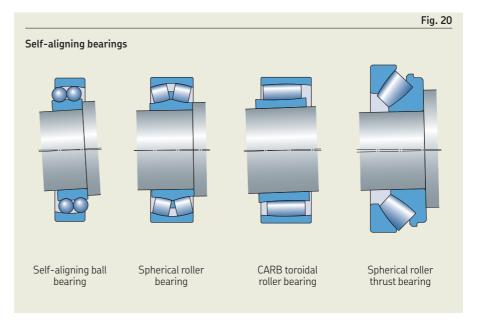
Self-aligning bearings (fig. 20)

Self-aligning bearings can compensate for misalignment within the bearing. Values for the permissible misalignment are listed in the relevant product section.

• Alignment bearings (fig. 21)

Alignment bearings can accommodate initial static misalignment because of their sphered outside surface. Values for the permissible misalignment are listed in the relevant product section.


· Rigid bearings


Rigid bearings (deep groove ball bearings, angular contact ball bearings, cylindrical, needle and tapered roller bearings) accommodate misalignment within the limits of their internal clearance. Values for the permissible misalignment are listed in the relevant product section. For rigid bearings, any misalignment may reduce service life.

Temperature

The permissible operating temperature of rolling bearings can be limited by:

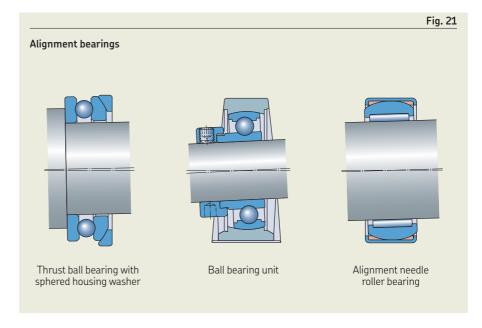
- the dimensional stability of the bearing rings and rolling elements (table 2, for details refer to the relevant product section)
- the cage (Cages, page 187)
- the seals (relevant product section)
- the lubricant (Lubrication, page 110)

80

Precision

Precision requirements typically do not influence bearing type selection. Most SKF bearings are available in various tolerance classes. Details are provided in the product sections.

For very high precision requirements, e.g. machine tool applications, use SKF superprecision bearings (SKF catalogue Superprecision bearings or available at skf.com/super-precision).


Stiffness

The stiffness of a rolling bearing is characterized by the magnitude of the elastic deformation in the bearing under load and depends not only on bearing type, but also on bearing size and operating clearance.

When selecting bearing type on the basis of stiffness requirements, you should consider, for bearings with the same size, that:

- stiffness is higher for roller than for ball bearings
- stiffness is higher for full complement bearings than for the corresponding bearing with a cage
- stiffness is higher for hybrid bearings than for the corresponding all-steel bearing
- stiffness can be enhanced by applying a preload (Selecting preload, page 186)

Stabilization of Sk	_	-	Stabilized	l for tempe	ratures
			≤120°C (250°F)	≤ 150 °C	≤ 200 °C
Ball bearings	Radial	Deep groove ball bearings	•	-	-
		Angular contact ball bearings	•	•	-
		Four-point contact ball bearings	•	•	-
		Self-aligning ball bearings	•	0	-
	Thrust	Thrust ball bearings	•	• 1)	-
Roller bearings	Radial	Cylindrical roller bearings	•	•	-
		Needle roller bearings	•	-	-
		Tapered roller bearings	•	•	-
		Spherical roller bearings	•	•	•
		CARB toroidal roller bearings	•	•	•
	Thrust	Cylindrical roller thrust bearings	•	_	_
		Needle roller thrust bearings	•	-	-
		Spherical roller thrust bearings	•	•	•

Mounting and dismounting

When selecting bearing type, you should consider the mounting and dismounting requirements:

- Is it required or beneficial to mount the inner and outer ring independently?
 - Select a separable bearing.
- Is it required or beneficial to mount the bearing on a tapered seat or with a tapered sleeve?
 - Select a bearing with a tapered bore.
 - Consider using SKF ConCentra ball or roller bearing units

(skf.com/ball-bearing-units and skf.com/roller-bearing-units).

Separable bearings

Separable bearings are easier to mount and dismount, particularly if interference fits are required for both rings.

For separable bearing types, refer to Suitability of rolling bearings for industrial applications, page 72.

Tapered bore

Bearings with a tapered bore can be mounted on a tapered shaft seat or mounted on a cylindrical shaft seat using an adapter or withdrawal sleeve (fig. 22). For bearing types available with tapered bore, refer to Suitability of rolling bearings for industrial applications, page 72.

Integral sealing

There are two reasons for sealing bearings or bearing arrangements:

- keeping the lubricant in the bearing, and avoiding pollution of adjacent components
- protecting the bearing from contamination, and prolonging bearing service life

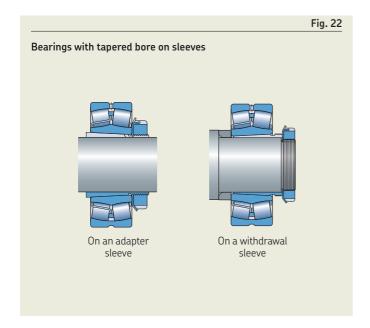
Capped bearings (sealed bearings or bearings with shields) can provide cost-effective and space-saving solutions for many applications. Bearing types, for which integral sealing is available, are indicated in Suitability of rolling bearings for industrial applications, page 72.

Cost and availability

Popular items

After determining your required bearing type, you may find it beneficial to select an appropriate bearing from our assortment of popular items, because they have a high level of availability and generally provide a cost-effective solution. Popular items are marked in the product tables with the symbol ▶.

Large bearings


If a required bearing has an outside diameter $D \ge 420$ mm, and is not marked as popular, then check its availability with SKF.

Capped bearings

Capped (sealed bearings or bearings with shields) typically provide more cost-effective solutions than using external sealing. In addition to providing good sealing performance, these ready-greased bearings do not require initial grease fill.

Availability of standard housings and sleeves

Using standard housings and sleeves generally leads to more cost-effective bearing arrangements. Bearing types for which these standard components are available are indicated in Suitability of rolling bearings for industrial applications, page 72.

Bearing size

B.3 Bearing size

Size selection based on rating life	88
Bearing rating life	88
Bearing life definition	88
Basic rating life	89
SKF rating life	89
Calculating bearing life with variable operating	
conditions, fluctuating load	90
Basic dynamic load rating, C	9:
Dynamic load rating for SKF Explorer bearings	9:
Equivalent dynamic bearing load, P	9:
Calculating equivalent dynamic bearing load	92
Equivalent mean load	92
Considerations when calculating equivalent dynamic	
bearing load	93
Life modification factor, a _{SKF}	94
Lubrication condition – the viscosity ratio, κ	102
κ value below 1	102
EP (extreme pressure) and AW (anti-wear) additives	102
Fatigue load limit, P _u	104
Contamination factor, η _c	10
Size selection based on static load	104
Static load rating	104
Equivalent static bearing load	10!
Guideline values for static safety factor, s ₀	106
Requisite minimum load	106
Checklist after the bearing size is determined	100
SKF life testing	10

5KF: 85

B.3 Bearing size

The size of a bearing must be sufficient to ensure that it is strong enough to deliver the required/expected life under defined operating conditions.

A bearing can be viewed as a system of components: raceways, rolling elements, cage, seals (if present) and lubricant (fig. 1). The performance of each component contributes to or determines the performance and life of the bearing (diagram 1). Consider these aspects:

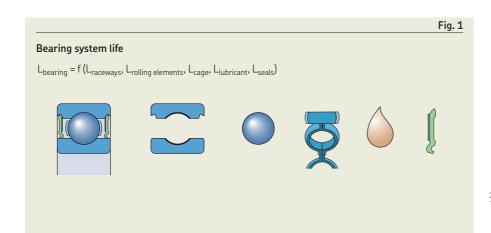
- rolling contact fatigue (RCF) on the rolling elements and raceways – this is the primary aspect that dictates bearing life in most applications
- permanent deformation of rolling elements and raceways because of heavy loads acting on the bearing, while it is stationary or oscillating slowly, or high peak loads acting on the bearing while it is rotating
- cage type or cage material these may limit the operating speed or the permissible acceleration or temperature¹⁾

- speed limit of contacting seal lips this can determine the maximum allowable speed, which affects operating temperature, thereby affecting life
- lubricant life when the lubricant deteriorates, the resulting poor relubrication condition quickly reduces bearing life

The operating conditions of the application determine which of these factors most influence the performance and life of the bearing.

This section provides guidance on determining the required bearing size.

The effect of RCF or permanent deformation on rolling elements and raceways is directly related to bearing size. Effects of cage type and material are not related to bearing size. In capped bearings, the effects of the lubricant and integral seal are only indirectly related to bearing size.


Therefore, the two main criteria that can be used for determining appropriate bearing size are:

Size selection based on rating life, page 88

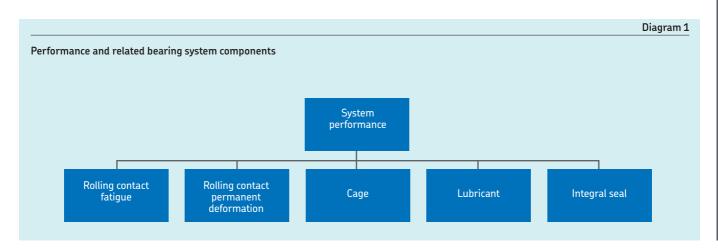
This is based on the required bearing life, taking into account the possible effects of rolling contact fatigue, and requires calculation of the basic rating life, L_{10} , or SKF rating life, L_{10m} , for the bearing.

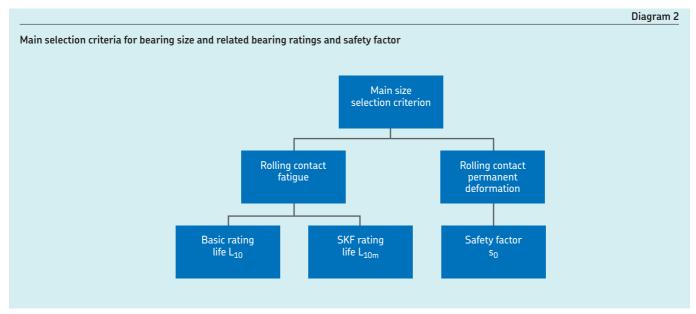
Size selection based on static load, page 104

This is based on the static load that the bearing can accommodate, taking into account the possible effects of permanent deformation, and requires calculation of the static safety factor, \mathbf{s}_0 , for the bearing.

Special cage executions are often available for bearing types that are commonly used in applications where such challenging conditions are present.

These selection criteria and the related bearing ratings and static safety factor are shown in **diagram 2** and are described in detail in the relevant subsections.


Which selection criteria you should use depends on the operating conditions of the bearing:


- For applications where bearings are running in typical operating conditions i.e. normal speeds, good lubrication conditions and not highly or peak loaded use Size selection based on rating life, page 88.
- For applications where bearings are running under very low speeds or which are used under stationary conditions, very bad lubrication conditions or where occasional peak loads occur, use Size selection based on static load, page 104.

Note that there are applications where both selection criteria must be considered, for example where a duty cycle has occasional peak loads. Also, in applications where the bearing is lightly loaded, the minimum load requirement (*Requisite minimum load*, page 106) must also be considered.

After determining bearing size, and before going to the next step, check the items listed in *Checklist after the bearing size is determined*, page 106.

Other attributes of the bearing components, such as strength and suitability, are addressed elsewhere in the *Bearing selection process*, including *Lubrication*, page 110, and *Bearing execution*, page 182, as well as in the product sections. Consider these attributes, in addition to bearing size, to ensure you obtain best bearing performance.

Size selection based on rating life

For applications where bearings are running in typical operating conditions – i.e. normal speeds, good lubrication conditions and not highly or peak loaded – determine the appropriate bearing size based on the required bearing life, taking into account the possible effects of rolling contact fatigue (RCF).

This subsection describes the bearing rating life equations and the factors that must be determined to make the evaluation:

- Bearing rating life the basis for bearing rating life, showing how to calculate basic rating life, L₁₀, and SKF rating life, L_{10m}
- Basic dynamic load rating, C, page 91
- Equivalent dynamic bearing load, P, page 91
- Life modification factor, a_{SKF}, page 94
- Lubrication condition the viscosity ratio,
 κ, page 102
- Fatigue load limit, P_u, page 104
- Contamination factor, η_c , page 104

Bearing rating life

For estimating the expected bearing life, you can either use basic rating life, L_{10} , or SKF rating life, L_{10m} .

If you have experience with the operating conditions related to lubrication and contamination, and know that the conditions you are working with do not have a dramatic effect on the life of your bearings, use the basic rating life calculation, otherwise SKF recommends using the SKF rating life.

Bearing life definition

Bearing life is defined as the number of revolutions (or the number of operating hours) at a given speed that the bearing is capable of enduring before the first sign of metal fatigue (spalling) occurs on a rolling element or the raceway of the inner or outer ring.

Tests on seemingly identical bearings, under identical operating conditions, result in a large variation in the number of cycles, or time, needed to cause metal fatigue. Therefore, bearing life estimates based on rolling contact fatigue (RCF) are insufficiently

accurate and so a statistical approach is needed to determine bearing size.

The basic rating life, L_{10} , is the fatigue life that 90% of a sufficiently large group of apparently identical bearings, operating under identical operating conditions, can be expected to attain or exceed.

To determine a relevant bearing size using the definition given here, compare the calculated rating life against the service life expectations of the bearing application, using experience from previous dimensioning where available. Otherwise, use the guidelines regarding specification life of various bearing applications provided in table 1 and table 2.

Because of the statistical spread of bearing fatigue life, an observed time to failure for an individual bearing can be evaluated in relation to its rated life, only if the failure probability of that particular bearing is determined in relation to the general population of bearings running under similar conditions.

Numerous investigations on bearing failure, in a variety of applications, have confirmed that design guidelines based on 90% reliability, and use of dynamic safety factors, lead to robust bearing solutions in which typical fatigue failures are avoided.

	Tab
Guideline values of specification life for different machine types	
Machine type	Specification life Operating hours
Household machines, agricultural machines, instruments, technical equipment for medical use	300 3 000
Machines used for short periods or intermittently: electric hand tools, lifting tackle in workshops, construction equipment and machines	3000 8 000
Machines used for short periods or intermittently where high operational reliability is required: lifts (elevators), cranes for packaged goods or slings of drums, etc.	8 000 12 000
Machines for use 8 hours a day, but not always fully utilized: gear drives for general purposes, electric motors for industrial use, rotary crushers	10 000 25 000
Machines for use 8 hours a day and fully utilized: machine tools, woodworking machines, machines for the engineering industry, cranes for bulk materials, ventilator fans, conveyor belts, printing equipment, separators and centrifuges	20 000 30 000
Machines for continuous 24-hour use: rolling mill gear units, medium-sized electrical machinery, compressors, mine hoists, pumps, textile machinery	40 000 50 000
Wind energy machinery, this includes main shaft, yaw, pitching gearbox, generator bearings	30 000 100 000
Water works machinery, rotary furnaces, cable stranding machines, propulsion machinery for ocean-going vessels	60 000 100 000
Large electric machines, power generation plant, mine pumps, mine ventilator fans, tunnel shaft bearings for ocean-going vessels	100 000 200 000
Large electric machines, power generation plant, mine pumps, mine ventilator fans, tunnel shaft bearings for	100 000 200 000

88 **SKF**

Basic rating life

If you consider only the load and speed, you can use the basic rating life, L_{10} .

The basic rating life of a bearing in accordance with ISO 281 is

$$L_{10} = \left(\frac{C}{P}\right)^p$$

If the speed is constant, it is often preferable to calculate the life expressed in operating hours using

$$L_{10h} = \frac{10^6}{60 \text{ n}} L_{10}$$

where

L₁₀ = basic rating life (at 90% reliability) [millions of revolutions]

 L_{10h} = basic rating life (at 90% reliability) [operating hours]

C = basic dynamic load rating [kN]

P = equivalent dynamic bearing load [kN]

n = rotational speed [r/min]

p = exponent of the life equation

= 3 for ball bearings

= 10/3 for roller bearings

SKF rating life

For modern high-quality bearings, the calculated basic rating life can deviate significantly from the actual service life in a given application. Service life in a particular application depends not only on load and bearing size, but also on a variety of influencing factors including lubrication, degree of contamination, proper mounting and other environmental conditions.

ISO 281 uses a modified life factor to supplement the basic rating life. The life modification factor a_{SKF} applies the same concept of a fatigue load limit P_u (Fatigue load limit, P_u , page 104) as used in ISO 281. Values of P_u are listed in the product tables. Just as in ISO 281, to reflect three of the important operating conditions, the life modification factor a_{SKF} takes the lubrication conditions (Lubrication condition – the viscosity ratio, κ , page 102), the load level in relation to the bearing fatigue load limit, and a factor η_c for the contamination level (Contamination factor, η_c , page 104) into consideration using

$$L_{nm} = a_1 a_{SKF} L_{10} = a_1 a_{SKF} \left(\frac{C}{P}\right)^p$$

If the speed is constant, the life can be expressed in operating hours, using

$$L_{nmh} = \left(\frac{10^6}{60 \text{ n}}\right) L_{nm}$$

where

 $L_{nm} = SKF \text{ rating life (at } 100 - n^{1)}\%$ reliability) [millions of revolutions]

 L_{nmh} = SKF rating life (at $100 - n^{1}$)% reliability) [operating hours]

L₁₀ = basic rating life (at 90% reliability) [millions of revolutions]

a₁ = life adjustment factor for reliability (table 3, page 90, values in accordance with ISO 281)

a_{SKF} = life modification factor

C = basic dynamic load rating [kN]

= equivalent dynamic bearing load [kN]

= rotational speed [r/min]

p = exponent of the life equation

= 3 for ball bearings

= 10/3 for roller bearings

For 90% reliability:

 L_{nm} = SKF rating life (at 100 – n^{1} % reliability) [million revolutions]

Becomes:

L_{10m} = SKF rating life [million revolutions]

Since the life adjustment factor a_1 is related to fatigue, it is less relevant for load levels P below the fatigue load limit P_u . Dimensioning with life adjustment factors reflecting very high reliability (such as 99%) will result in large bearings for given loads. In these cases, the bearing load must be checked against the minimum load requirement for the bearing. Calculating minimum load is described in *Requisite minimum load*, page 106.

Commonly used conversion factors for bearing life in units other than million revolutions are provided in table 4, page 91.

Table 2

Guideline values of specification life for axlebox bearings and units for railway vehicles		
Type of vehicle	Specification life Million kilometres	
Freight wagons to UIC specification based on continuously acting maximum axle load	0,8	
Mass transit vehicles: suburban trains, underground carriages, light rail and tramway vehicles	1,5	
Main line passenger coaches	3	
Main line diesel and electric multiple units	3 4	
Main line diesel and electric locomotives	3 5	

The factor n represents the failure probability, which is the difference between the requisite reliability and 100%.

Calculating bearing life with variable operating conditions, fluctuating load

In some applications – for example, industrial gearboxes, vehicle transmissions or windmills – the operating conditions, such as the magnitude and direction of loads, speeds, temperatures and lubrication conditions, are continually changing. In these types of applications, bearing life cannot be calculated without first reducing the load spectrum or duty cycle of the application to a limited number of simplified load cases (diagram 3).

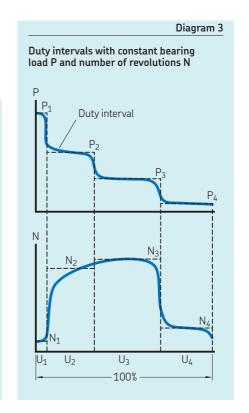
For continuously changing loads, each different load level can be accumulated and the load spectrum reduced to a histogram plotting constant-load blocks. Each block should characterize a given percentage or time-fraction during operation. Heavy and normal loads consume bearing life at a faster rate than light loads. Therefore, it is important to have peak loads well represented in the load diagram, even if the occurrence of these loads is relatively rare and of relatively short duration.

Within each duty interval, the bearing load and operating conditions can be averaged to a representative, constant value. The number of operating hours or revolutions expected from each duty interval, showing the life fraction required by that particular load condition, should also be included. Therefore, if N_1 equals the number of revolutions

required under the load condition P_1 , and N is the expected number of revolutions for the completion of all variable loading cycles, then the cycle fraction $U_1 = N_1/N$ is used by the load condition P_1 , which has a calculated life of L_{10m1} . Under variable operating conditions, bearing life can be rated using

$$L_{10m} = \frac{1}{\frac{U_1}{L_{10m1}} + \frac{U_2}{L_{10m2}} + \frac{U_3}{L_{10m3}} + \dots}$$

where


L_{10m} = SKF rating life (at 90% reliability) [million revolutions]

 L_{10m1} , L_{10m2} , ... = SKF rating lives (at 90% reliability) under constant conditions 1, 2, ... [million revolutions]

 $U_1, U_2, ...$ = life cycle fraction under the conditions 1, 2, ... $U_1 + U_2 + ... U_n = 1$

The use of this calculation method is well suited for application conditions of varying load level and varying speed with known time fractions.

			Tal	ole
Values for life ad	justment factor a ₁	nt factor a ₁		
Reliability	Failure probability	SKF rating life	Factor	
	n	L _{nm}	a ₁	
%	%	million revolutions	_	
90	10	L _{10m}	1	
95	5	L _{5m}	0,64	
96	4	L _{4m}	0,55	
97	3	L _{3m}	0,47	
98	2	L _{2m}	0,37	
99	1	L _{1m}	0,25	

Basic dynamic load rating, C

The basic dynamic load rating C is used for calculating basic rating life and SKF rating life for bearings that rotate under load. The C value is defined as: the bearing load that will result in an ISO 281 basic rating life of 1 000 000 revolutions. It is assumed that the load is constant in magnitude and direction and is radial for radial bearings and axial, centrically acting, for thrust bearings.

The basic dynamic load ratings for SKF bearings are determined in accordance with the procedures outlined in ISO 281, and apply to bearings made of chromium bearing steel, heat treated to a minimum hardness of 58 HRC, operating under normal conditions.

Dynamic load rating for SKF Explorer bearings

SKF Explorer bearings have undergone design, material and manufacturing improvements that require adjusted factors to calculate the dynamic load ratings in accordance with ISO 281. The SKF Explorer adjusted dynamic load ratings, which are higher than the ratings for SKF basic design bearings, are verified by extensive endurance testing.

To fully utilize the improved performance of SKF Explorer bearings, the SKF rating life calculation including the life modification factor a_{SKF} is recommended. In fact, it is the modified rating life of the bearing, L_{10m} , rather than the dynamic load rating, C, that provides the most valuable information regarding the endurance performance of a bearing. For detailed information, refer to Life modification factor, a_{SKF} , page 94.

Equivalent dynamic bearing load, P

When calculating the bearing rating life, a value for equivalent dynamic bearing load is required for both basic bearing life and SKF bearing life equations.

The loads acting on a bearing are calculated according to the laws of mechanics using the external forces – such as forces from power transmission, work forces, gravitational or inertial forces – that are known or can be calculated.

In real-world circumstances, the loads acting on a bearing may not be constant, can act both radially and axially, and are subject to other factors that require the load calculations to be modified or, in some cases, simplified.

nit conversion factors fo	r bearing life	3 0 1	The complete oscillation = (= from point 0 to point 4)	4 _Y
asic units	Conversion factor Million revolutions	Operating hours	Million kilometres	Million oscillation cycles ¹⁾
1 million revolutions	1	10 ⁶ 60 n	πD 10 ³	180 2 y
L operating hour	60 n 10 ⁶	1	60 n π D 10 ⁹	180 x 60 n 2 y 10 ⁶
1 million kilometres	10 ³ πD	10° 60 n π D	1	180 x 10 ³ 2 γ π D
1 million oscillation cycles ¹⁾	2 γ 180	2 γ 10 ⁶ 180 × 60 n	2 γ π D 180 x 10 ³	1
D = vehicle wheel diameter n = rotational speed [r/min] y = oscillation amplitude (ai		centre position) [°]		

Calculating equivalent dynamic bearing load

The load value, P, used in the bearing rating life equations is the equivalent dynamic bearing load. The equivalent dynamic bearing load is defined as: a hypothetical load, constant in magnitude and direction, that acts radially on radial bearings and axially and centrically on thrust bearings.

This hypothetical load, when applied, would have the same influence on bearing life as the actual loads to which the bearing is subjected (fig. 2).

If a bearing is loaded with simultaneously acting radial load $F_{\rm r}$ and axial load $F_{\rm a}$ that are constant in magnitude and direction, the equivalent dynamic bearing load P can be obtained from the general equation.

$$P = X F_r + Y F_a$$

where

P = equivalent dynamic bearing load [kN]

 F_r = actual radial bearing load [kN]

F_a = actual axial bearing load [kN]

X = radial load factor for the bearing

Y = axial load factor for the bearing

An axial load only influences the equivalent dynamic load P for a single row radial bearing if the ratio F_a/F_r exceeds a certain limiting factor e. With double row bearings, even light axial loads influence the equivalent load and have to be considered.

The same general equation also applies to spherical roller thrust bearings, which can accommodate both axial and radial loads.

Certain thrust bearings, such as thrust ball bearings and cylindrical and needle roller thrust bearings, can only accommodate pure axial loads. For these bearings, provided the load acts centrically, the equation is simplified to

$$P = F_a$$

Information and data required for calculating the equivalent dynamic bearing load for the different bearing types is provided in the relevant product sections.

Equivalent mean load

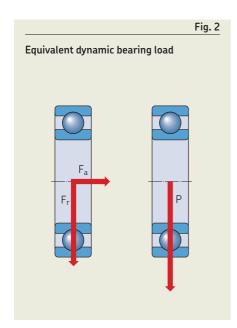
Other loads may vary with time. For these situations, an equivalent mean load must be calculated.

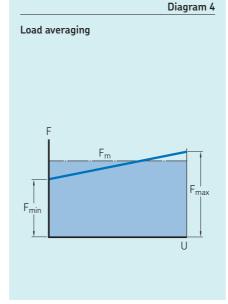
Mean load within a duty interval

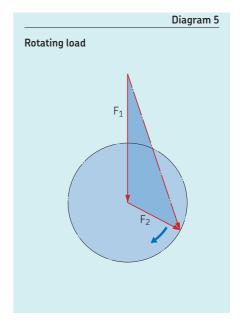
Within each loading interval, the operating conditions can vary slightly from the nominal value. Assuming that the operating conditions, such as speed and load direction, are fairly constant and the magnitude of the load constantly varies between a minimum value F_{min} and a maximum value F_{max} (diagram 4), the mean load can be calculated using

$$F_m = \frac{F_{min} + 2F_{max}}{3}$$

Rotating load


If, as illustrated in **diagram 5**, the load on the bearing consists of a load F_1 which is constant in magnitude and direction, such as the weight of a rotor, and a rotating constant load F_2 such as an unbalanced load, the mean load can be calculated using


$$F_{m} = f_{m} (F_{1} + F_{2})$$


Values for the factor f_m are provided in diagram 6.

Peak load

High loads acting for short times (diagram 7) may not influence the mean load used in a fatigue life calculation. Evaluate such peak loads against the bearing static load rating C_0 , using a suitable static safety factor s_0 (Size selection based on static load, page 104).

Considerations when calculating equivalent dynamic bearing load

For the sake of simplification, when calculating the load components for bearings supporting a shaft, the shaft is considered as a statically determined beam resting on rigid, moment-free supports. Elastic deformations in the bearing, the housing or the machine frame are not considered, nor are the moments produced in the bearing as a result of shaft deflection. These simplifications are necessary if you are making bearing arrangement calculations without the aid of relevant computer software. The standardized methods for calculating basic load ratings and equivalent bearing loads are based on similar assumptions.

It is possible to calculate bearing loads based on the theory of elasticity, without making the above assumptions, but this requires the use of complex computer programs (SKF SimPro Quick and SKF SimPro Expert). In these programs, the bearings, shaft and housing are considered as resilient components of a system.

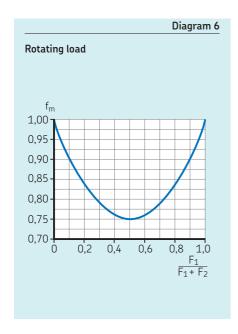
If external forces and loads – such as inertial forces or loads resulting from the weight of a shaft and its components – are not known, they can be calculated. However, when determining work forces and loads – such as rolling forces, moment loads, unbalanced loads and impact loads – it may be necessary to rely on estimates based on experience with similar machines or bearing arrangements.

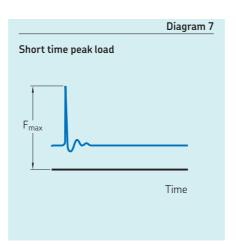
Geared transmissions

With geared transmissions, the theoretical tooth forces can be calculated from the power transmitted and the design characteristics of the gear teeth. However, there are additional dynamic forces, produced either by the gear, or by the input or output shaft. Additional dynamic forces from gears can be the result of pitch or form errors of the teeth and from unbalanced rotating components. Gears produced to a high level of accuracy have negligible additional forces. For lower precision gears, use the following gear load factors:

- pitch and form errors < 0,02 mm: 1.05 to 1.1
- pitch and form errors 0,02 to 0,1 mm: 1,1 to 1,3

Additional forces arising from the type and mode of operation of the machines that are coupled to the transmission can only be determined when the operating conditions, the inertia of the drive line and the behaviour of couplings or other connectors are known. Their influence on the rating lives of the bearings is included by using an "operation" factor that takes into account the dynamic effects of the system.


Belt drives


When calculating bearing loads for belt driven applications, "belt pull" must be taken into consideration. Belt pull, which is a circumferential load, depends on the amount of torque being transmitted. The belt pull must be multiplied by a factor whose value depends on the type of belt, belt tension and any additional dynamic forces. Belt manufacturers usually publish the values. However, should information not be available, the following can be used:

- toothed belts = 1,1 to 1,3
- V-belts = 1,2 to 2,5
- plain belts = 1,5 to 4,5

The larger values apply:

- where the distance between shafts is short
- for heavy or peak load type duty
- where belt tension is high

Life modification factor, a_{SKF}

The life modification factor a_{SKF} expands the scope of the basic rating life model, L_{10} , which depends purely on load and size, by taking the following important operational factors into account:

- the fatigue load limit in relation to the acting bearing equivalent load (P_{II}/P)
- the effect of the contamination level in the bearing (η_c)
- the lubrication condition (viscosity ratio κ)

This makes the resulting SKF rating life, L_{10m} , more encompassing than L_{10} when verifying bearing size selection:

$$L_{nm} = a_1 a_{SKF} L_{10} = a_1 a_{SKF} \left(\frac{C}{P}\right)^{p}$$

A graph for estimating a_{SKF} is shown in diagram 8. The horizontal axis represents the combined influence of load and contamination on fatigue. The viscosity ratio, κ , represents the lubrication conditions and their influence on fatigue.

Use **diagram 8** to see how operating conditions affect the basic rating life:

 Area A is dominated by very high load and/or severe indentations.

The lubricating conditions in this domain can only marginally improve the expected fatigue life, so a potential life improvement depends on what dominates the relationship between the contamination level and the load level P_u/P . To achieve a greater SKF rating life, either the load must be reduced, or the cleanliness must be improved, or both.

 Area B offers high life modification factors, which is beneficial because a large life modification value will convert a low basic rating life sufficiently to produce a large SKF rating life.

In this part of the graph, small deviations from estimated load level, cleanliness factor and lubrication conditions will greatly affect the life modification factor. Small changes to lubricating conditions, slightly higher loading and larger indentation severity (for example, from mounting or transport damage) may result in a change in a_{SKF} from 50 to 5. This would result in a 90% loss of SKF rating life. In cases where the SKF rating life consists of

a large life modification factor a_{SKF} and a limited basic rating life L_{10} , the impact of variations in operating conditions should be evaluated in a sensitivity analysis.

• **Area C** is where the life modification factor is less sensitive to changes.

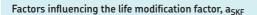
Deviations from estimated load level, cleanliness factor and lubrication conditions (for example, from uncertainties in temperature) will not substantially affect the value of a_{SKF}, which means the resulting SKF rating life is more robust.

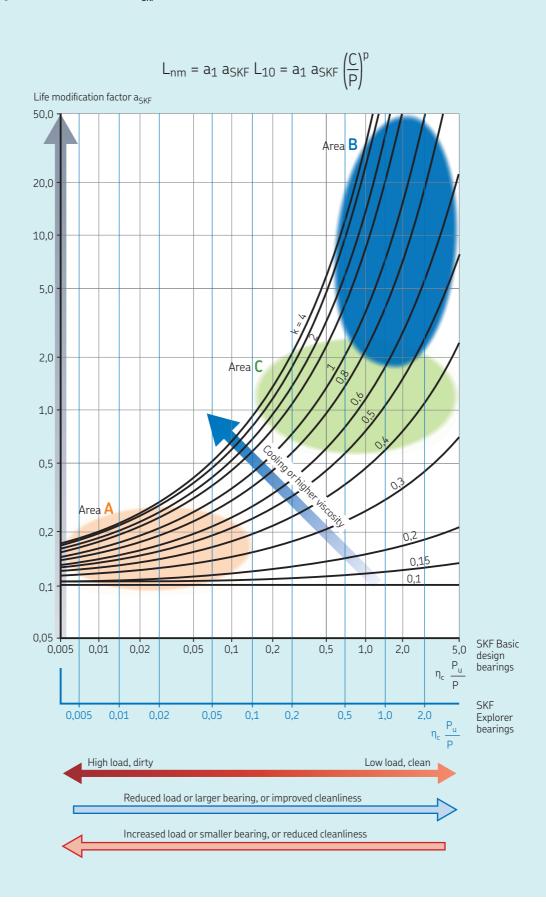
In the load level domain, area C has the ranges:

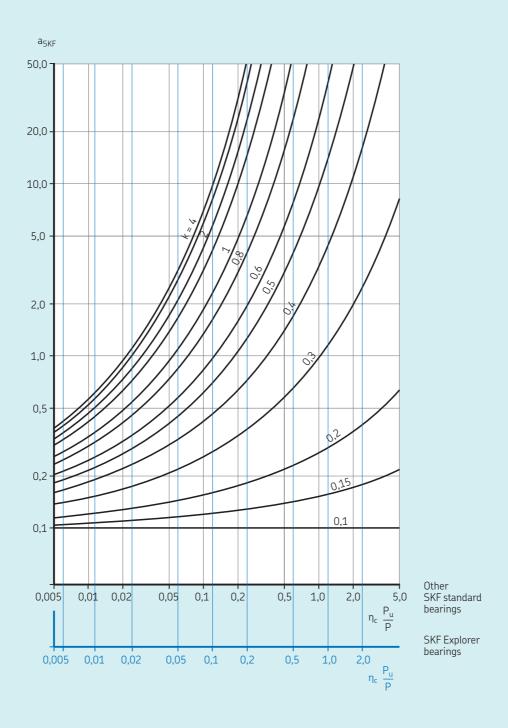
- P_u ≤ P ≤ 0,5 C for ball bearings
- P_u ≤ P ≤ 0,33 C for roller bearings

Use the schematic a_{SKF} graph to evaluate how changes to operational conditions would affect the life modification factor. This can help you check whether a potential benefit is worth the effort. For example, you can see how:

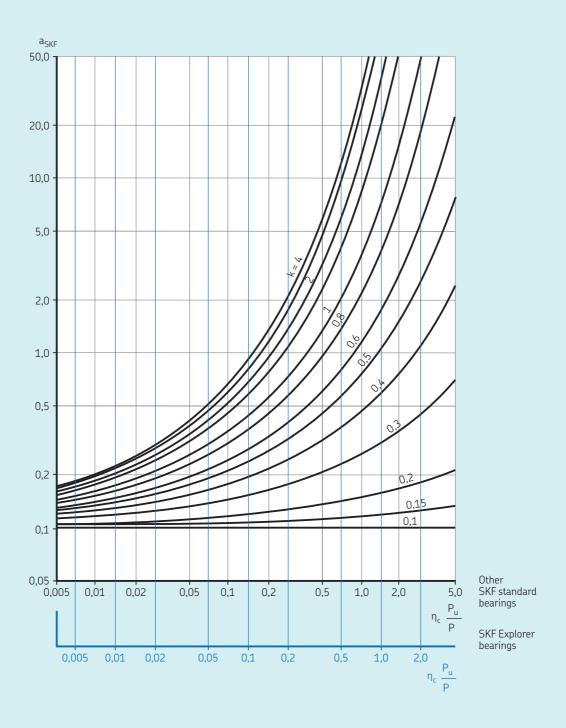
- improved cleanliness (better sealing, filtration and assembly conditions) increases the contamination factor η_c
- cooling or using a lubricant with higher viscosity increases the viscosity ratio κ
- choosing a larger bearing size increases the ratio P_{II}/P (and the basic rating life L₁₀)
- using SKF Explorer bearings allows a more favourable scale on the horizontal axis for the combined effect of the η_c times P_1/P

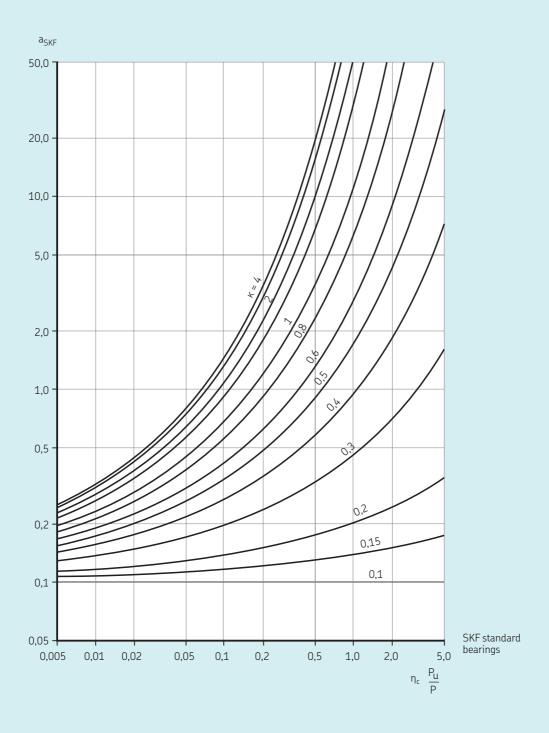

The following graphs show plots of the life modification factor a_{SKF} for the four bearing types, as a function of $\eta_c(P_u/P)$, for SKF Explorer and SKF basic design bearings, and for different values of the viscosity ratio κ :

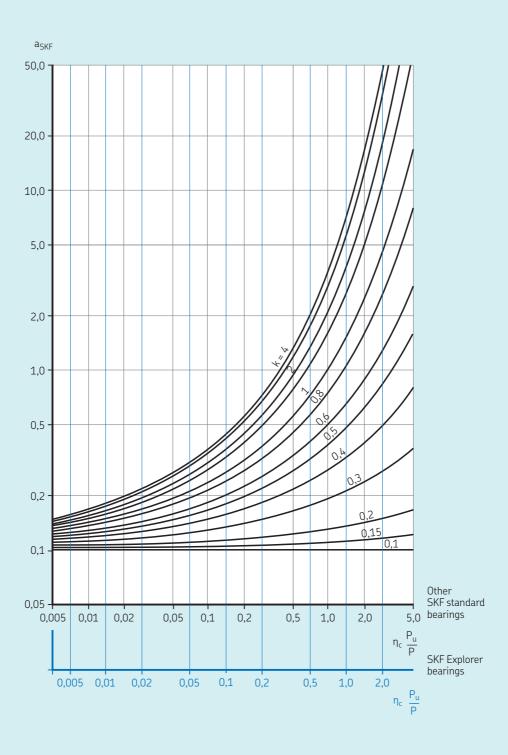

- diagram 9, page 96: radial ball bearings
- diagram 10, page 97: radial roller bearings
- diagram 11, page 98: thrust ball bearings
- diagram 12, page 99: thrust roller bearings

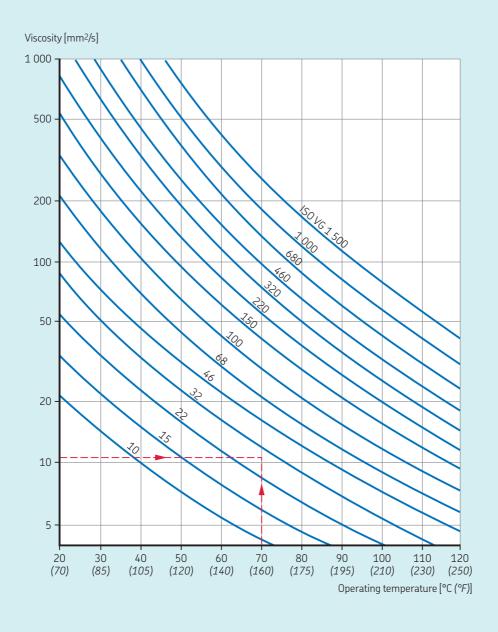

NOTE

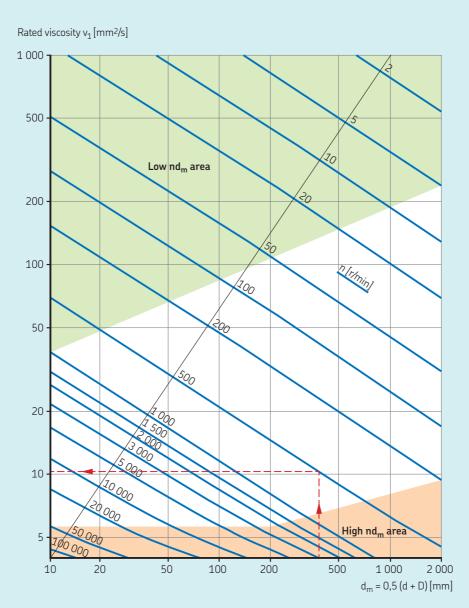
The graphs in diagram 9, 10, 11 and 12 are plotted for values and safety factors typically associated with fatigue load limits for other mechanical components. Considering the simplifications inherent in the SKF rating life equation, even if the operating conditions are accurately identified, it is not meaningful to use values of a_{SKF} in excess of 50.


94






Factor a_{SKF} for radial roller bearings



Factor a_{SKF} for thrust roller bearings

Estimation of the rated viscosity v_1

- Low nd_m area, where nd_m ≤ 10 000 mm/min.
 At these lower nd_m values, AW or EP additives are needed to reduce wear.
- High nd_m area, where $nd_m \geq 500\,000$ mm/min for $d_m \leq 200$ mm, and $nd_m \geq 400\,000$ mm/min for $d_m > 200$ mm. At these higher nd_m values, operating temperature must be given more attention. Certain bearing types, such as spherical roller bearings, tapered roller bearings and spherical roller thrust bearings, normally have a higher operating temperature than others, such as deep groove ball bearings and cylindrical roller bearings, under comparable operating conditions.

Lubrication condition – the viscosity ratio, κ

When a bearing has reached its normal speed and operating temperature, the lubrication condition of the bearing is:

$$\kappa = \frac{v}{v}$$

where

- κ = lubrication condition of the bearing, i.e. viscosity ratio
- v = actual operating viscosity of the oil or the grease base oil [mm²/s]
- v₁ = rated viscosity, function of the mean bearing diameter and rotational speed [mm²/s]

The actual operating viscosity, v, of the lubricant can be determined from the ISO viscosity grade of the oil, or the grease base oil, and the operating temperature of the bearing (diagram 13, page 100).

You can determine the rated viscosity, v_1 , from **diagram 14**, **page 101**, using the bearing mean diameter $d_m = 0.5 (d + D) [mm]$ and the rotational speed of the bearing, n [r/min]. Alternatively, you can use the *SKF Bearing Calculator* (skf.com/bearingcalculator).

Viscosity grades, in accordance with ISO 3448, are listed in **table 5**, along with the viscosity range for each grade at 40 °C (105 °F).

The higher the κ value, the better the lubrication condition of the bearing and its expected rated life. This must be judged against the possible friction increase because of the higher oil viscosity. Therefore, most bearing applications are designed for a lubrication condition ranging from κ 1 to 4 (diagram 15). Alternatively, you can use the *SKF Bearing Calculator* (skf.com/bearingcalculator) to calculate the lubrication condition.

- κ = 4 indicates a regimen for which the rolling contact load is carried by the lubricant film – i.e. full film lubrication.
- $\kappa > 4$ (i.e. better than full film lubrication) will not further increase the rating of the bearing. However, $\kappa > 4$ may be useful in applications where the bearing temperature rise is small and additional lubrication condition reliability is desirable. This would apply, for example, to bearing applications with frequent start-stop running conditions or occasional temperature variations.
- κ < 0,1 indicates a regimen for which the rolling element load is carried by the contact of the asperities between rolling element and raceway i.e. boundary lubrication. The use of fatigue life rating for lubrication conditions below 0,1 is not appropriate as it is beyond the applicability limits of the life rating model. Where κ < 0,1, select the bearing size on the basis of static loading criteria by means of the static safety factor, s₀ (Size selection based on static load, page 104).

κ value below 1

For lubrication conditions with $0.1 < \kappa < 1$, take into account the following:

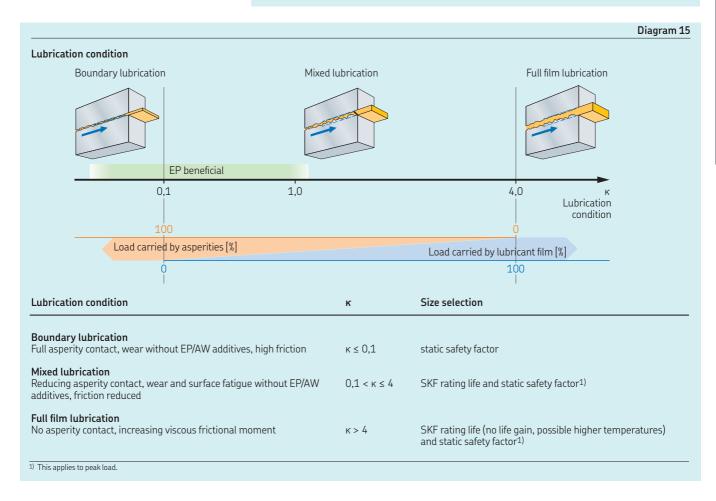
- If the κ value is low because of very low speed, base the bearing size selection on the static safety factor s₀ (Size selection based on static load, page 104).
- If the κ value is low because of low viscosity, counteract this by selecting a higher viscosity oil or by improving the cooling. Under these lubrication conditions, it is not appropriate to calculate the basic rating life L₁₀ only, because it does not take into account the detrimental effects of inadequate lubrication of the bearing. Instead, to estimate the rolling contact fatigue life of the bearing, use the SKF rating life method.

Where κ < 1, EP/AW additives are recommended.

The speed factor nd_m is used to characterize the speed condition of the bearing.

- If the nd_m of the bearing is lower than 10 000, the application is operating under low-speed conditions (diagram 14, page 101). This regimen requires high oil viscosity to ensure that the rolling element load is carried by the lubricant film.
- High-speed conditions are characterized by nd_m > 500 000 for d_m values up to 200 mm, and > 400 000 for larger d_m values (diagram 14). At very high speeds, the rated viscosity drops to very low values. Lubrication conditions and κ values are generally high.

EP (extreme pressure) and AW (anti-wear) additives


EP/AW additives in the lubricant are used to improve the lubrication condition of the bearing in situations where small κ values are in use. Furthermore, EP/AW additives are also used to prevent smearing between lightly loaded rollers and raceway, for example, when especially heavy rollers enter a loaded zone at a reduced speed.

For operating temperatures lower than 80 °C (175 °F), EP/AW additives in the lubricant may extend bearing service life when κ is lower than 1 and the factor for the contamination level, η_{c} , is higher than 0,2 and the resulting a_{SKF} factor is lower than 3. Under those conditions, a value of $\kappa_{EP}=1$ can be applied, in place of the actual κ value, in the calculation of a_{SKF} for a maximum advantage of up to $a_{SKF}=3$.

EP/AW additives containing sulphurphosphorus can reduce bearing life. Generally, SKF recommends testing chemical reactivity of EP/AW for operating temperatures above 80 °C (175 °F).

102 **SKF**

Viscosity classification to	ISO 3448			
Viscosity grade	Kinematic vis at 40 °C (105			
	mean	min.	max.	
	mm²/s			
ISO VG 2 ISO VG 3	2,2 3,2	1,98 2,88	2,42 3,52	
ISO VG 5	4,6	4,14	5,06	
ISO VG 7 ISO VG 10	6,8 10	6,12 9,00	7,48 11,0	
ISO VG 15	15	13,5	16,5	
ISO VG 22 ISO VG 32 ISO VG 46	22 32 46	19,8 28,8 41,4	24,2 35,2 50,6	
ISO VG 68 ISO VG 100	68 100	61,2 90,0	74,8 110	
ISO VG 150	150	135	165	
ISO VG 220 ISO VG 320 ISO VG 460	220 320 460	198 288 414	242 352 506	
ISO VG 680 ISO VG 1 000 ISO VG 1 500	680 1 000 1 500	612 900 1 350	748 1 100 1 650	

Fatigue load limit, P.,

The fatigue load limit P_u for a bearing is defined as the load level below which metal fatigue will not occur. For this to be valid, the lubricant film must fully separate the rolling elements from the raceways and no indentations, from contaminants or from damage related to handling, may exist on the rolling surfaces.

Contamination factor, η_c

The contamination factor, η_c , takes into account how the level of solid particle contamination of the lubricant influences the calculated bearing fatigue life. The particles cause indentations in the rolling surfaces of the bearing, and these indentations increase the local contact stress, which reduces the expected fatigue life (fig. 3).

- $\eta_c = 1$ means perfectly clean conditions without any indentations.
- η_c → 0 means severely contaminated conditions resulting in pronounced indentations.

In the SKF rating life model, the contamination factor for a certain bearing acts as a stress raiser, by reducing the bearing fatigue load limit P_u (i.e. multiplying it by the contamination factor η_c).

Comparing the reduced fatigue load limit to the actual bearing load, the fatigue resistance value ($\eta_c P_u/P$) takes both the relative bearing load and the local stress field into account (diagram 8, page 95).

- Clean conditions (large contamination factor η_c) and a bearing load lower than the fatigue load limit results in a high resistance to fatique.
- Contaminated conditions and a bearing load larger than the fatigue load limit results in a lower resistance to fatigue.

The stress-raising influence of contamination on bearing fatigue depends on a number of parameters, including: bearing size, relative lubricant condition, size and distribution of solid contaminant particles and types of contaminants (soft, hard, etc.). Therefore, it is not meaningful to specify precise values for the contamination factor

 η_c that would have general validity. However, guideline values in accordance with ISO 281 are listed in **table 6**.

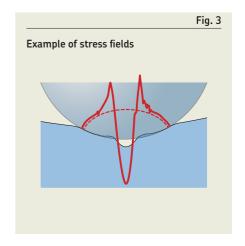
To simplify calculation of the contamination factor η_c , use the SKF Bearing Calculator (skf.com/bearingcalculator).

A more detailed method for estimating the contamination factor η_c is described in a separate paper (*Method for estimating contamination factor,* η_c , based on lubricant cleanliness, skf.com/go/17000-B3).

Size selection based on static load

When any of the following conditions exist, bearing size should be selected or verified based on the static load that the bearing can accommodate, taking into account the possible effects of permanent deformation:

- The bearing is not rotating and is subjected to continuous high load or intermittent peak loads.
- The bearing makes slow oscillating movements under load.
- The bearing rotates and, in addition to the normal fatigue life dimensioning operating loads, has to sustain temporary high peak loads.
- The bearing rotates under load at low speed (n < 10 r/min) and is required to have only a limited life. In such a case, the rating life equations, for a given equivalent load P, would give such a low requisite basic dynamic load rating C, that a bearing selected on a fatigue life basis would be seriously overloaded in service.


In such conditions, the resulting deformation can include flattened areas on the rolling elements or indentations in the raceways. The indentations may be irregularly spaced around the raceway, or evenly spaced at positions corresponding to the spacing of the rolling elements. A stationary or slowly oscillating bearing supporting a load great enough to cause permanent deformation will generate high levels of vibration and friction when subjected to continuous rotation. It is also possible that the internal clearance will increase or the character of the housing and shaft fits may be affected.

Static load rating

The basic static load rating C_0 is defined in ISO 76 as the load that results in a certain value of contact stress at the centre of contact of the most heavily loaded rolling element/raceway. The contact stress values are:

- 4 600 MPa for self-aligning ball bearings
- 4 200 MPa for all other ball bearings
- 4 000 MPa for all roller bearings

These stress values produce a total permanent deformation of the rolling element and raceway that is approximately 0,0001 of the rolling element diameter. The loads are purely radial for radial bearings and axial, centrically acting, for thrust bearings.

SKF.

104

Equivalent static bearing load

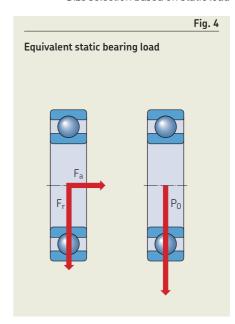
Loads comprising radial and axial components that are to be evaluated in relation to the static load rating C_0 , must be converted into an equivalent static bearing load. This is defined as that hypothetical load (radial for a radial bearing and axial for a thrust bearing) which, when applied, would cause the same maximum rolling element load in the bearing as the actual loads to which the bearing is subjected. It is obtained from the general equation

$$P = X_0 F_r + Y_0 F_a$$

where

P₀ = equivalent static bearing load [kN]

 F_r = actual radial bearing load [kN]


F_a = actual axial bearing load [kN]

 X_0 = radial load factor for the bearing

 Y_0 = axial load factor for the bearing

Information and data required for calculating the equivalent static bearing load P_0 is provided in the relevant product sections.

In the equation, use radial and axial component values (fig. 4) for the maximum load that can occur. If the load varies then consider the combination that induces the highest value of P_0 .

		Table 6
Guideline values for factor $\boldsymbol{\eta}_c$ for different level of contamination		
Conditions	Factor $\eta_c^{-1)}$ for bearings with diameter $d_m\!<\!100$	d _m ≥ 100 mm
Extreme cleanliness • Particle size of the order of the lubricant film thickness • Laboratory conditions	1	1
 High cleanliness Oil filtered through an extremely fine filter Typical conditions: sealed bearings that are greased for life 	0,8 0,6	0,9 0,8
 Normal cleanliness Oil filtered through a fine filter Typical conditions: shielded bearings that are greased for life 	0,6 0,5	0,8 0,6
Slight contamination Typical conditions: bearings without integral seals, coarse filtering, wear particles and slight ingress of contaminants	0,5 0,3	0,6 0,4
Typical contamination Typical conditions: bearings without integral seals, coarse filtering, wear particles, and ingress from surroundings	0,3 0,1	0,4 0,2
Severe contamination Typical conditions: high levels of contamination due to excessive wear and/or ineffective seals Bearing arrangement with ineffective or damaged seals	0,1 0	0,1 0
 Very severe contamination Typical conditions: contamination levels so severe that values of ηc are outside the scale, which significantly reduces the bearing life 	0	0

¹⁾ The scale for η_c refers only to typical solid contaminants. Contamination by water or other fluids detrimental to bearing life is not included. Because of strong abrasive wear in highly contaminated environments ($\eta_c = 0$), the useful life of the bearing can be significantly shorter than the rating life.

Guideline values for static safety factor, s₀

The static safety factor s_0 is given by

 $s_0 = C_0/P_0$

where

 s_0 = static safety factor

C₀ = required basic static load rating [kN]

 P_0 = equivalent static bearing load [kN]

Alternatively, you can calculate the required basic static load rating C_0 .

Guideline values for the static safety factor s_0 , based on experience, are listed for ball bearings in **table 7**, and roller bearings in **table 8**. The s_0 values given for continuous motion relate to the influence of permanent deformation on bearing performance – ranging from noticeable friction peaks, vibrations and reduced fatigue resistance (for the lowest s_0 values), to no influence on friction, vibration or fatigue life (for the highest s_0 values). The certainty of load level reflects how well the actual bearing load is known and/or can be predicted.

Requisite minimum load

In applications where the bearing size is determined by factors other than load – for example, shaft diameter constrained by critical speed – the bearing may be lightly loaded in relation to its size and carrying capacity. Where there are very light loads, failure mechanisms other than fatigue, such as skidding and smearing of raceways or cage damage, often prevail. To provide satisfactory operation, rolling bearings must always be subjected to a given minimum load. As a general rule, minimum loads of 0,01 C should be imposed on ball bearings and 0,02 C on roller bearings. More accurate minimum load requirements are given in the product sections.

The importance of applying a minimum load is greater in applications where there are rapid accelerations or rapid starts and stops, and where speeds exceed 50% of the limiting speeds listed in the product tables (*Speed limitations*, page 135). If minimum load requirements cannot be met, potential improvements are:

- Use a bearing with a smaller dimension series
- Consider special lubrication or running-in procedures.
- Consider NoWear coated bearings, page 1060.
- Consider applying a preload (Selecting preload, page 186).

Checklist after the bearing size is determined

When you have worked through this section and determined bearing size, before continuing to the section on *Lubrication*, page 110, check the following by referring to the product sections:

- grease life for capped bearings
- allowed axial/radial loads and F_a/F_r ratios
- minimum load
- adjusted reference speed and limiting speed
- misalignment
- stabilization class

Certainty of load level	Continuou Permanen acceptance Yes	t deformation	No	Infrequent motion Permanent deformation acceptance Yes
High certainty For example, gravity loading and no vibration	0,5	1	2	0,4
Low certainty For example, peak loading	≥1,5	≥ 1,5	≥2	≥1

106 **SKF**

SKF life testing

SKF carries out life testing in the ISO 17025 accredited SKF Engineering and Research Centre in the Netherlands, together with the other SKF group research and testing facilities.

The purpose of this life testing is to improve the design, the materials and the manufacturing processes of bearing products, and the engineering analysis tools required for the design of bearing applications.

Typical life testing activities include tests on bearing population samples under different conditions, such as:

- full film lubrication conditions
- boundary and mixed lubrication conditions
- predefined contamination conditions of the lubricant

Apart from testing in different conditions, SKF life tests are performed to:

- verify the data published in product catalogues
- audit the quality of the manufacturing of SKF bearings
- research how lubricants and lubrication conditions influence bearing life
- support the development of rolling contact fatigue and friction models
- compare SKF products with competitors' products

Life tests are sophisticated and wide-ranging and are run under strictly controlled conditions. Post-test investigations with state-of-the-art equipment make it possible to investigate the factors that affect the life of the bearings in a systematic way.

As an example, the SKF Explorer bearing design is the result of optimizing influencing factors determined by analytical simulations and experimental verification.

Tal	ole 8
-----	-------

Guideline values for the static safety factor \mathbf{s}_0 – for continuous and/or occasional loads – roller bearings $^{1)}$

Certainty of load level	Continuou Permanen acceptance Yes	it deformation	n No	Infrequent motion Permanent deformation acceptance Yes
High certainty For example, gravity loading and no vibration	1	1,5	3	0,8
Low certainty For example, peak loading	≥ 2,5	≥ 3	≥ 4	≥2

1) For spherical roller thrust bearings, use $s_0 \ge 4$.

Lubrication

B.4 Lubrication

Selecting grease or oil	110
Lubrication selection flow chart and criteria	110
Estimating the relubrication interval for grease	111
Relubrication intervals	112
Adjustments for relubrication intervals	112
Determining grease quantity for initial fill and	
relubrication	112
Relubrication procedures	114
Selecting a suitable grease	116
Selecting a suitable SKF grease	116
Using LubeSelect and selection rules	116
The SKF traffic light concept for grease temperature	
performance	117
Additional factors and considerations when selecting a	
grease	118
Assessing the suitability of non-SKF greases	118
Lubrication systems	120
Selecting a suitable oil	120
Oil selection criteria	120
Viscosity and viscosity index	120
Oil type	120
Additives	121
Oil change interval	121
Overview of main oil lubrication methods	122
SKF bearing grease selection chart	124
Technical specifications for SKF greases	126

5KF. 109

B.4 Lubrication

Rolling bearings must be adequately lubricated to operate reliably. The lubricant is required to reduce friction, inhibit wear, protect the bearing surfaces against corrosion and may also be needed to provide cooling. This section describes:

- how to select between grease or oil
- how to select a suitable grease
- how to select a suitable oil

For information on lubrication of sealed bearings, refer to the relevant product sections.

How lubrication relates to other selection criteria

Lubrication selection and lubricant properties greatly influence the operating temperature, which in turn influences:

- whether you should use grease or oil
- the relubrication interval required for
- whether oil lubrication is necessary, because circulating oil can be used to remove heat
- the lubrication condition the viscosity ratio, κ, which influences the bearing size selection based on SKF rating life

Selecting grease or oil

The first step in the lubrication selection process is to decide whether to use grease or oil. In most cases, grease is the appropriate choice for open bearings.

Lubrication selection flow chart and criteria

A flow chart to help select the correct lubrication method is shown in diagram 1.

The main reasons to choose grease are:

- cost-effectiveness
- simplicity grease is easily retained in the bearing and housing, thus requiring less complicated sealing arrangements compared with those for oil lubrication

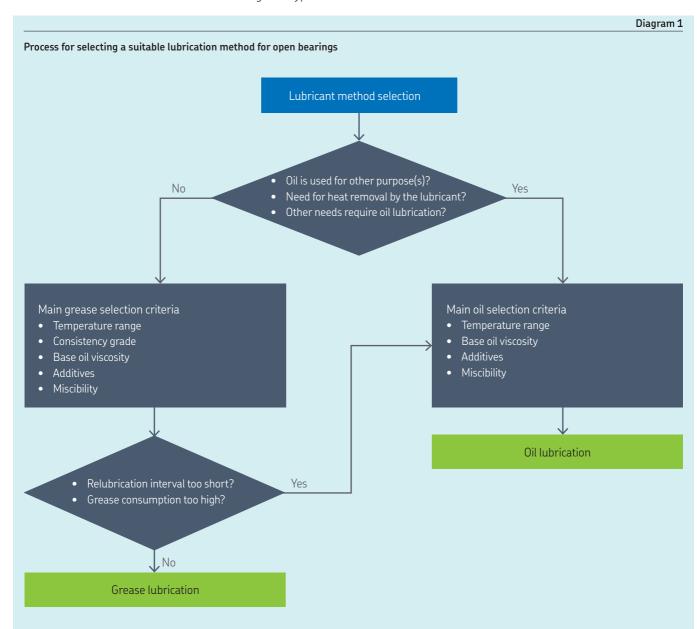
The main exceptions to choosing grease are in applications where:

- operating conditions require a grease relubrication interval that is unacceptably
- lubricating oil must be used for other purposes (such as in gearboxes)
- heat removal via circulating oil is required
- purging or removing used grease becomes cumbersome or expensive to handle

Estimating the relubrication interval for grease

Lubricating grease slowly degrades and therefore has a limited life. Grease life depends on the operating conditions of the bearing and the grease type. Rolling bearings therefore have to be relubricated if:

- the grease life is shorter than the specified bearing life
- the grease becomes contaminated


It is important to calculate the grease relubrication interval and if it is unacceptably short then, unless you use automatic

(centralized) greasing (*Lubrication systems*, page 120), you should choose oil instead.

Relubrication should occur frequently enough to avoid grease deterioration having an adverse effect on the bearing life. Therefore, the SKF relubrication interval, $t_{\rm f}$, is defined as the time period at the end of which there is only a 1% probability that the bearing will fail because of grease degradation. This represents the L₁ grease life. L₁₀ grease life represents a 10% probability failure because of grease degradation. Grease life depends mainly on:

- bearing type and size
- speed
- load ratio C/P
- operating temperature
- grease type

As a rule, standard greases have a practical upper temperature limit of 100 °C (210 °F) on the ring with the highest temperature. Above this temperature, special greases or automatic (centralized) greasing systems should be used – otherwise, commonly the grease life would be too short.

Relubrication intervals

Use diagram 2 to estimate the relubrication intervals t_f. The diagram is valid for bearings with a rotating inner ring on horizontal shafts under normal and clean operating conditions, using:

- the nd_m factor multiplied by the relevant bearing factor b_f where
 - n = rotational speed [r/min]
 - d_m = bearing mean diameter [mm] = 0,5 (d + D)
 - b_f = bearing factor dependent on bearing type and load conditions (table 1)
- the load ratio C/P

The relubrication interval t_f is the estimated number of operating hours that a good quality lithium soap grease with a mineral base oil can perform adequately when the operating temperature is 70 °C (160 °F). High performance greases can extend relubrication intervals and grease life.

The relubrication intervals given in diagram 2 must be adjusted according to table 2, page 115.

When the speed factor nd_m exceeds 70% of the recommended limits (table 1), check the influence of the selected lubricant on the operating temperature and speed.

In practice, relubrication intervals above 30 000 h are not reliable, because intervals of that length exceed the predictable performance life (because of lubricant ageing) of most greases.

Adjustments for relubrication intervals

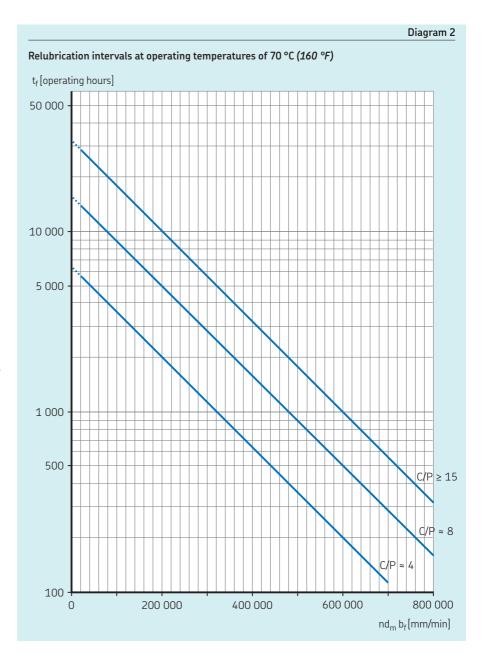
Various adjustments for relubrication intervals are described in **table 2** under various operating conditions. You may also calculate lubrication intervals using the *SKF Bearing Calculator* (skf.com/bearingcalculator).

Determining grease quantity for initial fill and relubrication

Commonly, the free volume in bearings is completely filled during installation and the free volume in SKF plummer block housings is partly filled. SKF recommends that the free volume on each side of the bearing in a customer-designed housing is equal to the free volume of the bearing. For bearings with a metallic cage, the free volume in the bearing is approximately

$$V = \frac{\pi}{4} B (D^2 - d^2) \times 10^{-3} - \frac{M}{7.8 \times 10^{-3}}$$

where


V = free volume in the bearing [cm³] (for standard grease, mass in grams multiplied by 0,9; for fluorinated grease, mass in grams multiplied by approximately 2)

B = bearing width [mm]

D = outside diameter [mm]

d = bore diameter [mm]

M = bearing mass [kg]

For bearings with non-metallic cages, the formula gives a slight overestimation.

Depending on the intended method of relubrication, SKF recommends:

- relubrication from the side of the bearing (fig. 1, page 114)
 - initial fill: 40% of the free volume in the housing
 - replenishment quantity: $G_p = 0,005 D B$
- relubrication through holes in the centre of the inner or outer ring (fig. 2, page 114)
 - initial fill: 20% of the free volume in the housing
 - replenishment quantity: $G_p = 0,002 D B$

where

- G_p = grease quantity to be added when replenishing [g]
- D = bearing outside diameter [mm]
- B = total bearing width [mm] (for tapered roller bearings use T, for thrust bearings use height H)

During a running-in period, excess grease in the bearing distributes or escapes. At the end of the running-in period, the operating temperature drops, indicating that the grease has been distributed.

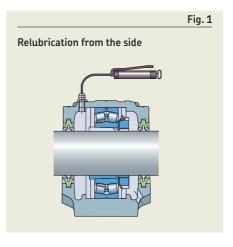
In applications where bearings operate at very low speeds and good protection against contaminants and corrosion is required, SKF recommends filling 70% to 100% of the housing with grease.

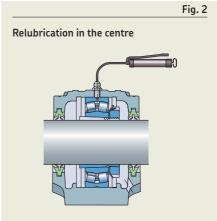
				Table 1
Bearing factors and recommended nd_m limit	ts			
Bearing type ¹⁾	Bearing		nded nd _m lim	its for load
	factor b _f	ratio C/P≥15	C/P ≈ 8	C/P ≈ 4
-	-	mm/min		
Deep groove ball bearings	1	500 000	400 000	300 000
Angular contact ball bearings	1	500 000	400 000	300 000
Self-aligning ball bearings	1	500 000	400 000	300 000
Cylindrical roller bearings - non-locating bearing - locating bearing, without external axial loads or with light but alternating axial loads	1,5 2	450 000 300 000	300 000 200 000	150 000 100 000
 locating bearing, with constantly acting light axial load 	4	200 000	120 000	60 000
 without a cage, full complement²) 	4	NA ³⁾	NA ³⁾	20 000
Needle roller bearings - with a cage	3	350 000	200 000	100 000
Tapered roller bearings	2	350 000	300 000	200 000
Spherical roller bearings - when the load ratio $F_a/F_r \le e$ and $d_m \le 800$ mm series 213, 222, 238, 239 series 223, 230, 231, 232, 240, 248, 249 series 241 - when the load ratio $F_a/F_r \le e$ and $d_m > 800$ mm series 238, 239 series 230, 231, 232, 240, 248, 249 series 241 - when the load ratio $F_a/F_r > e$ all series	2 2 2 2 2 2 6	350 000 250 000 150 000 230 000 170 000 100 000	200 000 150 000 80 000 130 000 100 000 50 000	100 000 80 000 50 000 65 000 50 000 30 000 30 000
CARB toroidal roller bearings - with a cage - without a cage, full complement ²⁾	2 4	350 000 NA ³⁾	200 000 NA ³⁾	100 000 20 000
Thrust ball bearings	2	200 000	150 000	100 000
Cylindrical roller thrust bearings	10	100 000	60 000	30 000
Needle roller thrust bearings	10	100 000	60 000	30 000
Spherical roller thrust bearings – rotating shaft washer	4	200 000	120 000	60 000

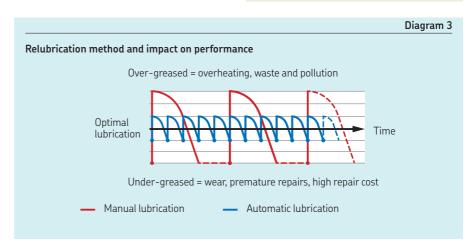
The bearing factors and recommended nd_m limits apply to bearings with standard internal geometry and standard cage execution. For alternative internal bearing design and special cage execution, contact the SKF application engineering service.
 The t_t value obtained from diagram 2 needs to be divided by a factor of 10.
 Not applicable, as a bearing with a cage is recommended for these C/P values.

Relubrication procedures

Select a relubrication procedure that suits the application and the relubrication interval t_f . SKF recommends one of the following procedures:


- Manual relubrication by replenishment is a convenient procedure. It enables uninterrupted operation and provides, when compared with continuous relubrication, a lower steady-state temperature.
- Automatic (centralized) relubrication avoids performance issues related to over- or under-greasing. This is also commonly used where there are multiple points to lubricate, or where access to positions is difficult, or where equipment is operated remotely with no local maintenance staff (diagram 3).
- Continuous lubrication


is used when the estimated relubrication intervals are short because of the adverse effects of very severe contamination. Continuous lubrication of applications is recommended typically with nd_m values < 150 000 for ball bearings and < 75 000 for roller bearings. In these cases, the initial grease fill for the housing can be from 70% to 100 % (depending on the operation condition and housing seal), and the quantity for relubrication per unit of time is derived from the equations for G_p (Determining grease quantity for initial fill and relubrication, page 112) by spreading the required quantity over the relubrication interval.


There must be provision for the used grease to be purged from the housing. If an excess

of used grease needs to be purged from the housing, contacting seals must allow for this (consider seal type and seal orientation). Otherwise, an escape hole should be provided in the housing – tubing is not allowed, because it can restrict grease escape. The escape hole should be plugged during high-pressure cleaning.

Where a variety of bearing types is used in a bearing arrangement, it is common practice to apply the shortest estimated relubrication interval from the bearings in the arrangement.

			Table 2
Relubrication interv	al adjustments		
Operating condition / bearing type	Description	Recommended adjustment of t _f	Reason for adjustment
Operating temperature	For every 15 °C (27 °F) above 70 °C (160 °F) up to the high temperature limit (HTL)	Halve the interval	To account for the accelerated ageing of grease at higher temperatures
	For 15 °C (27 °F) under 70 °C (160 °F)	Double the interval (maximum once) ¹⁾	To account for the reduced risk of ageing of grease at lower temperatures
Shaft orientation	Bearings mounted on a vertical shaft	Halve the interval	The grease tends to leak out due to gravity
Vibration	High vibration or acceleration levels	Reduce the interval	Interval reduced depending on machine specific instructions (e.g. vibrating screen)
Outer ring rotation	Outer ring rotation or eccentric shaft weight	Calculate the speed as nD rather than $\operatorname{nd}_{\operatorname{m}}$	The grease has a shorter grease life under these conditions
Contamination	Contamination or presence of fluid contaminants	Low Relubrication intervals are given by grease life. It is assumed that there will be no or slight ingress of contamination entering the bearing. Medium Some contaminants may enter the bearing. Some additional relubrication is required to remove contaminants. High There is a clear risk that contaminants will enter the bearing. Relubrication is required to remove aged grease and to remove contaminants. Severe Relubrication is primarily needed to flush the	To reduce the damaging effects caused by contaminants
Bearing size	Bearings with a bore diameter d > 300 mm	bearing and remove contaminants. Reduce the interval by a factor 0,5 initially. If grease samples taken before relubrication are found to be satisfactory, the relubrication interval can be increased gradually.	These are typically critical arrangements, which require strict, frequent relubrication programmes
Cylindrical roller bearings	Bearings fitted with J, JA, JB, MA, MB, ML, MP and PHA cages ²⁾	Halve the interval	These cage designs require higher oil bleeding from the grease

 $[\]overline{\ ^{1)}}$ For full complement and thrust bearings, do not extend the interval. $^{2)}$ For P, PH, M and MR cages, there is no need for adjustment.

Selecting a suitable grease

Selecting a suitable SKF grease

The assortment of SKF greases for rolling bearings provides adequate choice for most application requirements. These greases have been developed based on the latest knowledge of rolling bearing lubrication and their quality is continuously monitored.

Using LubeSelect and selection rules

SKF LubeSelect is an online tool that lists SKF greases that fulfil the demands of your specified operating conditions. The analysis performed by the tool is based on generalized selection rules that have been carefully developed by SKF lubrication experts.

The same selection rules are used in the SKF bearing grease selection chart, page 124, where the speed, temperature and load range are used as the primary operating parameters for selecting a suitable grease.

The most important technical specifications for SKF greases are provided in *Technical specifications for SKF greases*, page 126.

Temperature, speed, and load ranges for grease selection

The terms used to specify the ranges of temperature, speed and load, for grease lubricated bearings, are defined in table 3 to table 5.

Consistency, NLGI

Consistency is a measure of the stiffness of the grease. Classification of greases by consistency is in accordance with the National Lubricating Grease Institute (NLGI), ISO 2137. Greases with a metallic soap thickener and a consistency grade of 1, 2 or 3 (soft to stiff) on the NLGI scale are typically used for rolling bearings. The most commonly used greases have a consistency of grade 2.

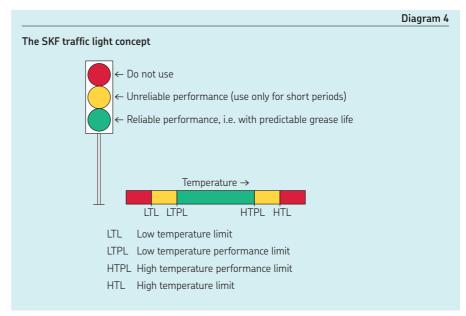
			Table 3				
Tem	Temperature ranges for greases						
Ran	ge	Temperat	ure				
_		°C	°F				
L M H EH	Low Medium High Extremely high	< 50 50 to 100 > 100 > 150	< 120 120 to 210 > 210 > 300				

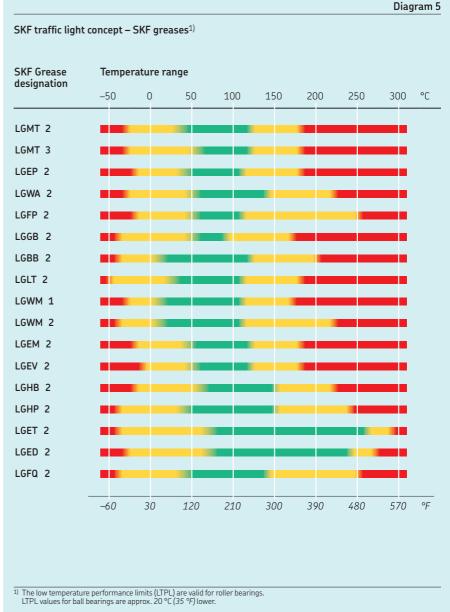
	ranges for greases	
Load	range	Load ratio C/P
L	Low	≥ 15
M	Medium	≈ 8
H	High	≈ 4
VH	Very high	< 2

				Table 4			
Speed	d ranges for grease l	ubricated radial b	earings				
Speed range		Speed factor Ball bearings nd _m	Spherical roller, tapered roller, CARB toroidal roller bearings	Cylindrical roller bearings			
-		mm/min					
VL L M	Very low Low Medium	- <100 000 <300 000	< 30 000 < 75 000 ≤ 210 000	< 30 000 < 75 000 ≤ 270 000			
H VH EH	High Very high Extremely high	< 500 000 ≤ 700 000 > 700 000	> 210 000 - -	> 270 000 - -			
			n = rotational speed [r/min] d _m = bearing mean diameter [mm] = 0,5 (d + D)				

Mechanical stability

During rotation of a bearing, the grease is mechanically worked and a change in consistency may result. This property is known as the mechanical stability of the grease and is measured in standardized tests. ASTM D217 and/or ASTM D1831. Greases that soften may leak from the bearing cavity. Those that stiffen may restrict bearing rotation or limit oil bleeding. The mechanical stability should not change drastically if operation is within the specified temperature range of the grease.


Corrosion protection


In applications where water or condensation is present, the corrosion inhibiting properties of the grease are very important. The corrosion inhibiting ability is determined by the properties of the rust inhibitor additive and/ or the thickener type. The performance is measured using the EMCOR test, ISO 11007. For applications where water or condensation is present, the rating should be 0-0.

The SKF traffic light concept for grease temperature performance

The temperature range over which a grease can be used depends mainly on the type of base oil, thickener and additives. The relevant temperature limits are schematically illustrated in diagram 4 in the form of a double traffic light, with additional details provided in diagram 5.

- The low temperature limit (LTL) is determined by the low temperature frictional torque test according to ASTM D1478 or IP 186. The LTL is determined by the temperature at which the starting torque is equal to 1 000 Nmm and the running torque is 100 Nmm.
- The high temperature limit (HTL) is the temperature at which a grease loses its consistency and becomes a fluid. It is determined using the dropping point (ISO 2176).

B.4 Lubrication

The low and high temperature limits for reliable operation, indicated by the green zone in diagram 4, page 117, are:

- low temperature performance limit (LTPL), defined as the temperature at which grease no longer shows sufficient oil bleed as measured in DIN 51817. The LTPL values for roller bearings are provided in diagram 5, page 117. The LTPL values for ball bearings are approximately 20 °C (35 °F) lower.
- high temperature performance limit (HTPL), determined by the SKF ROF grease life test

Within these two limits, the grease fulfils its function reliably and the relubrication interval or grease life is predictable. Because the definition of the temperature performance limits is not standardized internationally, care must be taken when interpreting data from grease suppliers other than SKF.

At temperatures above the high temperature performance limit (HTPL), grease degrades with increasing rapidity. Therefore, temperatures in the amber zone, between the high temperature performance limit (HTPL) and the high temperature limit (HTL), should only be allowed to occur for very short periods.

An amber zone also exists for low temperatures, between the low temperature limit (LTL) and the low temperature performance limit (LTPL). In this zone, the temperatures are too low to provide sufficient oil bleeding. The width of the amber zone depends on the grease type and bearing type. Serious damage can result when the bearings are operated continuously below the LTPL. Short periods in this zone, such as during a cold start, are generally not harmful because the heat caused by friction brings the bearing temperature into the green zone.

Additional factors and considerations when selecting a grease

Verify the lubrication condition, consider EP/AW additives

The lubrication condition, κ , is evaluated by using the base oil viscosity as described in *Lubrication condition* – the viscosity ratio, κ , page 102. In the lubrication condition domain defined by κ below 1, EP/AW additives are recommended.

EP/AW additives of the sulphur-phosphorus type, which are the most commonly used today, may also have a negative influence on the fatigue life of the bearings. This is because in the presence of humidity, which can never be completely avoided, sulphur and phosphorus acids are produced which induce a more aggressive chemical process at the rolling contact. This effect increases with temperature and, for temperatures above 80 °C (175 °F), a lubricant with EP/AW additives should only be used after careful testing. SKF greases have been tested and can be used above 80 °C (175 °F) until the HTPL is reached.

Low speeds

Bearings that operate at very low to low speeds (table 4, page 116) under heavy loads should be lubricated with a grease that has a high viscosity base oil containing EP additives. The thickener should contribute to the surface separation. Sufficient oil bleeding should assure oil replenishment during operation.

Solid additives, such as graphite or molybdenum disulfide (MoS_2), should be considered for a speed factor $nd_m < 20~000$ mm/min. SKF LGEV2 is successfully used up to $nd_m = 80~000$.

Heavy and very heavy bearing loads

For bearings subjected to a load ratio C/P < 4, the calculated relubrication interval may be so short that it dictates the use of continuous relubrication or oil lubrication.

Miscibility with other greases

If it becomes necessary to change from one grease type to another, consider the miscibility of the greases and their ability to be mixed without adverse effects (table 6 and table 7). If incompatible greases are mixed, the consistency of the grease mix can change dramatically such that bearing damage because of severe leakage could result. Note that PTFE-thickened greases are not compatible with other grease types.

Miscibility with preservation oils

The preservative oils with which SKF bearings are treated are compatible with the majority of lubricating greases, with the exception of synthetic fluorinated oil based greases using a PTFE thickener, for example, SKF LGET 2 grease. For PTFE-thickened greases, the bearing preservatives must be removed before applying the grease. White spirit is recommended as a solvent. Make sure all remnants of solvent have evaporated and then immediately apply the grease.

Assessing the suitability of non-SKF greases

Greases from suppliers other than SKF must be approved by the supplier. Use diagram 6, page 120, to evaluate the temperature performance and grease life prediction. Where relevant, take into account the considerations specified for SKF greases.

118 **SKF**

ompatibility of base oi	, -, -							
	Mineral oil	Ester oil	Polyglycol	Silicone- methyl	Silicone- phenyl	Polyphenyl- ether	PFPE	
lineral oil	+	+	_	_	+	0	_	
ster oil	+	+	+	_	+	0	-	
Polyglycol	-	+	+	_	_	-	-	
ilicone-methyl	_	_	_	+	+	_	_	
Silicone-phenyl	+	+	-	+	+	+	-	
olyphenylether	0	0	-	-	+	+	-	
PFPE	-	-	-	-	-	-	+	
	+ compatible							
	- incompatible							
	o individual te	sting required						

	Lithium soap	Calcium soap	Sodium soap	Lithium complex soap	Calcium complex soap	Sodium complex soap	Barium complex soap	Aluminium complex soap	Clay	Polyure
ithium soap	+	0	_	+	_	0	0	_	0	0
alcium soap	0	+	0	+	_	0	0	_	0	0
odium soap	_	0	+	0	0	+	+	-	0	0
ithium complex soap	+	+	0	+	+	0	0	+	_	-
alcium complex soap	_	_	0	+	+	0	_	0	0	+
odium complex soap	0	0	+	0	0	+	+	-	-	0
arium complex soap	0	0	+	0	_	+	+	+	0	0
luminium complex soap	_	_	_	+	0	_	+	+	_	0
lay	0	0	0	-	0	-	0	-	+	0
Polyurea	0	0	0	-	+	0	0	0	0	+
	+ compatil		. ,							

Lubrication systems

Continuous lubrication can be achieved via singlepoint or multipoint automatic lubricators, e.g. SKF's SYSTEM 24 or SYSTEM MultiPoint.

Centralized lubrication systems, such as SKF MonoFlex, SKF ProFlex, SKF DuoFlex, SKF MultiFlex (table 8) and Lincoln Centro Matic, Quicklub and Dual Line can reliably deliver grease in a wide range of quantities.

For additional information about SKF lubrication systems, refer to skf.com/lubrication.

Selecting a suitable oil

Oil selection criteria

When you select a lubricating oil, the most important parameters are the viscosity and viscosity index, the temperature stability (which influences the choice of oil type) and the additive package (EP/AW and corrosion protection) that fits the operating conditions for the application.

Viscosity and viscosity index

The required viscosity is primarily given by the lubrication condition κ , at the expected operating temperature, evaluated as described in *Lubrication condition – the viscosity ratio*, κ , page 102. The viscosity index, VI, is the measure of how the oil viscosity changes with temperature. VI is a part of the selection process, in particular for applications that operate in a large temperature range. Oils with a VI of at least 95 are recommended.

Oil type

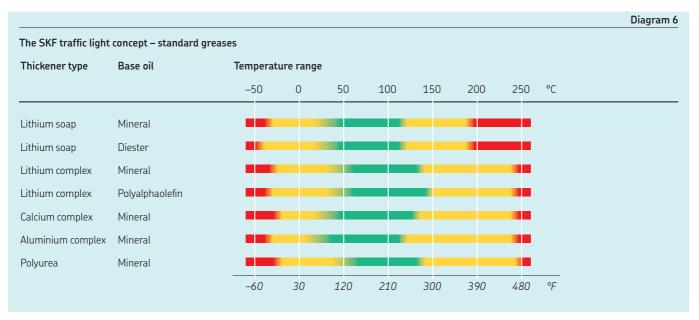
There are two broad categories of oil types – mineral and synthetic – with the following types of synthetic oils available:

- polyalphaolefins (PAO)
- esters
- polyglycols (PAG)

Choice of oil type is mainly determined by the temperature range in which the application is expected to operate.

- Mineral oils are generally favoured as the lubricant for rolling bearings.
- Synthetic oils should be considered for operational temperatures above 90 °C (195 °F) because of their improved thermal and oxidation resistance, or below –40 °C (–40 °F) because of their better properties at low temperatures.

The pour point of an oil is defined as the lowest temperature at which a lubricant will flow, but it must not be used as a functional limit when selecting oil type. If the temperature is above but near the pour point, the viscosity is still very high, which may impair pumping, filtering, and other characteristics.


The thickness of the hydrodynamic film is determined, in part, by the viscosity index (VI) and the pressure-viscosity coefficient. For most mineral oil based lubricants, the pressure-viscosity coefficient is similar, and you can use the generic values obtained from literature. However, for synthetic oils, the effect on viscosity to increasing pressure is determined by the chemical structure of its base stock. As a result, there is considerable variation in pressure-viscosity coefficients for different types of synthetic base stocks.

Because of the differences in the viscosity index and pressure-viscosity coefficient, the formation of a hydrodynamic lubricant film, when using a synthetic oil, may differ from that of a mineral oil with the same viscosity.

Regarding the lubrication condition for mineral and synthetic oils, the combined effect of the viscosity index and the pressure-viscosity coefficient normally cancel each other out.

The properties of the different oil types are summarized in **table 9**. For additional information about synthetic oils, contact the lubricant supplier.

Oils, and in particular synthetic oils, may interact with such things as seals, paint or water in a different way than mineral oils, so such effects, as well as miscibility, must be investigated.

120 **SKF**

Additives

Lubricating oils usually contain additives of various kinds. The most important ones are antioxidants, corrosion protection agents, anti-foaming additives, and EP/AW additives. In the lubrication condition domain defined by $\kappa < 1$, EP/AW additives are recommended, but for temperatures above 80 °C (175 °F), a lubricant with EP/AW additives should only be used after careful testing.

Oil change interval

The oil change interval depends on the operating conditions and the oil type. With oil-bath lubrication, it is generally sufficient to change the oil once a year, provided the operating temperature does not exceed 50 °C (120 °F). Typically, at higher temperatures or with heavy contamination, the oil must be changed more often.

With oil circulation, the interval after which the oil needs to be changed is determined by an inspection of the oil quality, taking into account oxidation and the presence of water and abrasive particles. Oil life in circulation systems can be extended by removing particles and water from the oil.

Oil change intervals for mineral oils are shown in **table 10**, page 122.

SKF Centralized Lubrication	n Systems			Table 8
	SKF MonoFlex	SKF DuoFlex	SKF ProFlex	SKF MultiFlex
Туре	Single-line	Dual-line	Progressive	Multi-line
Suitable lubricants	Oil Grease with NLGI grades from 000 to 2	Oil Grease with NLGI grades from 000 to 3	Oil Grease with NLGI grades from 000 to 2	Oil Grease with NLGI grades from 000 to 3
Application examples	Machine tools, printing, textile and off-highway applications	Metal working machines, pulp and paper industry, mining and cement plants, deck cranes, power plants	Printing and industrial presses machines, off-highway appli- cations, wind turbines	Oil and gas industry, heavy industrial applications

						Table 9
Properties of lul	bricating oil ty	ypes				
Properties		Base oil type Mineral	PAO	Ester	PAG	
Pour point	[°C] <i>[°F]</i>	-30 0 -20 30	-5040 -6040	-6040 -7540	approx. –30 approx. –20	
Viscosity index		low	moderate	high	high	
Pressure-viscos coefficient	ity	high	moderate	low to moderate	moderate	

Overview of main oil lubrication methods

The oil lubrication methods are:

- oil bath without circulating oil
- oil bath with self-circulating oil through bearing pumping action
- circulating oil with external pump
- oil jet method
- oil air method

The choice of the oil lubrication method depends mainly on:

- the bearing speed
- the need to remove heat
- the need to remove contaminants (solid particles or liquid)

SKF offers a wide range of products for oil lubrication that are not covered here. For additional information about SKF lubrication systems and related products, refer to skf.com/lubrication.

Oil bath without circulating oil

The simplest method of oil lubrication is the oil bath. The oil, which is picked up by the rotating components of the bearing, is distributed within the bearing and then flows back to the oil bath in the housing. Ideally, the oil level should reach the centre of the lowest rolling element (fig. 3) when the bearing is stationary. Oil levels higher than recommended will increase bearing temperature because of churning (Bearing friction, power loss and starting torque, page 132).

Oil bath with self-circulating oil

Oil from a bath is forced to circulate by different methods. Here are some examples:

- Oil is salvaged and directed to the bearings by means of drain and ducts (fig. 4).
- A dedicated component (ring, disc, etc.) picks up oil from an oil bath and transports it (fig. 5).
- The pumping effect of some bearing types can be used to circulate the oil. In fig. 6, the spherical thrust roller bearing pumps oil which returns to the thrust bearing by connecting ducts located under it.

All designs of such lubricating methods should be validated individually by tests.

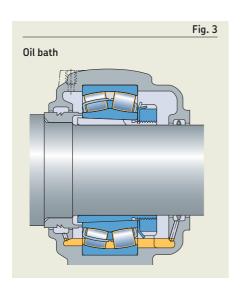
Circulating oil without a bath

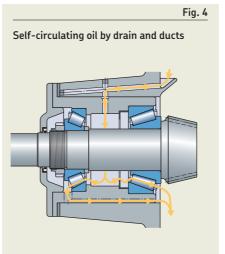
Circulating oil by means of an external oil pump, instead of an oil bath, is mainly used when it is needed to remove heat generated by the bearing and/or other sources. Oil circulation is also a good lubricating method for evacuating solid or liquid contaminants from the bearing to filters and/or oil/liquid separators. The design and layout of the oil drainage must ensure that there is no build-up of oil level (*Heat flow from adjacent parts or process*, page 131).

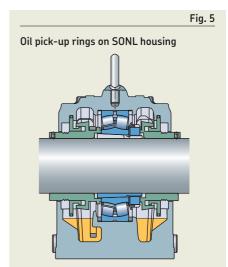
A basic circulating oil system (fig. 7) includes:

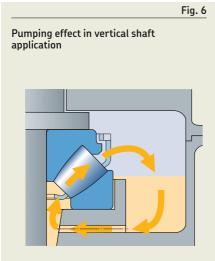
- oil pump
- filter
- oil reservoir
- oil cooling and/or heating system

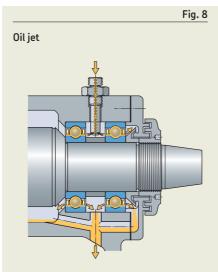
Oil jet

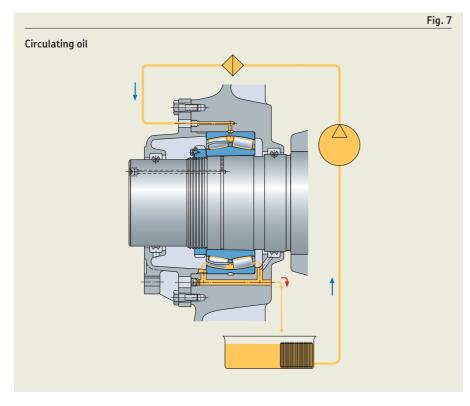

The oil jet lubricating method (fig. 8) is an extension of circulating oil systems, and is used for bearings operating at very high speeds. The dimensioning of oil flow and corresponding jet size is selected so that the oil jet speed reaches at least 15 m/s.

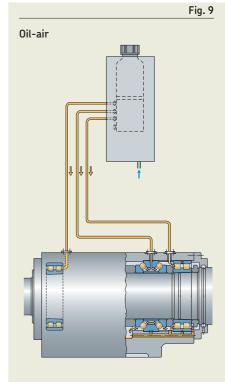

Oil injectors must be positioned so that the oil jet penetrates the bearing between one of the rings and the cage. To prevent churning that can cause increased friction and temperature, the design and layout of the oil drainage must ensure that there is no oil level build-up.


Oil-air


The oil-air lubrication method (fig. 9), also called the oil-spot lubrication method, uses compressed air to transport small, accurately-metered quantities of oil as small droplets along the inside of the feed lines to an injector nozzle, where it is delivered to a bearing. This minimum-quantity lubrication method enables the bearings to operate at very high speeds at a relatively low operating temperature. The compressed air also cools the bearing and prevents dust or aggressive gases from entering. For additional information, refer to skf.com/super-precision.


Oil lubrication system	Typical operating conditions	Approximate oil change interval ¹⁾
Oil bath or oil pick-up ring	Operating temperature < 50 °C (120 °F) Little risk of contamination	12 months
	Operating temperature 50 to 100 °C (120 to 210 °F) Some contamination	3 to 12 months
	Operating temperature > 100 °C (210 °F) Contaminated environment	3 months
Circulating oil or oil jet	All	Determined by test runs and regular inspection of the oil condition. Dependent on how frequently the total oil quantity is circulated and whether or not the oil is cooled.





SKF bearing grease selection chart

ease	Description	Application example	Temperature	range ¹⁾	Temp.	Speed	
			LTL	HTPL			
LGMT 2	General purpose industrial and automotive	Automotive wheel bearings Conveyors and fans Small electric motors	−30 °C (−20 °F)	120 °C (250 °F)	М	М	
LGMT 3	General purpose industrial and automotive	Bearings with d > 100 mm Vertical shaft or outer bearing ring rotation Car, truck and trailer wheel bearings	−30 °C (−20 °F)	120 °C (250 °F)	М	М	
LGEP 2	Extreme pressure	Forming and press section of paper mills Work roll bearings in steel industry Heavy machinery, vibrating screens	–20 °C (–5 °F)	110 °C (230 °F)	М	L to M	
LGWA 2	Wide temperature ³⁾ , extreme pressure	Wheel bearings in cars, trailers and trucks Washing machines Electric motors	–30 °C (–20 °F)	140 °C (285 °F)	M to H	L to M	
LGGB 2	Biodegradable, low toxicity ⁴⁾	Agricultural and forestry equipment Construction and earthmoving equipment Water treatment and irrigation	−40 °C (−40 °F)	90 °C (195 °F)	L to M	L to M	
LGFP 2	Food compatible	Food processing equipment Wrapping machines Bottling machines	−20 °C (−5 °F)	110 °C (230 °F)	М	М	
LGFQ 2	Food compatible High load	Pellet presses Mills Mixers	−40 °C (−40 °F)	140 °C (285 °F)	L to H	VL to M	
LGBB 2	Wind turbine blade and yaw bearing grease	Wind turbine blade and yaw slewing bearings	–40 °C (–40 °F)	120 °C (250 °F)	L to M	VL	
LGLT 2	Low temperature, extremely high speed	Textile and machine tool spindles Small electric motors and robots Printing cylinders	–50 °C (–60 °F)	110 °C (230 °F)	L to M	M to EH	
LGWM1	Extreme pressure, low temperature	Main shaft of wind turbines Centralised lubrication systems Spherical roller thrust bearing applications	−30 °C (−20 °F)	110 °C (230 °F)	L to M	L to M	
LGWM 2	High load, wide temperature	Main shaft of wind turbines Heavy duty off road or marine applications Snow exposed applications	-40 °C (-40 °F)	110 °C (230 °F)	L to M	L to M	
LGEM 2	High viscosity plus solid lubricants	Jaw crushers Construction machinery Vibrating machinery	–20 °C (−5 °F)	120 °C (250 °F)	М	VL	
LGEV 2	Extremely high viscosity with solid lubricants	Trunnion bearings Support and thrust rollers on rotary kilns and dryers Slewing ring bearings	−10 °C (−15 °F)	120 °C (250 °F)	М	VL	
LGHB 2	EP high viscosity, high temperature ⁵⁾	Steel on steel plain bearings Dryer section of paper mills Work roll bearings and continuous casting in steel industry Sealed spherical roller bearings up to 150 °C (300 °F)	−20 °C (−5 °F)	150 °C (300 °F)	M to H	VL to M	
LGHP 2	High performance polyurea grease	Electric motors Fans, even at high speed High speed ball bearings at medium and high temperatures	–40 °C (–40 °F)	150 °C (300 °F)	M to H	M to H	
LGED 2	High temperature Harsh environment	Bakery/brick oven equipment Glass industry Vacuum pumps	−30 °C (−20 °F)	240 °C (465 °F)	VH	L to M	
LGET 2	Extreme temperature	Bakery equipment (ovens) Wafer baking machines Textile dryers	−40 °C (−40 °F)	260 °C (500 °F)	VH	L to M	

¹⁾ LTL = Low Temperature Limit. Defined by means of the IP 186 Low temperature torque test. HTPL = High Temperature Performance Limit 2: mm²/s at 40 °C (105 °F) = cSt.
3) LGWA 2 can withstand peak temperatures of 220 °C (430 °F) 4) LGGB 2 can withstand peak temperatures of 120 °C (250 °F) 5) LGHB 2 can withstand peak temperatures of 200 °C (390 °F) 5) LGHB 2 can withstand peak temperatures of 200 °C (390 °F)

Load	Thickener / base oil	NLGI	Base oil viscosity ²⁾	Vertical shaft	Fast outer ring rotation	Oscillating movements	Severe vibrations	Peak loads or frequent startup	Rust inhibiting properties		
L to M	Lithium soap / mineral oil	2	110	•			+		+		
L to M	Lithium soap / mineral oil	3	125	+	•		+		•		Wid
Н	Lithium soap / mineral oil	2	200	•		•	+	+	+		le applica
L to H	Lithium complex soap / mineral oil	2	185	•	•	•	•	+	+		Wide application greases
M to H	Lithium-calcium soap / synthetic ester oil	2	110	•		+	+	+	•	Sı	ses
L to M	Aluminium complex / medical white oil	2	150	•					+	Special requirements	
L to VH	Complex calcium sulphonate/PAO	1–2	320	•	•	+	+	+	+	quiremer	
M to H	Lithium complex soap / synthetic PAO oil	2	68			+	+	+	+	its	
L	Lithium soap / synthetic PAO oil	2	18	•				•	•		Low
Н	Lithium soap / mineral oil	1	200			+		+	+		Low temperature
L to h	Complex calcium sulphonate / synthetic PAO oil / mineral oil	1–2	80	•	•	+	+	+	+		ature
H to VH	Lithium soap / mineral oil	2	500	•		+	+	+	+	High	
H to VH	Lithium-calcium soap / mineral oil	2	1 020	•		+	+	+	+	⊣igh loads	
L to VH	Complex calcium sulphonate / mineral oil	2	425	•	+	+	+	+	+		
L to M	Di-urea / mineral oil	2–3	96	+			•	•	+		High tem
H to VH	PTFE / synthetic fluorinated polyether oil	2	460	•	•	+	•	•	•		High temperature
H to VH	PTFE / synthetic fluorinated polyether oil	2	400	•	+	+	•	•	•		15
											-

• = Suitable + = Recommended

Technical specifications for SKF greases

		LGMT 2	LGMT 3	LGEP 2	LGWA 2	LGGB 2	LGFP 2	LGFQ 2
		LOIVIT 2	LOM I 3	LOLF 2	LOWAZ	L00B 2	LOT 72	LOIQZ
DIN 51825 code		K2K-30	K3K-30	KP2G-20	KP2N-30	KPE 2K-40	K2G-20	KP1/2N-40
NLGI consistency grade		2	3	2	2	2	2	1–2
Colour		Red brown	Amber	Light brown	Amber	Off white	Transparent	Brown
Thickener		Lithium	Lithium	Lithium	Lithium complex	Lithium/calcium	Aluminium complex	Complex calcium sulphonate
Base oil type		Mineral	Mineral	Mineral	Mineral	Synthetic (Ester)	Medical white oil	Synthetic (PAO)
Operating temperature range	°C °F	-30 to +120 (-20 to +250)	-30 to +120 (-20 to +250)	-20 to +110 (-5 to +230)	-30 to +140 (-20 to +285)	-40 to +90 (-40 to +195)	-20 to +110 (-5 to +230)	-40 to +140 (-40 to +285)
Dropping point DIN ISO 2176	°C °F	>180 (>355)	>180 (>355)	>180 (>355)	>250 (>480)	>170 (>340)	>250 (>480)	>300 (>570)
Base oil viscosity 40 °C (105 °F) 100 °C (210 °F)	mm²/s mm²/s	110 11	125 12	200 16	185 15	110 13	150 15,3	320 30
Penetration DIN ISO 2137 60 strokes 100 000 strokes	10 ⁻¹ mm 10 ⁻¹ mm	265–295 +50 max. (325 max.)	220–250 280 max.	265–295 +50 max. (325 max.)	265–295 +50 max. (325 max.)	265–295 +50 max. (325 max.)	265–295 +30 max.	280–310 +30 max.
Mechanical stability Roll stability, 50 h at 80 °C (175 °F)	10 ⁻¹ mm	+50 max.	295 max.	+50 max.	+50 max. change	+70 max. (350 max.)		-20 to +30 max.
V2F test		"M"	"M"	"M"	"M"			
Corrosion protection Erncor: - standard ISO 11007 - water washout test - salt water test (100% seawater)		0-0 0-0 0-1 1)	0-0 0-0	0-0 0-0 1-1 ¹⁾	0-0 0-0 1)	0–0	0-01)	0-0 0-0
Water resistance DIN 51 807/1, 3 h at 90 °C (<i>195 °F</i>)		1 max.	2 max.	1 max.	1 max.	0 max.	1 max.	1 max.
Dil separation DIN 51 817, 7 days at 40 °C <i>(105 °F)</i> , static	%	1–6	1–3	2–5	1–5	0,8–3	1–5	3 max.
Lubrication ability R2F, running test B at 120 °C (250 °F)		Pass	Pass	Pass	Pass	Pass		Pass
R2F, cold chamber test, –30 °C (<i>–20 °F</i>), +20 °C ((+70 °F)				100 °C (210 °F)	100 °C (210 °F)¹)		
Copper corrosion DIN 51 811		2 max. 110 °C (230 °F)	2 max. 130 °C (265 °F)	2 max. 110 °C (230°F)	2 max. 100 °C (210°F)		1 max. 120 °C (250 °F)	1b max. 100 °C (210°F)
Rolling bearing grease life ROF test L ₅₀ life at 10 000 r/min	h		1 000 min., 130 °C (265 °F)			>300, 120 °C (250 °F)	1 000, 110 °C (230 °F) ¹⁾	
EP performance Wear scar DIN 51350/5, 1 400 N 4-ball test, welding load DIN 51350/4	mm N			1,4 max. 2 800 min.	1,6 max. 2 600 min.	1,8 max. 2 600 min.	1100 min.	1 max. >4 000
Fretting corrosion ASTM D4170 FAFNIR test at +25 °C (75 °F)	mg			5,71)				0,81)
Low temperature torque IP186, starting torque	Nmm ¹⁾	98,	145,	70,	40,		137,	369,
IP186, running torque	Nmm ¹⁾	-30 °C (-20 °F) 58, -30 °C (-20 °F)	-30 °C (−20 °F) 95, -30 °C (−20 °F)	-20 °C (−5 °F) 45, -20 °C (−5 °F)	40, -30 °C (-20 °F) 30, -30 °C (-20 °F)		-30 °C (-20 °F) 51, -30 °C (-20 °F)	369, -40° C (-40°F) 223, -40°C (-40°F)

Wide applications greases

1) Typical value

126 **SKF**:

LGBB 2	LGLT 2	LGWM 1	LGWM 2	LGEM 2	LGEV 2	LGHB 2	LGHP 2	LGED 2	LGET 2
KP2G-40	K2G-50	KP1G-30	KP2G-40	KPF2K-20	KPF2K-10	KP2N-20	K2N-40	KFK2U-30	KFK2U-40
2	2	1	1–2	2	2	2	2–3	2	2
Yellow	Beige	Brown	Yellow	Black	Black	Brown	Blue	Off white	Off white
Lithium complex	Lithium	Lithium	Complex calcium sulphonate	Lithium	Lithium/calcium	Complex calcium sulphonate	Di-urea	PTFE	PTFE
Synthetic (PAO)	Synthetic (PAO)	Mineral	Synthetic (PAO)/ Mineral	Mineral	Mineral	Mineral	Mineral	Synthetic (fluori- nated polyether)	Synthetic (fluori- nated polyether)
-40 to +120 (-40 to +250)	-50 to +110 (-60 to +230)	-30 to +110 (-20 to +230)	-40 to +110 (-40 to +230)	-20 to +120 (-5 to +250)	–10 to +120 (15 to 250)	-20 to +150 (-5 to +300)	-40 to +150 (-40 to +300)	-30 to +240 (-20 to +464)	-40 to +260 (-40 to +500)
>200 (390)	>180 (>355)	>170 (>340)	>300 (>570)	>180 (>355)	>180 (>355)	>220 (>430)	>240 (>465)	>300 (> <i>570</i>)	>300 (>570)
68	18 4,5	200 16	80 8,6	500 32	1 020 58	425 26,5	96 10,5	460 42	400 38
265–295 +50 max.	265–295 +50 max.	310-340 +50 max.	280-310 +30 max	265–295 325 max.	265–295 325 max.	265–295 –20 to +50 (325 max.)	245–275 365 max.	265–295 271 ¹⁾	265–295 –
+50 max.			+50 max.	345 max. "M"	+50 max. "M"	-20 to +50	365 max.		±30 max. 130 °C (265 °F)
0-0 0-1 ¹⁾	0-1	0-0 0-0	0-0 0-0 0-0 1)	0-0 0-0	0-0 0-0 1) 0-0 1)	0-0 0-0 0-0 1)	0-0 0-0 0-0	0-0 1)	1–1 max.
1 max.	1 max.	1 max.	1 max.	1 max.	1 max.	1 max.	1 max.	1 max.	0 max.
4 max, 2,5 ¹⁾	<4	8–13	3 max.	1–5	1–5	1–3, 60 °C (140 °F)	1-51)		13 max. 30 h 200 °C (390 °F)
			Pass, 140 °C (285 °F) Pass, Pass	Pass, 100 °C (210 °F)		Pass, 140 °C (285 °F)	Pass		
1 max. 120 °C (250 °F)	1 max. 100 °C (210 °F)	2 max. 90 °C (>195 °F)	2 max. 100 °C (210 °F)	2 max. 100 °C (210 °F)	1 max. 100 °C (210 °F)	2 max. 150 °C (300 °F)	1 max. 150 °C (300 °F)	1 max. 100 °C (210 °F) ¹⁾	1 max. 150 °C (300 °F)
	>1 000, 20 000 r/min 100 °C (210 °F)		1 824 ¹⁾ , 110 °C (230 °F)			>1 000, 130 °C (265 °F)	1 000 min. 150 °C (300 °F)	>700 at 220 °C (430 °F)	>1 000 ¹⁾ at 220 °C (428 °F)
0,4 ¹⁾ 5 500 ¹⁾	2 000 min.	1,8 max. 3 200 min. ¹⁾	1,5 max. ¹⁾ 4 000 min. ¹⁾	1,4 max. 3 000 min.	1,2 max. 3 000 min.	0,86 ¹⁾ 4 000 min.		8 000 min.	8 000 min.
0-11)		5,51)	5,2/1,1 at -20 °C (-5 °F) 1)			0 1)	71)		
313, -40°C (-40°F) 75, -40°C (-40°F)	32, -50 °C (-60 °F) 21, -50 °C (-60 °F)	178, 0 °C (32 °F) 103, 0 °C (32 °F)	249, -40°C (-40°F) 184, -40°C (-40°F)	160, -20 °C (-5 °F) 98, -20 °C (-5 °F)	96, -10 °C (14 °F) 66, -10 °C (14 °F)	250, -20 °C (-5 °F) 133, -20 °C (-5 °F)	1 000, -40 °C (-40 °F) 280, -40 °C (-40 °F)		
High loads									
Low temperatures						High tem	peratures		

Low temperatures High temperature

5KF. 127

Operating temperature and speed

B.5 Operating temperature and speed

Bearing operating temperature and heat flow Bearing size, operating temperature and lubrication	130
conditions	13:
Fhermal equilibrium	13:
Generated heat	13:
Dissipated heat	137
Bearing friction, power loss and starting torque	13
SKF model of bearing friction	13
Starting torque	133
estimating bearing operating temperature Estimating heat dissipation from SKF plummer (pillow)	13
olocks	133
Cooling via circulating oil	13
urther temperature-related checks	13
Speed limitations	13
Approximate thermal speed limit based on ISO standard	40
conditions	13
Adjusted reference speed	13
Mechanical speed limit	13
Speeds above the reference or limiting speed	13

5KF. 129

B.5 Operating temperature and speed

The relationships between the temperature and power loss of components within an application is complex and these factors, in turn, have interdependencies with many others such as bearing sizes, loads and lubrication conditions.

They influence many performance characteristics of an application and its parts, and do so in various ways depending on the operational state, such as at start-up or in normal operation, when steady-state conditions have been reached.

Estimating the operating temperature and verifying speed limitations is a critical aspect of the analysis of an application.

This section provides details of these primary relationships, and guidance on what to consider.

Bearing operating temperature and heat flow

Temperature has a major influence on many performance characteristics of an application. The heat flow to, from and within an application determines the temperature of its parts.

The operating temperature of a bearing is the steady-state temperature it attains when running and in thermal equilibrium with its surrounding elements. The operating temperature results from (diagram 1):

- the heat generated by the bearing, as a result of the combined bearing and seal frictional power loss
- the heat from the application transferred to the bearing via the shaft, housing, foundation and other elements in its surroundings
- the heat dissipated from the bearing via the shaft, housing, foundation, lubricant cooling system (if used) and other cooling devices

The bearing operating temperature depends as much on the application design as on the bearing generated friction. Therefore, the bearing, its adjacent parts and the application should all be thermally analysed.

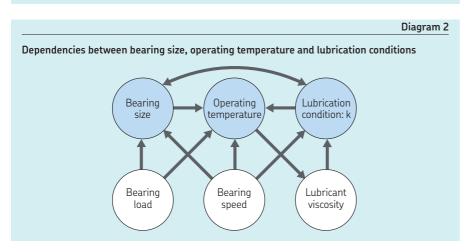
130 **SKF**

131

Bearing size, operating temperature and lubrication conditions

For a given bearing type, the bearing size, operating temperature and lubrication conditions are interdependent as follows (diagram 2):

- Bearing size is selected based on bearing load, speed and lubrication conditions.
- Operating temperature is a function of the bearing load, size, speed and lubrication conditions.
- Lubrication conditions depend on the operating temperature, the viscosity of the lubricant and the speed.


These interdependencies are dealt with by taking an iterative approach to the analysis, in order to achieve an optimum design for a bearing arrangement and select the most appropriate components for it.

Thermal equilibrium

The operating temperature of a bearing reaches a steady state when there is thermal equilibrium – i.e. there is a balance between generated heat and dissipated heat.

Provided that the load ratio C/P > 10 and the speed is below 50% of the limiting speed n_{lim} , and there is no pronounced external heat input, then cooling via the surrounding air and foundation is usually sufficient to result in an operating temperature well below 100 °C (210 °F). Where these conditions are not met, perform a more detailed analysis, as additional heat dissipation may be required.

Bearing operating temperature as equilibrium between generated heat and dissipated heat Bearing operating temperature Application heat Bearing heat

Generated heat

The heat generated is the sum of:

- heat generated by the bearing, as a result of the combined bearing and seal frictional power loss
- heat flow from adjacent parts or processes

Bearing frictional heat (power loss)

Bearing friction consists mainly of rolling friction, sliding friction, seal friction and oil drag losses (*Bearing friction, power loss and starting torque*, page 132).

Heat flow from adjacent parts or processes

In many applications, the bearings are in locations where they receive:

- heat from working parts of the machine, e.g. caused by friction in gears or shaft seals
- external heat, e.g. from hot steam going through a hollow shaft

The operating temperature of the bearings is influenced by this, in addition to their self-generated heat. Examples of such applications include:

- drying cylinders in paper machines
- calender rolls in plastic foil machines
- compressors
- hot gas fans

The heat input from adjacent parts within the application or from the process can be very pronounced and is typically very difficult to estimate. The rule is to insulate the bearing, as far as possible, from the additional heat flow.

Dissipated heat

The heat dissipated is the sum of:

- heat dissipated by the shaft, housing and ambient airflow, e.g. cooling effects in arctic conditions
- heat dissipated via the lubricant or lubrication system

Bearing friction, power loss and starting torque

Bearing friction is not constant and depends on certain tribological phenomena that occur in the lubricant film between the rolling elements, raceways and cages.

Friction changes as a function of speed, in a bearing with a given lubricant, are shown in diagram 3. Four zones are distinguishable:

- Zone 1 Boundary lubrication condition, in which only the asperities carry the load, and so friction between the moving surfaces is high.
- Zone 2 Mixed lubrication condition, in which a separating oil film carries part of the load, with fewer asperities in contact, and so friction decreases.
- Zone 3 Full film lubrication condition, in which the lubricant film carries the load, but with increased viscous losses, and so friction increases.
- Zone 4 Full film lubrication with thermal and starvation effects, in which the inlet shear heating and kinematic replenishment reduction factors compensate partially for the viscous losses, and so friction evens off.

SKF model of bearing friction

In the SKF model for calculating bearing friction, the total frictional moment, M, is derived from four sources:

$$M = M_{rr} + M_{sl} + M_{seal} + M_{drag}$$

where

M_{rr} = the rolling frictional moment, and includes effects of lubricant starvation and inlet shear heating [Nmm]

 M_{sl} = the sliding frictional moment, and includes the effects of the quality of lubrication conditions [Nmm]

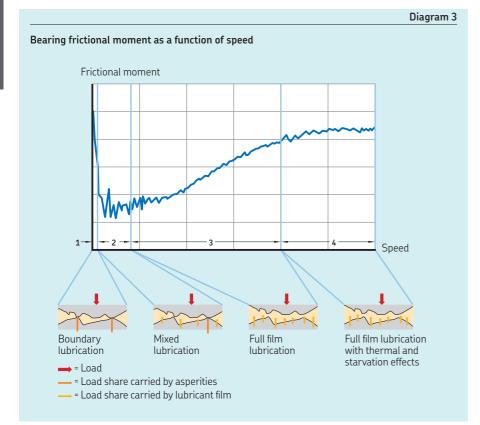
M_{seal} = the frictional moment from integral seals [Nmm]
Where bearings are fitted with contact seals, the frictional losses from the seals may exceed those generated in the bearing.

M_{drag} = the frictional moment from drag losses, churning, splashing, etc., in an oil bath [Nmm]

Calculating values for these four sources of friction is complex. Therefore, we recommend using the *SKF Bearing Calculator* (skf.com/bearingcalculator).

For detailed information on the calculations, refer to *The SKF model for calculating the frictional moment* (skf.com/go/17000-B5).

When the total frictional moment, M, of the bearing is known, you can calculate the bearing frictional power loss using


$$P_{loss} = 1,05 \times 10^{-4} \, M \, n$$

where

P_{loss} = bearing frictional power loss [W]

M = total frictional moment [Nmm]

n = rotational speed [r/min]

132 **SKF**

Starting torque

The starting torque of a rolling bearing is defined as the frictional moment that must be overcome by the bearing to start rotating, at an ambient temperature of 20 to 30 °C (70 to 85 °F). Therefore, only the sliding frictional moment and the frictional moment of seals, if applied, are taken into consideration.

$$M_{start} = M_{sl} + M_{seal}$$

where

 M_{start} = starting frictional moment [Nmm] M_{sl} = sliding frictional moment [Nmm] M_{seal} = frictional moment of the seals [Nmm]

We recommend using the *SKF Bearing Calculator* (skf.com/bearingcalculator) for calculating starting torque values.

Estimating heat dissipation from SKF plummer (pillow) blocks

For SKF plummer (pillow) block housings, you can use a model based on bearing size to estimate heat dissipation values.

Using diagram 4, you can estimate the heat dissipation per degree above ambient temperature, W_s , for a bearing with bearing mean diameter d_m in a plummer block housing, with the shaft exposed to the surrounding air.

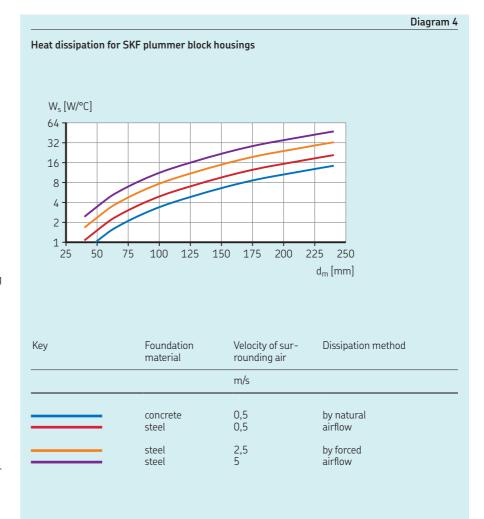
The estimation is valid for SKF plummer block housings used with grease or oil bath lubrication and only where there is no significant heat input from external sources, such as steam heating of shafts or pronounced radiation from hot surfaces.

Estimating bearing operating temperature

If you are able to estimate a value for the heat dissipation from a bearing, W_s , you can estimate the operating temperature, T_{bear} , for a bearing in thermal equilibrium, under steady-state conditions, using

$$T_{bear} = (P_{loss}/W_s) + T_{amb}$$

where


 T_{bear} = estimated average bearing operating temperature [°C]

 P_{loss} = bearing frictional power loss [W]

 W_s = total heat dissipation per degree above ambient temperature [W/°C]

T_{amb} = ambient temperature [°C]

Should the value of the estimated bearing operating temperature be too high for the application requirements – for example, resulting in a κ value that is too low, or a relubrication interval that is too short – a possible solution may be to reduce the operating temperature by means of a circulating oil lubrication system.

Cooling via circulating oil

By circulating the oil, it is possible to cool it, and thereby remove heat from the bearing arrangement.

In diagram 5, the curved line shows the bearing frictional power loss, P_{loss} , and the angled line shows the heat dissipation, W_s .

Taking the heat dissipated via oil circulation into account, the bearing thermal equilibrium under steady-state conditions becomes:

$$P_{loss} = W_s (T_{bear} - T_{amb}) + P_{oil}$$

where

P_{loss} = bearing frictional power loss [W]

W_s = total heat dissipation per degree above ambient temperature [W/°C]

 T_{bear} = estimated required bearing operating temperature [°C]

T_{amb} = the ambient temperature [°C]

 P_{oil} = estimated power dissipated in the oil cooler [W]

Taking the heat dissipation via oil circulation into account, you can estimate the bearing operating temperature using

$$T_{hear} = ((P_{loss} - P_{oil})/W_s) + T_{amh}$$

You can estimate the power that must be dissipated by oil cooling, for a given bearing temperature, using

$$P_{oil} = P_{loss} - W_s (T_{bear} - T_{amb})$$

You can estimate the required oil flow, for a given quantity of power that must be dissipated by oil cooling (Poil), using

$$Q = P_{oil} / (27 (T_{out} - T_{in}))$$

where

Q = required oil flow [I/min]

P_{oil} = power dissipated in the oil cooler [W]

 T_{out} = oil temperature at the housing oil outlet [°C]

 T_{in} = oil temperature at the housing oil inlet [°C]

If you do not have values for T_{out} or T_{in} , you may assume a temperature difference of 5 to 10 °C (10 to 20 °F).

The limit of cooling that is possible via circulating oil is determined by the degree of heat transfer that can be obtained from a given bearing. As a rule of thumb, you can determine the maximum oil flow, above which no significant temperature reduction is obtained, using

$$Q_{max} = (D B) / 12 500$$

where

Q_{max} = maximum oil flow [l/min]

D = bearing outer diameter [mm]

B = bearing width [mm]

134 **SKF**

Further temperature-related checks

After you have estimated the operating temperature, check:

- that the temperature assumption for calculating bearing life (operating viscosity) was correct
- the lubricant selection and temperature limits
- the grease or oil change interval
- the cage and seal material limits

Speed limitations

The speed capability of a bearing is normally determined by the bearing operating temperature. However, for certain bearing types and arrangements, the mechanical limits of the bearing components may have a significant influence.

The product tables typically provide two speed ratings:

- the reference speed, which is based on thermal conditions
- the limiting speed, which is based on mechanical limits

Both speed ratings are cautionary limits, rather than strict prohibiting limits, but approaching either of them signals that deeper analysis of the operating conditions is required.

For bearings with contact seals, no reference speeds are listed in the product tables. Typically, the limiting speed determines the maximum speed for these bearings.

Approximate thermal speed limit based on ISO standard conditions

The reference speed listed in the product tables is based on the SKF friction model and derived from thermal equilibrium under the ISO 15312 standardized operating and cooling conditions. Its main purpose is to provide a quick assessment of the speed capabilities of a bearing. You can also use it to estimate a thermal speed limit.

The ISO reference speed is valid for open bearings only, operating under the following conditions:

- predefined reference heat dissipation
- light loads
 - radial load P = 0,05 C₀ for radial bearings
- axial load $P = 0.02 C_0$ for thrust bearings
- nominal temperature increase of 50 °C (90 °F) above an ambient reference temperature of 20 °C (70 °F)
- oil lubrication with mineral oil without EP additives
 - ISO VG32 for radial bearings
 - ISO VG68 for thrust bearings
- clean conditions
- sufficient operating clearance (Selecting initial internal clearance, page 183)
- horizontal shaft, rotating inner ring and stationary outer ring

The ISO standard does not provide reference conditions for sealed bearings.

The ISO standard, established for oil lubrication, is also valid for grease lubrication, provided a lithium based grease with mineral base oil having a viscosity between 100 and 200 mm²/s is used. Grease lubricated bearings may, however, undergo a temperature peak during initial start-up, requiring a running-in period before they reach their steady-state operating temperature.

Adjusted reference speed

The ISO reference speed is valid for a standardized set of operating conditions including standardized heat dissipation. Therefore, SKF recommends calculating the adjusted reference speed considering the actual load and lubricant viscosity in your application. Do this using the SKF Bearing Calculator (skf.com/bearingcalculator). However, this reference speed adjustment does not include the data regarding the actual heat dissipation for your application, so a conservative approach to the result is recommended. To include effects from heat dissipation, a detailed thermal analysis is required.

Mechanical speed limit

The limiting speed indicated in the product tables is a maximum speed valid for the standard bearing execution that should not be exceeded unless the bearing design and the application is adapted to a higher speed.

The limiting speed is determined by:

- the form stability or strength of the cage
- lubrication of the cage guiding surfaces
- centrifugal and gyratory forces acting on the rolling elements
- other speed-limiting factors, such as seals and the lubricant for sealed bearings

NOTE

Some open ball bearings have very low friction, and the reference speeds listed for them might be higher than their limiting speeds. Do not use only the mechanical speed limit. Also calculate the adjusted reference speed. The lower of the two sets the speed limit.

Speeds above the reference or limiting speed

It is possible to operate a bearing at speeds above its reference speed, its adjusted reference speed, or even the limiting speed.

Before doing so, first make a detailed thermal analysis, and take whatever further measures may be required, such as use of special cage executions, or consider using high precision bearings. Regarding management of the effects of increased speed, consider the following options:

- Control the resulting increase in bearing temperature by additional cooling.
- Compensate for any reduction in bearing clearance resulting from increased bearing temperature.
- Revise the housing fitting tolerance choice to ensure that the influence of increased bearing temperature does not impair the axial displaceability of non-locating bearing outer rings.
- Revise the bearing tolerance class, together with the geometrical precision of the shaft and housing seats, to ensure these are sufficient to avoid excessive vibration.
- Consider using an alternative cage execution that is suitable for higher speed operation, in particular when approaching or exceeding the limiting speed.
- Ensure that the lubricant and lubrication method used are compatible with the higher operating temperature and the cage execution.
- Check that the relubrication interval is still acceptable, particularly for grease lubricated bearings. Oil lubrication may be required.

Bearing interfaces

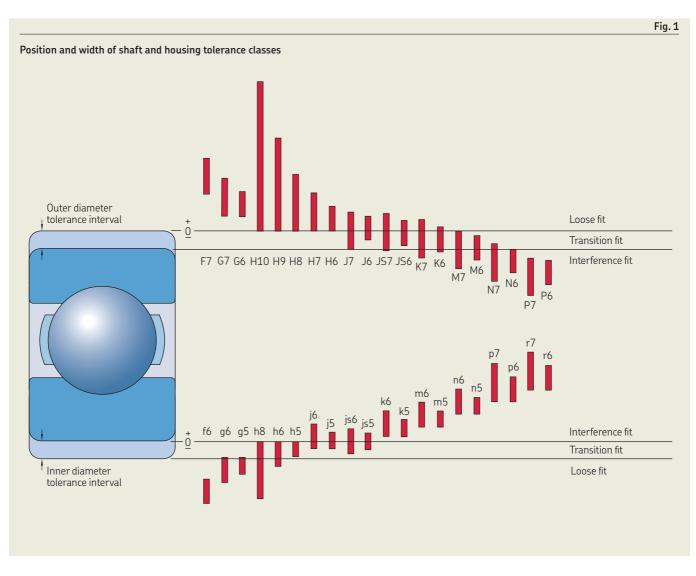
B.6 Bearing interfaces

The ISO tolerance system	140
Selecting fits	140
Conditions of rotation	142
Magnitude of load	143
Temperature differences	143
Precision requirements	143
Design and material of the shaft and housing	143
Ease of mounting and dismounting	143
Axial displacement of the bearing in the non-locating	
position	143
Tolerances for bearing seats and abutments	14
Tolerances for seats on hollow shafts	146
Tolerances for tapered seats	14
Taper position	14
Checking tolerances	14
Surface texture of bearing seats	147
Seat tolerances for standard conditions	148
Bearings with a tapered bore	149
Tolerances and resultant fits	153
Provisions for mounting and dismounting	176
Axial location of bearing rings	178
Bearings with a tapered bore	178
Abutments and fillets	178
Radially free mounted bearings for axial load	179
Raceways on shafts and in housings	179

5KF. 139

B.6 Bearing interfaces

Bearing seats on shafts and in housings, and components which locate a bearing axially, have a significant impact on bearing performance. To fully exploit the load carrying ability of a bearing, its rings or washers should be fully supported around their complete circumference and across the entire width of the raceway. Bearing seats should be manufactured to adequate geometrical and dimensional tolerances and be uninterrupted by grooves, holes or other features.


In this section you can find recommendations and requirements for designing bearing interfaces, including:

- criteria when selecting bearing fits
- recommended fits for standard conditions
- tables to help determine minimum, maximum and probable values of clearance or interference between the bearing and its
- recommendations for specifying geometrical tolerances of bearing seats
- recommendations for the axial support of bearing rings
- further design considerations for bearing interfaces

The ISO tolerance Selecting fits system

Fits for rolling bearings are typically specified with standard tolerance classes for holes and shafts as described in ISO 286-2. As bearings are typically manufactured to ISO tolerances (Tolerances, page 36), the selection of the tolerance class for the bearing seat determines the fit. The position and width of the tolerance intervals of commonly used tolerance classes relative to the bearing bore and outside diameter tolerances are illustrated in fig. 1, which is valid for bearings with Normal tolerances and of medium size. It is important to note that the ISO tolerance classes for rolling bearings and for holes and shafts are different. The tolerances for each size vary over the full range of actual sizes. You should therefore select the respective tolerance classes for bearing seats based on the actual bearing size for your application.

Fits can be selected by following the recommendations for bearing seat diameter tolerances (Seat tolerances for standard conditions, page 148). These recommendations will provide adequate solutions for the majority of applications. However, they do not cover all details of a specific application and so you may find that adjustments may be necessary. When selecting fits, you should consider the following topics.

Conditions of rotation

Conditions of rotation refer to the relative motion between a bearing ring and the load acting upon it (table 1). Essentially, there are three different conditions:

· Rotating loads

These loads occur where either the bearing ring or the applied load is stationary while the other rotates. A bearing ring mounted with a loose fit will creep on its seat when subjected to a rotating load, and this can lead to fretting corrosion and eventually wear. To prevent this from happening, an adequate interference fit, between the ring subjected to rotating load and its seat, is required. For the purpose of selecting fits, loads that oscillate (such as loads acting on connecting rod bearings) are considered to be rotating loads.

Stationary loads

These loads occur where both the bearing ring and the applied load are stationary or both are rotating at the same speed. Under these conditions, a bearing ring normally does not creep and there is no risk of fretting corrosion or wear. In this case, the ring does not need to have an interference fit.

· Direction of load indeterminate

This refers to variable or alternating external loads, sudden load peaks, vibration or unbalanced loads in high-speed applications. These give rise to changes in the direction of load, which cannot be accurately described. Where the direction of load is indeterminate and particularly where heavy loads are involved, there is a risk of fretting corrosion or wear. You should use an interference fit for both rings. The same fit as for a rotating load is normally suitable. Where the outer ring

should be able to move axially in its housing, a loose fit must be used. However, a loose fit can result in housing wear. Where this cannot be tolerated, either protect the bearing seat surface or select a bearing that accommodates the axial displacement within itself (cylindrical roller, needle roller or CARB bearing). These bearings can be mounted with an interference fit for both rings.

			Table 1
Conditions of rotation Operating conditions	Schematic illustration	Load condition	Recommended fits
Rotating inner ring Stationary outer ring Constant load direction		Rotating inner ring load Stationary outer ring load	Interference fit for the inner ring Loose fit for the outer ring possible
Rotating inner ring Stationary outer ring Load rotates with the inner ring		Stationary inner ring load Rotating outer ring load	Loose fit for the inner ring possible Interference fit for the outer ring
Stationary inner ring Rotating outer ring Constant load direction		Stationary inner ring load Rotating outer ring load	Loose fit for the inner ring possible Interference fit for the outer ring
Stationary inner ring Rotating outer ring Load rotates with outer ring		Rotating inner ring load Stationary outer ring load	Interference fit for the inner ring Loose fit for the outer ring possible

142 **SKF**

Magnitude of load

The ring of a bearing deforms proportionately to the load. For rotating inner ring loads, this deformation can loosen the interference fit between the inner ring and shaft, causing the ring to creep on its shaft seat. The heavier the load, the tighter the interference fit required. The required interference can be estimated using:

$$\Delta = 2.5\sqrt{F_r \frac{d}{B}}$$

where

 Δ = required interference [μ m]

d = bearing bore diameter [mm]

B = bearing width [mm]

 $F_r = radial load [kN]$

Where sudden load peaks or vibration occurs, a tighter fit can be required.

Temperature differences

In operation, bearing rings normally reach a temperature that is higher than that of the components to which they are fitted. This can loosen the fit on the shaft seat, while outer ring expansion can prevent the desired axial displacement in the housing.

Rapid start-up can loosen the inner ring fit when the frictional heat generated by the bearing is not dissipated quickly enough. In some cases, friction from seals can generate enough heat to loosen the inner ring fit.

External heat and the direction of heat flow can have an effect on fits. Steady-state and transient conditions must be considered. For additional information about temperature differences, refer to *Selecting internal clearance or preload*, page 182.

Precision requirements

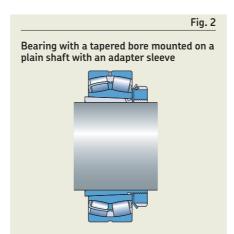
To minimize deflections and vibration in precision or high-speed applications, interference or transition fits are recommended.

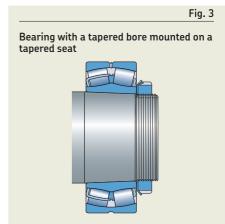
Design and material of the shaft and housing

Distortion of the bearing rings caused by shaft or housing design, for example by discontinuities of the seat or uneven wall thickness, should be avoided.

For split housings, SKF generally recommends loose fits. The tighter (less loose) the fit is in a split housing, the higher are the requirements for the geometrical tolerances of the seat. Split housings machined to tight tolerances, such as SKF plummer block housings, can be used for transition fits up to K7.

Bearings mounted in thin-walled housings or on hollow shafts require tighter interference fits than those recommended for robust cast iron housings or solid shafts (*Tolerances for seats on hollow shafts*, page 146).


Shafts or housings made of materials other than steel or cast iron may require different fits depending on material strength and thermal properties.


Ease of mounting and dismounting

Loose fits are beneficial for easy mounting and dismounting. In applications where interference fits are required for both the shaft and housing seat, separable bearings or bearings with a tapered bore should be considered. Bearings with a tapered bore can be mounted on tapered sleeves (fig. 2) or on a tapered shaft seat (fig. 3).

Axial displacement of the bearing in the non-locating position

When a non-locating bearing needs to be able to move axially on its seat, the ring subjected to the stationary load should have a loose fit. For additional information about bearings in the non-locating position, refer to *Arrangements and their bearing types*, page 70.

Tolerances for bearing seats and abutments

Dimensional tolerances for bearing seats are dictated by the required fit. Precision requirements of the application will direct you to which bearing tolerance class to use (*Bearing execution*, **page 182**) and, consequently, what run-out tolerance of the seat is needed. The run-out of the seat is specified by the total radial run-out of the seat surface and the total axial run-out of the abutment (ISO 1101, 18.16).

For bearings with Normal tolerances in general industrial applications, seats are

typically machined to the following tolerances:

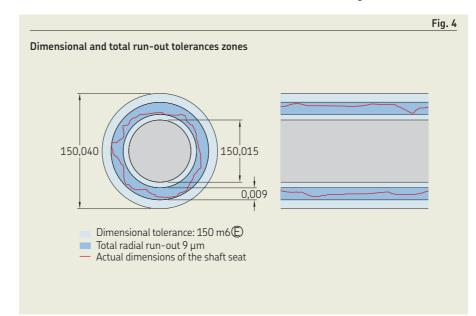
- shaft seats to grade IT6 dimensional tolerances and grade IT5 total run-out tolerances
- housing seats to grade IT7 dimensional tolerances and grade IT6 total run-out tolerances

Suitable combinations of tolerance grades are listed in table 2. The tolerance zone for the total radial run-out is limited to half of the ISO tolerance grade, because the runout tolerance is specified as a difference in radii of two coaxial cylinders, and the ISO tolerance grade refers to the diameter.

For seats of bearings mounted on withdrawal or adapter sleeves, wider diameter tolerances are permissible. The total run-out tolerances should be the same as for bearings on cylindrical seats.

Tolerance values for ISO tolerance grades are listed in table 3.

Tolerance grades for bearing	seats ,						
Application requirements	Shaft seat			Housing seat		В	
	A		B	D _A D (1) t ₂ A-B			
	Dimensional tolerance grade	Geometrical tole	rance grades	Dimensional tolerance grade	Geometrical toler	ance grades	
		Radial run-out t ₁	Axial run-out t ₂		Radial run-out t ₁	Axial run-out t ₂	
Bearing to Normal tolerances moderate speed and running accuracy)	IT6	IT5/2	IT5	IT7	IT6/2	IT6	
Bearing to P6 tolerances higher speeds or running accuracy)	IT5	IT4/2	IT4	IT6	IT5/2	IT5	
Bearing to P5 tolerances high speeds and running accuracy)	IT4	IT3/2	IT3	IT5	IT4/2	IT4	


144 **SKF**

1) For very high-speed and high-precision applications, use SKF super-precision bearings and reduced IT tolerances (skf.com/super-precision).

Example

A deep groove ball bearing 6030 is to be used in an electric motor. The bearing accommodates normal to heavy loads (0,05 C < P \leq 0,1 C), and requirements for speed and precision are moderate. An interference fit on the shaft is required. For this fit, the shaft diameter should be 150 m6 \bigcirc . The total radial run-out should be within IT5/2 (from table 3: 18/2 = 9 μ m), and the total axial run-out of the abutment should be within IT5 (from table 3: 18 μ m).

The dimensional tolerance zone in grey and the tolerance zone for the total radial run-out in blue are shown in fig. 4. The blue zone can be located at any place within the grey zone, but must not be wider than $9 \mu m$.

Nominal		Toleran	ce grades	;				
dimension >	≤	IT3 max.	IT4	IT5	IT6	IT7	IT8	IT9
nm		μm						
1	3	2	3	4	6	10	14	25
3	6	3	4	5	8	12	18	30
5	10	3	4	6	9	15	22	36
10	18	3	5	8	11	18	27	43
18	30	4	6	9	13	21	33	52
30	50	4	7	11	16	25	39	62
50	80	5	8	13	19	30	46	74
30	120	6	10	15	22	35	54	87
120	180	8	12	18	25	40	63	100
180	250	10	14	20	29	46	72	115
250	315	12	16	23	32	52	81	130
315	400	13	18	25	36	57	89	140
400	500	15	20	27	40	63	97	155
500	630	-	-	32	44	70	110	175
630	800	-	-	36	50	80	125	200
800	1 000	-	-	40	56	90	140	230
1 000	1 250	-	-	47	66	105	165	260
1 250	1 600	-	-	55	78	125	195	310
1 600 2 000	2 000 2 500	-	-	65 78	92 110	150 175	230 280	370 440

5KF 145

Tolerances for seats on hollow shafts

When a bearing is mounted on a hollow shaft using an interference fit, the shaft experiences more elastic deformation than a solid shaft. As a result, the effectiveness of the fit is less than for the same size solid shaft. The effectiveness of an interference fit on a hollow shaft depends on certain diameter ratios (fig. 5):

- the diameter ratio of the hollow shaft
 c_i = d_i / d
 - For diameter ratios $c_i \le 0.5$ the reduction of effectiveness is negligible.
- the diameter ratio of the bearing inner ring c_e = d / d_e

When the average outside diameter of the inner ring ${\rm d_e}$ is not known, the diameter ratio can be estimated from

$$c_e = \frac{d}{k(D-d)+d}$$

where

- c_e = diameter ratio of the bearing inner ring
- d = bearing bore diameter [mm]
- D = bearing outside diameter [mm]
- k = adjustment factor
 - = 0,25 for self-aligning ball bearings in the 22 and 23 series
 - = 0,25 for cylindrical roller bearings
 - = 0,3 for other bearings

For shaft diameter ratios $c_i > 0.5$ the diameter tolerance determined for a seat on a solid shaft should be adjusted to achieve the same effectiveness of the fit on the hollow shaft. This can be done with the following procedure.

- **1** Determine the mean probable interference for the tolerance selected for a seat on a solid shaft, Δ_S (*Tolerances and resultant fits*, page 153).
- **2** Determine the required increase of interference for the seat on the hollow shaft from **diagram 1**, based on the diameter ratios c_i and c_e.
- 3 Calculate the required mean probable interference for the seat on the hollow shaft and select the tolerance class accordingly.

Example

A 6208 deep groove ball bearing with d = 40 mm and D = 80 mm is to be mounted on a hollow shaft with a diameter ratio $c_i = 0.8$. What is the appropriate tolerance class for the shaft seat?

The bearing is subjected to normal loads, and a tolerance class k5 is appropriate for a seat on a solid shaft.

• The diameter ratio of the bearing inner ring is

$$c_e = \frac{40}{0.3(80 - 40) + 40} = 0.77$$

- The mean probable interference on a solid shaft is
 Δ_S = (22 + 5) / 2 = 13,5 μm (table 14, page 160, k5 for a 40 mm shaft diameter)
- The increase in interference for the seat on the hollow shaft is $\Delta_H/\Delta_S=1,7$ (diagram 1, $c_i=0,8$ and $c_p=0,77$)
- The requisite interference for the seat on the hollow shaft is $\Delta_H = 1.7 \times 13.5 = 23 \ \mu m$
- The appropriate tolerance class for the seat on the hollow shaft is m6 (table 14, mean probable interference, $(33 + 13)/2 = 23 \mu m$)

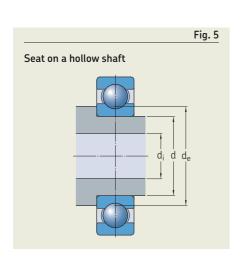


Diagram 1 Relationship of interference Δ_H , needed for a hollow steel shaft, to the known interference Δ_S for a solid steel shaft Δ_H/Δ_S 2,0 1.8 ce = 0 1.6 1,4 0.8 1,2 1,0 0,4 0,5 0,3 0,6 0,8 0,9

Tolerances for tapered seats

For tapered shaft seats, SKF recommends the following tolerances (fig. 6):

 The permissible deviation for the rate of the taper is a ± tolerance in accordance with IT7/2. The bearing width B is the nominal size, which determines the standard tolerance values. The permissible deviation for the rate of the taper can be determined using

$$\Delta_k = \frac{IT7/2}{B}$$

The permissible range of dispersion of the rate of the taper can be determined using

$$V_k = 1/k \pm \frac{177/2}{B}$$

where

- Δ_k = the permissible deviation of the rate of the taper
- V_k = the permissible range of dispersion of the rate of the taper
- B = bearing width [mm]
- IT7 = the value of the tolerance grade, based on the bearing width [mm]
- k = factor for the taper
 - = 12 for taper 1:12
 - = 30 for taper 1:30

• To determine the permissible dispersion of the taper angle α , use

$$\alpha = 2 \operatorname{atan} (V_k/2)$$

- The roundness tolerance is defined as "distance t between two concentric circles in each radial plane perpendicular to the cone axis along the tapered surface of the shaft". t is the value of tolerance grade IT5/2, based on the diameter d. Where a high degree of precision is required, IT4/2 should be used instead.
- The straightness is defined as "In each axial plane through the tapered shaft, the tolerance zone is limited by two parallel lines a distance t apart". t is the value of tolerance grade IT5/2, based on the diameter d.

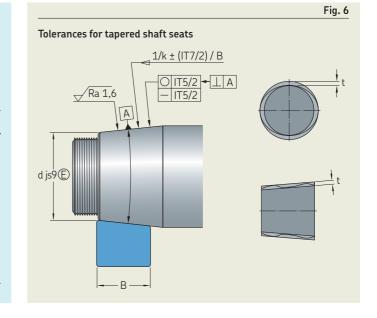
Taper position

Only dimensional and geometrical tolerances of the taper are indicated in **fig. 6**. The axial position of the taper requires additional specifications. When specifying the axial position, you should also take into account the axial drive-up distance of the bearing, which is required to achieve a suitable interference fit.

Checking tolerances

To check whether a tapered shaft seat is within its tolerances, SKF recommends measuring it with a special taper gauge,

based on saddles and gauging pins. More practical, but less accurate measurement methods include ring gauges, taper gauges and sine bars. For information about SKF measuring devices, refer to skf.com (GRA 30 ring gauges and DMB taper gauges).


Surface texture of bearing seats

The surface texture of a bearing seat has less of an impact on bearing performance compared to the dimensional and geometrical tolerances of the seat. However, the texture of the mating surfaces affects smoothing, which can reduce the interference in a fit. The surface texture should be limited to ensure the required fit is obtained.

Guideline values for the roughness profile parameter Ra are listed in **table 4**. These recommendations apply to ground seats, which are normally assumed for shaft seats. For housing seats, which are normally fineturned, the Ra values may be one class higher. For applications where some loss of interference is not critical, rougher surfaces than recommended in **table 4** can be used.

				Table 4
Surface r	oughness of bea	aring seats		
Seat diar	neter	Ra (guide	line values for	ground seats)
d, D		Diameter	tolerance grad	le
>	≤	IT7	IT6	IT5
mm		μm		
- 80 500	80 500 1 250	1,6 1,6 3,2 ¹)	0,8 1,6 1,6	0,4 0,8 1,6

1) When using the oil injection method for mounting, Ra should not exceed 1,6 µm.

Seat tolerances for standard conditions

The following tables provide recommendations for tolerances of shaft and housing seats. They are valid for standard applications but do not cover all details of a specific application. The information under *Selecting fits*, page 140, and *Tolerances for* bearing seats and abutments, page 144, should be additionally considered.

These recommendations are valid for bearings with Normal dimensional tolerances. They can also be used for bearings to P6 dimensional tolerances. The tighter P6 tolerance zone changes the resulting fit only slightly.

Recommended seat tolerances for metric bearings:

- For solid steel shafts:
 - Radial ball bearings (table 5, except insert bearings)
 - Radial roller bearings (table 6, except needle roller bearings)
 - Thrust ball bearings and spherical roller thrust bearings (table 7, page 150)
- For cast iron and steel housings:
 - Radial bearings (table 8, page 151)
 - Thrust bearings (table 9, page 152)

For the following bearing types, recommendations are listed in the product sections:

- Insert bearings, Design considerations, page 356
- Needle roller bearings, relevant sections under Needle roller bearings, page 903
- Cylindrical roller thrust bearings, Design considerations, page 885
- Needle roller thrust bearings, Design considerations, page 903
- Inch tapered roller bearings, *Design* considerations, page 687

All ISO tolerance classes used in the tables are valid with the envelope requirement (such as H7(E)), in accordance with ISO 14405-1. For practical reasons, symbol (E) is not indicated in the tables.

SKF.

fts – seats for rad	lial ball bearings ¹⁾ Dimensional tolerance ²⁾ -	Total radial run-out tolerance ³⁾	Total axial run-out tolerance ³⁾	Ra
	Dimensional tolerance ²⁾			Ra
	-			
		_	-	μm
irection of load inc	determinate			
7 7 to 100 00 to 140	js5 j6 k6	IT4/2 IT5/2 IT5/2	IT4 IT5 IT5	0,4 0,8 1,6
)) to 17 7 to 100	js5 j5 k5	IT4/2 IT4/2 IT4/2	IT4 IT4 IT4	0,4 0,4 0,8
00 to 140 40 to 200 00 to 500	m5 m6 n6	IT4/2 IT5/2 IT5/2	IT4 IT5 IT5	0,8 1,6 1,6
00	p7	IT6/2	IT6	3,2
er ring on shaft	g6 ⁴⁾	IT5/2	IT5	1,6
er ring on shaft	h6	IT5/2	IT5	1,6
	j6	IT5/2	IT5	1,6
	0 to 140 1 to 17 to 100 0 to 140 0 to 200 0 to 500 0 or ring on shaft	0 to 140 k6 1 js5 1 to 17 j5 1 to 100 k5 0 to 140 m5 0 to 200 m6 0 to 500 n6 0 p7 Tring on shaft g64) Tring on shaft h6	0 to 140	0 to 140

148

¹⁾ For insert bearings, refer to *Design considerations*, page 356.
2) The envelope requirement (symbol © from ISO 14405-1) is not shown but applies to all tolerance classes.
3) Values listed are for bearings to Normal tolerances. For bearings with tighter tolerance classes, use the recommendations in table 2, page 144.
4) Depending on bearing size, a shifted 66© tolerance may be needed to obtain a loose fit.

Bearings with a tapered bore

Bearings with a tapered bore are always mounted with an interference fit for the inner ring. The fit is determined by the distance through which the inner ring is driven up on a tapered seat or sleeve. For detailed information, refer to the information in the product sections:

- Self-aligning ball bearings, page 438
- Spherical roller bearings, page 774
- CARB toroidal roller bearings, page 842

For seats of bearings mounted on tapered sleeves, wider diameter tolerances are permissible. The total run-out tolerances should be the same as for bearings on cylindrical seats (Tolerances for bearing seats and abutments, page 144).

Suitable tolerances are listed in table 10, page 152. They are valid for moderate speeds and moderate precision requirements.

					Tabl
Tolerances for solid ste Conditions	el shafts – seats for ra Shaft diameter	dial roller bearings ¹⁾ Dimensional tolerance ²	⁾ Total radial run-out tolerance ³⁾	Total axial run-out tolerance ³⁾	Ra
	mm	-	-	-	μm
Rotating inner ring loa	d or direction of load in	ndeterminate			
Light loads (P ≤ 0,05 C)	≤ 25 > 25 to 60 > 60 to 140	j6 k6 m6	IT5/2 IT5/2 IT5/2	IT5 IT5 IT5	0,8 0,8 0,8
Normal to heavy loads (0,05 C < P ≤ 0,1 C)	≤ 30 > 30 to 50 > 50 to 65	k6 m5 n5	IT5/2 IT5/2 IT5/2	IT5 IT5 IT5	0,8 0,8 0,8
	> 65 to 100 > 100 to 280 > 280 to 500	n6 p6 r6	IT5/2 IT5/2 IT5/2	IT5 IT5 IT5	0,8 1,6 1,6
	> 500	r7	IT6/2	IT6	3,2
Heavy to very heavy loads and high peak loads under difficult	> 50 to 65 > 65 to 85 > 85 to 140	n5 n6 p6	IT5/2 IT5/2 IT5/2	IT5 IT5 IT5	0,8 0,8 0,8
operating conditions (P > 0,1 C)	> 140 to 300 > 300 to 500 > 500	r6 r6 + IT64) r7 + IT74)	IT5/2 IT5/2 IT6/2	IT5 IT5 IT6	1,6 1,6 3,2
Stationary inner ring lo Easy axial displacement		g6 ⁵)	IT5/2	IT5	1,6
desirable Easy axial displacement unnecessary	of inner ring on shaft	h6	IT5/2	IT5	1,6
Axial loads only		j6	IT5/2	IT5	1,6

⁵⁾ Depending on bearing size, a shifted g6 (E) tolerance may be needed to obtain a loose fit.

¹⁾ For needle roller bearings, refer to the relevant sections under *Needle roller bearings*, page 581.
2) The envelope requirement (symbol ② from ISO 14405-1) is not shown but applies to all tolerance classes.
3) Values listed are for bearings to Normal tolerances. For bearings with tighter tolerance classes, use the recommendations in table 2, page 144.
4) Shifted tolerance field.

					Table 7
Tolerances for solid ste	el shafts – seats for thru	st bearings ¹⁾			
Conditions	Shaft diameter	Dimensional tolerance ²	Total radial run-out tolerance	Total axial run-out tolerance	Ra
	mm	_	-	-	μm
Axial loads only on thru	ust ball bearings	h6	IT5/2	IT5	1,63)
Combined radial and as Stationary load on shaft washer	xial loads on spherical ro all	ller thrust bearings j6	IT5/2	IT5	1,63)
Rotating load on shaft	≤ 200	k6	IT5/2	IT5	1,63)
washer, or direction of load indeterminate	> 200 to 400	m6	IT5/2	IT5	1,6
	> 400	n6	IT5/2	IT5	1,6

¹⁾ For cylindrical roller thrust bearings, refer to *Design considerations*, page 885. For needle roller thrust bearings, refer to *Design considerations*, page 903.
2) The envelope requirement (symbol ⑤ from ISO 14405–1) is not shown but applies to all tolerance classes.
3) For d ≤ 80 mm, use Ra = 0.8 µm.

Tolerances for cast	iron and steel housings – seat	s for radial beari	ngs ¹⁾			
	Conditions	Dimensional tolerance ²⁾³⁾	Total radial run-out tolerance	Total axial run-out tolerance	Ra 6)	Displacement of outer ring
		-	_	-	μm	_
For non-split housings only	Rotating outer ring load					
iousings only	Heavy loads on bearings in thin-walled housings, heavy peak loads (P > 0,1 C)	P7	IT6/2	IT6	3,2	Cannot be displaced
	Normal to heavy loads (P > 0,05 C)	N7	IT6/2	IT6	3,2	Cannot be displaced
	Light and variable loads $(P \le 0.05 C)$	M7	IT6/2	IT6	3,2	Cannot be displaced
	Direction of load indetermin	nate				
	Heavy peak loads	M7	IT6/2	IT6	3,2	Cannot be displaced
	Normal to heavy loads (P > 0,05 C), axial displace- ment of outer ring unnecessary	K75)	IT6/2	IT6	3,2	In most cases, cannot be displaced
- For non-split nousings and split	Direction of load indetermin	nate				
nousings	Light to normal loads (P ≤ 0,1 C), axial displace- ment of outer ring desirable	J7	IT6/2	IT6	3,2	In most cases, ca be displaced
	Stationary outer ring load					
	Loads of all kinds	H7 ³⁾	IT6/2	IT6	3,2	Can be displaced
	Light to normal loads (P ≤ 0,1 C) with simple work- ing conditions	H83)	IT6/2	IT6	3,2	Can be displaced
	Thermal expansion of the shaft	G74)	IT6/2	IT6	3,2	Can be displaced

¹⁾ For drawn cup, alignment and combined needle roller bearings, refer to *Shaft and housing tolerances*, **page 610**.
2) The envelope requirement (symbol © from ISO 14405-1) is not shown but applies to all tolerance classes.
3) For large bearings (D > 250 mm), or temperature differences between the outer ring and housing > 10 °C (18 °F), tolerance class G7© should be used instead of tolerance class H7©.
4) For large bearings (D > 500 mm), or temperature differences between the outer ring and housing > 10 °C (18 °F), tolerance class F7© should be used instead of tolerance class G7©.
5) A split housing is allowed provided housing halves are well aligned during machining of the housing, with relief chamfers at the split.
6) For D > 500 mm, use Ra = 6,3 µm.

				Table 9
Tolerances for cast iron and steel housing	ngs – seats for thru	ıst bearings ¹⁾		
Conditions	Dimensional tolerance ²⁾	Total axial run-out tolerance	Ra	Remarks
	_	-	μm	-
Axial loads only				
Thrust ball bearings	Н8	IT7	6,3	For less precise bearing arrangements, there can be a radial clearance of up to 0,001 D.
Spherical roller thrust bearings where separate bearings provide radial location	-	IT6		Housing washer must be fitted with an adequate radial gap so that no radial load can act on the thrust bearings.
Combined radial and axial loads on spherical roller thrust bearings				
Stationary load on housing washer arrangements	H7	IT6	3,23)	For additional information, refer to <i>Design</i> considerations, page 918.
Rotating load on housing washer	M7	IT6	3,23)	

		•	tapered sleeves	
Shaft diame	ter	Diameter t	tolerance	Total radial run-out
d Nominal >	≤	h9€ U	L	IT5/2 max.
mm		μm		mm
10	18	0	-43	4
18	30	0	-52	5
30	50	0	-62	6
50	80	0	-74	7
80	120	0	-87	8
120	180	0	-100	9
180	250	0	-115	10
250	315	0	-130	12
315	400	0	-140	13
400	500	0	-155	14
500	630	0	-175	16
630	800	0	-200	18
800	1 000	0	-230	20
1 000	1 250		-260	24

¹⁾ For cylindrical roller thrust bearings, refer to *Design considerations*, page 885. For needle roller thrust bearings, refer to *Design considerations*, page 903.
2) The envelope requirement (symbol © from ISO 14405-1) is not shown but applies to all tolerance classes.
3) For D < 80 mm, use Ra = 1,6 µm.

Tolerances and resultant fits

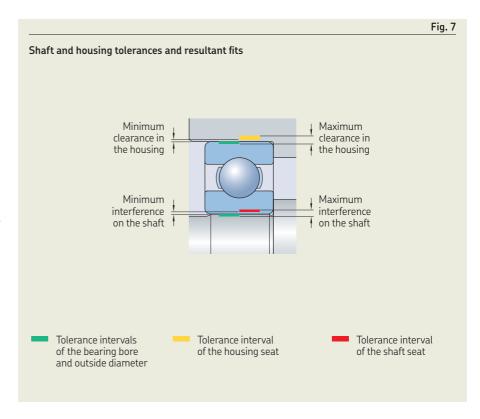
The tables in this section provide information about bearing tolerances, seat tolerances and resultant fits (fig. 7). These should enable you to determine easily the maximum and minimum values of fits when using ISO tolerance classes for bearing seats and bearings with Normal tolerances for the bore and outside diameter. The SKF Bearing Calculator (skf.com/bearingcalculator) provides a similar function for every individual bearing.

The tables cannot be used for tapered roller bearings when d \leq 30 mm or D \leq 150 mm or for thrust bearings when D \leq 150 mm. The diameter tolerances for these bearings deviate from the Normal tolerances for other rolling bearings.

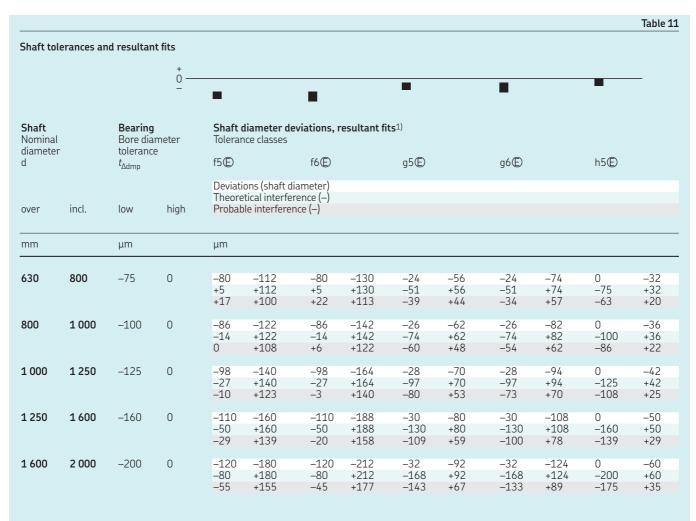
The tables list:

- the upper and lower limits of bore or outside diameter deviations for bearings with Normal tolerances
- the upper and lower limits of shaft or housing bore diameter deviations for relevant tolerance classes in accordance with ISO 2862
- the smallest and largest values of the theoretical interference (–) or clearance (+)
- the smallest and largest values of the ±3σ probable interference (–) or clearance (+)

The appropriate values for shaft seats are listed for the following tolerance classes:

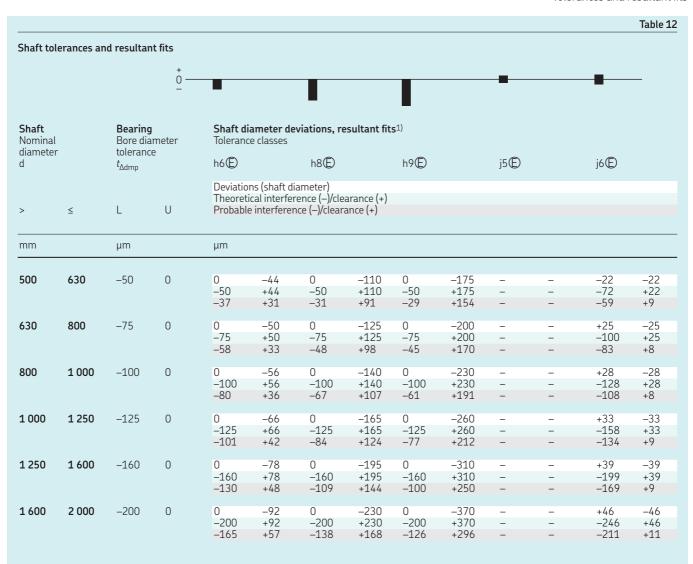

- f5, f6, g5, g6, h5 (table 11, page 154)
- h6, h8, h9, j5, j6 (table 12, page 156)
- js4, js5, js6, js7, k4 (table 13, page 158)
- k5, k6, m5, m6, n5 (table 14, page 160)
- n6, p6, p7, r6, r7 (table 15, page 162)
- r6+IT6, r7+IT7 (table 16, page 164)

The appropriate values for housing seats are

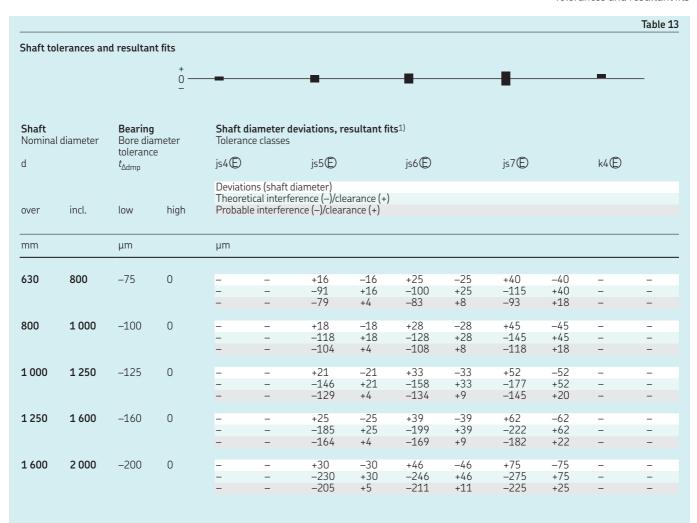

• F7, G6, G7, H5, H6 (table 17, page 166)

listed for the following tolerance classes:

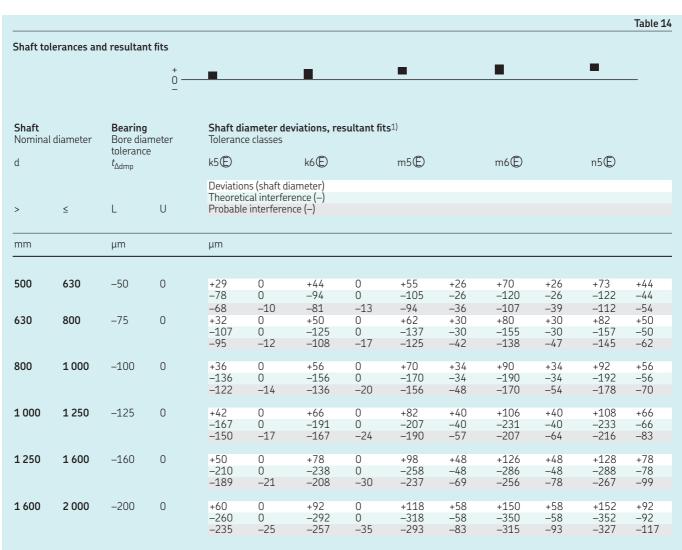
- H7, H8, H9, H10, J6 (table 18, page 168)
- J7, JS5, JS6, JS7, K5 (table 19, page 170)
- K6, K7, M5, M6, M7 (table 20, page 172)
- N6, N7, P6, P7 (table 21, page 174)



		nd resulta	+										
			0 —	•						•		-	
haft Iomina iamete		Bearin Bore di toleran	ameter	Shaft diameter deviations, resultant fits ¹⁾ Tolerance classes									
		$t_{\Delta m dmp}$		f5©	ions (shaft d	f6©		g5©		g6©		h5©	
ver	incl.	low	high	Theore	etical interfe ole interfere	rence (–)							
nm		μm		μm									
	3	-8	0	-6 -2 -1	-10 +10 +9	-6 -2 0	-12 +12 +10	-2 -6 -5	-6 +6 +5	-2 -6 -4	-8 +8 +6	0 -8 -7	-4 +4 +3
	6	-8	0	-10 +2 +3	-15 +15 +14	-10 +2 +4	-18 +18 +16	-4 -4 -3	-9 +9 +8	-4 -4 -2	-12 +12 +10	0 -8 -7	-5 +5 +4
	10	-8	0	-13 +5 +7	-19 +19 +17	-13 +5 +7	-22 +22 +20	-5 -3 -1	-11 +11 +9	-5 -3 -1	-14 +14 +12	0 -8 -6	-6 +6 +4
0	18	-8	0	-16 +8 +10	-24 +24 +22	-16 +8 +10	-27 +27 +25	-6 -2 0	-14 +14 +12	-6 -2 0	-17 +17 +15	0 -8 -6	-8 +8 +6
8	30	-10	0	-20 +10 +12	-29 +29 +27	-20 +10 +13	-33 +33 +30	-7 -3 -1	-16 +16 +14	-7 -3 0	-20 +20 +17	0 -10 -8	-9 +9 +7
0	50	-12	0	-25 +13 +16	-36 +36 +33	-25 +13 +17	-41 +41 +37	-9 -3 0	-20 +20 +17	-9 -3 +1	-25 +25 +21	0 -12 -9	-11 +11 +8
0	80	-15	0	-30 +15 +19	-43 +43 +39	-30 +15 +19	-49 +49 +45	-10 -5 -1	-23 +23 +19	-10 -5 -1	-29 +29 +25	0 -15 -11	-13 +13 +9
80	120	-20	0	-36 +16 +21	-51 +51 +46	-36 +16 +22	-58 +58 +52	-12 -8 -3	-27 +27 +22	-12 -8 -2	-34 +34 +28	0 -20 -15	-15 +15 +10
.20	180	-25	0	-43 +18 +24	-61 +61 +55	-43 +18 +25	-68 +68 +61	-14 -11 -5	-32 +32 +26	-14 -11 -4	-39 +39 +32	0 -25 -19	-18 +18 +12
.80	250	-30	0	-50 +20 +26	-70 +70 +64	-50 +20 +28	-79 +79 +71	-15 -15 -9	-35 +35 +29	–15 –15 –7	-44 +44 +36	0 -30 -24	-20 +20 +14
50	315	- 35	0	-56 +21 +29	-79 +79 +71	-56 +21 +30	-88 +88 +79	-17 -18 -10	-40 +40 +32	–17 –18 –9	-49 +49 +40	0 -35 -27	-23 +23 +15
15	400	-45	0	-62 +22 +30	-87 +87 +79	-62 +22 +33	-98 +98 +87	-18 -22 -14	-43 +43 +35	-18 -22 -11	-54 +54 +43	0 -40 -32	-25 +25 +17
.00	500	-45	0	-68 +23 +32	-95 +95 +86	-68 +23 +35	-108 +108 +96	-20 -25 -16	-47 +47 +38	-20 -25 -13	-60 +60 +48	0 -45 -36	-27 +27 +18
00	630	- 50	0	-76 +26 +36	-104 +104 +94	-76 +26 +39	-120 +120 +107	-22 -28 -18	-50 +50 +40	-22 -28 -15	-66 +66 +53	0 -50 -40	-28 +28 +18


¹⁾ Values are valid for most bearings with Normal tolerances. For exceptions, refer to *Tolerances and resultant fits*, page 153.

			<u>0</u> —			T		Т		-		•	_
haft Iomina iamete		Bearin Bore di	ameter		iameter de ce classes	viations, re	esultant fit	(S ¹⁾					
lamete	:1	t _{∆dmp}	re	h6©		h8©		h9€		j5€		j6 ⊕	
	≤	L	U	Theoret	ns (shaft di ical interfer e interferer	ameter) ence (–)/cle nce (–)/clear	arance (+) ance (+)						
nm		μm		μm									
	3	-8	0	0 -8 -6	-6 +6 +4	0 -8 -6	-14 +14 +12	0 -8 -5	-25 +25 +22	+2 -10 -9	-2 +2 +1	+4 -12 -10	-2 +2 0
	6	-8	0	0 -8 -6	-8 +8 +6	0 -8 -5	-18 +18 +15	0 -8 -5	-30 +30 +27	+3 -11 -10	-2 +2 +1	+6 -14 -12	-2 +2 0
1	10	-8	0	0 -8 -6	-9 +9 +7	0 -8 -5	-22 +22 +19	0 -8 -5	-36 +36 +33	+4 -12 -10	-2 +2 0	+7 -15 -13	-2 +2 0
.0	18	-8	0	0 -8 -6	-11 +11 +9	0 -8 -5	-27 +27 +24	0 -8 -5	-43 +43 +40	+5 -13 -11	-3 +3 +1	+8 -16 -14	-3 +3 +1
8	30	-10	0	0 -10 -7	-13 +13 +10	0 -10 -6	-33 +33 +29	0 -10 -6	-52 +52 +48	+5 -15 -13	-4 +4 +2	+9 -19 -16	-4 +4 +1
0	50	-12	0	0 -12 -8	-16 +16 +12	0 -12 -7	-39 +39 +34	0 -12 -7	-62 +62 +57	+6 -18 -15	-5 +5 +2	+11 -23 -19	-5 +5 +1
0	80	-15	0	0 -15 -11	-19 +19 +15	0 -15 -9	-46 +46 +40	0 -15 -9	–74 +74 +68	+6 -21 -17	-7 +7 +3	+12 -27 -23	-7 +7 +3
80	120	-20	0	0 -20 -14	-22 +22 +16	0 -20 -12	-54 +54 +46	0 -20 -12	-87 +87 +79	+6 -26 -21	-9 +9 +4	+13 -33 -27	-9 +9 +3
.20	180	– 25	0	0 -25 -18	-25 +25 +18	0 -25 -15	-63 +63 +53	0 -25 -15	-100 +100 +90	+7 -32 -26	-11 +11 +5	+14 -39 -32	-11 +11 +4
.80	250	-30	0	0 -30 -22	-29 +29 +21	0 -30 -18	-72 +72 +60	0 -30 -17	-115 +115 +102	+7 -37 -31	-13 +13 +7	+16 -46 -38	-13 +13 +5
50	315	-35	0	0 -35 -26	-32 +32 +23	0 -35 -22	-81 +81 +68	0 -35 -20	-130 +130 +115	+7 -42 -34	-16 +16 +8	+16 -51 -42	-16 +16 +7
15	400	-40	0	0 -40 -29	-36 +36 +25	0 -40 -25	-89 +89 +74	0 -40 -23	-140 +140 +123	+7 -47 -39	-18 +18 +10	+18 -58 -47	-18 +18 +7
00	500	-45	0	0 -45 -33	-40 +40 +28	0 -45 -28	-97 +97 +80	0 -45 -26	-155 +155 +136	+7 -52 -43	-20 +20 +11	+20 -65 -53	-20 +20 +8


¹⁾ Values are valid for most bearings with Normal tolerances. For exceptions, refer to *Tolerances and resultant fits*, page 153.

			<u></u>			-		-		-			_
Shaft Nomina	al diameter	Bearin Bore di toleran	ameter	Tolerand	ameter de e classes	viations, re	sultant fit			· 7(· / ©	
ver	incl.	$t_{\Delta m dmp}$	high	Theoreti		js5© ameter) rence (–)/cle nce (–)/cleara		js6©		js7©		k4©	
nm		μm		μm		ree ()/elean							
	3	-8	0	+1,5 -9,5 -8,5	-1,5 +1,5 +0,5	+2 -10 -9	-2 +2 +1	+3 -11 -9	-3 +3 +1	+5 -13 -11	-5 +5 +3	+3 -11 -10	0 0 -1
	6	-8	0	+2 -10 -9	-2 +2 +1	+2,5 -10,5 -9	-2,5 +2,5 +1	+4 -12 -10	-4 +4 +2	+6 -14 -12	-6 +6 +4	+5 -13 -12	+1 -1 -2
	10	-8	0	+2 -10 -9	-2 +2 +1	+3 -11 -9	-3 +3 +1	+4,5 -12,5 -11	-4,5 +4,5 +3	+7,5 -15,5 -13	-7,5 +7,5 +5	+5 -13 -12	+1 -1 -2
0	18	-8	0	+2,5 -10,5 -9,5	-2,5 +2,5 +1,5	+4 -12 -10	-4 +4 +2	+5,5 -13,5 -11	-5,5 +5,5 +3	+9 -17 -14	-9 +9 +6	+6 -14 -13	+1 -1 -2
8	30	-10	0	+3 -13 -10,5	-3 +3 +1,5	+4,5 -14,5 -12	-4,5 +4,5 +2	+6,5 -16,5 -14	-6,5 +6,5 +4	+10,5 -20,5 -17	-10,5 +10,5 +7	+8 -18 -16	+2 -2 -4
80	50	-12	0	+3,5 -15,5 -13,5	-3,5 +3,5 +1,5	+5,5 -17,5 -15	-5,5 +5,5 +3	+8 -20 -16	-8 +8 +4	+12,5 -24,5 -20	-12,5 +12,5 +8	+9 -21 -19	+2 -2 -4
0	80	-1 5	0	+4 -19 -15,5	-4 +4 +1,5	+6,5 -21,5 -18	-6,5 +6,5 +3	+9,5 -24,5 -20	-9,5 +9,5 +5	+15 -30 -25	-15 +15 +10	+10 -25 -22	+2 -2 -5
0	120	-20	0	+5 -25 -22	-5 +5 +2	+7,5 -27,5 -23	-7,5 +7,5 +3	+11 -31 -25	-11 +11 +5	+17,5 -37,5 -31	-17,5 +17,5 +11	+13 -33 -30	+3 -3 -6
.20	180	-25	0	+6 -31 -27	-6 +6 +2	+9 -34 -28	-9 +9 +3	+12,5 -37,5 -31	-12,5 +12,5 +6	+20 -45 -37	-20 +20 +12	+15 -40 -36	+3 -3 -7
80	250	-30	0	+7 -37 -32	-7 +7 +2	+10 -40 -34	-10 +10 +4	+14,5 -44,5 -36	-14,5 +14,5 +6	+23 -53 -43	-23 +23 +13	+18 -48 -43	+4 -4 -9
50	315	- 35	0	+8 -4 -37	-8 +8 +2	+11,5 -46,5 -39	-11,5 +11,5 +4	+16 -51 -42	-16 +16 +7	+26 -61 -49	-26 +26 +14	+20 -55 -49	+4 -4 -10
15	400	-40	0	+9 -49 -42	-9 +9 +2	+12,5 -52,5 -44	-12,5 +12,5 +4	+18 -58 -47	-18 +18 +7	+28,5 -68,5 -55	-28,5 +28,5 +15	+22 -62 -55	+4 -4 -11
00	500	-45	0	+10 -55 -48	-10 +10 +3	+13,5 -58,5 -49	-13,5 +13,5 +4	+20 -65 -53	-20 +20 +8	+31,5 -76,5 -62	-31,5 +31,5 +17	+25 -70 -63	+5 -5 -12
00	630	-50	0	-	- -	+14 -64	-14 +14	+22 -72	-22 +22	+35 -85	-35 +35	_ _	_ _

¹⁾ Values are valid for most bearings with Normal tolerances. For exceptions, refer to *Tolerances and resultant fits*, page 153.

			<u>_</u>	-		•		•				-	
Shaft Nomina	al diameter	Bearin Bore di	ameter		iameter de ce classes	viations, re	esultant fit	:s ¹⁾					
		toleran $t_{\Delta \mathrm{dmp}}$	ce	k5€		k6€		m5©		m6€		n5©	
	≤	L	U	Theoret	ons (shaft di ical interfer e interferer	rence (–)							
nm		μm		μm									
	3	-8	0	+4 -12 -11	0 0 -1	+6 -14 -12	0 0 -2	+6 -14 -13	+2 -2 -3	+8 -16 -14	+2 -2 -4	+8 -16 -15	+4 -4 -5
	6	-8	0	+6 -14 -13	+1 -1 -2	+9 -17 -15	+1 -1 -3	+9 -17 -16	+4 -4 -5	+12 -20 -18	+4 -4 -6	+13 -21 -20	+8 -8 -9
•	10	-8	0	+7 -15 -13	+1 -1 -3	+10 -18 -16	+1 -1 -3	+12 -20 -18	+6 -6 -8	+15 -23 -21	+6 -6 -8	+16 -24 -22	+10 -10 -12
.0	18	-8	0	+9 -17 -15	+1 -1 -3	+12 -20 -18	+1 -1 -3	15 -23 -21	+7 -7 -9	+18 -26 -24	+7 -7 -9	+20 -28 -26	+12 -12 -14
.8	30	-10	0	+11 -21 -19	+2 -2 -4	+15 -25 -22	+2 -2 -5	+17 -27 -25	+8 -8 -10	+21 -31 -28	+8 -8 -11	+24 -34 -32	+15 -15 -17
0	50	-12	0	+13 -25 -22	+2 -2 -5	+18 -30 -26	+2 -2 -6	+20 -32 -29	+9 -9 -12	+25 -37 -33	+9 -9 -13	+28 -40 -37	+17 -17 -20
0	80	-15	0	+15 -30 -26	+2 -2 -6	+21 -36 -32	+2 -2 -6	+24 -39 -35	+11 -11 -15	+30 -45 -41	+11 -11 -15	+33 -48 -44	+20 -20 -24
80	120	-20	0	+18 -38 -33	+3 -3 -8	+25 -45 -39	+3 -3 -9	+28 -48 -43	+13 -13 -18	+35 -55 -49	+13 -13 -19	+38 -58 -53	+23 -23 -28
.20	180	-25	0	+21 -46 -40	+3 -3 -9	+28 -53 -46	+3 -3 -10	+33 -58 -52	+15 -15 -21	+40 -65 -58	+15 -15 -22	+45 -70 -64	+27 -27 -33
.80	250	-30	0	+24 -54 -48	+4 -4 -10	+33 -63 -55	+4 -4 -12	+37 -67 -61	+17 -17 -23	+46 -76 -68	+17 -17 -25	+51 -81 -75	+31 -31 -37
250	315	-35	0	+27 -62 -54	+4 -4 -12	+36 -71 -62	+4 -4 -13	+43 -78 -70	+20 -20 -28	+52 -87 -78	+20 -20 -29	+57 -92 -84	+34 -34 -42
15	400	-40	0	+29 -69 -61	+4 -4 -12	+40 -80 -69	+4 -4 -15	+46 -86 -78	+21 -21 -29	+57 -97 -86	+21 -21 -32	+62 -102 -94	+37 -37 -45
.00	500	-45	0	+32 -77 -68	+5 -5 -14	+45 -90 -78	+5 -5 -17	+50 -95 -86	+23 -23 -32	+63 -108 -96	+23 -23 -35	+67 -112 -103	+40 -40 -49

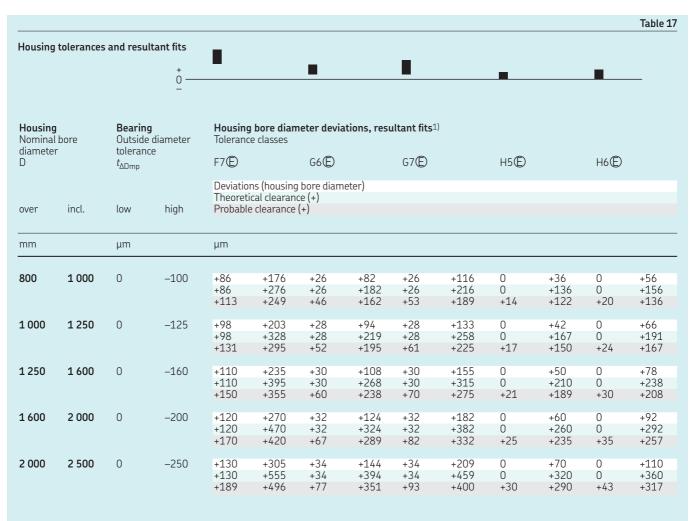
1) Values are valid for most bearings with Normal tolerances. For exceptions, refer to *Tolerances and resultant fits*, page 153.

	olerances an		<u> </u>	•		•				-		_	
h aft Iomina	al diameter	Bearing Bore dis tolerang t _{Δdmp}	ameter	nolerano nole Deviatio	iameter de ce classes ns (shaft di ical interfei		esultant fit	p7€		r6€		r7€	
ver	incl.	low	high		e interferer								
nm		μm		μm									
50	80	-15	0	+39 -54 -50	+20 -20 -24	+51 -66 -62	+32 -32 -36	+62 -77 -72	+32 -32 -38	- - -	- - -	- - -	- - -
30	100	-20	0	+45 -65 -59	+23 -23 -29	+59 -79 -73	+37 -37 -43	+72 -92 -85	+37 -37 -44	+73 -93 -87	+51 -51 -57	+86 -106 -99	+51 -51 -58
100	120	-20	0	+45 -65 -59	+23 -23 -29	+59 -79 -73	+37 -37 -43	+72 -92 -85	+37 -37 -44	+76 -96 -90	+54 -54 -60	+89 -109 -102	+54 -54 -61
120	140	-25	0	+52 -77 -70	+27 -27 -34	+68 -93 -86	+43 -43 -50	+83 -108 -100	+43 -43 -51	+88 -113 -106	+63 -63 -70	+103 -128 -120	+63 -63 -71
140	160	-25	0	+52 -77 -70	+27 -27 -34	+68 -93 -86	+43 -43 -50	+83 -108 -100	+43 -43 -51	+90 -115 -108	+65 -65 -72	+105 -130 -122	+65 -65 -73
160	180	-25	0	+52 -77 -70	+27 -27 -34	+68 -93 -86	+43 -43 -50	+83 -108 -100	+43 -43 -51	+93 -118 -111	+68 -68 -75	+108 -133 -125	+68 -68 -76
180	200	-30	0	+60 -90 -82	+31 -31 -39	+79 -109 -101	+50 -50 -58	+96 -126 -116	+50 -50 -60	+106 -136 -128	+77 -77 -85	+123 -153 -143	+77 -77 -87
200	225	-30	0	+60 -90 -82	+31 -31 -39	+79 -109 -101	+50 -50 -58	+96 -126 -116	+50 -50 -60	+109 -139 -131	+80 -80 -88	+126 -156 -146	+80 -80 -90
225	250	-30	0	+60 -90 -82	+31 -31 -39	+79 -109 -101	+50 -50 -58	+96 -126 -116	+50 -50 -60	+113 -143 -135	+84 -84 -92	+130 -160 -150	+84 -84 -94
250	280	-35	0	+66 -101 -92	+34 -34 -43	+88 -123 -114	+56 -56 -65	+108 -143 -131	+56 -56 -68	+126 -161 -152	+94 -94 -103	+146 -181 -169	+94 -94 -106
280	315	-35	0	+66 -101 -92	+34 -34 -43	+88 -123 -114	+56 -56 -65	+108 -143 -131	+56 -56 -68	+130 -165 -156	+98 -98 -107	+150 -185 -173	+98 -98 -110
315	355	-40	0	+73 -113 -102	+37 -37 -48	+98 -138 -127	+62 -62 -73	+119 -159 -146	+62 -62 -75	+144 -184 -173	+108 -108 -119	+165 -205 -192	+108 -108 -121
55	400	-40	0	+73 -113 -102	+37 -37 -48	+98 -138 -127	+62 -62 -73	+119 -159 -146	+62 -62 -75	+150 -190 -179	+114 -114 -125	+171 -211 -198	+114 -114 -127
00	450	-45	0	+80 -125 -113	+40 -40 -52	+108 -153 -141	+68 -68 -80	+131 -176 -161	+68 -68 -83	+166 -211 -199	+126 -126 -138	+189 -234 -219	+126 -126 -141

			<u> </u>	•		•		•		_			_
haft Iominal	diameter	Bearing Bore dia tolerand	meter		ameter de e classes	viations, re	sultant fits	5 1)					
l		$t_{\Delta m dmp}$			ns (shaft di cal interfer			p7€		r6©		r7Ē	
ver	incl.	low	high		interferer	ce (–)							
nm		μm		μm									
50	500	-45	0	+80 -125 -113	+40 -40 -52	+108 -153 -141	+68 -68 -80	+131 -176 -161	+68 -68 -83	+172 -217 -205	+132 -132 -144	+195 -240 -225	+13 -13 -14
000	560	-50	0	+88 -138 -125	+44 -44 -57	+122 -172 -159	+78 -78 -91	+148 -198 -182	+78 -78 -94	+194 -244 -231	+150 -150 -163	+220 -270 -254	+15 -15 -16
60	630	-50	0	+88 -138 -125	+44 -44 -57	+122 -172 -159	+78 -78 -91	+148 -198 -182	+78 -78 -94	+199 -249 -236	+155 -155 -168	+225 -275 -259	+15 -15 -17
530	710	-75	0	+100 -175 -158	+50 -50 -67	+138 -213 -196	+88 -88 -105	+168 -243 -221	+88 -88 -110	+225 -300 -283	+175 -175 -192	+255 -330 -308	+17 –17 –19
710	800	- 75	0	+100 -175 -158	+50 -50 -67	+138 -213 -196	+88 -88 -105	+168 -243 -221	+88 -88 -110	+235 -310 -293	+185 -185 -202	+265 -340 -318	+18 -18 -20
300	900	-100	0	+112 -212 -192	+56 -56 -76	+156 -256 -236	+100 -100 -120	+190 -290 -263	+100 -100 -127	+266 -366 -346	+210 -210 -230	+300 -400 -373	+21 -21 -23
900	1 000	-100	0	+112 -212 -192	+56 -56 -76	+156 -256 -236	+100 -100 -120	+190 -290 -263	+100 -100 -127	+276 -376 -356	+220 -220 -240	+310 -410 -383	+22 -22 -24
L 000	1 120	-125	0	+132 -257 -233	+66 -66 -90	+186 -311 -287	+120 -120 -144	+225 -350 -317	+120 -120 -153	+316 -441 -417	+250 -250 -274	+355 -480 -447	+25 -25 -28
120	1 250	-125	0	+132 -257 -233	+66 -66 -90	+186 -311 -287	+120 -120 -144	+225 -350 -317	+120 -120 -153	+326 -451 -427	+260 -260 -284	+365 -490 -457	+26 -26 -29
L 250	1 400	-160	0	+156 -316 -286	+78 -78 -108	+218 -378 -348	+140 -140 -170	+265 -425 -385	+140 -140 -180	+378 -538 -508	+300 -300 -330	+425 -585 -545	+30 -30 -34
. 400	1 600	-160	0	+156 -316 -286	+78 -78 -108	+218 -378 -348	+140 -140 -170	+265 -425 -385	+140 -140 -180	+408 -568 -538	+330 -330 -360	+455 -615 -575	+33 -33 -37
600	1 800	-200	0	+184 -384 -349	+92 -92 -127	+262 -462 -427	+170 -170 -205	+320 -520 -470	+170 -170 -220	+462 -662 -627	+370 -370 -405	+520 -720 -670	+37 -37 -42
. 800	2 000	-200	0	+184 -384 -349	+92 -92 -127	+262 -462 -427	+170 -170 -205	+320 -520 -470	+170 -170 -220	+492 -692 -657	+400 -400 -435	+550 -750 -700	+40 -40 -45

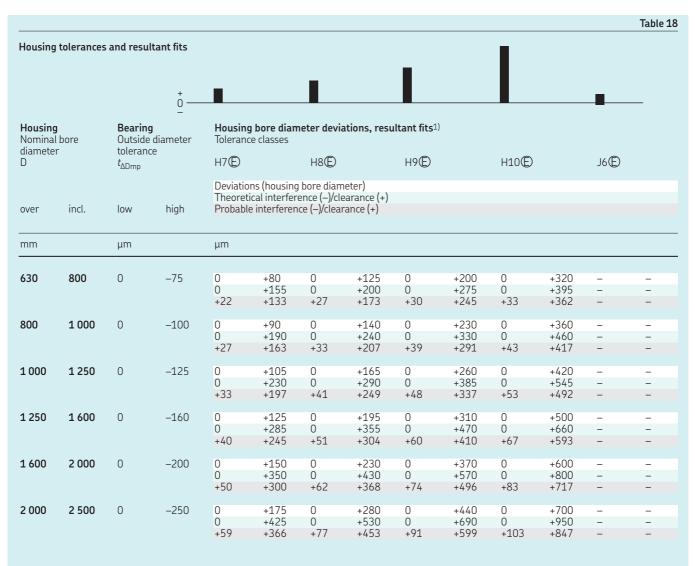
5KF. 163

Shaft tolerance row Shaft diameter Nominal diameter deviations,										Table 16
Nominal diameter tolerance tolerance tolerance tolerance (1	Shaft tol	erances an	d resultan	t fits						
Nominal diameter tolerance tolerance tolerance tolerance (1										
Nominal diameter tolerance tolerance tolerance tolerance (1										
Nominal diameter tolerance tolerance tolerance tolerance (1										
d t _{bdmp} (incl.) Te4HT (incl.) (7+HT (incl.)) (7+HT (incl.)) <th></th> <th>diameter</th> <th>Bore dia</th> <th>meter</th> <th></th> <th></th> <th>eviations, r</th> <th>resultant fits1)</th> <th></th> <th></th>		diameter	Bore dia	meter			eviations, r	resultant fits1)		
Theoretical Interference (-) Probable interference (-)	d			_		/ 1 6				
mm					Theoret	ical interfe	rence (–)			
315 355	over	incl.	low	high	Probabl	e interfere	nce (–)			
100 120 125	mm		μm		μm					
100 120 125	245	255	40	0	400	4.1.1	222	475		
100 120 125	315	355	-40	U						
					-209	-155				
-215	355	400	-40	0						
400 450 -45 0 +206										
1000 1120 1250 -125 0 -125 0 -125 0 -125 -126 -297 -189 -290 -178 -282 -204 -288 -204 -288 -210 -287 -172 -283 -195 -245 -184 -288 -210 -287 -245 -184 -288 -210 -288 -210 -288 -240 -288 -240 -288 -240 -288 -240 -288 -288 -194 -340 -220 -293 -297 -274 -208 -323 -237 -293 -297 -288 -288 -242 -286 -288 -242 -286 -288 -242 -286 -288 -242 -286 -288 -242 -286 -288 -242 -286 -288 -242 -286 -288 -242 -286 -288 -2	400	450	/ [0						
120 1250 -125 0 -329 -178 -282 -204 -204 -287 -172 -253 -195 -275 -172 -203 -195 -245 -184 -288 -210 -220 -288 -194 -288 -210 -220 -288 -194 -340 -220 -220 -274 -208 -323 -237 -225 -279 -213 -328 -242 -285 -225 -279 -213 -328 -242 -285 -225 -279 -213 -328 -242 -285 -225 -279 -213 -328 -242 -285 -225 -279 -213 -328 -242 -285 -225	400	450	-45	U			+252 -297			
1000 120 125										
The color of the	450	500	-45	0						
500 560 -50 0 +238										
-288										
100 120 125 125 125 125 125 125 125 125 126 125	500	560	- 50	0						
-293 -199 -345 -225 -279 -213 -328 -242 630										
-293 -199 -345 -225 -279 -213 -328 -242 630	560	630	-50	0	+243	+199	+295	+225		
630 710 -75 0 +275				, and the second	-293	-199	-345	-225		
-350 -225 -410 -255 -333 -242 -387 -278 710 800 -75 0 +285 +235 +345 +265 -360 -235 -420 -265 -343 -252 -397 -288 800 900 -100 0 +322 +266 +390 +300 -422 -266 -490 -300 -401 -287 -462 -328 900 1000 -100 0 +332 +276 +400 +310 -432 -276 -500 -310 -411 -297 -472 -338 1000 1120 -125 0 +382 +316 +460 +355 -507 -316 -585 -355 -482 -341 -552 -388 1120 1250 -125 0 +392 +326 +470 +365 -517 -326 -595 -365					-2/9	-213	-328	-242		
710 800 -75 0 +285 +235 +345 +265 -360 -235 -420 -265 -343 -252 -397 -288 800 900 -100 0 +322 +266 +390 +300 -401 -287 -462 -328 900 1000 -100 0 +332 +276 +400 +310 -287 -462 -328 1000 1120 -125 0 +382 +316 +460 +355 -507 -316 -585 -355 -482 -341 -552 -388 1120 1250 -125 0 +392 +326 +470 +365 -517 -326 -595 -365	630	710	- 75	0						
-360 -235 -420 -265 -343 -252 -397 -288 800										
-360 -235 -420 -265 -343 -252 -397 -288 800	710	800	_75	Ω	±285	± 235	±3/ ₁ 5	+265		
800 900 -100 0 +322 +266 +390 +300 -300 -300 -300 -401 -287 -462 -328 900 1 000 -100 0 +332 +276 +400 +310 -432 -276 -500 -310 -411 -297 -472 -338 1 000 1 120 -125 0 +382 +316 +460 +355 -355 -355 -482 -341 -552 -388 1 120 1 250 -125 0 +392 +326 +470 +365 -595 -365	710	000	-/3	U						
-422 -266 -490 -300 -401 -287 -462 -328 900 1000 -100 0 +332 +276 +400 +310 -432 -276 -500 -310 -411 -297 -472 -338 1000 1120 -125 0 +382 +316 +460 +355 -507 -316 -585 -355 -482 -341 -552 -388 1120 1250 -125 0 +392 +326 +470 +365 -517 -326 -595 -365					-343	-252	-397	-288		
900 1 000 -100 0 +332 +276 +400 +310 +310 +310 +310 +310 +310 +310 +3	800	900	-100	0						
900 1000 -100 0 +332 +276 +400 +310 -432 -276 -500 -310 -310 -411 -297 -472 -338 1000 1120 -125 0 +382 +316 +460 +355 -355 -355 -355 -355 -388 1120 1250 -125 0 +392 +326 +470 +365 -365							-490 -462	-300 -328		
-432 -276 -500 -310 -411 -297 -472 -338 1 000 1 120 -125 0 +382 +316 +460 +355 -507 -316 -585 -355 -482 -341 -552 -388 1 120 1 250 -125 0 +392 +326 +470 +365 -517 -326 -595 -365	000	4 000	100	0						
-411 -297 -472 -338 1 000 1 120 -125 0 +382 +316 +460 +355 -507 -316 -585 -355 -482 -341 -552 -388 1 120 1 250 -125 0 +392 +326 +470 +365 -517 -326 -595 -365	900	1 000	-100	U						
-507 -316 -585 -355 -482 -341 -552 -388 1120 1250 -125 0 +392 +326 +470 +365 -517 -326 -595 -365										
-507 -316 -585 -355 -482 -341 -552 -388 1120 1250 -125 0 +392 +326 +470 +365 -517 -326 -595 -365	1 000	1 120	-125	0		+316	+460	+355		
1120 1250 -125 0 +392 +326 +470 +365 -517 -326 -595 -365							-585 -552	-355 -388		
−517 −326 −595 −365										
	1 120	1 250	-125	0		+326 -326				
						-351				

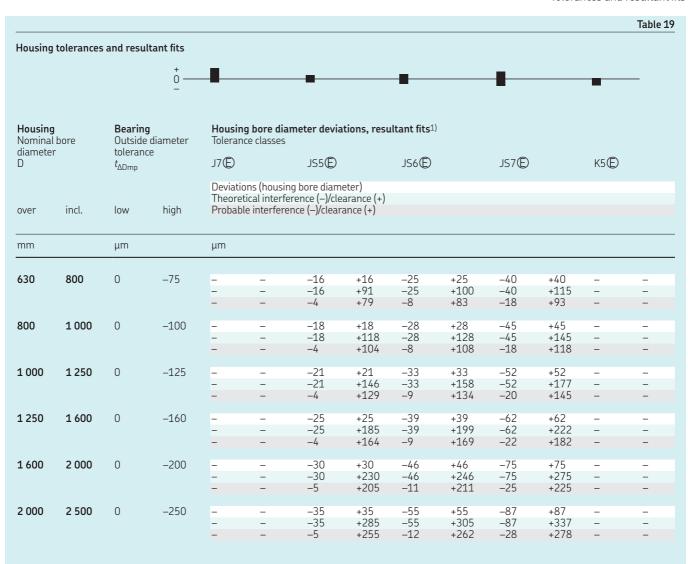

Table 16

Shaft Nominal	diameter	Bearing Bore diam tolerance $t_{\Delta dmp}$			iameter do ce classes	eviations, r	esultant fits¹
		Дипр			ns (shaft d ical interfe		
over	incl.	low	high	Probabl	e interfere	nce (–)	
mm		μm		μm			
1 250	1 400	-160	0	+456 -616 -586	+378 -378 -408	+550 -710 -669	+425 -425 -466
1 400	1 600	-160	0	+486 -646 -616	+408 -408 -438	+580 -740 -699	+455 -455 -496
1 600	1 800	-200	0	+554 -754 -718	+462 -462 -498	+670 -870 -820	+520 -520 -570
1 800	2 000	-200	0	+584 -784 -748	+492 -492 -528	+700 -900 -850	+550 -550 -600

Shaft tolerances and resultant fits

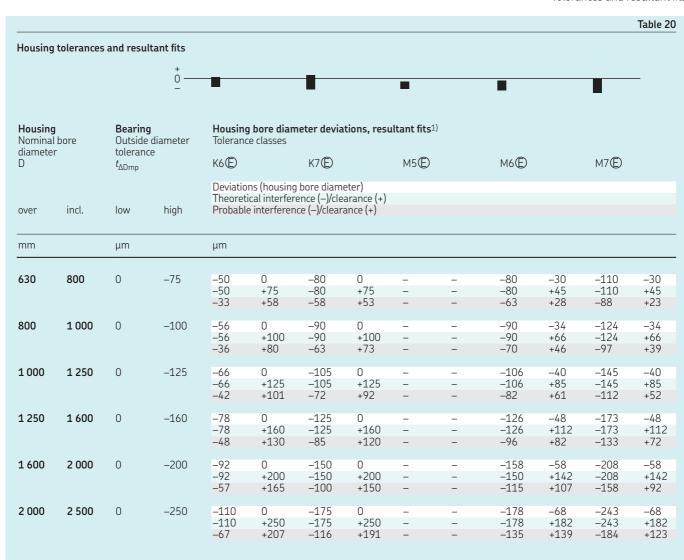

¹⁾ Values are valid for most bearings with Normal tolerances. For exceptions, refer to *Tolerances and resultant fits*, page 153.

lousin	g tolerance	s and resu	ultant fits 0 -			•		•		•		•	_
Housin Nomina	al bore	Bearin Outside	e diameter		j bore dian te classes	neter devia	ations, res	ultant fits¹	L)				
liamete)	er er	t _{ΔDmp}	ice	F7©		G6©		G7©		H5€		H6€	
over	incl.	low	high	Theoret	ns (housing ical clearan e clearance		eter)						
nm		μm		μm									
5	10	0	-8	+13 +13 +16	+28 +36 +33	+5 +5 +7	+14 +22 +20	+5 +5 +8	+20 +28 +25	0 0 +2	+6 +14 +12	0 0 +2	+9 +17 +15
10	18	0	-8	+16 +16 +19	+34 +42 +39	+6 +6 +8	+17 +25 +23	+6 +6 +9	+24 +32 +29	0 0 +2	+8 +16 +14	0 0 +2	+11 +19 +17
18	30	0	-9	+20 +20 +23	+41 +50 +47	+7 +7 +10	+20 +29 +26	+7 +7 +10	+28 +37 +34	0 0 +2	+9 +18 +16	+0 0 +3	+13 +22 +19
80	50	0	-11	+25 +25 +29	+50 +61 +57	+9 +9 +12	+25 +36 +33	+9 +9 +13	+34 +45 +41	0 0 +3	+11 +22 +19	0 0 +3	+16 +27 +24
50	80	0	-13	+30 +30 +35	+60 +73 +68	+10 +10 +14	+29 +42 +38	+10 +10 +15	+40 +53 +48	0 0 +3	+13 +26 +23	0 0 +4	+19 +32 +28
30	120	0	-15	+36 +36 +41	+71 +86 +81	+12 +12 +17	+34 +49 +44	+12 +12 +17	+47 +62 +57	0 0 +4	+15 +30 +26	0 0 +5	+22 +37 +32
120	150	0	-18	+43 +43 +50	+83 +101 +94	+14 +14 +20	+39 +57 +51	+14 +14 +21	+54 +72 +65	0 0 +5	+18 +36 +31	0 0 +6	+25 +43 +37
150	180	0	-25	+43 +43 +51	+83 +108 +100	+14 +14 +21	+39 +64 +57	+14 +14 +22	+54 +79 +71	0 0 +6	+18 +43 +37	0 0 +7	+25 +50 +43
180	250	0	-30	+50 +50 +60	+96 +126 +116	+15 +15 +23	+44 +74 +66	+15 +15 +25	+61 +91 +81	0 0 +6	+20 +50 +44	0 0 +8	+29 +59 +51
250	315	0	-35	+56 +56 +68	+108 +143 +131	+17 +17 +26	+49 +84 +75	+17 +17 +29	+69 +104 +92	0 0 +8	+23 +58 +50	0 0 +9	+32 +67 +58
315	400	0	-40	+62 +62 +75	+119 +159 +146	+18 +18 +29	+54 +94 +83	+18 +18 +31	+75 +115 +102	0 0 +8	+25 +65 +57	0 0 +11	+36 +76 +65
00	500	0	-45	+68 +68 +83	+131 +176 +161	+20 +20 +32	+60 +105 +93	+20 +20 +35	+83 +128 +113	0 0 +9	+27 +72 +63	0 0 +12	+40 +85 +73
600	630	0	-50	+76 +76 +92	+146 +196 +180	+22 +22 +35	+66 +116 +103	+22 +22 +38	+92 +142 +126	0 0 +10	+28 +78 +68	0 0 +13	+44 +94 +81
30	800	0	- 75	+80 +80 +102	+160 +235 +213	+24 +24 +41	+74 +149 +132	+24 +24 +46	+104 +179 +157	0 0 +12	+32 +107 +95	0 0 +17	+50 +125 +108

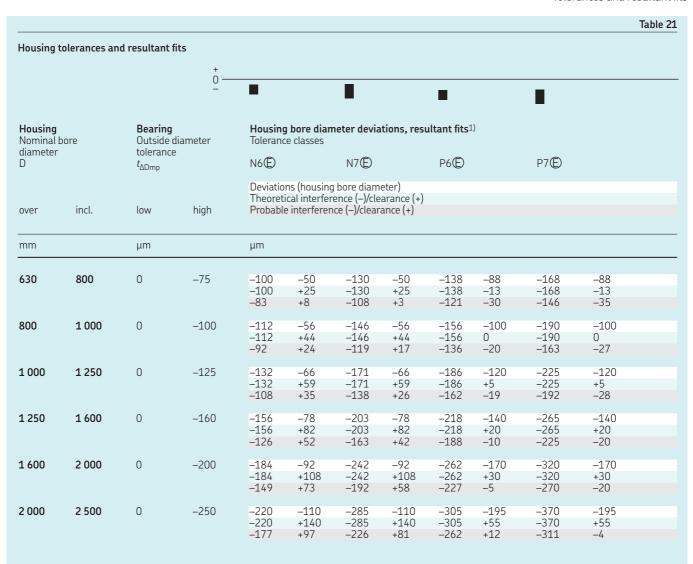

1) Values are valid for most bearings with Normal tolerances. For exceptions, refer to *Tolerances and resultant fits*, page 153.

			<u></u>	_				L		L			_
lousin Iomina Iiamete	al bore	Bearin Outside toleran	e diameter	Toleran	g bore dian ce classes		ations, res						
)		$t_{\Delta \mathrm{Dmp}}$		H7© Deviation	ons (housing	H8© bore dian	neter)	H9€		H10©		J6©	
ver	incl.	low	high	Theoret	ical interfer e interferen	ence (–)/cl	earance (+)						
nm		μm		μm									
,	10	0	-8	0 0 +3	+15 +23 +20	0 0 +3	+22 +30 +27	0 0 +3	+36 +44 +41	0 0 +3	+58 +66 +63	-4 -4 -2	+5 +13 +11
0	18	0	-8	0 0 +3	+18 +26 +23	0 0 +3	+27 +35 +32	0 0 +3	+43 +51 +48	0 0 +3	+70 +78 +75	-5 -5 -3	+6 +14 +12
.8	30	0	-9	0 0 +3	+21 +30 +27	0 0 +3	+33 +42 +39	0 0 +4	+52 +61 +57	0 0 +4	+84 +93 +89	-5 -5 -2	+8 +17 +14
0	50	0	-11	0 0 +4	+25 +36 +32	0 0 +4	+39 +50 +46	0 0 +5	+62 +73 +68	0 0 +5	+100 +111 +106	-6 -6 -3	+10 +21 +18
0	80	0	-13	0 0 +5	+30 +43 +38	0 0 +5	+46 +59 +54	0 0 +5	+74 +87 +82	0 0 +6	+120 +133 +127	-6 -6 -2	+13 +26 +22
80	120	0	-15	0 0 +5	+35 +50 +45	0 0 +6	+54 +69 +63	0 0 +6	+87 +102 +96	0 0 +7	+140 +155 +148	-6 -6 -1	+16 +31 +26
.20	150	0	-18	0 0 +7	+40 +58 +51	0 0 +7	+63 +81 +74	0 0 +8	+100 +118 +110	0 0 +8	+160 +178 +170	-7 -7 -1	+18 +36 +30
.50	180	0	– 25	0 0 +8	+40 +65 +57	0 0 +10	+63 +88 +78	0 0 +10	+100 +125 +115	0 0 +11	+160 +185 +174	-7 -7 0	+18 +43 +36
180	250	0	-30	0 0 +10	+46 +76 +66	0 0 +12	+72 +102 +90	0 0 +13	+115 +145 +132	0 0 +13	+185 +215 +202	-7 -7 +1	+22 +52 +44
50	315	0	-35	0 0 +12	+52 +87 +75	0 0 +13	+81 +116 +103	0 0 +15	+130 +165 +150	0 0 +16	+210 +245 +229	-7 -7 +2	+25 +60 +51
15	400	0	-40	0 0 +13	+57 +97 +84	0 0 +15	+89 +129 +114	0 0 +17	+140 +180 +163	0 0 +18	+230 +270 +252	-7 -7 +4	+29 +69 +58
00	500	0	-45	0 0 +15	+63 +108 +93	0 0 +17	+97 +142 +125	0 0 +19	+155 +200 +181	0 0 +20	+250 +295 +275	-7 -7 +5	+33 +78 +66
500	630	0	-50	0 0 +16	+70 +120 +104	0 0 +19	+110 +160 +141	0 0 +21	+175 +225 +204	0 0 +22	+280 +330 +308	- - -	- - -

¹⁾ Values are valid for most bearings with Normal tolerances. For exceptions, refer to *Tolerances and resultant fits*, page 153.


			<u> </u>	-		-		-		-		•	_
lousin g lomina iamete	l bore	toleran	diameter		, bore dia r e classes	neter devia JS5©	tions, resu	ultant fits ¹⁾ JS6(Ē)		JS7©		K5 (
ver	incl.	$t_{\Delta m Dmp}$ low	high	Deviatio Theoret	cal interfer	g bore diame ence (–)/clea	arance (+))30©)3/W		КЭФ	
nm		μm		μm									
,	10	0	-8	-7 -7 -4	+8 +16 +13	-3 -3 -1	+3 +11 +9	-4,5 -4,5 -3	+4,5 +12,5 +11	-7,5 -7,5 -5	+7,5 +15,5 +13	-5 -5 -3	+1 +9 +7
0	18	0	-8	-8 -8 -5	+10 +18 +15	-4 -4 -2	+4 +12 +10	-5,5 -5,5 -3	+5,5 +13,5 +11	-9 -9 -6	+9 +17 +14	-6 -6 -4	+2 +10 +8
8	30	0	-9	-9 -9 -6	+12 +21 +18	-4,5 -4,5 -2	+4,5 +13,5 +11	-6,5 -6,5 -4	+6,5 +15,5 +13	-10,5 -10,5 -7	+10,5 +19,5 +16	-8 -8 -6	+1 +10 +8
0	50	0	-11	-11 -11 -7	+14 +25 +21	-5,5 -5,5 -3	+5,5 +16,5 +14	-8 -8 -5	+8 +19 +16	-12,5 -12,5 -9	+12,5 +23,5 +20	-9 -9 -6	+2 +13 +10
0	80	0	-13	-12 -12 -7	+18 +31 +26	-6,5 -6,5 -3	+6,5 +19,5 +16	-9,5 -9,5 -6	+9,5 +22,5 +19	-15 -15 -10	+15 +28 +23	-10 -10 -7	+3 +16 +13
0	120	0	-1 5	-13 -13 -8	+22 +37 +32	-7,5 -7,5 -4	+7,5 +22,5 +19	-11 -11 -6	+11 +26 +21	-17,5 -17,5 -12	+17,5 +32,5 +27	-13 -13 -9	+2 +17 +13
20	150	0	-18	-14 -14 -7	+26 +44 +37	-9 -9 -4	+9 +27 +22	-12,5 -12,5 -7	+12,5 +30,5 +25	-20 -20 -13	+20 +38 +31	-15 -15 -10	+3 +21 +16
50	180	0	-25	-14 -14 -6	+26 +51 +43	-9 -9 -3	+9 +34 +28	-12,5 -12,5 -6	+12,5 +37,5 +31	-20 -20 -12	+20 +45 +37	-15 -15 -9	+3 +28 +22
80	250	0	-30	-16 -16 -6	+30 +60 +50	-10 -10 -4	+10 +40 +34	-14,5 -14,5 -6	+14,5 +44,5 +36	-23 -23 -13	+23 +53 +43	-18 -18 -12	+2 +32 +26
50	315	0	-35	-16 -16 -4	+36 +71 +59	-11,5 -11,5 -4	+11,5 +46,5 +39	-16 -16 -7	+16 -51 +42	-26 -26 -14	+26 +61 +49	-20 -20 -12	+3 +38 +30
15	400	0	-40	-18 -18 -5	+39 +79 +66	-12,5 -12,5 -4	+12,5 +52,5 +44	-18 -18 -7	+18 +58 +47	-28,5 -28,5 -15	+28,5 +68,5 +55	-22 -22 -14	+3 +43 +35
00	500	0	-45	-20 -20 -5	+43 +88 +73	-13,5 -13,5 -4	+13,5 +58,5 +49	-20 -20 -8	+20 +65 +53	-31,5 -31,5 -17	+31,5 +76,5 +62	-25 -25 -16	+2 +47 +38
00	630	0	-50	-	- - -	-14 -14 -4	+14 +64 +54	-22 -22 -9	+22 +72 +59	-35 -35 -19	+35 +85 +69	- - -	- - -

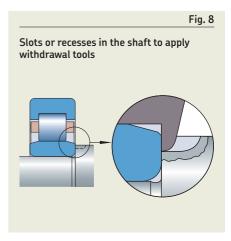
1) Values are valid for most bearings with Normal tolerances. For exceptions, refer to *Tolerances and resultant fits*, page 153.

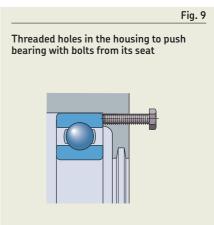

			<u></u>	•		•		-		•			
Housin Nomina diamete	al bore	Bearin Outside toleran	e diameter	Toleran	g bore diar ce classes	neter devia	ations, res)				
D		$t_{\Delta m Dmp}$		K6©		K7©		M5©		M6©		M7®	
over	incl.	low	high	Theoret	ical interfer	g bore diam rence (–)/cle nce (–)/clear	earance (+)						
mm		μm		μm									
6	10	0	-8	-7 -7 -5	+2 +10 +8	-10 -10 -7	+5 +13 +10	-10 -10 -8	-4 +4 +2	-12 -12 -10	-3 +5 +3	-15 -15 -12	0 +8 +5
10	18	0	-8	-9 -9 -7	+2 +10 +8	-12 -12 -9	+6 +14 +11	-12 -12 -10	-4 +4 +2	-15 -15 -13	-4 +4 +2	-18 -18 -15	0 +8 +5
18	30	0	-9	-11 -11 -8	+2 +11 +8	-15 -15 -12	+6 +15 +12	-14 -14 -12	-4 +4 +2	–17 –17 –14	-4 +5 +2	-21 -21 -18	0 +9 +6
30	50	0	-11	-13 -13 -10	+3 +14 +11	-18 -18 -14	+7 +18 +14	-16 -16 -13	-5 +6 +3	-20 -20 -17	–4 +7 +4	-25 -25 -21	0 +11 +7
50	80	0	-13	-15 -15 -11	+4 +17 +13	-21 -21 -16	+9 +22 +17	-19 -19 -16	-6 +7 +4	-24 -24 -20	–5 +8 +4	-30 -30 -25	0 +13 +8
80	120	0	-15	-18 -18 -13	+4 +19 +14	-25 -25 -20	+10 +25 +20	-23 -23 -19	-8 +7 +3	-28 -28 -23	-6 +9 +4	-35 -35 -30	0 +15 +10
120	150	0	-18	-21 -21 -15	+4 +22 +16	-28 -28 -21	+12 +30 +23	-27 -27 -22	-9 +9 +4	-33 -33 -27	-8 +10 +4	-40 -40 -33	0 +18 +11
150	180	0	– 25	-21 -21 -14	+4 +29 +22	-28 -28 -20	+12 +37 +29	-27 -27 -21	-9 +16 +10	-33 -33 -26	-8 +17 +10	-40 -40 -32	0 +25 +17
180	250	0	-30	-24 -24 -16	+5 +35 +27	-33 -33 -23	+13 +43 +33	-31 -31 -25	-11 +19 +13	-37 -37 -29	-8 +22 +14	-46 -46 -36	0 +30 +20
250	315	0	- 35	-27 -27 -18	+5 +40 +31	-36 -36 -24	+16 +51 +39	-36 -36 -28	-13 +22 +14	-41 -41 -32	-9 +26 +17	-52 -52 -40	0 +35 +23
315	400	0	-40	-29 -29 -18	+7 +47 +36	-40 -40 -27	+17 +57 +44	-39 -39 -31	-14 +26 +18	-46 -46 -35	-10 +30 +19	-57 -57 -44	0 +40 +27
400	500	0	-45	-32 -32 -20	+8 +53 +41	-45 -45 -30	+18 +63 +48	-43 -43 -34	-16 +29 +20	-50 -50 -38	-10 +35 +23	-63 -63 -48	0 +45 +30
500	630	0	-50	-44 -44 -31	0 +50 +37	-70 -70 -54	0 +50 +34	- - -	- - -	-70 -70 -57	-26 +24 +11	-96 -96 -80	-26 +24 +8

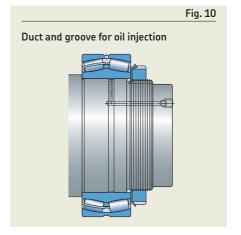
172 **5KF**.

¹⁾ Values are valid for most bearings with Normal tolerances. For exceptions, refer to *Tolerances and resultant fits*, page 153.

nousing	tolerances a	nd resultant	fits 0 —								
			_					•			
Housing Nominal diameter	bore	Bearing Outside tolerance	diameter	Toleran	g bore dia ce classes	meter devi	ations, res		1)		
)		$t_{\Delta \mathrm{Dmp}}$		N6€	į.	N7©		P6©		P7Ē	
ve	incl.	low	high	Theoret	ical interfe	g bore diam rence (–)/cle nce (–)/cleai	earance (+)				
nm		μm		μm							
5	10	0	-8	-16 -16 -14	-7 +1 -1	-19 -19 -16	-4 +4 +1	-21 -21 -19	-12 -4 -6	-24 -24 -21	-9 -1 -4
10	18	0	-8	-20 -20 -18	-9 -1 -3	-23 -23 -20	-5 +3 0	-26 -26 -24	-15 -7 -9	-29 -29 -26	-11 -3 -6
18	30	0	-9	-24 -24 -21	-11 -2 -5	-28 -28 -25	-7 +2 -1	-31 -31 -28	-18 -9 -12	-35 -35 -32	-14 -5 -8
0	50	0	-11	-28 -28 -25	-12 -1 -4	-33 -33 -29	-8 +3 -1	-37 -37 -34	-21 -10 -13	-42 -42 -38	-17 -6 -10
60	80	0	-1 3	-33 -33 -29	-14 -1 -5	-39 -39 -34	-9 +4 -1	-45 -45 -41	-26 -13 -17	-51 -51 -46	-21 -8 -13
0	120	0	-1 5	-38 -38 -33	-16 -1 -6	-45 -45 -40	-10 +5 0	–52 –52 –47	-30 -15 -20	-59 -59 -54	-24 -9 -14
.20	150	0	-18	-45 -45 -39	-20 -2 -8	–52 –52 –45	-12 +6 -1	-61 -61 -55	-36 -18 -24	-68 -68 -61	-28 -10 -17
.50	180	0	– 25	-45 -45 -38	-20 +5 -2	-52 -52 -44	-12 +13 +5	-61 -61 -54	-36 -11 -18	-68 -68 -60	–28 –3 –11
.80	250	0	-30	-51 -51 -43	-22 +8 0	-60 -60 -50	-14 +16 +6	-70 -70 -62	-41 -11 -19	-79 -79 -69	-33 -3 -13
50	315	0	- 35	–57 –57 –48	-25 +10 +1	-66 -66 -54	-14 +21 +9	–79 –79 –70	-47 -12 -21	-88 -88 -76	-36 -1 -13
15	400	0	-40	-62 -62 -51	-26 +14 +3	-73 -73 -60	-16 +24 +11	-87 -87 -76	-51 -11 -22	-98 -98 -85	-41 -1 -14
.00	500	0	-45	-67 -67 -55	-27 +18 +6	-80 -80 -65	-17 +28 +13	-95 -95 -83	-55 -10 -22	-108 -108 -93	-45 0 -15
500	630	0	-50	-88 -88 -75	-44 +6 -7	-114 -114 -98	-44 +6 -10	-122 -122 -109	-78 -28 -41	-148 -148 -132	-78 -28 -44


1) Values are valid for most bearings with Normal tolerances. For exceptions, refer to *Tolerances and resultant fits*, page 153.


Provisions for mounting and dismounting


Particularly when large bearings are involved, SKF recommends that during the design stage you make provisions to facilitate mounting and dismounting, including:

- slots or recesses machined in the shaft or housing shoulders so that withdrawal tools can be used (fig. 8)
- threaded holes in the housing shoulders so that bolts can be used for dismounting (fig. 9)
- oil supply ducts and distribution grooves in the shaft to enable the oil injection method to be used (fig. 10)

Recommended dimensions for oil supply ducts and distribution grooves are listed in **table 22**, and for threaded holes in **table 23**. When using the oil injection method, Ra should not exceed $1,6 \mu m$.

176 **SKF**

Table 22 Recommended dimensions for oil supply ducts and distribution grooves Seat diameter **Dimensions** ≤ $b_{a} \\$ Ν r_{a} mm mm 100 150 200 0,5 0,8 2,5 3 3 2,5 3 3 3 4 4 100 150 0,8 200 250 300 250 300 400 5 5 6 1 4 4 5 1,25 4,5 7 8 5 5 400 500 1,5 1,5 2 67 500 650 6 7 800 10 650 8 800 1 000 12 2,5 8 L = width of bearing seat

Table 23 Design and recommended dimensions for threaded holes for connecting oil supply Design A Design B Thread Design **Dimensions** N_a max. $G_c^{1)}$ mm M6 G 1/8 10 12 15 8 3 3 5 10 Α G 1/4 Α 12 В 15 8 8 G 3/8 12 18 20 G 1/2 G 3/4 B B 14 16

SKF.

1) Effective threaded length

Axial location of bearing rings

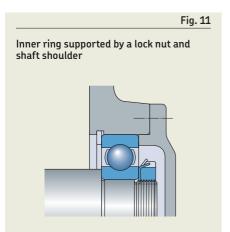
Typically, it is not sufficient to use an interference fit alone to axially locate a bearing ring on a cylindrical seat. Common ways of locating bearing rings axially include:

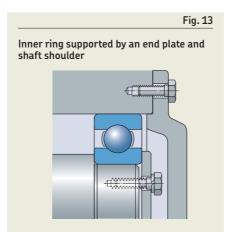
- shaft or housing shoulders
- lock nuts or threaded rings (fig. 11 and fig. 12)
- end plates or housing covers (fig. 13 and fig. 14)
- distance rings, which support against adjacent parts (fig. 15)
- snap rings (fig. 16)

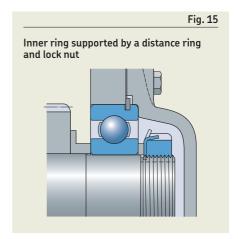
Any axial location should be able to accommodate the axial loads that may be applied to the bearing.

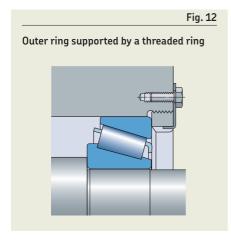
Bearings with a tapered bore

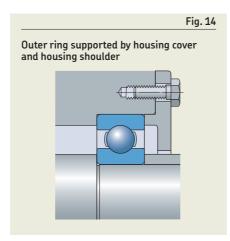
Depending on conditions and requirements, common ways of axially locating the inner ring of a bearing with a tapered bore are:

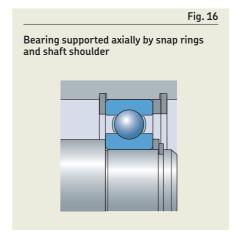

- a lock nut for bearings mounted on a tapered seat (fig. 17)
- an adapter sleeve only (fig. 18), if no precise axial positioning is required and the axial loads do not exceed the friction between sleeve and shaft
- an adapter sleeve and a distance ring (fig. 19), if precise axial positioning is required or elevated axial loads occur
- a withdrawal sleeve with a distance ring (or shaft shoulder) and lock nut (fig. 20)


Abutments and fillets


When designing abutments, allow enough space to avoid contact between rotating and stationary parts.


Shaft and housing fillet dimensions should always be smaller than the bearing chamfer radii. Heavily loaded shafts can require large fillets and a spacing collar may be necessary (fig. 21).


Appropriate abutment and fillet dimensions are listed in the product tables.

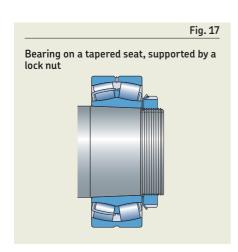


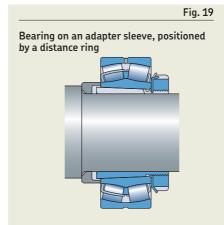
Radially free mounted bearings for axial load

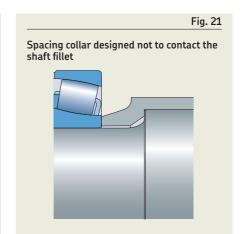
Raceways on shafts and in housings

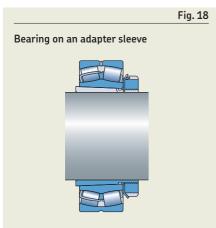
You may want to use individual bearings in a bearing arrangement to separately accommodate the radial and axial component of the load. A typical arrangement is to use a cylindrical roller bearing and a four-point contact ball bearing (fig. 22).

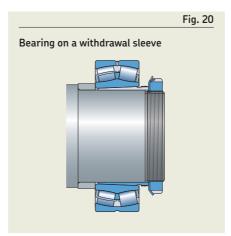
When using an individual bearing to accommodate the axial load, you should ensure that this bearing is not subjected to unintended radial loads by:

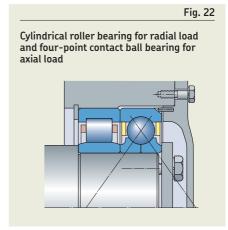

- designing the bore diameter of its housing to be approximately 1 mm larger than the bearing outer diameter
- not clamping its outer ring in the axial direction to permit its free radial positioning


Also consider the use of an anti-rotation pin. The designation suffix N2 indicates that the bearing has two locating slots in the outer ring.


In order to save space, the rolling elements of cylindrical, needle or tapered roller bearings can run directly on raceways on the shaft and/or in the housing. To fully exploit the load carrying capacity, the raceways should comply with certain requirements, including:


- suitable material properties such as cleanliness, hardness and heat treatment
- suitable roughness and surface texture
- adequate tolerances for profile, roundness and total run-out


For additional information, contact the SKF application engineering service.



Bearing execution

B.7 Bearing execution

Selecting internal clearance or preload	182
mportance of selecting correct clearance/preload	183
Selecting initial internal clearance	183
Range of initial internal clearance	184
Clearance reduction caused by interference fits	184
Clearance reduction caused by temperature difference	
between shaft, bearing rings and housing	184
Other influences on clearance/preload	185
Required minimum initial internal clearance	185
Selecting preload	186
Considerations for preload	186
Preloading with springs	186
Bearing tolerance class	187
Cages	187
ntegral sealing	189
Additional options	189
Coatings	189
eatures for special requirements	190

5KF. 181

B.7 Bearing execution

As part of the bearing selection process, when the bearing type, size, and fit have been determined, additional factors must be considered to enable you to further define the final variant of the bearing.

In this section you can find recommendations and requirements for selecting:

- the bearing internal clearance or preload
- the bearing tolerances
- the appropriate cage (where applicable)
- integral seals (where applicable)
- additional options, such as coatings and other features to meet any special needs/ requirements

Selecting internal clearance or preload

Bearing internal clearance (fig. 1) is defined as the total distance through which one bearing ring can be moved relative to the other in the radial direction (radial internal clearance) or in the axial direction (axial internal clearance).

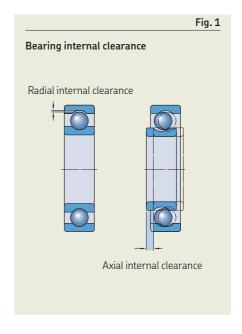
Initial internal clearance is the internal clearance in the bearing prior to mounting.

Mounted clearance is the internal clearance in the bearing after mounting but prior to operation.

Operating clearance is the internal clearance in the bearing when it is in operation and has reached a stable temperature.

In most applications, the initial internal clearance in a bearing is greater than its operating clearance. This is because of the effects of (fig. 2):

- interference fits with the shaft and/or housing
- thermal expansion of the bearing rings and associated components


Bearings must have the appropriate operating clearance to operate satisfactorily (Importance of selecting correct clearance/ preload).

In most cases, bearings require a certain degree of clearance (Selecting initial internal clearance). However, in some cases, they may require preload (i.e. negative clearance, refer to Selecting preload, page 186).

As a general rule:

- Ball bearings should have an operating clearance that is virtually zero.
- Cylindrical, needle, spherical and CARB toroidal roller bearings typically require at least a small operational clearance.
- Tapered roller and angular contact ball bearings should have a small operational clearance, except in applications where a high degree of stiffness or positional control is required, in which case they can be mounted with a degree of preload.

Sections Selecting initial internal clearance and Selecting preload, describe the influencing factors that you must consider and provide the methods by which you can calculate the initial internal clearance needed to achieve the degree of operational clearance/ preload required by your application.

SKF. 182

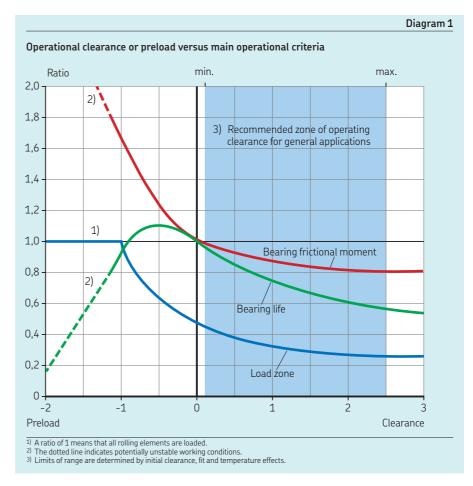
Importance of selecting correct clearance/preload

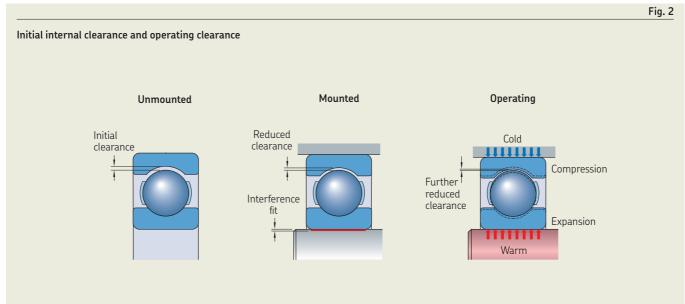
The operating clearance or preload in a bearing influences, among other things, the friction, load zone size and fatigue life of a bearing. The relationship between these parameters is shown in diagram 1. The diagram is generalized and based on rolling bearings under radial load.

For general applications, the operating clearance range should be within the recommended zone shown in **diagram 1**.

Selecting initial internal clearance

The operating clearance required for a bearing to perform satisfactorily is application dependent (*Importance of selecting correct clearance*/preload).


You must ensure that the bearing has a minimum initial internal clearance of a size that, when it is reduced by the effects of mounting and other influences, is equal to or greater than the required minimum operating clearance.


To achieve this, follow this procedure:

• consider the reduction of clearance caused by interference fits (page 184)

- consider the reduction of clearance caused by temperature difference between the shaft, bearing rings and housing (page 184)
- consider the reduction of clearance caused by other influences (page 185)
- consider the required minimum initial internal clearance (page 185)
- select the required minimum initial internal clearance (page 185)

In case of doubt, contact the SKF application engineering service for support.

SKF.

Range of initial internal clearance

Bearing types for adjusted bearing arrangements – such as angular contact ball bearings, tapered roller bearings and spherical roller thrust bearings – have their internal clearance set during mounting. The internal clearance of such an arrangement, even though set by adjustment during mounting, will nevertheless have a range.

For other bearing types, the initial internal clearance is determined during their manufacture. ISO has defined five clearance classes for specifying the degree of initial internal clearance in a bearing (*Internal clearance*, page 26). Each clearance class represents a range of values. The size of the ranges varies depending on bearing type and size. Clearance class details are listed in relevant product sections.

Initial clearances greater than Normal, such as C3 or even C4 clearance classes, are very common today. This is because modern bearings take higher loads and require tighter interference fits, and typical operating conditions are different, compared to when the clearance classes were defined.

For universally matchable single row angular contact ball bearings and matched tapered roller bearings, double row angular contact ball bearings and four-point contact ball bearings, values for the axial internal clearance are given instead of radial internal clearance, because the axial clearance is of greater practical importance for these bearing types. Radial internal clearance is related to axial internal clearance and that relationship is determined by the bearing type and its internal geometry. For detailed information, refer to the product sections.

Clearance reduction caused by interference fits

An interference fit causes clearance reduction because inner rings are expanded and outer rings are compressed. The reduction equals the effective interference fit multiplied by a reduction factor using

$$\Delta r_{fit} = \Delta_1 f_1 + \Delta_2 f_2$$

where

 Δr_{fit} = clearance reduction caused by the fit [µm]

= reduction factor for the inner ring

f₂ = reduction factor for the outer ring

 $\begin{array}{ll} \Delta_1 & = \mbox{effective interference between the} \\ & \mbox{inner ring and shaft [μm]} \end{array}$

 Δ_2 = effective interference between the outer ring and housing [μ m]

Reduction factors valid for a solid steel shaft and a thick-walled cast iron or steel housing can be obtained from diagram 2 as a function of the ratio of the bearing bore diameter d to the outside diameter D. For the effective interference value, use the maximum probable interference value listed in the appropriate tables in *Tolerances and resultant fits*, page 153.

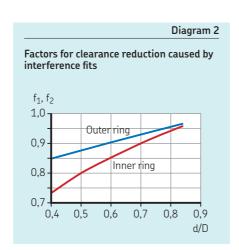
For a more detailed analysis, consider using SKF calculation tools, such as *SKF Bearing Calculator* (skf.com/bearingcalculator), SKF SimPro Quick or SKF SimPro Expert, or contact the SKF application engineering service.

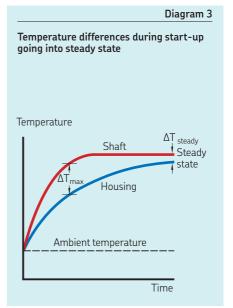
Clearance reduction caused by temperature difference between shaft, bearing rings and housing

The temperature behaviour of an application can create a difference in temperature between a bearing inner ring and outer ring, which changes the mounted bearing clearance/preload. For a steel shaft and steel or cast iron housing, the change can be estimated using

$$\Delta r_{\text{temp}} = 0.012 \,\Delta T \,d_{\text{m}}$$

where


 Δr_{temp} = clearance reduction caused by temperature difference [µm]


ΔT = temperature difference between inner and outer ring [°C]

 d_m = the bearing mean diameter [mm] = (d + D)/2

Steady state

The operating temperature of a bearing reaches a steady state when there is thermal equilibrium (page 131) – i.e. there is a balance between generated heat and dissipated heat. In the common case where the ambient temperature of the surroundings of the housing of a bearing arrangement is cooler than its shaft, a steady-state temperature gradient is developed that results in the inner ring of the bearing being hotter than the outer ring (ΔT_{steady} in diagram 3).

Start-up

During start-up, the temperature gradient over the bearing is largely determined by the transient heat flow. Among the various components in contact with the bearing, the one that has the smallest thermal capacity will rise in temperature faster than the one that has the largest thermal capacity. Therefore, the start-up sequence can result in a larger temperature differential between bearing inner and outer ring than in the steady-state condition. It results in a temperature peak during start-up (ΔT_{max} in diagram 3). This is especially pronounced in machines that either are working outdoors in a cold climate or have a heated shaft.

Higher speeds

Whether during start-up or at steady state, higher speeds generate larger frictional losses. This typically results in a larger temperature differential between the bearing inner and outer ring and therefore a need for larger initial clearance.

Other influences on clearance/preload

Axial clamping of a ring results in a small increase of its diameter. Normally, this has a negligible influence. For machines where there is a large axial load on any of the rings, or where two bearings (e.g. angular contact ball bearings or tapered roller bearings, with or without distance rings) are clamped axially, the influence on clearance or preload from the axial compression and the radial expansion must be considered.

Misalignment beyond the limits specified in the product sections will reduce the clearance which, because of unfavourable load distribution, will result in reduced service life and increased friction.

Where light alloy materials are used, the temperature differences between rings and shaft or housing may have a more pronounced influence on the clearance of the bearing.

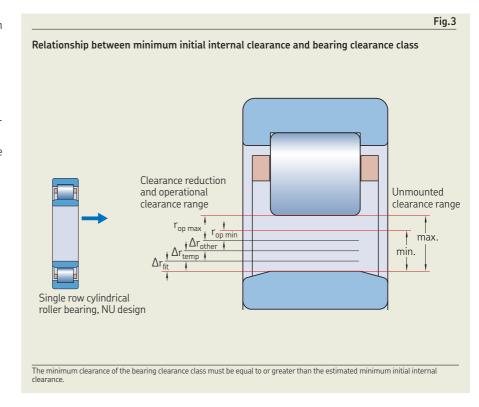
Required minimum initial internal clearance

The required minimum initial internal clearance can be estimated using

$$r = r_{op} + \Delta r_{fit} + \Delta r_{temp} + \Delta r_{other}$$

where

r = required minimum initial internal clearance [μm]


 r_{op} = required operating clearance [μ m]

 Δr_{fit} = clearance change caused by the maximum expected fits [μ m]

 Δr_{temp} = maximum clearance change expected from the temperature difference during start-up or in steady state [µm]

 Δr_{other} = maximum clearance change expected from other effects such as axial clamping [μ m]

- Bearing types for adjusted bearing arrangements – such as angular contact ball bearings, tapered roller bearings or spherical roller thrust bearings – have their internal clearance set during mounting (Mounting adjusted bearing arrangements, page 203).
- For other bearing types, select a bearing clearance class (*Internal clearance*, page 26: Normal, C3, C4, etc.) whose minimum clearance is equal to or greater than the estimated minimum initial internal clearance (fig.3). Then verify whether the resulting maximum clearance of the selected clearance class is acceptable for the application. If the maximum clearance, for whatever reason, is too large then consider choosing a reduced clearance group e.g. C3L, which includes only the lower half of the C3 clearance group range.

Selecting preload

Depending on the application, there may be a need to preload a bearing arrangement. For example, if a high degree of stiffness or positional control is required then preload may be suitable. Similarly, where there is a very light or no external load on the bearing in operation then preload may be required to ensure a minimum load.

Applying the preload is typically done by measuring a force, sometimes a displacement over a distance or path, or by measuring the frictional torque during mounting.

Empirical preload values can be obtained from proven designs and can be applied to similar designs. For new designs, SKF recommends calculating the appropriate preload range by using SKF SimPro Quick or SKF SimPro Expert and then checking it by testing in the application. The agreement between the calculation and the actual application depends on how closely the estimated operating temperature and elastic behaviour of the associated components - most importantly the housing - coincide with the actual conditions in operation. In this context, the effects of start-up at low ambient temperature must be included in the testing.

Considerations for preload

Depending on the bearing type, preload may be either radial or axial. Super-precision cylindrical roller bearings, for example, can only be preloaded radially because of their design, while angular contact ball bearings or tapered roller bearings can only be preloaded axially.

Single tapered roller bearings or angular contact ball bearings are generally mounted together with a second bearing of the same type and size in a back-to-back (load lines diverge, fig. 4) or face-to-face (load lines converge, fig. 5) arrangement. The same is true for single row angular contact ball bearings.

The distance L between the pressure centres is longer when the bearings are arranged back-to-back compared to bearings that are arranged face-to-face. The back-to-back arrangement can accommodate larger tilting moments.

If the shaft temperature in operation is higher than the housing temperature, the preload, which was adjusted at ambient temperature during mounting, will change. Since thermal growth of a shaft makes it larger both in the axial and in the radial direction, the back-to-back arrangements are less sensitive to thermal effects than the face-to-face arrangements.

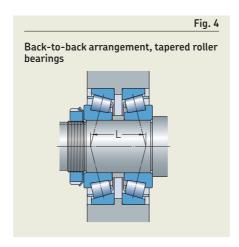
When adjusting preload in a bearing system, it is important that the established preload value is attained with the least possible variation. To reduce variation when mounting tapered roller bearings, the shaft should be turned several times to ensure that the rollers are in correct contact with the guide flange of the inner ring.

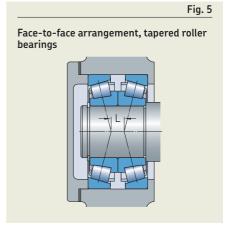
Preloading with springs

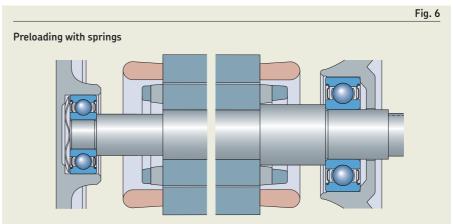
By preloading bearings it is possible to reduce the noise in, for example, small electric motors or similar applications. In this example, the bearing arrangement comprises a preloaded single row deep groove ball bearing at each end of the shaft (fig. 6). The simplest method of applying preload is to use a wave spring. The spring acts on the outer ring of one of the two bearings. This outer ring must be able to be axially displaced.

The preload force remains practically constant, even when there is axial displacement of the bearing as a result of thermal elongation.

The requisite preload force can be estimated using


F = k d


where


F = preload force [kN]

k = a factor, described in the following text

d = bearing bore diameter [mm]

186

For small electric motors, values of between 0,005 and 0,01 are used for the factor k. If preload is used primarily to protect the bearing from the damage caused by external vibrations when stationary, then greater preload is required and k = 0,02 should be

Spring loading is also a common method of applying preload to angular contact ball bearings in high-speed grinding spindles. The method is not suitable for bearing applications where a high degree of stiffness is required, where the direction of axial load changes, or where undefined peak loads can occur.

For additional information, refer to *Bearing preload*, (skf.com/go/17000-B7).

Bearing tolerance class

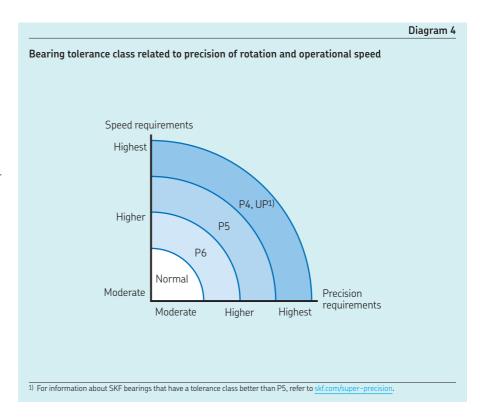
The dimensional and geometrical tolerances of bearings are described by their tolerance classes (*Tolerances*, **page 36**). In addition to the Normal, P6 and P5 tolerance classes, SKF also manufactures bearings with even narrower tolerances. These include P4, UP and other tolerance classes. For information about SKF bearings that have a tolerance class better than P5, refer to skf.com/super-precision.

Select the tolerance class for a bearing based on the application requirements for precision of rotation and operational speed (diagram 4).

If the application requirements for precision of rotation are moderate (*Selecting fits*, page 140) and operational speed is moderate (*Speed limitations*, page 135), then choose a Normal tolerance class. If the requirements for precision of rotation and/or operational speed are greater than moderate, then choose an appropriately more accurate tolerance class (diagram 4).

For detailed information about standard tolerances, please refer to the product sections.

Cages


The main cage types are described in *Components and materials*, page 24. Additionally, information about standard cages, and possible cage options, for a particular bearing type is given in the relevant product section. If a bearing with a non-standard cage is required, check availability before ordering.

There are fundamental design differences between bearings which, together with the influence of bearing size, make certain cage designs necessary. For example:

- some bearing types need either split or snap-type cages, because they are assembled after the rings and rolling elements have been sub-assembled
- other bearing types need roller-guided cages, to be self-containing
- bearings of a certain combination of size and series need ring-guided cages, to limit contact stress between rolling elements and cage

Given the specific functional demands and quantity of bearings being manufactured, the material and manufacturing methods are chosen to provide the most reliable and cost-effective cage.

Cages are mechanically stressed during bearing operation by frictional, impact, centrifugal and inertial forces. They can also be chemically influenced by certain organic solvents or coolants, lubricants, and lubricant additives. Therefore, the material type used for a cage has a significant influence on the suitability of a rolling bearing for a particular application.

5KF. 187

Steel cages

Steel cages can be used at operating temperatures up to 300 °C (570 °F).

Sheet steel cages

Stamped sheet steel cages are made of low carbon steel. These lightweight cages have relatively high strength and, for some bearing types, can be surface treated to further reduce friction and wear in critical conditions.

Machined steel cages

Machined steel cages are normally made of non-alloyed structural steel. To reduce friction and wear, some machined steel cages are surface treated.

Machined steel cages are not affected by the mineral or synthetic oil-based lubricants normally used for rolling bearings, or by the organic solvents used to clean bearings.

Brass cages

Brass cages can be used at operating temperatures up to 250 °C (480 °F).

Sheet brass cages

Stamped sheet brass cages are used for some small and medium-size bearings. In applications such as refrigeration compressors that use ammonia, machined brass or steel cages should be used.

Machined brass cages

Most brass cages are machined from cast or wrought brass. They are unaffected by most common bearing lubricants, including synthetic oils and greases, and can be cleaned using organic solvents.

Polymer cages

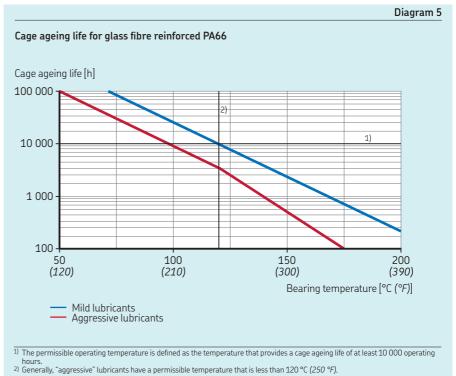
Polyamide 66

Polyamide 66 (PA66) is the most commonly used material for injection moulded cages. This material, with or without glass fibres, is characterized by a favourable combination of strength and elasticity. The mechanical properties, such as strength and elasticity, of polymer materials are temperature

dependent and subject to ageing. The factors that most influence the ageing process are temperature, time and the medium (lubricant) to which the polymer is exposed. The relationship between these factors for glass fibre reinforced PA66 is shown in diagram 5. Cage life decreases with increasing temperature and the aggressiveness of the lubricant.

Therefore, whether polyamide cages are suitable for a specific application depends on the operating conditions and life requirements. The classification of lubricants into "aggressive" and "mild" is reflected by the "permissible operating temperature" for cages made of glass fibre reinforced PA66 with various lubricants (table 1). The permissible operating temperature in table 1 is defined as the temperature that provides a cage ageing life of at least 10 000 operating hours.

Some media are even more "aggressive" than those specified in table 1. A typical example is ammonia, used as a refrigerant in compressors. In those cases, cages made of glass fibre reinforced PA66 should not be used at operating temperatures above 70 °C (160 °F).


Polyamide loses its elasticity at low temperatures. Therefore, cages made of glass fibre reinforced PA66 should not be used in applications where the continuous operating temperature is below -40 °C (-40 °F).

Polyamide 46

Glass fibre reinforced polyamide 46 (PA46) is the standard cage material for some small and medium-size CARB toroidal roller bearings. The permissible operating temperature is 15 °C (25 °F) higher than for glass fibre reinforced PA66.

Polyetheretherketone

Glass fibre reinforced polyetheretherketone (PEEK) is more suitable for demanding conditions regarding high speeds, chemical resistance or high temperatures than PA66 and PA46. The exceptional properties of PEEK provide a superior combination of strength and flexibility, high operating temperature range, and high chemical and wear resistance. Because of these outstanding features, PEEK cages are commonly available for hybrid and/or super-precision ball and cylindrical roller bearings. The material does not show signs of ageing by temperature or oil additives up to 200 °C (390 °F). However, the maximum temperature for high-speed use is limited to 150 °C (300 °F) as this is the softening temperature of the polymer.

Cages made of other materials

In addition to the materials described previously, SKF bearings for special applications may be fitted with cages made of other engineered polymers, light alloys or special cast iron. For additional information about alternative cage materials, contact SKF.

Integral sealing

Integral sealing can significantly prolong bearing service life by keeping lubricant in the bearing and contaminants out.

The various types of capping devices that are available for SKF bearings are described in *Components and materials*, page 24.

Information about which integral seal options are available for a particular bearing type is given in the relevant product section.

Additional options

Coatings

Coating is a well-established method to upgrade materials and to provide bearings with additional benefits for specific application conditions. Various coating methods developed by SKF are available and have been proven successful in many applications.

Black oxide

Black oxide coating of rings and rollers improves reliability and performance in highly demanding applications, especially under low load conditions and high vibration. In addition, it improves corrosion protection and lubricant adhesion on the bearing surfaces.

SKF also supplies customized black oxide coating layers that are optimized for best tribological results and highest bearing performance, produced using well-defined processes and fine tuned to the individual steel grade, bearing type and size. SKF's evaluation and quality control technology for the black oxide application process includes a

scanning electron microscope and a patented examination method.

NoWear

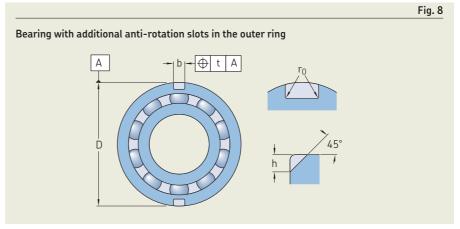
NoWear is a wear-resistant surface coating that applies a low-friction carbon coating on the bearing inner ring raceway(s) and/or the rolling elements. It can withstand long periods of operation under marginal lubrication conditions. For additional information, refer to *NoWear coated bearings*, page 1060

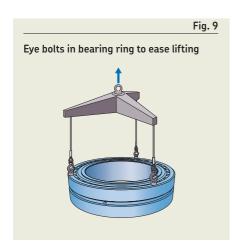
INSOCOAT

INSOCOAT bearings are standard bearings that have the external surfaces of their inner or outer ring plasma-sprayed with an aluminium oxide, impregnated with a resin sealant, to form a coating. It offers resistance to the damage that can be caused by the passage of stray electric current through the bearing. For additional information, refer to INSOCOAT bearings, page 1030.

Other coatings are available that provide an alternative to stainless steel bearings (especially for ready-to-mount bearing units) that are used in a corrosive environment.

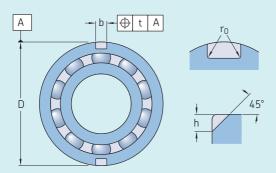
ubricant	Permissible operating temperature 1)	
	°C	°F
fineral oils		
ils without EP additives, e.g. machine or hydraulic oils	120	250
lils with EP additives, e.g. industrial and automotive gearbox oils lils with EP additives, e.g. automotive rear axle and differential gear oils (automotive), hypoid gear oils	110 100	230 210
	100	210
iynthetic oils Jolyglycols, polyalphaolefins	120	250
olygiycois, polyalphaoleinis Diesters, silicones	110	230
hosphate esters	80	175
reases		
ithium greases olyurea, bentonite, calcium complex greases	120 120	250 250


¹⁾ Measured on the outside surface of the outer ring; defined as the temperature that provides a cage ageing life of at least 10 000 operating hours.


Features for special requirements

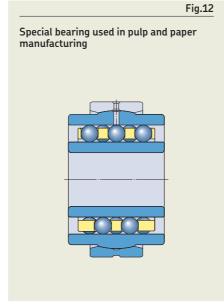
SKF supplies many more bearing variants, in addition to those presented in the product sections, for accomplishing various tasks and satisfying special application needs. Among the more common special variants manufactured by SKF are:

- special chamfers e.g. with a larger radius or with a modified shape (fig. 7)
- additional anti-rotation slots in the outer ring (standard for some bearing types, such as four-point contact ball bearings) (table 2, fig. 8)
- threaded holes in the rings to accommodate eye bolts to ease lifting (fig. 9)
- special greases
- sensors e.g. to aid mounting (fig. 10) or for monitoring speed and direction of rotation (fig. 11)
- measuring reports, material certificate, additional inspections
- tailor-made bearings and units (fig.12 and fig.13)



190

Table 2


B.7

Locating slots in the outer ring of four-point contact ball bearings

		Dimension Diameter se				Tolerance ¹⁾		
D >	≤	h	b	r_0	h	b	r_0	t U
mm		mm						mm
35 45 60	45 60 72	2,5 3 3,5	3,5 4,5 4,5	0,5 0,5 0,5	- 3,5 3,5	- 4,5 4,5	– 0,5 0,5	0,2 0,2 0,2
72 95 115	95 115 130	4 5 6,5	5,5 6,5 6,5	0,5 0,5 0,5	4 5 8,1	5,5 6,5 6,5	0,5 0,5 1	0,2 0,2 0,2
130 145 170	145 170 190	8,1 8,1 10,1	6,5 6,5 8,5	1 1 2	8,1 10,1 11,7	6,5 8,5 10,5	1 2 2	0,2 0,2 0,2
190 210 240	210 240 270	10,1 11,7 11,7	8,5 10,5 10,5	2 2 2	11,7 11,7 11,7	10,5 10,5 10,5	2 2 2	0,2 0,2 0,2
270	400	12,7	10,5	2	12,7	10,5	2	0,4
1) Other tolerances are in accordance with ISO 20515.								

Sealing, mounting and dismounting

B.8 Sealing, mounting and dismounting

External sealing	19
Seal selection criteria	19!
Seal types	19
Non-contact seals	19
Contact seals	19
Mounting and dismounting	199
Mounting	200
Mounting bearings with a cylindrical bore	20:
SKF methods and tools	202
Mounting adjusted bearing arrangements	203
Mounting bearings with a tapered bore	203
Test running	200
Machines on standby	20
Dismounting	20
Dismounting bearings fitted on a cylindrical shaft seat.	20
Dismounting bearings fitted on a tapered shaft seat	208
Dismounting bearings fitted on an adapter sleeve	209
Dismounting bearings fitted on a withdrawal sleeve	210
nspection and monitoring	21:
nspection during operation	21:
nspection during a machine shutdown	212
Troubleshooting	213

5KF: 193

B.8 Sealing, mounting and dismounting

This section is the last step in the *Bearing* selection process and it covers:

· External sealing

How to select appropriate seals for rolling bearing applications and the different types of seal available.

· Mounting and dismounting

The preparation and guidelines for mounting and dismounting bearings.

· Inspection and monitoring

Various aspects of inspecting and monitoring bearings in operation for the purpose of preventing problems, and an introduction to troubleshooting.

External sealing

Bearing arrangements generally include a shaft, bearings, housing(s), lubricant, associated components, and seals. Seals are vital to the cleanliness of the lubricant and the service life of the bearings.

The section on *Integral sealing*, page 189, gives a general description of the integral seals used in capped bearings. For detailed information, refer to the relevant product sections.

This section describes seals outside the bearing, and how they affect bearing performance. Because of their importance for bearing applications, this section deals exclusively with non-contact and contact shaft seals, their various designs and executions.

Seal selection criteria Seal types

Seals for bearing applications should provide maximum protection with a minimum amount of friction and wear, under the prevailing operating conditions. Because bearing performance and service life are so closely tied to the effectiveness and cleanliness of the lubricant, the seal is a key component. For additional information on the influence of solid contaminants on bearing performance, refer to Contamination factor, η_c , page 104

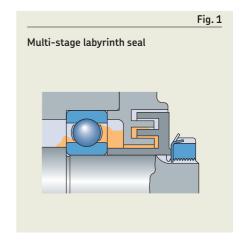
Many factors must be considered when selecting the most suitable seal for a particular bearing-shaft-housing system. These include:

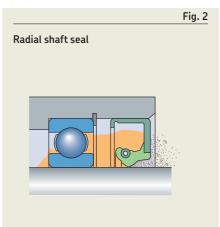
- the lubricant type: oil or grease
- the contaminant type: particles or fluid or
- the circumferential speed at the seal lip
- the shaft arrangement: horizontal or
- possible shaft misalignment or deflection
- run-out and concentricity
- available space
- seal friction and the resulting temperature
- environmental influences
- cost
- required operating time
- maintenance requirements

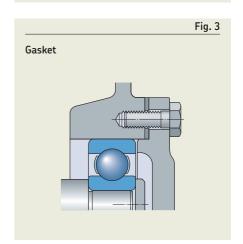
For additional information, refer to Power transmission seals, (skf.com/seals).

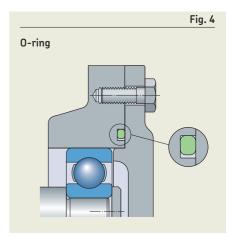
The purpose of a seal is to retain lubricant and prevent any contaminants from entering into a controlled environment.

There are several basic seal types:


- non-contact seals
- contact seals
- static seals


Non-contact radial shaft seals form a narrow gap between the stationary and the rotating component. The gap can be arranged axially, radially or in combination. Non-contact seals, which range from simple gap-type seals to multi-stage labyrinths (fig. 1), do not wear.

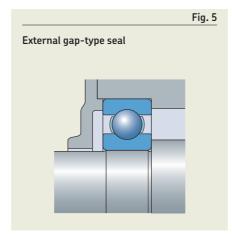

Seals in contact with sliding surfaces are called contact seals and are used to seal passages between machine components that move relative to each other, either linearly or circumferentially.

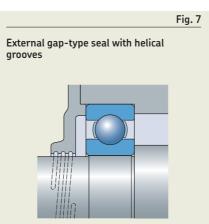

The most common contact seal is the radial shaft seal (fig. 2), which is installed between a stationary and a rotating component.

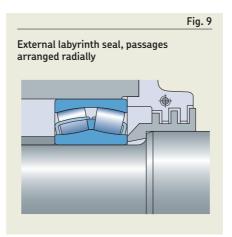
Seals between stationary surfaces are called static seals. Their effectiveness depends on the radial or axial deformation of their cross section when installed. Gaskets (fig. 3) and O-rings (fig. 4) are typical examples of static seals.

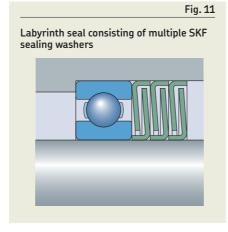
Non-contact seals

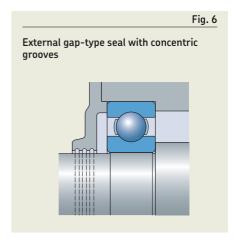
The simplest seal used outside a bearing is the gap-type seal, which creates a small gap between the shaft and housing cover (fig. 5). This type of seal is mainly used for grease lubricated applications that operate in dry, dust-free environments. To enhance the effectiveness of this seal, one or more concentric grooves can be machined in the housing cover bore at the shaft end (fig. 6). The grease emerging through the gap fills the grooves and helps to prevent entry of contaminants.

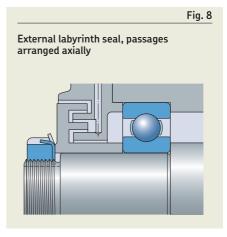

With oil lubrication and horizontal shafts, helical grooves can be machined into the shaft or housing bore, either right-handed or left-handed, depending on the direction of shaft rotation (fig. 7). These grooves are designed to return emerging oil to the bearing; therefore, it is essential that the shaft rotates in one direction only.

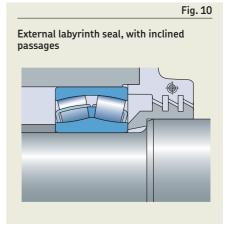

Other shapes can be machined into the shaft. Non-helical grooves may be used on the shaft and in the housing; these function as disruptors/flingers. Additional shaft collars can prevent oil leakage, whatever the direction of rotation.

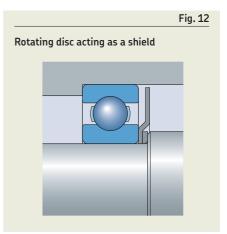

Single or multi-stage labyrinth seals, typically used with grease lubrication, are considerably more effective than simple gaptype seals, but are also more expensive. Their effectiveness can be further improved by periodically applying grease, via a duct, to the labyrinth passages. The passages of the labyrinth seal can be arranged axially (fig. 8) or radially (fig. 9), depending on the housing type (split or non-split), mounting procedures, available space, etc. The radial gaps of the labyrinth (fig. 8) remain unchanged when axial displacement of the shaft occurs in operation; therefore, the gaps can be very narrow. Where angular misalignment of the shaft relative to the housing can occur, labyrinths with inclined passages can be used (fig. 10).


Effective and inexpensive labyrinth seals can be made using SKF sealing washers (fig. 11). Sealing effectiveness increases with the number of washer sets and can be further improved by incorporating flocked washers. For additional information on these sealing washers, refer to *Power transmission seals*, (skf.com/seals).


Rotating discs (fig. 12) are often fitted to the shaft to act as a shield. Flingers, grooves or discs are also used with oil lubrication. The oil from the flinger is collected in a channel in the housing and returned to the housing sump through suitable ducts (fig. 13).







196 **SKF**.

Contact seals

There are four common types of contact seals:

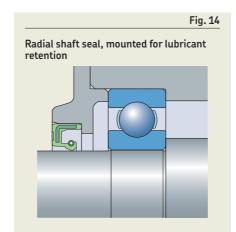
- radial shaft seals
- V-ring seals
- axial clamp seals
- mechanical seals

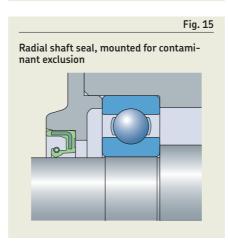
The seal type selected for a particular application typically depends on:

- the primary purpose of the seal (to retain lubricant or exclude contaminants)
- the type of lubricant (oil, grease or other)
- the operating conditions (speed, temperature, pressure and environment)

Radial shaft seals

Radial shaft seals (fig. 14 and fig. 15) are contact seals that are used for oil and grease lubricated applications. For detailed information, refer to the SKF catalogue *Industrial shaft seals*. These ready-to-mount components typically consist of a metal reinforcement or casing, a synthetic rubber body, a seal lip and a garter spring. The seal lip is pressed against the shaft by the garter spring. Depending on the seal material and medium to be retained and/or excluded, commonly used materials for radial shaft seals can be used at temperatures between –55 °C (–65 °F) and +200 °C (390 °F).


The seal counterface, that part of the shaft where the seal lip makes contact, is of vital importance to sealing effectiveness. The surface hardness of the counterface should be at least 45 HRC at a depth of at least 0,3 mm. The surface texture should be in accordance with ISO 4288 and within the guidelines of Ra = 0,2 to 0,5 μ m. In applications where speeds are low, lubrication is


Fig. 13
Oil caught by rotating flinger at the seal

good, and contamination levels are minimal, a lower hardness can be acceptable. For oil lubrication, to avoid the pumping effect induced by helical grinding marks, SKF recommends plunge grinding the counterface.

If the primary purpose of the radial shaft seal is lubricant retention, the seal should be mounted with the lip facing inward (fig. 14). If the primary purpose is to exclude contaminants, the lip should face outward, away from the bearing (fig. 15).

SKF can also supply machined polyurethane radial shaft seals.

△ WARNING

Safety precautions for fluoro rubber and Polytetrafluoroethylene

Fluoro rubber (FKM) and Polytetrafluoroethylene (PTFE) are very stable and harmless up to normal operating temperatures of 200 °C (390 °F). However, if exposed to temperatures above 300 °C (570 °F), such as fire or the open flame of a cutting torch, FKM and PTFE give off hazardous fumes. These fumes can be harmful if inhaled, as well as if they contact the eyes. In addition, once the seals have been heated to such temperatures, they are dangerous to handle even after they have cooled. Therefore, they should never come in contact with the skin.

If it is necessary to handle bearings with seals that have been subjected to high temperatures, such as when dismounting the bearing, the following safety precautions should be observed:

- Always wear protective goggles, gloves and appropriate breathing apparatus.
- Place all of the remains of the seals in an airtight plastic container marked with a symbol for "material will etch".
- Follow the safety precautions in the appropriate safety data sheet (SDS).

If there is contact with the seals, wash hands with soap and plenty of water and, if contact has been made with the eyes, flush eyes with plenty of water and consult a doctor immediately. If the fumes have been inhaled, consult a doctor immediately.

The user is responsible for the correct use of the product during its service life and its proper disposal. SKF takes no responsibility for the improper handling of FKM or PTFE, or for any injury resulting from their use.

B.8 Sealing, mounting and dismounting

V-ring seals

V-ring seals (fig. 16) can be used with either oil or grease lubrication. The elastic rubber body of the seal grips the shaft and rotates with it, while the seal lip exerts a light axial pressure on a stationary component, such as a housing. Depending on the material, V-rings can be used at operating temperatures between –40 °C (–40 °F) and +200 °C (390 °F). They are simple to install and permit relatively large angular misalignments of the shaft at low speeds.

The recommended counterface surface finish (surface texture) depends on the circumferential speed (table 1). At circumferential speeds above 8 m/s, the body of the seal must be located axially on the shaft. At speeds above 12 m/s, the body must be prevented from lifting from the shaft. A sheet metal support ring can be used to do this. When circumferential speeds exceed 15 m/s, the seal lip lifts away from the counterface and the V-ring becomes a gap-type seal.

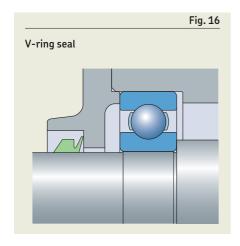
V-ring seals have good sealing abilities, which can be attributed to the body of the seal, which acts as a flinger, repelling dirt and fluids. As a result, these seals are generally arranged outside the housing in grease lubricated applications and inside the housing, with the lip pointing away from the bearing, in oil lubricated applications. Used as a secondary seal, V-rings protect the primary seal from excessive contaminants and moisture.

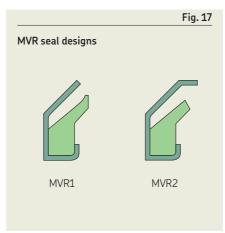
For added protection in extremely contaminated applications, SKF also supplies MVR seals (fig. 17 and SKF catalogue *Industrial shaft seals*).

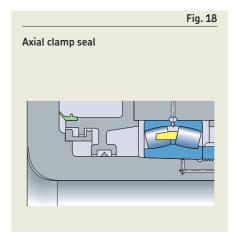
Axial clamp seals

Axial clamp seals (fig. 18) are used as secondary seals for large-diameter shafts in applications where protection is required for the primary seal. They are clamped in position on a non-rotating component and seal axially against a rotating counterface. For this type of seal, it is sufficient if the counterface is fine-turned and has a surface texture of Ra = $2,5 \mu m$.

Mechanical seals


Mechanical seals (fig. 19) are used to seal grease or oil lubricated applications, where speeds are relatively low and operating conditions arduous. Mechanical seals consist of two sliding steel rings with finely finished sealing surfaces and two Belleville rubber compound washers, which position the sliding rings in the housing bore and provide the necessary preload force to the sealing surfaces. There are no special requirements for the mating surfaces in the housing bore.


Other seals

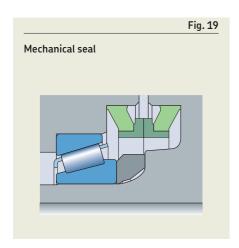

Felt seals (fig. 20) are generally used with grease lubrication. They are simple, costeffective and can be used at circumferential speeds of up to 4 m/s and at operating temperatures up to 100 °C (210 °F). The counterface should be ground to a surface texture of Ra $\leq 3,2~\mu m$. The effectiveness of a felt seal can be improved substantially by mounting a simple labyrinth seal as a secondary seal. Before being inserted in the housing groove, felt seals should be soaked in oil at about 80 °C (175 °F) prior to mounting.

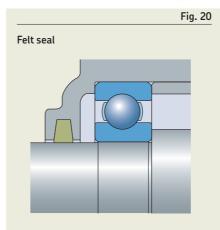
Metal seals (fig. 21) are simple, costeffective and space-saving seals for grease lubricated bearings. The seals are clamped against either the inner or outer ring and exert a resilient axial pressure against the other ring. After a certain running-in period, a narrow gap forms and these become non-contact seals.

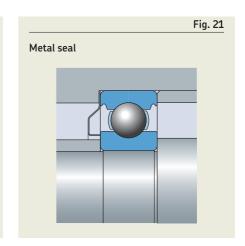
			Table 1		
Recommended counterface surface finish					
Circumferential speed		Surface finish Ra			
m/s	ft/min.	μm	μin.		
>10 5-10 1-5 <1	>1 969 984–1 969 199–984 <199	0,4-0,8 0,8-1,6 1,6-2,0 2,0-2,5	16–32 32–64 64–80 80–100		
The surface finish must not be lower than Ra = 0,05 μ m (2 μ in.).					

Mounting and dismounting

Rolling bearings are reliable machine elements that can provide long service life, if they are mounted properly. Proper mounting requires experience, accuracy, a clean work environment, correct working methods and the appropriate tools. SKF offers a comprehensive assortment of high-quality tools for this purpose. For detailed information, refer to Maintenance products, (skf.com/mapro).


Mounting bearings correctly is often more difficult than it appears, especially where large bearings are concerned. As part of the SKF Services and Solutions program, SKF offers seminars and hands-on training courses. Mounting and maintenance assistance may also be available from your local SKF company or SKF Authorized Distributor.


The information provided in this section is quite general and is intended primarily to indicate what must be considered by machine and equipment designers to facilitate bearing mounting and dismounting. It includes:


- Mounting
- Test running
- Machines on standby
- Dismounting

Further reading on bearing mounting and dismounting

- SKF bearing maintenance handbook (ISBN 978-91-978966-4-1)
- Mounting instructions for individual bearings (skf.com/mount)

Mounting

Before mounting, be sure you have all the necessary parts, tools, equipment and data available and ready to use. Review any drawings or instructions to determine the correct sequence and orientation in which components are to be assembled. Leave the bearings in their original packages until immediately before mounting so that they are not exposed to any contaminants. If there is a risk that the bearings have become contaminated because of improper handling or damaged packaging, they should be washed, dried and inspected before mounting.

Assembly area

Bearings should be mounted in a dry, dustfree area, away from machines producing swarf and dust. When bearings have to be mounted in an unprotected area, which is often the case with large bearings, steps should be taken to protect the bearing and mounting position from contaminants such as dust, dirt and moisture. This can be done by covering or wrapping bearings and machine components with plastic or foil.

Checking associated components

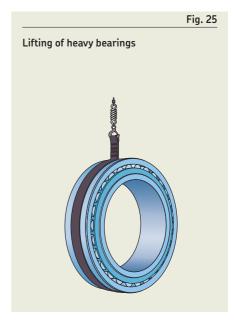
Housings, shafts, seals and other components of the bearing-shaft-housing system should be checked to make sure they are clean. This is particularly important for lubrication holes and threaded holes, lead-ins or grooves where remnants of previous machining operations might have collected. Also, make sure that all unpainted surfaces of cast housings are free of core sand and that any burrs are removed.

When all components have been cleaned and dried, check the dimensional and geometrical tolerances of each piece. The bearings only perform satisfactorily if the associated components comply with the prescribed tolerances. The diameters of cylindrical shaft and housing seats are usually checked with a micrometer, or internal gauge, at two cross sections and in four directions (fig. 22). Tapered shaft seats can be checked using a *GRA 30 series ring gauge* or a *DMB* or *9205 series taper gauge* refer to skf.com, or a sine bar.

Measuring of cylindrical shaft and housing seats

Removing the preservative

Normally, the preservative applied to new bearings does not need to be removed. It is only necessary to wipe off the outside and bore surfaces. However, if the lubricant to be used is not compatible with the preservative, the bearing should be washed and dried carefully. Bearings capped with seals or shields are filled with grease and should not be washed prior to mounting.


Bearing handling and safety

SKF recommends use of personal protection clothing and equipment, such as gloves, safety shoes and goggles, as well as carrying and lifting tools (fig. 23) that have been specially designed for handling bearings. Using the proper tools enhances safety, while saving time and effort.

When handling hot or oily bearings, SKF recommends wearing the appropriate heat or oil resistant gloves (fig. 24).

For large, heavy bearings, use lifting tackle that supports the bearing from the bottom (fig. 25). A spring between the hook and tackle can facilitate positioning of the bearing onto the shaft.

To ease lifting, large bearings can be provided, on request, with threaded holes in the ring side faces to accommodate eye bolts. These holes are designed to bear only the weight of the bearing, because the size and depth of the hole is limited by the ring thickness. Make sure that the eye bolts are only subjected to load in the direction of the shank axis (fig. 26).

Methods and tools

Depending on the bearing type and size, mechanical, thermal or hydraulic methods are used for mounting (table 2, page 202). Bearing sizes are categorized as follows:

- small \rightarrow d \leq 80 mm
- medium-size → 80 mm < d < 200 mm
- large \rightarrow d \geq 200 mm

In all cases, it is important that the bearing rings, cages and rolling elements or seals are never struck directly with any hard object and that the mounting force is never applied through the rolling elements.

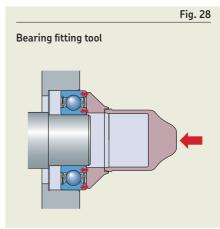
For an interference fit, the mating surfaces should be coated with a thin layer of light oil. For a loose fit, the mating surfaces should be coated with SKF anti-fretting agent.

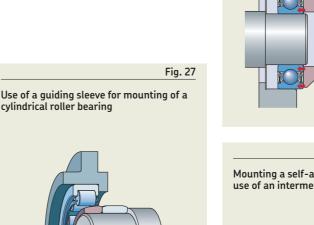
Mounting bearings with a cylindrical bore

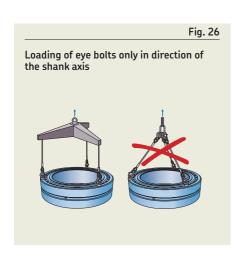
Non-separable bearings

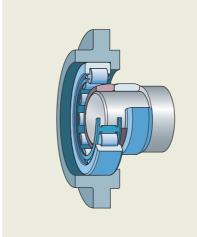
With non-separable bearings, the ring that requires the tighter fit is usually mounted first.

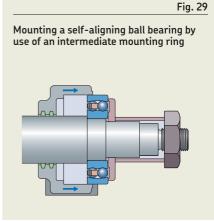
Separable bearings

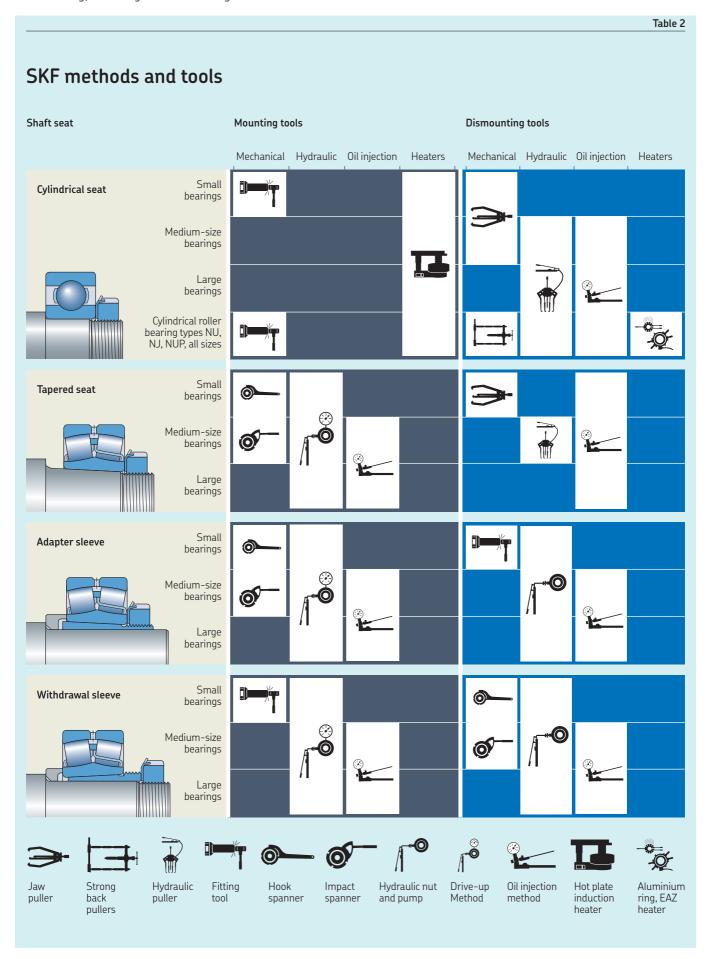

With separable bearings, the inner ring can be mounted independently of the outer ring, which simplifies mounting, particularly where both rings have an interference fit. When mounting the shaft and inner ring assembly into the housing containing the outer ring, careful alignment is required to avoid scoring the raceways and rolling elements. When mounting cylindrical or needle roller bearings with an inner ring without flanges or with a flange on one side only, a guiding sleeve should be used (fig. 27). The outside diameter of the sleeve should be the same as the raceway diameter of the inner ring and should be machined to tolerance class d10 for cylindrical roller bearings, and to tolerance 0/-0,025 mm for needle roller bearings.


Cold mounting


If the fit is not too tight, small bearings can be driven into position by applying light hammer blows to a bearing fitting tool (fig. 28). The tool enables the mounting force to be applied centrally.


If a bearing has to be pressed onto the shaft and into the housing bore at the same time, the mounting force must be applied equally to both rings and the abutment surfaces of the mounting tool must lie in the same plane. Whenever possible, mounting should be done with an SKF bearing fitting tool (fig. 28).


With self-aligning bearings, the use of an intermediate mounting ring prevents the outer ring from tilting and swivelling when the bearing and shaft assembly is introduced into the housing bore (fig. 29). The balls of larger self-aligning ball bearings in the 12 and 13 series protrude from the sides of the bearing, therefore the mounting ring must have a recess.



202 **5KF**.

Hot mounting

It is generally not possible to mount larger bearings without heating either the bearing or the housing, as the force required to mount a bearing increases considerably with increasing bearing size.

The requisite difference in temperature between the bearing ring and shaft or housing depends on the degree of interference and the diameter of the bearing seat. Generally, open bearings must not be heated to more than 120 °C (250 °F). SKF does not recommend heating bearings capped with seals or shields above 80 °C (175 °F). However, if higher temperatures are necessary, make sure that the temperature does not exceed the permissible temperature of either the seal or grease, whichever is lowest.

When heating bearings, local overheating must be avoided. To heat bearings evenly and reliably, SKF recommends using SKF electric induction heaters (fig. 30). If hotplates are used, the bearing must be turned over a number of times. The seals on sealed bearings should never contact the heating plate directly. Place a ring between the plate and bearing. Read and follow the safety precautions on page 197.

For additional information about these mounting methods, refer to the SKF bearing maintenance handbook.

Mounting adjusted bearing arrangements

The following recommendations refer only to the adjustment of the mounted clearance for bearing arrangements with single row angular contact ball bearings or tapered roller bearings.

The mounted clearance of single row angular contact ball bearings and single row tapered roller bearings is only established when the bearing is adjusted against a second bearing. Usually, they are arranged back-to-back or face-to-face, and one bearing ring is axially displaced until a given clearance or preload is obtained. For information about bearing preload, refer to Selecting preload, page 186.

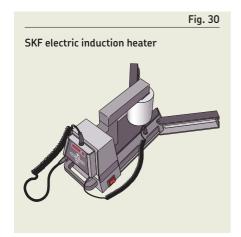
The appropriate value for the clearance to be obtained when mounting depends on the bearing size and arrangement, and operating conditions such as load and temperature. Since there is a definite relationship between the radial and axial clearance of angular contact ball bearings and tapered roller bearings, it is sufficient to specify one value, generally the axial clearance for the arrangement. This specified value is then obtained by measuring the clearance during adjustment and by loosening or tightening a nut on the shaft or a threaded ring in the housing bore or by inserting calibrated washers or shims between one of the bearing rings and its abutment. The actual method used to adjust and measure the clearance depends on whether this is an occasional or repetitive process.

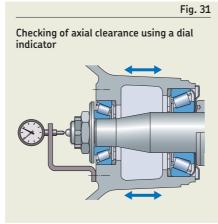
One way to check the axial clearance in a bearing arrangement is to use a dial indicator attached to the hub (fig. 31). When adjusting tapered roller bearings and measuring clearance, the shaft or housing should be turned through several revolutions in

both directions to be sure that there is proper contact of the roller ends with the guide flange on the inner ring. Without proper contact, the measured result will not be correct.

Mounting bearings with a tapered bore

For bearings with a tapered bore, inner rings are always mounted with an interference fit. The degree of interference is determined by how far the bearing is driven up onto a tapered shaft seat or an adapter or withdrawal sleeve. As the bearing is driven up the tapered seat, its radial internal clearance is reduced. This reduction in clearance, or the axial drive-up distance, can be measured to determine the degree of interference and the proper fit. Recommended values of clearance reduction and axial drive-up are listed in the relevant product section.


The SKF Drive-up Method is a reliable and well-proven method for mounting SKF bearings on tapered seats. For additional information, refer to the *SKF Drive-up Method Program* (skf.com/drive-up).


Small and medium-size bearings

Bearings with bore diameters up to 80 mm ($d \le 80$ mm), can be driven up onto a tapered seat using either a bearing fitting tool or, preferably, a lock nut. For adapter sleeves, use the sleeve nut that can be tightened with a hook or impact spanner. Withdrawal sleeves can be driven into the bearing bore using a bearing fitting tool or a nut. Starting from a 50 mm thread, SKF hydraulic nuts can also be used.

Medium-size and large bearings

Larger bearings, with bore diameters greater than 80 mm (d > 80 mm), require considerably more force to mount. Therefore, SKF hydraulic nuts should be used. Where applicable, SKF also recommends using shafts and sleeves with grooves and ducts for the oil injection method. When combining the two methods, bearing mounting and dismounting becomes much faster, easier and safer. For additional information about the oil injection equipment required for both the hydraulic nut and the oil injection method, refer to skf.com/mapro and skf.com/mount.

B.8 Sealing, mounting and dismounting

Mounting with SKF hydraulic nuts

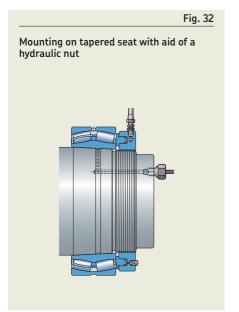
Bearings with a tapered bore can be mounted with the aid of an SKF hydraulic nut:

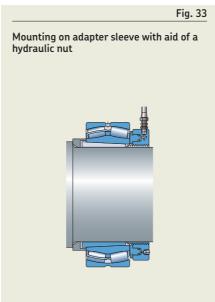
- on a tapered shaft seat (fig. 32)
- on an adapter sleeve (fig. 33)
- on a withdrawal sleeve (fig. 34)

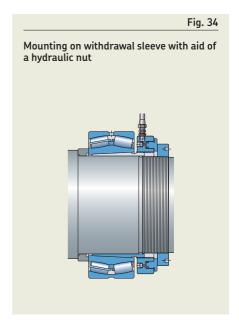
The hydraulic nut can be positioned onto a threaded section of the shaft (fig. 32), or onto the thread of a sleeve (fig. 33 and fig. 34). The annular piston abuts the inner ring of the bearing (fig. 32 and fig. 33) or a stop on the shaft, which can be either a nut on a shaft thread (fig. 34) or a plate attached to the end of the shaft. Pumping oil into the hydraulic nut displaces the piston axially with the force needed to drive the inner ring up the taper for accurate and safe mounting.

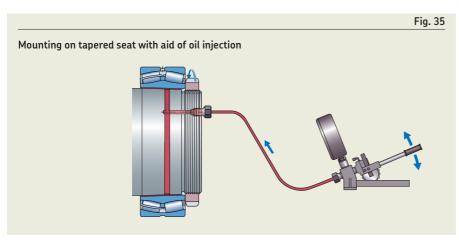
Oil injection method

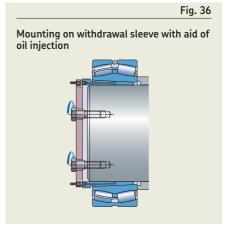
With the oil injection method, oil under high pressure is injected via ducts and distribution grooves between the bearing and bearing seat to form an oil film. This oil film separates the mating surfaces and considerably reduces the friction between them. This method is typically used when mounting bearings directly on tapered shaft seats (fig. 35). The necessary ducts and grooves should be an integral part of the shaft design. This method can also be used to mount bearings on adapter or withdrawal sleeves if they are equipped with the relevant features, ducts and grooves.


A spherical roller bearing mounted on a withdrawal sleeve with oil ducts is shown in fig. 36. Oil is injected between all mating surfaces so that the withdrawal sleeve can be pressed into the bearing bore as the bolts are tightened.


Verifying the interference fit


During mounting, the degree of interference is normally determined by one of the following methods:


- measuring the clearance reduction
- measuring the lock nut tightening angle
- measuring the axial drive-up
- measuring the inner ring expansion

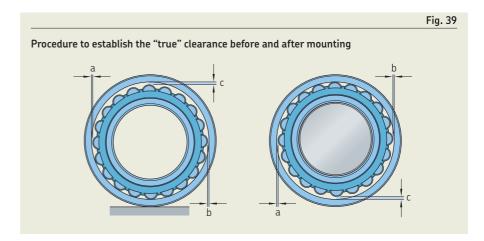

For self-aligning ball bearings, feeling the clearance reduction by swivelling the outer ring is an additional method (*Mounting*, page 447).

Measuring the clearance reduction

A feeler gauge is most often used to measure the radial internal clearance in medium-size and large spherical and CARB toroidal roller bearings. Recommended values for the reduction of radial internal clearance to obtain the correct interference fit are listed in the relevant product section.

Before mounting, measure the clearance between the outer ring and upper-most roller (fig. 37). During mounting, measure the clearance between the inner or outer ring and lowest roller, depending on the bearing internal design (fig. 38).

Before measuring, rotate the inner or outer ring a few times. Both bearing rings and the roller complement must be centrically arranged relative to each other.


For larger bearings, especially those with a thin-walled outer ring, the measurements are affected by the elastic deformation of the rings, caused by the weight of the bearing or the force to draw the feeler gauge blade through the gap between the raceway and an unloaded roller. To establish the "true" clearance before and after mounting, use the following procedure (fig. 39):

- 1 Measure the clearance "c" at the 12 o'clock position for a standing bearing or at the 6 o'clock position for an unmounted bearing hanging from the shaft.
- **2** Measure the clearance "a" at the 9 o'clock position and "b" at the 3 o'clock position without moving the bearing.
- 3 Obtain the "true" radial internal clearance with relatively good accuracy from 0,5 (a + b + c).


Measuring the lock nut tightening angle


This method can be used when mounting bearings with a bore diameter d \leq 120 mm. Recommended values for the tightening angle α are listed in the relevant product section.

Before starting the final tightening procedure, push the bearing up onto the tapered seat until it is firmly in position. By tightening the nut through the recommended angle α (fig. 40), the bearing is driven up over the proper distance on the tapered seat. The bearing inner ring then has the requisite interference fit. The residual clearance should be checked if possible.

B.8 Sealing, mounting and dismounting

Measuring the axial drive-up

Bearings with a tapered bore can be mounted by measuring the axial drive-up of the inner ring on its seat. Recommended values for the required axial drive-up are listed in the relevant product section.

However, the SKF Drive-up Method is recommended for medium-size and large bearings. This method provides a reliable and easy way to determine the degree of interference. The correct fit is achieved by controlling the axial displacement of the bearing from a pre-determined position. The equipment for the SKF Drive-up Method is shown in fig. 41. It includes an SKF hydraulic nut (1) fitted with a dial indicator (2), and a hydraulic pump (3) fitted with a pressure gauge (4).

The SKF Drive-up Method is based on a two-step mounting procedure (fig. 42):

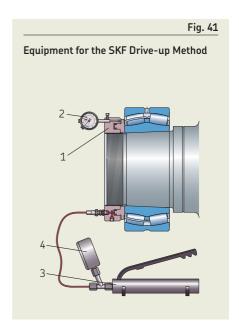
- Step 1
 Push the bearing to its starting position by applying the prescribed pressure to the hydraulic nut.
- Step 2
 Increase the pressure on the hydraulic nut so the bearing inner ring is pushed further on its tapered seat to its final position. The prescribed displacement is measured by

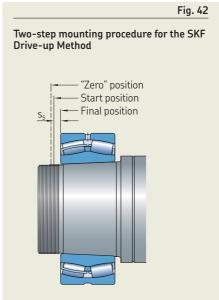
the dial indicator.

Recommended values for the requisite oil pressure to reach the start position and the axial displacement to reach the final position for individual bearings are available from the SKF Drive-up Method Program (skf.com/drive-up).

Measuring the inner ring expansion

Measuring the inner ring expansion is a quick and accurate method for determining the correct position of large spherical and CARB toroidal roller bearings on their seats (d ≥ 340 mm, depending on the series). To apply this method, use common hydraulic mounting tools and a SensorMount, which consists of a bearing with a sensor embedded in the inner ring and a dedicated handheld indicator (fig. 43). Aspects such as bearing size, shaft material and design (solid or hollow), and surface finish do not need any special consideration.


Test running


Once assembly is complete, an application should undergo a test run to determine that all components are operating properly. During a test run, the application should run under partial load and, where there is a wide speed range, at low or moderate speeds.

IMPORTANT: A rolling bearing should never be started up unloaded and then rapidly accelerated to high speed, as there is a significant risk that the rolling elements will slide and damage the raceways. A minimum bearing load needs to be applied (refer to Minimum load in the relevant product section).

Any noise or vibration can be checked using SKF condition monitoring equipment. Normally, bearings produce an even "purring" noise. Whistling or screeching indicates inadequate lubrication. An uneven rumbling or hammering is, in most cases, caused by the presence of contaminants in the bearing or to bearing damage caused during mounting.

An increase in bearing temperature immediately after start-up is normal. In the case of grease lubrication, the temperature does not drop until the grease has been evenly distributed in the bearing arrangement, after which an equilibrium temperature is reached. Unusually high or constantly peaking temperatures indicate too much lubricant in the arrangement, too heavy preload or that the bearing is radially or axially distorted. Other causes could be that associated components have not been made or mounted correctly, or that the seals are generating too much heat.

206 **SKF**.

During the test run, or immediately afterwards, check the seals, any lubrication systems and all fluid levels. If noise and vibration levels are severe, it is advisable to check the lubricant for signs of contamination.

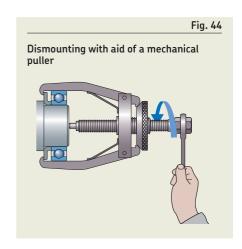
Machines on standby

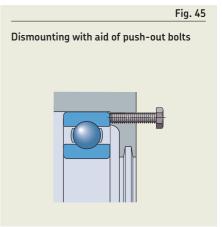
Machines on standby should be rotated or run as frequently as possible to redistribute the lubricant within the bearings and change the position relative to the raceways to reduce the risk of false brinelling and standstill corrosion.

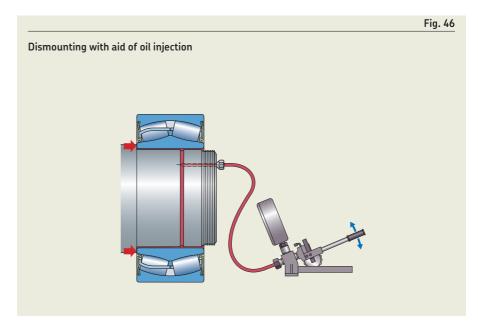
Dismounting

There are several reasons why bearings may need to be dismounted. For example, the bearings may need to be replaced or they may have to be removed to access other components. If bearings are to be used again after dismounting, the force used to dismount them must never be applied through the rolling elements.

With separable bearings, the ring with the rolling element and cage assembly can be removed independently of the other ring. With non-separable bearings, the ring having the looser fit should be withdrawn from its seat first. To dismount a bearing with an interference fit, the tools described in the following section can be used. The choice of tools depends on the bearing type, size and fit (table 2, page 202). Bearing sizes are categorized as follows:


- small \rightarrow d \leq 80 mm
- medium-size \rightarrow 80 mm < d < 200 mm
- large \rightarrow d \geq 200 mm


Dismounting bearings fitted on a cylindrical shaft seat


Cold dismounting

Small bearings can be dismounted from a shaft by applying light hammer blows via a suitable drift to the ring side face, or preferably by using a mechanical puller. The claws must be applied to the inner ring or an adjacent component (fig. 44). Dismounting is made easier if slots for the claws of a puller are provided in the shaft and/or housing shoulders. Alternatively, tapped holes in the housing shoulder can be provided to accommodate push-out bolts (fig. 45).

Medium-size and large bearings generally require greater force than a mechanical tool can provide. Therefore, SKF recommends using either hydraulically assisted tools or the oil injection method, or both. Using the oil injection method assumes that the necessary oil supply ducts and distribution grooves have been designed into the shaft (fig. 46).

B.8 Sealing, mounting and dismounting

Hot dismounting

Dismounting by heating is a suitable method when removing the inner rings of needle roller bearings or cylindrical roller bearings of the type NU, NJ and NUP. Two different tools for this purpose are common: heating rings and adjustable induction heaters.

Heating rings are typically used to mount and dismount the inner ring of small to medium-size bearings that are all the same size. Heating rings are made of light alloy. They are radially slotted and equipped with insulated handles (fig. 47).

If inner rings with different diameters are dismounted frequently, SKF recommends using an adjustable induction heater. These heaters (fig. 48) heat the inner ring rapidly without heating the shaft.

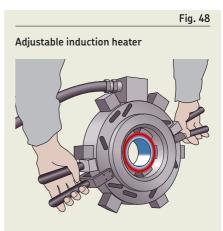
Special, fixed induction heaters have been developed to dismount the inner rings of large cylindrical roller bearings (fig. 49).

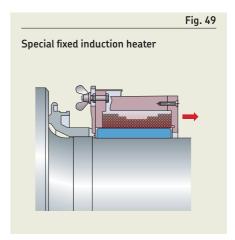
Induction heaters and heating rings are available from SKF. For additional information, refer to the *SKF bearing maintenance handbook* or skf.com/mapro.

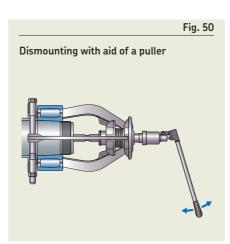
△ WARNING

Fire hazard. Never use an open flame for hot dismounting.

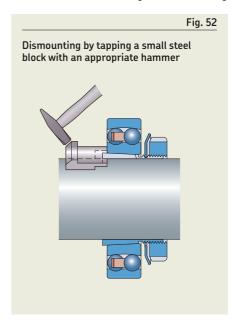
Dismounting bearings fitted on a tapered shaft seat

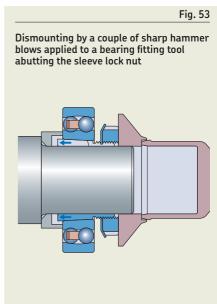

Small bearings can be dismounted using a mechanical or hydraulic puller that engages the inner ring. Self-centring pullers equipped with spring-operated arms should be used to simplify the procedure and avoid damage to the bearing seat. If it is not possible to apply the claws of the puller to the inner ring, withdraw the bearing via the outer ring or use a puller in combination with a pulling plate (fig. 50).

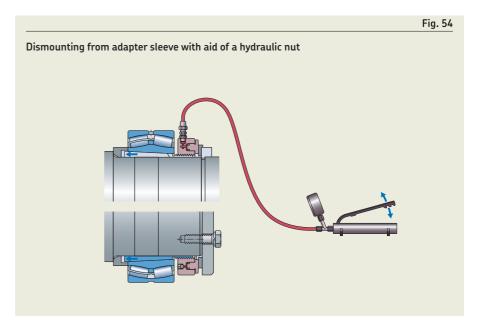

It is much easier and safer to dismount medium-size and large bearings when the oil injection method is used. This method injects oil, under high pressure, between the two tapered mating surfaces, via a supply duct and a distribution groove. This significantly reduces the friction between the two surfaces and separates the bearing from its seat (fig. 51).


△ WARNING

To avoid the risk of serious injury, attach a provision such as a lock nut or end plate to the shaft end to limit the bearing travel when it suddenly comes loose.




Dismounting bearings fitted on an adapter sleeve

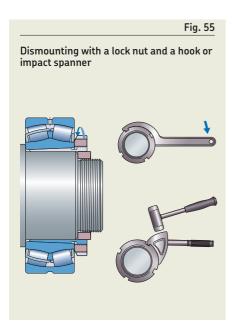

To dismount small bearings fitted on an adapter sleeve and a plain shaft, loosen the sleeve lock nut a few turns, then use a hammer of suitable size to tap a small steel block evenly around the bearing inner ring side face (fig. 52).

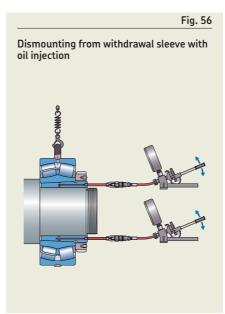
For small bearings fitted on an adapter sleeve and a stepped shaft with a spacing collar between the shoulder and the bearing side face, loosen the adapter sleeve lock nut a few turns and apply a couple of sharp hammer blows to a bearing fitting tool abutting the sleeve lock nut (fig. 53).

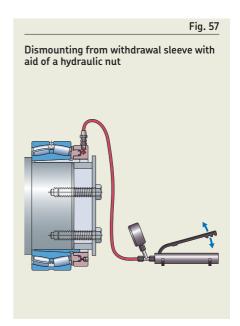
Using a hydraulic nut for dismounting bearings fitted on an adapter sleeve and a stepped shaft with a spacing collar makes bearing dismounting easy. However, to use this method, you should mount a suitable stop that abuts the piston of the hydraulic nut (fig. 54). If the sleeves are provided with oil supply ducts and distribution grooves, dismounting becomes easier because the oil injection method can be used.

Dismounting bearings fitted on a withdrawal sleeve

When dismounting a bearing fitted on a withdrawal sleeve, the locking device (for example a lock nut or end plate) must be removed.


Small and medium-size bearings can be dismounted with a lock nut and a hook or impact spanner (fig. 55).


Medium-size and large bearings fitted on a withdrawal sleeve can be easily dismounted using a hydraulic nut.


Withdrawal sleeves with a bore diameter ≥ 200 mm are provided, as standard, with two oil supply ducts and distribution grooves in both the bore and outside surface. When using the oil injection method, two hydraulic pumps or oil injectors and appropriate extension pipes are needed (fig. 56).

MARNING

To avoid the risk of serious injury, attach a stop behind the hydraulic nut at the shaft end (fig. 57). The stop prevents the withdrawal sleeve and hydraulic nut from shooting off the shaft if the sleeve separates suddenly from its seat.

210 **SKF**.

Inspection and monitoring

This section describes various aspects of inspecting and monitoring bearings in operation for the purpose of preventing problems. It also gives an introduction to trouble-shooting and links to more detailed troubleshooting procedures.

Inspection during operation

Spotting early indications of bearing damage makes it possible to replace bearings during regularly scheduled maintenance. This avoids otherwise costly unscheduled machine downtime if a bearing fails. Important parameters for monitoring machine condition include noise, temperature and vibration.

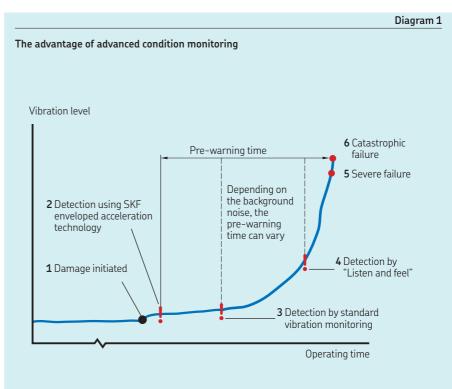
Bearings that are worn or damaged usually exhibit identifiable symptoms (*Trouble-shooting*, page 213). There can be a number of possible causes and this section helps identify some of these.

For practical reasons, not all machines or machine functions can be monitored using advanced systems. In these cases, trouble can be detected by looking at or listening to the machine. However, if deterioration can be detected by human senses, damage may already be extensive. Using objective technologies, such as advanced vibration analysis, means damage can be detected before it becomes problematic (diagram 1). By using condition-monitoring instruments and the SKF enveloped acceleration technology, the pre-warning time can be maximized.

An example of how damage can progress is shown in fig. 58 and shown conceptually in diagram 1. A damage scenario may follow this sequence:

- 1 Bearing starts to show abrasive wear.
- **2** First spall, detected by SKF enveloped acceleration technology.
- 3 Spalling has developed to an extent that the damage can be detected by standard vibration monitoring.
- **4** Advanced spalling causes high vibration and noise levels and an increase in operating temperature.

- **5** Severe damage occurs: fatigue fracture of the bearing inner ring.
- **6** Catastrophic failure occurs with secondary damage to other components.


Monitoring noise and vibration

A common method used to try to identify deterioration or damage in a bearing is to listen. Bearings in good condition produce a soft purring noise. Grinding, squeaking and other irregular sounds usually indicate that the bearings are in poor condition, or that something is wrong. However, sound monitoring is of limited use. SKF recommends vibration monitoring. It is more thorough and allows better monitoring of bearings and rotating equipment.

Vibration monitoring is based on three fundamental facts:

- All machines vibrate.
- The onset of a mechanical problem is generally accompanied by an increase in vibration levels.
- The nature of the fault can be determined by analyzing the vibration characteristics.

B.8 Sealing, mounting and dismounting

Monitoring temperature

It is important to monitor the operating temperature at bearing positions. If the operating conditions have not been altered, a sudden increase in temperature is often an indication of developed bearing damage and possible imminent failure of the bearing. However, keep in mind that a natural temperature rise can last up to one or two days immediately after first machine start-up and after each relubrication when using grease.

Monitoring lubrication conditions

Bearings can only achieve maximum performance levels with adequate lubrication. The lubrication conditions of a bearing should therefore be monitored closely. The condition of the lubricant itself should also be assessed periodically, preferably by taking samples and having them analysed.

SKF recommends the following general guidelines for lubrication-related inspection activities:

- Check for lubricant leaks in the areas surrounding the bearing positions.
- Keep protective collars and labyrinth seals filled with grease for maximum protection.
- Check that automatic lubricating systems are functioning properly and providing the appropriate amount of lubricant to the bearings.
- Check the lubricant level in sumps and reservoirs, and replenish as necessary.
- Where manual grease lubrication is employed, relubricate according to schedule.
- Where oil lubrication is used, change oil according to schedule.
- Always make sure that the specified lubricant is used.

Inspection during a machine shutdown

When a machine is not in operation, it is an opportunity to assess the condition of bearings, seals, seal counterfaces, housings, and lubricant. A general inspection can often be done by removing a housing cover or cap. If a bearing appears to be damaged, it should be dismounted and thoroughly inspected.

Shaft and belt alignment, and a thorough inspection of the machine foundation and exterior, can also be done during a machine shutdown.

Any condition, whether it is a missing shim or a deteriorating foundation, can negatively affect machine performance. The sooner any problem is identified, the sooner corrective action can begin. It is far less costly to replace bearings and associated components during a regularly scheduled shutdown than during unscheduled downtime that unexpectedly takes the machine out of service.

Inspecting bearings

Bearings are not always easily accessible. However, when bearings are partially or fully exposed, visual checks can be made. The most practical time to inspect bearings is during routine maintenance.

When inspecting a mounted bearing, SKF recommends following these general guidelines:

• Preparation

- Clean the external surface of the machine
- Remove the housing cover, or the housing cap, to expose the bearing.
- Take lubricant samples for analysis. For oil lubrication, take samples from the sump/reservoir. For grease lubricated open bearings, take samples from various positions within the bearing and surroundings. Inspect the condition of the lubricant. Impurities can often be detected by spreading a thin layer of the lubricant on a sheet of paper and examining it under a light.
- Clean the exposed external surfaces of the bearing with a lint-free cloth.

Inspection

- Inspect the exposed external surfaces of the bearing for corrosion. Inspect the bearing rings for any abnormal signs.
- For sealed bearings, inspect the seals for wear or damage.
- Where possible, rotate the shaft very slowly and feel for uneven resistance in the bearing; an undamaged bearing turns smoothly.

Detailed inspection of grease lubricated bearings

Grease lubricated open bearings in split plummer blocks can be subjected to a more detailed in-situ inspection as follows:

- Remove all grease around the bearing.
- Remove as much grease from the bearing as possible using a non-metallic scraper.
- Clean the bearing with a petroleumbased solvent by spraying the solvent into the bearing. Rotate the shaft very slowly while cleaning it, and continue to spray until the solvent ceases to collect dirt and grease. For large bearings that contain a build-up of severely oxidized lubricant, clean them with a strong alkaline solution containing up to 10% caustic soda and 1% wetting agent.
- Dry the bearing, and surrounding parts, with a lint-free cloth or clean, moisture-free compressed air (but do not rotate or spin the bearing).
- Inspect the bearing raceways, cage(s) and rolling elements for spalls, marks, scratches, streaks, discolouration and mirror-like areas. Where applicable, measure the radial internal clearance of the bearing (to determine if wear has taken place) and confirm that it is within the expected range.
- If the condition of the bearing is satisfactory, apply the appropriate grease to the bearing and the housing and immediately close the housing. If bearing damage is evident, dismount the bearing and protect it from corrosion. Then conduct a full analysis.

· General recommendations

- Take photographs throughout the inspection process to help document the condition of the bearing, lubricant and machine in general.
- Check the condition of the grease at different places and compare with fresh grease (fig. 59). Keep a representative sample of the grease for further analysis.
- Certain large and medium-size bearings are suitable for reconditioning. For additional information, refer to the SKF bearing maintenance handbook and publication SKF Remanufacturing Services

Inspecting seal counterfaces

To be effective, a seal lip must run on a smooth counterface. If the counterface is worn or damaged, the seal lip will cease to function properly.

When inspecting the seal counterface, also check for corrosion, shaft wear, scratches, dents, lip wear, lip tears and so on. If corrosion is evident but not severe, use a fine wet/dry abrasive paper to remove it, and then make sure all remnants are also removed. Worn counterface parts of the shaft can be repaired using SKF Speedi-Sleeve.

△ WARNING

Avoid inhaling, ingesting or contacting solvents and alkaline solutions. These can cause skin and eye burns or damage to respiratory or digestive tract. If necessary, seek medical assistance.

Troubleshooting

Bearings that are not operating properly usually exhibit identifiable symptoms. The best way to identify these symptoms, and take corrective action at an early stage, is to establish a plant-wide condition monitoring programme.

In cases where condition monitoring equipment is not available or practical, the section Troubleshooting of the SKF bearing maintenance handbook presents some useful hints to help identify the most common symptoms, their causes and, whenever possible, some practical solutions. Depending on the degree of bearing damage, some symptoms may be misleading and, in many cases, are the result of secondary damage. To effectively troubleshoot bearing problems, it is necessary to analyse the symptoms according to those first observed in the application. This is dealt with in more detail in the publication Bearing damage and failure analysis.

Bearing selection examples

Bearing selection examples

C.1	Vibrating screen	216
C.2	Rope sheave	222
C.3	Centrifugal pump	228

This section contains several worked examples that show the *Bearing selection process*, page 60, applied to various machines and application cases.

Each example is presented as a number of steps that generally follows the sequence in the bearing selection process. However, interdependencies in any particular application case may require looping back and forth between the process steps and where this occurs it is fully described in the example.

C.1 Vibrating screen

This example shows the bearing selection process applied to an application case in which a vibrating screen manufacturer is selecting the bearings for a new machine.

The steps in the example follow the sequence in the bearing selection process. Refer to sections **B.1 – B.8** for a full description of each process step.

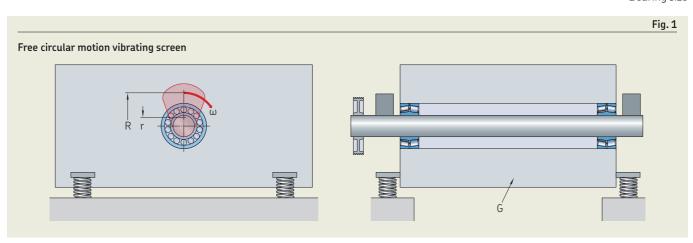
Performance and operating conditions

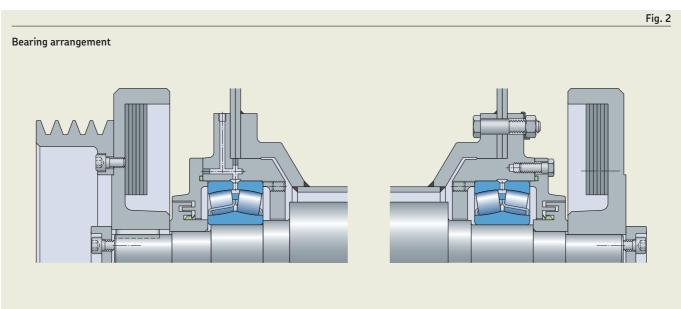
The new machine is a free circular motion vibrating screen. The vibrator unit is composed of a shaft with two bearings and counterweights. This means the main radial load rotates with the shaft while the outer ring is stationary. The application drawing is shown in fig. 1.

The relevant performance requirements, operating conditions and input parameters for the bearing selection are:

- mass of screen box without charge: G = 6 100 kg
- shaft diameter: 140 mm
- rotational speed: n = 756 r/min
- angular velocity (n × $2\pi/60$): $\omega = 79.2$ rad/s
- radius of vibration: r = 8,1 mm
- distance between the centres of gravity of the counterweights and shaft axis: R = 80 mm
- distance between the bearings: 3 m
- lubrication method: grease
- operating temperature of the bearings: T = 75 °C (165 °F)
- environment: the screen may be located outdoors, in harsh, dusty and humid conditions
- required SKF rating life: 20 000 h

Bearing type and arrangement





A locating/non-locating bearing arrangement is used. The bearing on the drive side is the locating bearing. This limits axial displacement of the transmission pulley, which saves energy and increases belt life. The opposite bearing is non-locating to accommodate axial displacement caused by thermal expansion of the shaft.

The distance between the bearings is 3 metres, and the vibrating screen structure is made of welded and bolted steel parts. Shaft deflection and misalignment of supports under load require bearings that can compensate for misalignment.

Spherical roller bearings are selected for this new vibrating screen (fig. 2), which is the typical solution. They can carry high loads and accommodate misalignment between the inner and outer ring without any reduction of their service life.

Bearing size

A shaft diameter of 140 mm is needed to transmit the required shaft drive torque and limit shaft deflection.

SKF supplies bearings in the 223 series for vibratory applications. Based on the required shaft diameter, the 22328 CCJA/W33VA405 is selected. We will check its size using the SKF rating life.

Product data for 22328 CCJA/W33VA405 is on page 800.

For vibrating screens, the equivalent dynamic bearing load, P, can be estimated using:

$$P = \left(\frac{1.2 \times G \times r \times \omega^{2}}{2}\right) = \left(\frac{1.2 \times 6100 \times 0.0081 \times 79.2^{2}}{2}\right)$$
$$= 186 \text{ kN}$$

The load ratio C/P = 1357/186 = 7.3

SKF rating life

 $L_{10mh} = a_{SKF} L_{10h}$

1. Lubrication condition – the viscosity ratio, κ

 $\kappa = v/v_1$

The rated viscosity $v_1 = 10 \text{ mm}^2/\text{s}$ (diagram 14, page 101).

A viscosity ratio, κ , of about 4 is targeted to operate in full film lubrication conditions, therefore ν should be about 40 mm²/s.

You need to verify the viscosity ratio after you have selected your lubricant.

2. Contamination factor, η_c

Given:

- contamination conditions are typical (i.e. open bearings, no filtering, wear particles and ingress from surrounding and harsh environment)
- $d_m = 220 \text{ mm}$

then, using **table 6**, page **105**, $\eta_c = 0.2$

3. Life modification factor, aske

Given:

• K = 4

• $\eta_c P_u/P = 0.2 \times 132/186 = 0.14$

22328 CCJA/W33VA405 is an SKF Explorer bearing

then, using diagram 10, page 97, for radial roller bearings, a_{SKF} = 1,3

$$L_{10mh} = a_{SKF} \left(\frac{10^6}{60 \text{ n}} \right) \left(\frac{C}{P} \right)^{10/3}$$

 $= 1.3 \times (106/(60 \times 756)) (7.3)^{10/3} = 21500 \text{ h} > 20000 \text{ h}$

Conclusion

SKF bearing 22328 CCJA/W33VA405 is a suitable size to meet the rating life requirements.

Lubrication

Selecting grease or oil

On page 113, table 1 provides limits for the nd_m value, up to which grease lubrication is normally a suitable solution in terms of relubrication intervals at normal temperatures.

Input values:

- spherical roller bearing in the 223 series
- C/P = 7.3
- $n d_m = 756 \times (140 + 300)/2 = 166 320$

From **table 1**, page **113**, the recommended nd_m limit for $C/P \approx 8$ is 150 000, which is somewhat below the actual nd_m value. The operating conditions are at the limits where grease lubrication is suitable, and you can expect short relubrication intervals. But this is not an issue for vibrating screens, and you can select grease lubrication.

Grease selection

You can find a suitable SKF grease using the SKF bearing grease selection chart, page 124. Grease selection criteria are:

- temperature: 75 °C (165 °F) \rightarrow M
- speed: n $d_m \approx 166000 \rightarrow M$ to H
- load: C/P $\approx 8 \rightarrow M$
- severe vibrations
- humid outdoor conditions → good rust inhibiting properties

SKF LGEP2 is a suitable choice provided a viscosity ratio, κ , of 4 is confirmed.

LGEP2 has the following properties:

- $v = 200 \text{ mm}^2/\text{s}$ at $40 \,^{\circ}\text{C}$ (105 $^{\circ}\text{F}$)
- $v = 16 \text{ mm}^2/\text{s} \text{ at } 100 \,^{\circ}\text{C} (210 \,^{\circ}\text{F})$
- operating viscosity at 75 °C (165 °F) is around 40 mm²/s, based on diagram 13, page 100.
- $\kappa = v/v_1 = 40/10 = 4$ is confirmed

Relubrication interval and quantity

Experience suggests relubricating the bearings in the vibrating screen every 75 h with 30 g of grease. The short intervals are needed to push out contamination, while the reduced quantity limits heat generation caused by high grease volumes.

Using the standard relubrication interval from diagram 2, page 112, and input values gives:

- $n d_m b_f = 166320 \times 2 \approx 330000$
- C/P ≈ 8

The relubrication interval is 1 700 h. This needs to be reduced, with contamination and vibration considered (table 2, page 115), confirming approximately the experienced values used for vibrating screen bearings.

Relubrication quantity is:

$$G_p = 0,002 DB = 0,002 \times 300 \times 102 = 61 g$$

Standard relubrication of the bearings every 75 h with 30 g of grease will maintain adequate lubrication condition.

Initial grease fill

The free volume in the bearing, which should be filled with grease, is approximately:

$$V = \frac{\pi}{4} B (D^2 - d^2) \times 10^{-3} - \frac{M}{7.8 \times 10^{-3}}$$

$$V = 3,14/4 \times 102 \times (300^2 - 140^2) \times 10^{-3} - 36,5/0,0078 = 957 \text{ cm}^3$$

For a filling degree of 50%, you need about 430 g of grease per bearing.

C.1 Vibrating screen

Operating temperature and speed

Experience from similar applications is broad and a bearing operating temperature between 70 to 80 °C (160 to 175 °F) can be assumed.

The screen charge is at ambient temperature and there are no other external sources generating heat. The speed is < 50% of the limiting speed. Although the load ratio C/P < 10, no detailed thermal analysis is required.

The actual operating temperature should be checked on the real machine.

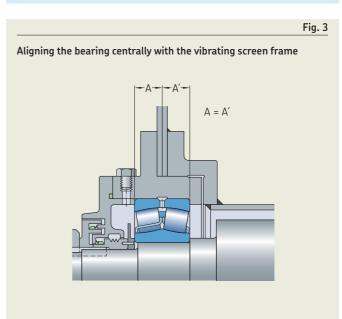
The bearing frictional losses are 1 900 W per bearing, calculated with the SKF Bearing Calculator (skf.com/bearingcalculator).

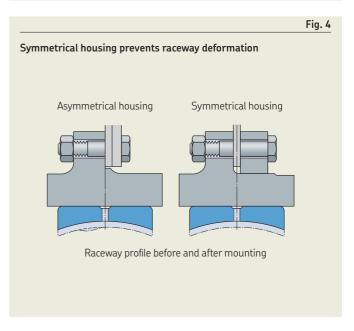
Bearing interfaces

The radial load turns in phase with the rotating inner ring, while the outer ring stands still. Therefore, the inner ring has a stationary load condition and the outer ring a rotating load condition. An interference fit is needed between the outer ring and the housing. A loose fit can be used between the inner ring and the shaft.

The standard fit recommendations are listed in table 1.

There are reasons for choosing dimensional tolerances other than the standard fits:


- Choose f6 (a) for easy axial displacement of the inner ring. To reduce the risk of fretting corrosion, consider hardening the shaft seat.
- Select P6© (tighter tolerances) to improve outer ring support and bearing service life.


Additional recommendations

The following additional factors are recommended:

- The bearing centre should be aligned with the frame centre of the vibrating screen (fig. 3).
- The housing wall thickness should be greater than 40% of the bearing width.
- Design the housing to be as symmetrical as possible, so it has the same thickness on both sides of the vibrating screen frame, in order to avoid housing deformation (fig. 4).
- Machine threads in the housing to make it easier when dismounting the housing from the screen body and the bearing of the housing by the use of bolts (fig. 5 and fig. 6, page 220).

Seat toler	ances for stan	dard conditions		Table
		Total radial run- out tolerance		Ra
Shaft Housing	g6© P7©	IT5/2 IT6/2	IT5 IT6	1,6 μm 3,2 μm

SKF 219

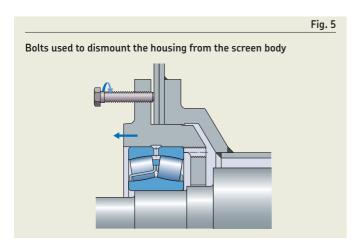
Bearing execution

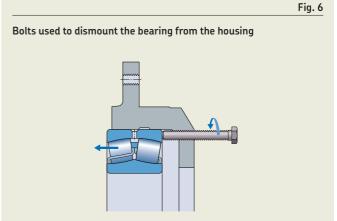
The bearing selected for this application is a spherical roller bearing for vibratory applications (*Designs and variants* page 775).

These bearings are identified by the designation suffixes VA405 and VA406. They have a C4 internal clearance, which is required because of the interference fit of the outer ring in combination with the temperature difference between inner and outer rings, particularly during start-up situations. Their hardened window-type cages reduce friction and wear in the bearing when operating under rotating outer ring load and high acceleration conditions, resulting in a lower operating temperature and longer lubricant life.

The VA406 execution is intended for the non-locating support and has a PTFE coated bore. This helps to prevent fretting corrosion, which can occur because of the loose fit and vibration.

Overall conclusions


- The 22328 CCJA/W33VA405 bearing meets the rating life requirement.
- SKF grease LGEP2 is appropriate for the given operating conditions.
- Maintenance and condition monitoring aspects have not been included in this example. For additional information about SKF offers for vibrating screens, refer to the information on the SKF website under *Industry Solutions*.


Sealing, mounting and dismounting

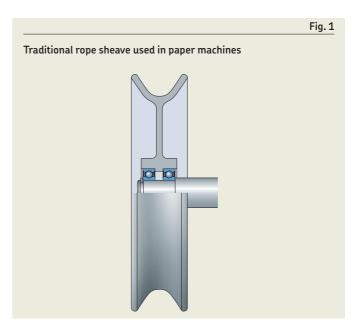
Vibrating screen designs generally use labyrinth seals to protect the rolling bearings. With this type of seal, it is important to maintain a sufficient quantity of grease in the labyrinth gaps so that dirt and moisture are kept away from the bearings. Quantities and relubrication intervals should be adjusted according to the operator's observations.

Check the total radial run-out of the housing seat when the housing is mounted to the screen frame. Inadmissible deformation might occur and can require corrective action.

C.2 Rope sheave

This example shows the bearing selection process applied to an application case in which bearings are to be selected for the rope sheaves on a new paper machine.

A paper machine manufacturer wants to build a new machine using rope sheaves of their standard design. The end customer requires the sheaves to be maintenance free for five years.


The steps in the example follow the sequence in the bearing selection process. Some steps, such as *Bearing size*, require more than one iteration if the calculation is dependent on a subsequent stage in the process. This is indicated in the heading (for example, *Bearing size* (*step 2*), page 224). Refer to sections **B.1 – B.8** for a full description of each process step.

Performance and operating conditions

The rope sheaves (fig. 1) are positioned between rolls/cylinders of the paper machine and rotate all the time that the machine is in operation. In this application the outer ring of each rope sheave rotates continuously. The operating conditions are:

- rotational speed: 2 450 r/min
- radial load: 1,1 kN created by the weight of the sheave and by the rope tension, shared between the bearings
- axial load: zero because of the orientation of the sheaves, the rope creates no axial load
- environment: hot and humid, with 80 °C (175 °F) ambient temperature

Bearing type and arrangement

Because loads are low and speeds moderate, rope sheaves use two deep groove ball bearings. For a long, maintenance-free period sealed bearings are required. SKF deep groove ball bearings are available with various seal executions.

A floating bearing arrangement is used, where each bearing locates the sheave axially in one direction and the whole arrangement is able to move axially over a small distance between the two end positions.

Bearing size

The manufacturer's existing rope sheave design uses two 6207-2RS1 bearings. SKF has replaced the RS1 seal with the RSH seal. In this example we check the suitability of 6207-2RSH bearings (page 274).

The next step in the selection process is to determine the method, on which to base the size selection. The bearings are running in typical operating conditions and, therefore, rolling contact fatigue is the probable failure mode. We base the size selection on rating life.

Basic rating life

$$L_{10h} = \left(\frac{10^6}{60 \text{ n}}\right) \left(\frac{C}{P}\right)^p$$

As there is no axial load, the equivalent dynamic bearing load, P, on each bearing is equal to the radial load divided by two.

- P = 0.55 kN
- load ratio C/P = 49

The basic rating life L_{10h} = 804 800 h. This is much longer than the required maintenance-free period of 5 years (43 800 h).

Conclusion

- With such a high basic rating life at 2 450 r/min, it is recommended to check that the bearing is sufficiently loaded to maintain ball rolling and avoid ball sliding. This will be done after the lubrication is checked, because lubricant viscosity influences the requisite minimum load.
- Grease life should be checked to see if the bearing fulfils the end-customer's requirement.

The SKF rating life, L_{10mh} , will be calculated after the lubrication is checked and the operating temperature and speed are checked, because lubricant viscosity influences the result. This will be done in *Bearing size* (step 2), page 224.

Lubrication

Bearing 6207-2RSH is filled with MT33 grease (table 2, page 245). The operating temperature should be defined before continuing.

Operating temperature and speed

When the load ratio C/P > 10, the operating temperature is below $100 \,^{\circ}C$ (210 $^{\circ}F$), the operating speed is below 50% of the limiting speed, and there is no pronounced external heat input, a detailed thermal analysis is not required. In this example:

- load ratio: C/P = 49 > 10
- operating speed: 2 450 r/min < 0,5 × 6 300 (limiting speed)
- From experience of rope sheaves operating in similar conditions, the bearing operating temperature is about 90 °C (195 °F).

So a detailed thermal analysis is not required.

Lubrication (step 2)

1. Grease life MT33

Grease life can be estimated using diagram 1, page 246. Because the bearing outer ring rotates, for grease life estimations, nD is used instead of nd_m (table 2, page 115).

Then, using the input values:

- $nD = 2450 \times 72 = 176400$
- MT33 grease with a grease performance factor, GPF = 1
- operating temperature of about 90 °C (195 °F)

The grease life, L_{10h} , is about 12 500 hours, which is less than the required 5-year maintenance-free period.

2. Grease life WT

The SKF bearing 6207-2RSH is available with the grease WT, which has a GPF = 4. It is a polyurea-type grease with an ester base oil, table 3, page 245.

From diagram 1, page 246 the grease life, L_{10h} , is 50 000 hours, which is greater than 5 years.

Conclusion

The SKF bearing 6207-2RSH with the grease WT fulfils the requirement in terms of grease life.

2.2 Rope sheave

Bearing size (step 2)

From the conclusions in *Bearing size*, page 223, the minimum load needs to be checked and, now the lubrication has been selected, the SKF rating life can be verified.

Minimum load

Using the minimum load equation from *Loads*, page 254, the minimum load, F_{rm} , is given by:

$$F_{rm} = k_r \left(\frac{v n}{1000} \right)^{2/3} \left(\frac{d_m}{100} \right)^2$$

where:

 $k_r = 0.025$

 $v = 210 \text{ mm}^2/\text{s}$

When determining the minimum load, to cover all critical operating conditions, use the highest oil viscosity that might occur. This will be at the lowest temperature, which is 20 °C (70 °F). Base oil viscosity of WT grease at 40 °C (105 °F) is 70 mm²/s \approx ISO VG 68. Estimated from **diagram 13**, page 100, or calculated with the *SKF Bearing Calculator* (skf.com/bearingcalculator), for WT grease v = 210 mm²/s at

(skf.com/bearingcalculator), for WT grease $v = 210 \text{ mm}^2\text{/s}$ at 20 °C (70 °F).

 $d_m = (d+D)/2 = (35+72)/2 = 53,5 \text{ mm}$

Therefore:

 F_{rm} = 0,44 kN < 0,55 kN, so the bearing 6207-2RSH/WT is adequate.

SKF rating life

 $L_{10mh} = a_{SKF} L_{10h}$

Because $P < P_u$, fatigue is not a factor (*Fatigue load limit*, P_u , page 104). However, it is useful to verify the lubrication condition (viscosity ratio) and life modification factor.

1. Lubrication condition - the viscosity ratio, κ

 $\kappa = v/v_1$

The following are used:

- v₁ is determined from diagram 14, page 101
- with $d_m = 53.5$ and n = 2450 r/min, v_1 is close to 12 mm²/s

For WT, the base oil viscosity at 90 °C (195 °F) can be estimated from diagram 13, page 100, or calculated with the SKF Bearing Calculator (skf.com/bearingcalculator) and is 12 mm²/s.

Viscosity ratio, $\kappa = 12/12 = 1$

2. Life modification factor, a_{SKF}

To determine the life modification factor for radial ball bearings, diagram 9, page 96 is used, with:

- P = 0.55 kN
- $\kappa = 1$
- $P_u = 0,655 \text{ kN}$
- $\eta_c = 0.6$

The contamination factor is chosen based on table 6, page 105.

• SKF 6207-2RSH/WT is an SKF Explorer bearing.

With $\eta_c P_u/P = 0.7$ and using **diagram 9**, **page 96**, the a_{SKF} of about 50 is much greater than 1, so the SKF rating life is far above the required life.

Conclusion

The bearing SKF 6207-2RSH/WT is adequate in terms of fatigue

Bearing interfaces

The bearing inner rings have a stationary load condition and no spacer between the inner rings in the cross-located arrangement. They are mounted with a loose fit for easy mounting. The recommended fit for standard conditions is $g6 \oplus (table 5, page 148)$.

The outer rings have a rotating load condition, so they are mounted with an interference. The recommended fit for standard conditions is M7© (table 8, page 151), which has a probable interference range of –25 to +8 (table 20, page 172).

Bearings in rope sheaves of paper machines should always have an interference for the outer ring (application handbook *Rolling bearings in paper machines*). To achieve this select N6(\bigcirc), which has a probable interference range of –29 to –5 (table 21, page 174). For geometrical tolerances and surface roughness, standard recommendations can be applied.

The tolerances for the bearing seats are:

	Dimensional tolerance	Total radial run-out tolerance	Total axial run-out tolerance	Ra	
Inner ring Outer ring	g6© N6©	IT5/2 IT6/2	IT5 IT6	1,6 μm 3.2 um	

Bearing execution

Intial internal clearance

The current design uses bearings with Normal initial clearance. The interference fit on the outer ring reduces the internal clearance. We determine the operational clearance for both Normal and C3 initial clearance, to select the most appropriate bearing execution.

1. Initial internal clearance

Refer to *Bearing data*, page 250. Values obtained from table 6, page 252.

	Normal	C3
min./avg./max.	6/13/20 µm	15/24/33 μm

2. Clearance reduction caused by interference fits

There is no interference on the inner ring, therefore use: $\Delta r_{fit} = \Delta_2 f_2$ (Clearance reduction caused by interference fits, page 184)

Obtain values for:

- factor, f₂ (diagram 2, page 184)
- probable fits for housings, Δ₂ (table 21, page 174)

Results:

Δr_{fit}	min./avg./max.	-25 / -15 / -4 μm
Δ_2	min./avg./max.	–29/–17/–5 μm
f_2		0,87
d/D		0,49

3. Internal clearance after mounting

	Normal	C3
min lava Imay	_19/_2/6 um	_10 / 9 / 29 um

At least C3 clearance is required. Analysis with SKF proprietary software, considering the effects from smoothing of the mating surfaces and the probability that maximum fit reduction coincides with minimum bearing clearance, provides the following values for a bearing with C3 internal clearance:

min./avg./max. $-2/16/32 \mu m$

A small negative clearance is not critical for ball bearings. C3 clearance is adequate for this application.

Seals

It is not recommended to use shields (suffix 2Z) instead of contact seals (suffix 2RSH) in this application because there is a risk of grease leakage with outer ring rotation. The 2RSH seal design has the advantage of being more resistant to washout (high-pressure cleaning) that happens in paper machines, and so this will increase service life.

Consider hybrid bearings

Depending on the paper machine and position of the rope sheave, the sheave may face higher operating temperatures, which will reduce the grease life. To increase grease life, the use of hybrid bearings (ceramic balls instead of steel ones) of the same size can increase the grease life by at least a factor of two.

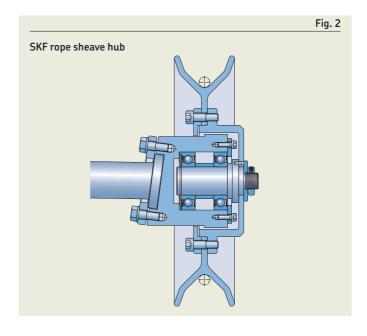
Consider design change

By changing the rope sheave hub design so that the bearing's inner ring rotates instead of the outer ring, grease life is increased. The speed factor will be n d_m = 131 000 instead of nD = 176 400.

The grease life, L_{10h} , of the 6207-2RSH/C3WT bearing will increase from 50 000 h to 61 000 h.

SKF has developed a rope sheave hub to take the above consideration into account. The bearings have ceramic balls, and WT grease, and their inner rings rotate (fig. 2). An enhanced design has been created using special bearings. For additional information, see the handbook *Rolling bearings in paper machines*.

Sealing, mounting and dismounting


Sometimes, simple labyrinth seals are added to protect the bearing integral seals further.

The normal mounting and dismounting methods are applicable.

Overall conclusions

The bearing that fulfils the requirements is a sealed and greased SKF Explorer bearing 6207-2RSH/C3WT.

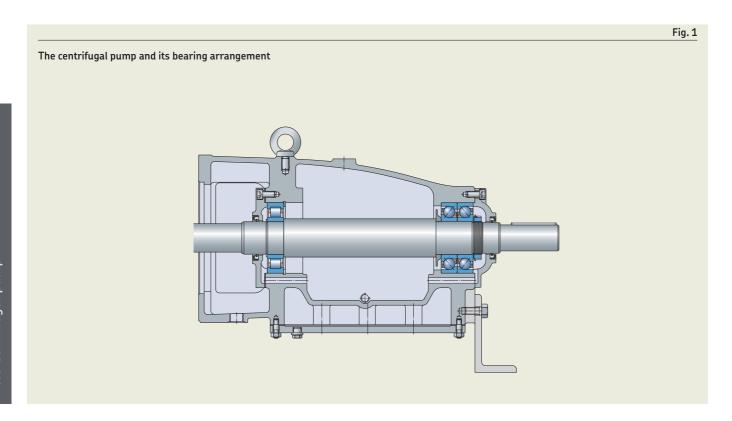
For more demanding operating conditions, or to achieve an even longer maintenance-free period, SKF can provide other solutions.

226

C.3 Centrifugal pump

This example shows the bearing selection process applied to an application case in which modification is required to a centrifugal pump.

The pump manufacturer wants to improve the efficiency of an existing centrifugal process pump by modifying the impeller. As a result, the bearing loads will be greater, and so the current bearing selection needs to be checked to verify that it can cope with the change. The application drawing is shown in fig. 1.


The steps in the example follow the sequence in the bearing selection process. Refer to sections B.1-B.8 for a full description of each process step.

Performance and operating conditions

The operating conditions are:

- rotational speed: n = 3 000 r/min
- lubrication:
 - method: oil bath
 - oil viscosity grade: ISO VG 68
- for the non-locating support a cylindrical roller bearing, NU 311 ECP:
 - max. radial load: $F_r = 3,29 \text{ kN}$
 - estimated operating temperature: T = 70 °C (160 °F)

228 **SKF**

C.3 Centrifugal pump

- for the locating support a pair of universally matchable single row angular contact ball bearings, 7312 BECBP, arranged back-to-back:
 - max. radial load: $F_r = 1,45kN$
 - max. axial load: F_a = 11,5 kN
 - estimated operating temperature: T = 85 °C (185 °F)

Following pump industry standards, the basic rating life L_{10h} should be at least 16 000 h at maximum load conditions.

Bearing type and arrangement

A cylindrical roller bearing is used as the non-locating support and a pair of universally matchable single row angular contact ball bearings are used as the locating support.

The cylindrical roller bearing, of type NU, is used for the following reasons:

- It can accommodate, within itself, thermal expansion of the shaft.
- The inner ring is separable from the outer ring, with rollers and cage this simplifies assembly of the pump and the use of interference fits on both inner and outer ring.

For the pair of universally matchable single row angular contact ball bearings:

- Ball bearings with a 40° angle are well suited to accommodate high axial loads and medium to high speeds.
- The bearings are arranged back-to-back, with the inner rings clamped and mounted with an interference fit to the shaft.
 Because the clearance of the pair is controlled by clamping the inner rings, the outer rings can be positioned in the housing between a shoulder and a cover, without the need for precise clamping.

Both bearing housing seats are machined in one clamping position, which guarantees good alignment. Misalignment is less than 2 minutes of arc, which is within the acceptable misalignment limits for the angular contact ball bearing pair and cylindrical roller bearing.

Conclusion

The current selection of bearing type and arrangement is adequate for this application.

Bearing size, non-locating support

The given operating conditions, and the effects of rolling contact fatigue, indicate that bearing size should be determined using the basic rating life and SKF rating life.

Product data for NU 311 ECP is on page 522.

Basic rating life

$$L_{10h} = \left(\frac{10^6}{60 \text{ n}}\right) \left(\frac{C}{P}\right)^p$$

From *Loads*, page 509, $P = F_r$. Therefore, the load ratio C/P = 156/3,29 = 47

$$L_{10h} = \left(\frac{10^6}{60 \times 3000}\right) \left(\frac{156}{3,29}\right)^{3,33} > 1000000 h$$

The bearing is oversized.

SKF rating life

 $L_{10mh} = a_{SKF} L_{10h}$

1. Lubrication condition - the viscosity ratio, κ

 $\kappa = v/v_1$

Given:

oil viscosity grade = ISO VG 68 operating temperature = 70 °C (160 °F)

then, using diagram 13, page 100, $v = 20 \text{ mm}^2/\text{s}$

Given:

$$n = 3000 \text{ r/min}$$

 $d_m = 0.5 (55 + 120) = 87.5 \text{ mm}$

then, using diagram 14, page 101, $v_1 = 7 \text{ mm}^2/\text{s}$

Therefore, $\kappa = 20/7 = 2.8$

2. Contamination factor, η_c

Given:

- contamination conditions are typical (i.e. open bearings, no filtering, wear particles and ingress from surrounding environment)
- $d_m = 87,5 \, mm$

then, using **table 6**, page **105**, $\eta_c = 0.2$

Given:

 $P_u = 18,6 \text{ kN}$ P = F_r = 3,29 kN (*Loads*, page 509)

then $\eta_c P_u / P = 0.2 \times 18,6/3,29 = 1,13$

3. Life modification factor, a_{SKF}

Given:

 κ = 2,8 $\eta_c P_u/P$ = 1,13 NU 311 ECP is an SKF Explorer bearing

then, using diagram 10, page 97, aske = 50

Given:

 $L_{10h} > 10000000 h$

then $L_{10mh} > 50 \times 10000000 h$

then $L_{10mh} >> 1\,000\,000\,h$ indicating that the bearing is oversized for the operating conditions.

Minimum load

The fact that the basic rating life and SKF rating life are both very high and above the required bearing life indicates that the bearing may be too lightly loaded.

Using the minimum load equation from *Loads*, page 509, the minimum radial load, F_{rm} , required to avoid skidding and roller slip for cylindrical roller bearings is given by:

$$F_{rm} = k_r \left(6 + \frac{4 \text{ n}}{n_r} \right) \left(\frac{d_m}{100} \right)^2$$

Given:

 $d_{\rm m} = 87,5 \, \rm mm$

 $k_r = 0.15$

n = 3 000 r/min

 $n_r = 6\,000 \, r/min$

then $F_{rm} = 0.94 \text{ kN} < F_r = 3.29 \text{ kN}$

Conclusion

The bearing is oversized / lightly loaded. Options are:

- Continue to use the current bearing. There is no risk that the bearing will be damaged due to being too lightly loaded.
- Downsize the bearing, and in so doing reduce cost. Consider one of the following:
 - Keep the shaft diameter the same, but use the smaller NU 2 series bearing NU 211 ECP (refer to the product section).
 - Reduce the shaft diameter one step, provided the shaft design permits (strength and stiffness), and use the smaller NU 2 series bearing NU 210 ECP (refer to the product section).

However, both of these downsizing actions require design modifications to the adjacent components.

Bearing size, locating support

The given operating conditions, and the effects of rolling contact fatigue, indicate that bearing size should be determined using the basic rating life and SKF rating life.

Product data for 7312 BECBP is on page 414

Basic rating life

$$L_{10h} = \left(\frac{10^6}{60 \text{ n}}\right) \left(\frac{C}{P}\right)^p$$

From Loads, page 398:

 $C = 1,62 C_{\text{single bearing}} = 1,62 \times 104 = 168,5 \text{ kN}$

From Loads, page 398, for bearing pairs arranged back-to-back:

 $F_a/F_r = 11,5/1,45 > 1,14$

So use:

 $P = 0.57 F_r + 0.93 F_a = (0.57 \times 1.45) + (0.93 \times 11.5) = 11.52 kN$

Therefore, the load ratio C/P = 168,5/11,52 = 14,6

$$L_{10h} = \left(\frac{10^6}{60 \times 3000}\right) \left(\frac{168,5}{11,52}\right)^3 = 17400 \text{ h}$$

SKF rating life

 $L_{10mh} = a_{SKF} L_{10h}$

1. Lubrication condition – the viscosity ratio, $\boldsymbol{\kappa}$

 $\kappa = v/v_1$

Given:

oil viscosity grade = ISO VG 68 operating temperature = 85 °C (185 °F)

then, using diagram 13, page 100, $v = 13 \text{ mm}^2/\text{s}$

Given:

n = 3000 r/min $d_m = 0.5 (60 + 130) = 95 \text{ mm}$

then, using diagram 14, page 101, $v_1 = 7 \text{ mm}^2/\text{s}$

Therefore, $\kappa = 13/7 = 1.8$

230

The next higher viscosity grade, ISO VG 100, would give κ = 2,5. But this would result in the NU 311 ECP bearing having κ > 4, which, during cold starts in particular, would give unwanted high κ values.

2. Contamination factor, η_c

Given:

- contamination conditions are typical (i.e. open bearings, no filtering, wear particles and ingress from surrounding environment)
- $d_m = 95 \text{ mm}$

then, using **table 6**, page **105**, $\eta_c = 0.2$

Given:

 $P_u = 2 \times 3,2 = 6,4 \text{ kN}$ P = 11,52 kN (Basic rating life)

then $\eta_c P_u / P = 0.2 \times 6.4 / 11.52 = 0.11$

3. Life modification factor aske

Given:

 κ = 1,8 $\eta_c P_u/P$ = 0,11 7312 BECBP are SKF Explorer bearings

then, using diagram 9, page 96, $a_{SKF} = 5$

Given:

 $L_{10h} = 17400 h$

then $L_{10mh} = 5 \times 17400 = 87000 h$

Conclusion

The pair of 7312 BECBP SKF Explorer bearings are of a suitable size.

Lubrication

The pump has an oil bath. This is typical of process pumps, because of their requirement for long service intervals. In this pump, for simplicity, the locating and the non-locating support bearings are lubricated by the same oil bath.

As determined in previous steps, κ is 1,8 for the pair of angular contact ball bearings and 2,8 for the cylindrical roller bearing, and so the viscosity grade of the selected oil is adequate.

Operating temperature and speed

Determine whether a detailed thermal analysis is required (*Thermal equilibrium*, page 131) by checking that:

- the rotational speed is less than 50% of the bearing limiting speed:
- This is true for the non-locating support.
- For the locating support, it is 56%, which is just slightly above the limit. That is, for a pair of single row angular contact ball bearings, the limiting speed is reduced by 20% (*Permissible speed*, page 402), and so $3000/(0.8 \times 6700) = 0.56$.
- the load ratio C/P > 10:
 - This is true for the locating and non-locating supports.
- there is no pronounced external heat input:
 - The pump is located in an environment where the ambient temperature is 20 to 30 °C (70 to 85 °F).
 - The pump medium is at ambient temperature, so no additional heat flows to the bearings.

Therefore, no further thermal analysis is needed.

Bearing interfaces

Because the loads on the bearings will be greater, as a result of the modification to the pump, you should check the bearing seat tolerances to make sure the bearings are mounted with adequate fits.

Given the standard steel shaft and cast iron housing, the bearing loads, speeds and temperatures, which are all within standard conditions, you can apply *Seat tolerances for standard conditions*, page 148.

Shaft tolerances

You can find shaft tolerances for seats for radial ball bearings in table 5, page 148, and for radial roller bearings in table 6, page 149.

Given:

	NU 311 ECP	7312 BECBP
Condition of rotation	rotating inner ring load	rotating inner ring load
P/C ratio	0,02	0,07
Bore diameter	55 mm	60 mm

Results:

ĸ	earing	COST
u	cailliu	SEGL

Bearing	Dimensional tolerance	Total radial run- out tolerance	Total axial run-out tolerance	Ra
NU 311 ECP	k6©	IT5/2	IT5	0,8 μm
7312 BECBP	k5€	IT4/2	IT4	0,8 µm

Housing tolerances

Any wear developing during service may lead to imbalance of the impeller, leading to an indeterminate direction of load on the outer rings of both bearings.

You can find tolerances for seats for cast iron and steel housings, for radial ball bearings, in table 8, page 151.

Given:

	NU 311 ECP	7312 BECBP
Condition of rotation	indeterminate direction of load	indeterminate direction of load
P/C ratio	0,02	0,07
Outer diameter	120 mm	130 mm
Poculto		

Results:

Bearing	Dimen- sional tolerance	Total radial run-out tolerance	Total axial run-out tolerance	Ra
NU 311 ECP	K7 ©	IT6/2	IT6	3,2 μm
7312 BECBP	K7€	IT6/2	IT6	3,2 µm

Axial location

The current design has adequate axial location. Make sure that the lock nut that locates the inner rings of the angular contact ball bearings is sufficiently tightened. Apply the clamp force uniformly around the circumference and respect the abutment dimensions (product data for 7312 BECBP is on page 414). To avoid distortion of the inner rings and to achieve the desired axial clearance in the bearing pair, limit the clamping force. For centrifugal pumps, a clamping force of $C_0/4$ (19 kN) is recommended.

Bearing execution

Checking the initial internal clearance

The current design uses bearings with Normal initial clearance. The fits for the inner and outer rings, and a temperature difference between the inner and outer rings of 10 °C (20 °F), reduce the internal clearance. Other influences on the internal clearance are negligible.

1. Initial internal clearance

	NU 311 ECP	Pair of 7312 BECBP
min./avg./max.	40 / 55 / 70 μm	22/32/27 μm
	Refer to <i>Bearing data</i> , page 504. Values obtained from table 3, page 506.	Refer to Bearing data, page 392. Axial values obtained from table 4, page 394, converted to radial (axial × tan 40°).

2. Clearance reduction caused by interference fits

Use.

 $\Delta r_{fit} = \Delta_1 f_1 + \Delta_2 f_2$ (Clearance reduction caused by interference fits, page 184)

Obtain values for:

- factors f₁ and f₂ (diagram 2, page 184)
- probable fits for shafts, Δ₁ (table 14, page 160)
- probable fits for housings, Δ₂ (table 20, page 172)

Results:

		NU 311 ECP	Pair of 7312 BECBP
d/D		0,46	0,46
f_1		0,78	0,78
f_2		0,86	0,86
Δ_1	min./avg./max.	–32/–19/–6 μm	–26/–16/–6 μm
Δ_2	min./avg./max.	–20/0/20 μm	–21/1/23 μm
Δr_{fit}	min./avg./max.	$-42/-15/-5 \mu m$	-38/-12/-5 μm

3. Clearance reduction caused by temperature difference

 $\Delta r_{temp} = 0.012 \Delta T d_m$ (Clearance reduction caused by temperature difference between shaft, bearing rings and housing, page 184)

232

Results:

	NU 311 ECP	Pair of 7312 BECBP
d _m	87,5 mm	95 mm
Δr_{temp}	–11 µm	–11 μm

4. Operating clearance

	NU 311 ECP	Pair of 7312 BECBP
min./avg./max.	–13/30/55 μm	–27/17/4 μm

For a cylindrical roller bearing, negative clearance (i.e. preload) is generally not recommended.

Pairs of angular contact ball bearings should have an average operating clearance close to zero (ranging between small clearance and light preload), particularly when the pairs are loaded predominantly axially. A small range is required to:

- limit preload to limit friction (increased friction results in higher temperatures, and therefore reduced viscosity and reduced bearing life)
- limit clearance to avoid ball skidding

This manual calculation does not consider smoothing of the mating surfaces, nor elastic deflection under load, nor the probability of extreme values occurring at the same time.

Analysis using more advanced SKF software gives operating clearance results:

	NU 311 ECP	Pair of 7312 BECBP
min./avg./max.	3/34/59 µm	–10/11/24 μm

These results indicate that Normal internal clearance is suitable.

Cage selection

Given the estimated operating temperature of 85 °C (185 °F) (i.e. the higher temperature of the two bearing supports), a speed of well below the limiting speed, and considering availability and price, the standard rolling element guided polyamide cages are confirmed as adequate.

For historical reasons, in some geographical areas, brass cages are preferred for angular contact ball bearings. These are available as standard from SKF. This also applies to the cylindrical roller bearings.

Conclusion

Non-locating support

The NU 311 ECP bearing, currently used in the centrifugal pump, is adequate. As an alternative, the NU 311 ECM bearing could be used. Downsizing of the bearing is possible.

Bearing execution is described by suffixes in the bearing designation (*Designation system*, page 514).

Designation suffixes:

	Suffix	Description
Internal design	EC	optimized internal design incorporating more and/or larger rollers and with a modified roller end / flange contact designed to mini- mize friction
Cage design	P	glass fibre reinforced PA66 cage, roller centred
	М	machined brass cage, riveted, roller centred
Clearance class	-	Normal

Locating support

The pair of universally matchable 7312 BECBP bearings, currently used in the centrifugal pump, are adequate. As an alternative, the 7312 BECBM bearing could be used.

Bearing execution is described by suffixes in the bearing designation (*Designation system*, page 404).

Designation suffixes:

	Suffix	Description
Internal design	В	40° contact angle
	E	optimized internal design – reinforced rolling element set
External design / clearance class	СВ	bearing for universal matching; two bearings arranged back-to-back or face-to-face; have Normal axial internal clearance
Cage design	Р	glass fibre reinforced PA66 cage, ball centred
	М	machined brass cage, ball centred

234 **SKF**

Sealing, mounting and dismounting

Sealing

The current pump design uses radial shaft seals to keep the oil bath lubricant in the pump and to protect the bearings from contamination (fig. 1, page 228). You can use seals SKF HMS5 (fig. 2) or HMSA10 (fig. 3). These are suitable for both oil and grease lubricated applications. The temperature range and speed capability of the nitrile rubber compound used for these seals suits the operating conditions of the pump.

When the seal counterface becomes worn, you can repair the shaft with a wear sleeve, such as SKF Speedi-Sleeve.

Hot mounting of the bearings

The bearings are mounted with an interference fit on the shaft and a transition fit in their housings. You can mount the bearings easily by heating their inner rings to $100 \,^{\circ}\text{C}$ ($210 \,^{\circ}\text{F}$) and the housing seats to $50 \,^{\circ}\text{C}$ ($160 \,^{\circ}\text{F}$). For heating the inner rings, use an SKF induction heater or electric hot plate.

Shaft alignment

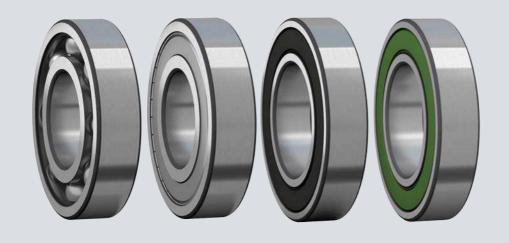
To maximize pump life, the pump and its electric motor need to be well aligned. SKF alignment tools can help.

Overall conclusions

The existing bearings can be used in combination with the new impeller design.

Downsizing of the cylindrical roller bearing is recommended.

Product data


Ball bearings	
1. Deep groove ball bearings	239
2. Insert bearings (Y-bearings)	339
3. Angular contact ball bearings	383
4. Self-aligning ball bearings	43
5. Thrust ball bearings	46!
Roller bearings	
6. Cylindrical roller bearings	493
7. Needle roller bearings	58
8. Tapered roller bearings	66
9. Spherical roller bearings	77.
10. CARB toroidal roller bearings	84
11. Cylindrical roller thrust bearings	87
12. Needle roller thrust bearings	89
13. Spherical roller thrust bearings	91
Track rollers	
14. Cam rollers	93
15. Support rollers	94
16. Cam followers	96
Engineered products	
17. Sensor bearing units	98
18. High temperature bearings	100
19. Bearings with Solid Oil	102
20. INSOCOAT bearings	102
21. Hybrid bearings	104
22. NoWear coated bearings	105
Bearing accessories	
23. Adapter sleeves	106
24. Withdrawal sleeves	108
25. Lock nuts	1089

5KF. 237

Deep groove ball bearings

1 Deep groove ball bearings

Designs and variants	241		
Single row deep groove ball bearings	241		
Stainless steel deep groove ball bearings	241		
Single row deep groove ball bearings with filling slots	241		
Double row deep groove ball bearings	242		
Capped bearings	242		
Greases for capped bearings	244		
Bearings with a snap ring groove	247		
Bearings with a flanged outer ring	247		
SKF Explorer bearings	248		
Quiet running bearings for large electric generators	248		
Cages	249		
Matched bearings	249		
	,		
Bearing data	250		
(Dimension standards, tolerances, internal clearance,			
permissible misalignment)			
, , , , , , , , , , , , , , , , , , ,			
Loads	254		
(Minimum load, axial load carrying capacity, load carrying			
capacity of matched bearing pairs, equivalent dynamic			
bearing load, equivalent static bearing load)			
Temperature limits	256		
Permissible speed	256		
Designation system	258		
B 1		0.1	
Product tables	2/0	Other deep groove ball bearings	0.24
1.1 Single row deep groove ball bearings	260	Cam rollers	933
1.2 ICOS oil sealed bearing units	308	Sensor bearing units	987
1.3 Single row deep groove ball bearings with a snap	24.0	High temperature bearings	1009
ring groove	310	Bearings with Solid Oil	1023
1.4 Stainless steel deep groove ball bearings	316	INSOCOAT bearings	1029
1.5 Single row deep groove ball bearings with filling	220	Hybrid bearings	1043
slots	328	NoWear coated bearings	1059
1.6 Double row deep groove ball bearings	334	Polymer ball bearings → <u>skf.com</u> ,	pearing!

1 Deep groove ball bearings

More information

General bearing knowledge	17
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Seat tolerances for standard	
conditions	148
Selecting internal clearance	182
Sealing, mounting and	
dismounting	193

Mounting instructions for individual bearings → skf.com/mount

SKF bearing maintenance handbook ISBN 978-91-978966-4-1 Deep groove ball bearings are particularly versatile. They are suitable for high and very high speeds, accommodate radial and axial loads in both directions, and require little maintenance. Because deep groove ball bearings are the most widely used bearing type, they are available from SKF in many designs, variants and sizes.

In addition to the bearings presented in this section, deep groove ball bearings for special applications are shown under:

- Sensor bearing units, page 987
- High temperature bearings and bearing units, page 1005
- Bearings with Solid Oil, page 1023
- INSOCOAT bearings, page 1029
- Hybrid bearings, page 1043
- NoWear coated bearings, page 1059

For single row cam rollers, refer to *Cam rollers*, page 931.

Designs and variants

Single row deep groove ball bearings

Single row deep groove ball bearings (fig. 1) are available capped (with seals or shields) or open. Open bearings that are also available capped may have recesses in the ring side faces (fig. 2).

SKF inch bearings in the EE(B), RLS and RMS series are intended as aftermarket items and, therefore, SKF recommends not using these bearings for new bearing arrangement designs (skf.com/go/17000-1-1).

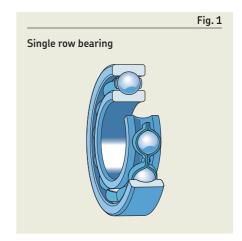
SKF can also supply bearings with a tapered bore. For detailed information, contact SKF.

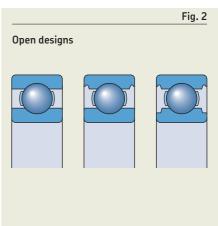
Stainless steel deep groove ball bearings

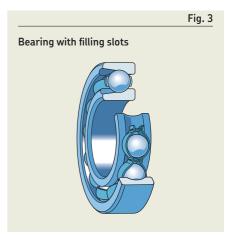
Stainless steel deep groove ball bearings (fig. 1) are available capped (with seals or shields) or open. Open bearings that are also available capped may have recesses in the ring side faces (fig. 2).

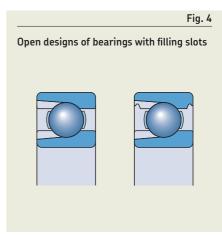
These bearings have a lower load carrying capacity than same-sized bearings made of high chromium steel.

Inch stainless steel deep groove ball bearings are not listed in this catalogue, but can be found online at skf.com/go/17000-1-4.


Single row deep groove ball bearings with filling slots

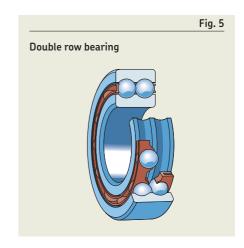

Single row deep groove ball bearings with filling slots have a filling slot in both the inner and outer rings (fig. 3) to accommodate more balls than standard deep groove ball bearings.


Filling slot bearings have a higher radial load carrying capacity than bearings without filling slots, but their axial load carrying capacity is limited. They are also unable to operate at the same high speeds as bearings without filling slots.


Deep groove ball bearings with filling slots are available open or with shields on one or both sides. They are also available with or without a snap ring groove. Open bearings that are also available with shields may have recesses in the outer ring (fig. 4).

Large size deep groove ball bearings with filling slots, without cage, are available on request.

Double row deep groove ball bearings


Double row deep groove ball bearings (fig. 5) are very suitable for bearing arrangements where the load carrying capacity of a single row bearing is inadequate. For the same bore and outside diameter, double row bearings are slightly wider than single row bearings in the 62 and 63 series, but have a considerably higher load carrying capacity.

Double row deep groove ball bearings are only available as open bearings (without seals or shields).

Capped bearings

Selection guidelines for different capping devices under various operating conditions are listed in **table 1**. However, these guidelines cannot substitute for testing a shield or seal in its application. For additional information, refer to *Integral sealing*, page 26.

The seals, which are fitted in a recess on the outer ring, make good, positive contact with the recess, without deforming the outer ring. The capping devices are available as:

							Tabl
Selection guideline	es for SKF capping	devices					
Requirement	Shields	Non-contact seals	Low-friction so	eals	Contact seal	s	
	Z, ZS	RZ	RSL	RST	RSH	RS1	
Low friction	+++	+++	++	++	0	0	
High speed	+++	+++	+++	+	0	0	
Grease retention	0	+	+++	+++	+++	++	
Dust exclusion	0	+	++	++	+++	+++	
Water exclusion							
dynamic	_	_	0	+++	+++	++	
nigh pressure	-	-	0	•	+++	0	
Symbols:	+++ = best	++ = very good	+ = good	∘ = fair	– = not recon	nmended	

242 **SKF**

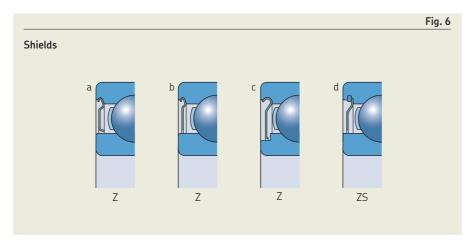
Shields (designation suffixes Z or ZS)

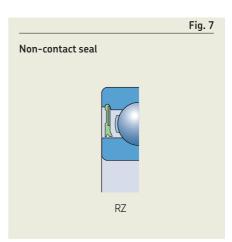
- are primarily intended for applications where the inner ring rotates
- are fitted in the outer ring and form a narrow gap with the inner ring
- are made of sheet steel, or stainless steel for stainless steel bearings
- protect from dirt and debris without friction losses
- are supplied in different designs (fig. 6):
- with designation suffix Z: either with (a) or without (b) an extension in the shield bore or on some stainless steel bearings, the shield bore can extend into a recess in the inner ring (c)
- with designation suffix ZS (stainless steel bearings only): fixed in the outer ring by a retaining ring and may extend into a recess (d)
- available on request for stainless steel bearings only: shields made of PTFE

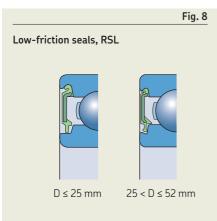
Non-contact seals (designation suffix RZ)

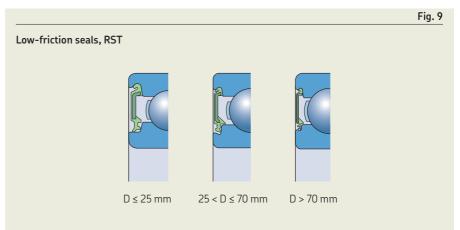
- provide better sealing effectiveness than shields
- can be operated at the same speeds as shields
- form an extremely narrow gap with the inner ring shoulder (fig. 7)
- are made of sheet steel reinforced NBR (oil- and wear-resistant)

Low-friction seals (designation suffixes RSL or RST)


- provide better sealing effectiveness than non-contact seals
- are made of sheet steel reinforced NBR (oil- and wear-resistant)


RSL design (fig. 8):


- can be operated at the same speeds as shields
- make virtually no contact with a recess in the inner ring shoulder
- are available for 60, 62, 63 series bearings in two designs, depending on the size


RST design (fig. 9):

- make positive contact with a recess in the inner ring shoulder for good sealing effectiveness
- are available on request for 60, 62 and 63 series bearings in three designs, depending on the size

1 Deep groove ball bearings

Contact seals (designation suffixes RSH, RSH2, RS1, RS1/VP311 or RS2)

- are made of sheet steel reinforced
 - NBR
 - FKM (designation suffix RS2 or RSH2, available on request)
 - food compatible, blue-coloured NBR* (designation suffix VP311 and for stainless steel bearings only)
- are available in different designs depending on the bearing they are used with (fig. 10):
 - for 60, 62 and 63 series bearings in two RSH designs (a, b), depending on the size
 - for RS1 designs, with sealing either against the inner ring shoulder (c) or against a recess in the inner ring side face for chromium steel bearings (d) or for stainless steel bearings (e), the relevant design is determined by dimension d₁ or d₂ in the product table.

ICOS oil sealed bearing units

- are typically used for applications with sealing requirements exceeding the capabilities of standard sealing solutions, i.e. oil retention
- have the following features compared to bearings with external sealing solutions:
 - need less axial space
 - simplify mounting
 - avoid expensive machining of the shaft because the inner ring shoulder is the seal counterface
- * The material is FDA and EC approved. FDA approval is based on compliance with CFR 21 section 177.2600 "Rubber articles intented for repeated use" for use in contact with aqueous and fatty foods. EC approval is based on compliance with the overall migration requirements of the German BfR recomenndation XXI for category 3 materials.

- consist of a 62 series deep groove ball bearing and an SKF WAVE seal (fig. 11):
 - single lip, spring loaded radial shaft seal
- made of NBR
- have limiting speeds quoted in the product table that are based on the permissible circumferential speed for the seal (14 m/s)

Greases for capped bearings

Bearings capped on both sides are lubricated for the life of the bearing and are virtually maintenance-free.

They are filled with one of the following greases:

Single row bearings

• standard bearings (table 2)

On request, bearings can be supplied with the following special greases:

- high temperature grease GJN
- wide temperature range grease HT or WT
- wide temperature range and low-noise grease LHT23
- low temperature grease LT

Stainless steel bearings

- wide temperature range and low-noise grease LHT23 as standard
- GFJ food-grade grease, registered by NSF as category H1 (designation suffix VP311)

The NSF registration confirms the grease fulfils the requirements listed in the US Food and Drug Administration's guidelines under 21 CFR section 178.3570 (lubricant acceptable with incidental food contact for use in and around food processing areas).

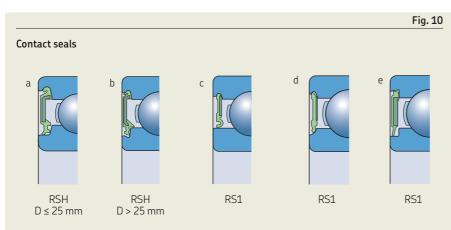
 available on request: special non-toxic grease, registered by NSF as category H1 (designation suffix VT378)

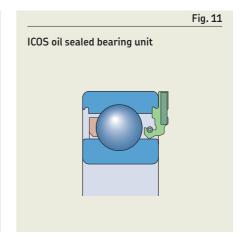
Bearings with filling slots

• high temperature grease GJN

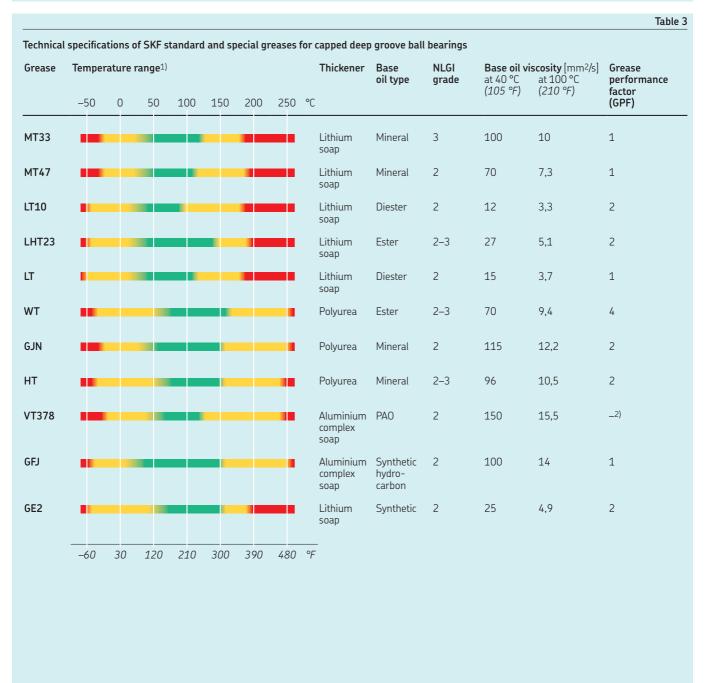
On request, bearings can be supplied with the following special greases:

- wide temperature range grease HT or WT
- wide temperature range and low-noise grease LHT23
- low temperature grease LT


The technical specifications of the various greases are listed in table 3.


The standard grease is not identified in the bearing designation (no designation suffix). Special greases are indicated by the corresponding grease suffix. Check availability of bearings with special grease prior to ordering.

△ WARNING


Seals made of FKM (fluoro rubber) exposed to an open flame or temperatures above 300 °C (570 °F) are a health and environmental hazard! They remain dangerous even after they have cooled.

Read and follow the safety precautions on page 197.

SKF standard greases	for capped single row o	leep groove ball beari	ings made of carbon chror	nium steel	Table 2
Bearings in diameter series	SKF standard gr	eases in bearings wit	h outside diameter		
diameter series	D ≤ 30 mm d < 10 mm	d ≥ 10 mm	30 < D ≤ 62 mm	D > 62 mm	
8, 9	LHT23	LT10	MT47	MT33	
0, 1, 2, 3	MT47	MT47	MT47	MT33	

¹⁾ Refer to the SKF traffic light concept (page 117).
2) For bearings filled with VT378 grease, use the scale corresponding to GPF = 1 and multiply the value obtained from diagram 1, page 246, by 0,2.

1 Deep groove ball bearings

1

Grease life for capped bearings

- is presented as L₁₀, i.e. the time period at the end of which 90% of the bearings are still reliably lubricated (diagram 1)
- depends on:
 - the operating temperature
 - the speed factor, nd_m
 - grease performance factor (GPF) (table 3, page 245)

The indicated grease life is valid under this combination of operating conditions:

- horizontal shaft
- inner ring rotation
- light load (P ≤ 0,05 C)
- operating temperature within the green temperature zone of the grease (table 3)
- · stationary machine
- low vibration levels

Where the operating conditions differ as described below, the grease life obtained from the diagram should be adjusted:

- for vertical shafts, use 50% of the obtained value
- for heavier loads (P > 0,05 C), apply a reduction factor (table 4)

When capped bearings must operate under certain extreme conditions, such as very high speeds or high temperatures, grease may appear on the capping diameter. For bearing arrangements where this would be detrimental, appropriate actions could be taken. For additional information, contact the SKF application engineering service.

Load P	Reduction factor
≤ 0,05 C	1
0,1 C	0,7
0,125 C	0,5
0,25 C	0.2

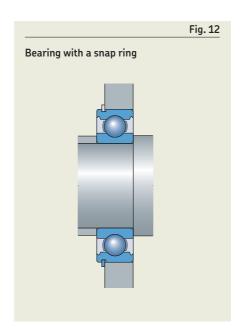
Diagram 1 Grease life for capped deep groove ball bearings where P = 0,05 C Grease life L₁₀ [h] 100 000 $nd_{m} = 20 000$ 100000200 000 300 000 400 000 10 000 500 000 600 000 700 000 1 000 100 GPF = 1 40 45 50 55 70 75 80 85 90 95 100 105 110 115 60 65 GPF = 255 60 70 75 80 85 90 95 100 105 110 115 120 125 130 GPF = 490 95 100 105 110 115 120 125 130 135 140 145 70 75 85 Operating temperature [°C] for various grease performance factors (GPF) n = rotational speed [r/min] d_m = bearing mean diameter [mm] = 0.5 (d + D)

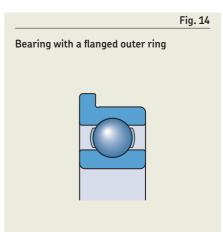
Bearings with a snap ring groove

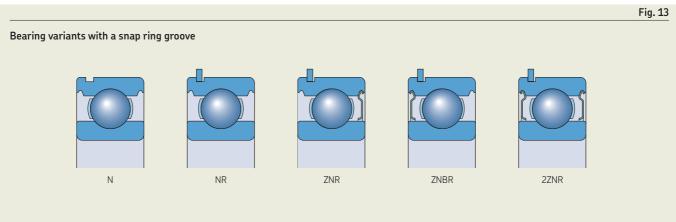
- can simplify the design of an arrangement
 - by locating the bearing axially in the housing by a snap ring (fig. 12)
 - by saving space
 - by significantly reducing mounting time.

Appropriate snap rings are shown in the product table along with their designation and dimensions.

The following variants are available (fig. 13):


- open bearings with a snap ring groove only (designation suffix N)
- open bearings with a snap ring (designation suffix NR)
- bearings with a snap ring and a shield on the opposite side (designation suffix ZNR)
- bearings with a snap ring and a shield on the same side (designation suffix ZNBR)
- bearings with a snap ring and a shield on both sides (designation suffix 2ZNR)


Bearings with a flanged outer ring


Certain sizes of SKF stainless steel deep groove ball bearings are also available with a flange on the outer ring (designation suffix R, fig. 14). They:

- can be supplied open or capped
- are relatively easy to locate axially in the housing
- enable easier and more cost-effective housing bore manufacture, no shoulders required

These bearings with a flanged outer ring are not listed in this catalogue, but can be found online at skf.com/go/17000-1-4.

SKF Explorer bearings

Single row deep groove ball bearings are also avilable as SKF Explorer bearings (page 7).

Quiet running bearings for large electric generators

- are designed to comply with stringent noise requirements
- are typically used in wind turbine generators
- provide consistent performance over a variety of operating conditions
- are identified by the designation suffix VQ658

	Steel cages				Polymer cages			Brass cages
		a	b					
Cage type	Ribbon-type, ball centred	Riveted, ball co	entred	Snap-type, ball centred	Snap-type, ball	centred		Riveted, ball, outer ring or inner ring centred
Material	Stamped steel	/ stainless steel			PA66, glass fibre reinforced	PA46, glass fibre reinforced	PEEK, glass fibre reinforced	Machined brass
Suffix	-	-		-	TN9	TN9/VG1561	TNH	M, MA or MB
Single row Dearings	Standard (metric only)	Standard (a)		-	Standard for inch bearings and ICOS oil sealed bearing units, check availability for other bearings	Check availa- bility (not available for inch bearings)	Check availa- bility (not available for inch bearings)	Standard (metric only)
Stainless steel Dearings	Standard	Standard (a)		Standard	Check availability	_	-	_
Bearings with illing slots	-	Standard (b)		-	-	-	-	_
Oouble row earings	-	-	-	-	Standard	-	-	_

248 **SKF**

Cages

Depending on their design, series and size, SKF deep groove ball bearings are fitted with one of the cages shown in **table 5**. Double row bearings are equipped with two cages. The standard stamped steel cage is not identified in the bearing designation. If non-standard cages are required, check availability prior to ordering.

When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For additional information about the suitability of cages, refer to *Cages*, page 187.

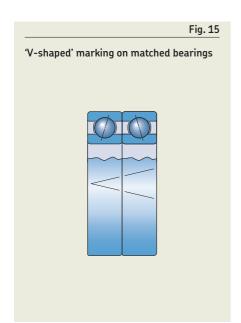
Matched bearings

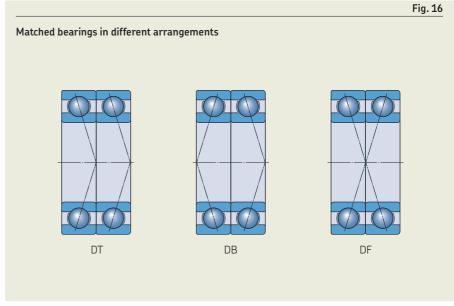
- are used where the load carrying capacity of a single bearing is inadequate
- are used where the shaft has to be located axially in both directions with a specific axial clearance
- where mounted immediately adjacent to each other, distribute the load between the bearings without having to use shims or similar devices

A 'V-shaped' marking on the outside surface of the outer rings of matched bearings (fig. 15) indicates how the pair should be mounted. The bearing pairs are supplied as a packaged unit.

Matched pairs can be supplied in three different arrangements (fig. 16):

Tandem arrangement (designation suffix DT)


- is used where the load carrying capacity of a single bearing is inadequate
- has parallel load lines and therefore shares the radial and axial loads equally
- can accommodate axial loads in both directions

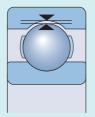

Back-to-back arrangement (designation suffix DB)

- has load lines that diverge towards the bearing axis
- provides a relatively stiff bearing arrangement
- · can accommodate tilting moments
- can accommodate axial loads in both directions, but only by one bearing in each direction

Face-to-face arrangement (designation suffix DF)

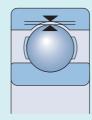
- has load lines that converge towards the bearing axis
- is less sensitive to misalignment but not as stiff as a back-to-back arrangement
- can accommodate axial loads in both directions, but only by one bearing in each direction

Bearing data


	Single row deep groove ball bearings						
Dimension standards	Boundary dimensions: ISO 15 Snap rings and grooves: ISO 464						
Tolerances	Normal P6 or P5 on request						
	Except for: SKF Explorer bearings Dimensional tolerances to P6 and tighter width tolerance: $D \le 110 \text{ mm} \rightarrow 0/-60 \mu\text{m}$ $D > 110 \text{ mm} \rightarrow 0/-100 \mu\text{m}$	Geometrical tolerances: $D \le 52 \text{ mm} \longrightarrow P5$ $52 \text{ mm} < D \le 110 \text{ mm} \longrightarrow P6$ $D > 110 \text{ mm} \longrightarrow \text{Normal}$					
For additional information							
→ page 35	Values: ISO 492 (table 2, page 38, to table 4, page 40)						
Internal clearance	Single bearings Normal Check availability of C2, C3, C4, C5, reduced ranges of standard clearance classes or partitions of adjacent classes. Matched bearing pairs Supplied either with clearance or preload: • CA – small axial internal clearance						
For additional information → page 182	• GA – Sinal axial internal clearance • GA – light preload Values: ISO 5753–1 (table 6, page 252), except for stainless steel bearings with d < 10 mm (table 7, page 253)						
Permissible misalignment	≈ 2 to 10 minutes of arc (single bearings)						
.	Misalignment increases bearing noise and reduces bearing service life, and when it exceeds the guideline values these effects become particularly noticeable. For matched bearing pairs, any misalignment increases bearing						

Stainless steel deep groove ball bearings	Single row deep groove ball bearings with filling slots	Double row deep groove ball bearings
Boundary dimensions: ISO 15 Except for: • bearings with suffix X • bearings with prefix WBB1 • outer ring flange of flanged bearings: ISO 8443	Boundary dimensions: ISO 15 Snap rings and grooves: ISO 464	Boundary dimensions: ISO 15
Normal P6 or P5 on request	Normal	Normal
Normal Check availability of other clearance classes and for matched bearing pairs (table 8, page 253). Va	Normal lues are valid for unmounted bearings und	Normal Check availability of C3 clearance class der zero measuring load.
≈ 2 to 10 minutes of arc	≈ 2 to 5 minutes of arc	≤ 2 minutes of arc

... noise and reduces bearing service life. For additional information, contact the SKF application engineering service.



Radial internal clearance of deep groove ball bearings

Bore dia	meter		internal clear								
d >	≤	C2 min.	max.	Normal min.	max.	C3 min.	max.	C4 min.	max.	C5 min.	max.
mm		μm									
2,5	6	0	7	2	13	8	23	-	-	-	-
6	10	0	7	2	13	8	23	14	29	20	37
10	18	0	9	3	18	11	25	18	33	25	45
18	24	0	10	5	20	13	28	20	36	28	48
24	30	1	11	5	20	13	28	23	41	30	53
30	40	1	11	6	20	15	33	28	46	40	64
40	50	1	11	6	23	18	36	30	51	45	73
50	65	1	15	8	28	23	43	38	61	55	90
65	80	1	15	10	30	25	51	46	71	65	105
80	100	1	18	12	36	30	58	53	84	75	120
100	120	2	20	15	41	36	66	61	97	90	140
120	140	2	23	18	48	41	81	71	114	105	160
140	160	2	23	18	53	46	91	81	130	120	180
160	180	2	25	20	61	53	102	91	147	135	200
180	200	2	30	25	71	63	117	107	163	150	230
200	225	2	35	25	85	75	140	125	195	175	265
225	250	2	40	30	95	85	160	145	225	205	300
250	280	2	45	35	105	90	170	155	245	225	340
280	315	2	55	40	115	100	190	175	270	245	370
315	355	3	60	45	125	110	210	195	300	275	410
355	400	3	70	55	145	130	240	225	340	315	460
400	450	3	80	60	170	150	270	250	380	350	520
450	500	3	90	70	190	170	300	280	420	390	570
500	560	10	100	80	210	190	330	310	470	440	630
560	630	10	110	90	230	210	360	340	520	490	700
630	710	20	130	110	260	240	400	380	570	540	780
710	800	20	140	120	290	270	450	430	630	600	860
800	900	20	160	140	320	300	500	480	700	670	960
900	1 000	20	170	150	350	330	550	530	770	740	1 040
1 000	1 120	20	180	160	380	360	600	580	850	820	1 150
1 120	1 250	20	190	170	410	390	650	630	920	890	1 260
1 250	1 400	30	200	190	440	420	700	680	1 000	-	-
1 400	1 600	30	210	210	470	450	750	730	1 060	-	-

Radial internal clearance of stainless steel deep groove ball bearings with a bore diameter < 10 mm

Bore d	iameter ≤	Radial C1 min.	internal cl	earance C2 min.	max.	Norma min.	al max.	C3 min.	max.	C4 min.	max.	C5 min.	max.
mm		μm											
_	9,525	0	5	3	8	5	10	8	13	13	20	20	28

							Table 8
Axial inte	rnal clearance and pre	eload of matched beari	ngs in the 60, 62 and 63	3 series			
Bore diar	neter	Axial inter CA	nal clearance	Preload GA			
d >	≤	min.	max.	Bearings of 60	series 62	63	
mm		μm		N			
- 10 18	10 18 30	15 20 25	35 40 45	30 50 100	30 50 100	- 100 100	
30 50 80	50 80 120	35 40 50	55 70 80	100 200 300	100 200 400	200 350 600	
120 180 250	180 250 315	60 70 80	100 110 120	500 800 –	700 1 000 -	900 1 200 -	
315 400	400 500	90 100	130 140	- -	- -	-	

5KF. 253

Loads

	Single row deep groove ball bearings	Stainless steel deep groove ball bearings
Minimum load For additional information	$F_{rm} = k_r \left(\frac{v n}{1000}\right)^{2/3} \left(\frac{d_m}{100}\right)^2$	
→ page 106	If minimum load cannot be reached, consider preloading.	
Axial load carrying capacity	Pure axial load \rightarrow F _a \leq 0,5 C ₀ Small bearings ¹⁾ and light series bearings ²⁾ \rightarrow F _a \leq 0,25 C ₀ Excessive axial load can lead to a considerable reduction in bearing serv	Pure axial load \rightarrow $F_a \le 0.25 C_0$ vice life.
Load carrying capacity of matched bearing pairs	The values for basic load ratings and fatigue load limits listed in the product table apply to single bearings. For matched bearing pairs mounted immediately adjacent to each other the following values apply: • basic dynamic load rating $C = 1,62 \ C_{single \ bearing}$ • basic static load rating $C_0 = 2 \ C_{0 \ single \ bearing}$ • fatigue load limit $P_u = 2 \ P_{u \ single \ bearing}$	
Equivalent dynamic bearing load	Single bearings and bearing pairs arranged in tandem: $F_a/F_r \le e \to P = F_r$ $F_a/F_r > e \to P = X F_r + Y F_a$	$F_a/F_r \le e \rightarrow P = F_r$ $F_a/F_r > e \rightarrow P = X F_r + Y F_a$
For additional information → page 91	Bearing pairs arranged back-to-back or face-to-face: $F_a/F_r \le e \rightarrow P = F_r + Y_1 F_a$ $F_a/F_r > e \rightarrow P = 0.75 F_r + Y_2 F_a$	
Equivalent static bearing load For additional	Single bearings and bearing pairs arranged in tandem: $P_0 = 0.6 \; F_r + 0.5 \; F_a$ $P_0 < F_r \rightarrow P_0 = F_r$	$P_0 = 0.6 F_r + 0.5 F_a$ $P_0 < F_r \rightarrow P_0 = F_r$
information → page 105	Bearing pairs arranged back-to-back or face-to-face: $P_0 = F_r + 1.7 F_a$	

¹⁾ d ≤ 12 mm 2) Diameter series 8, 9, 0, and 1

Single row deep groove ball bearings with filling slots	Double row deep groove ball bearings	
		Symbols C ₀ basic static load rating [kN] • single bearings (product tables, page 260) • matched bearing pairs (Load carrying capacity of matched
F _a ≤ 0,6 F _r	Pure axial load \rightarrow $F_a \le 0.5 C_0$	bearing pairs) d _m bearing mean diameter [mm] = 0,5 (d + D) e limit for the load ratio depending on the relationship f ₀ F _a /C ₀ (table 9, page 257, and table 10, page 257) f ₀ calculation factor (product tables) F _a axial load [kN] F _r radial load [kN] F _{rm} minimum radial load [kN] k _r minimum load factor (product tables) n rotational speed [r/min] P equivalent dynamic bearing load [kN] X calculation factor for the radial load (table 9) Y,Y ₁ ,Y ₂ calculation factors for the axial load depending on the relationship f ₀ F _a /C ₀ (table 9 and table 10) v actual operating viscosity of the lubricant [mm ² /s]
$F_a/F_r \le 0.6$ and $P \le 0.5$ C_0 $\rightarrow P = F_r + F_a$	$F_a/F_r \le e \rightarrow P = F_r$ $F_a/F_r > e \rightarrow P = XF_r + YF_a$	
$F_a/F_r \le 0.6 \to P_0 = F_r + 0.5 F_a$	$P_0 = 0.6 F_r + 0.5 F_a$ $P_0 < F_r \rightarrow P_0 = F_r$	

5KF. 255

1 Deep groove ball bearings

Temperature limits

The permissible operating temperature for deep groove ball bearings can be limited by:

- the dimensional stability of the bearing rings and balls
- the cage
- the seals
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings and balls

SKF deep groove ball bearings are heat stabilized up to at least 120 °C (250 °F).

Cages

Steel, stainless steel, brass or PEEK cages can be used at the same operating temperatures as the bearing rings and balls. For temperature limits of cages made of other polymer materials, refer to *Polymer cages*, page 188.

Seals

The permissible operating temperature for seals depends on the seal material:

- NBR: -40 to +100 °C (-40 to +210 °F)
 Temperatures up to 120 °C (250 °F) can be tolerated for brief periods.
- FKM: –30 to +200 °C (–20 to +390 °F)
 Temperatures up to 230 °C (445 °F) can be tolerated for brief periods.

Typically, temperature peaks are at the seal lip.

Lubricants

Temperature limits for greases used in SKF deep groove ball bearings capped on both sides are provided in **table 3**, **page 245**. For temperature limits of other SKF greases, refer to *Selecting a suitable SKF grease*, **page 116**.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Permissible speed

The speed ratings in the product table indicate:

- the reference speed, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the **limiting speed**, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds

For additional information, refer to *Operating temperature and speed*, page 130.

SKF recommends oil lubrication for bearings with a ring centred cage (designation suffix MA or MB). When these bearings are grease lubricated, the nd_m value is limited to 250 000 mm/min.

where

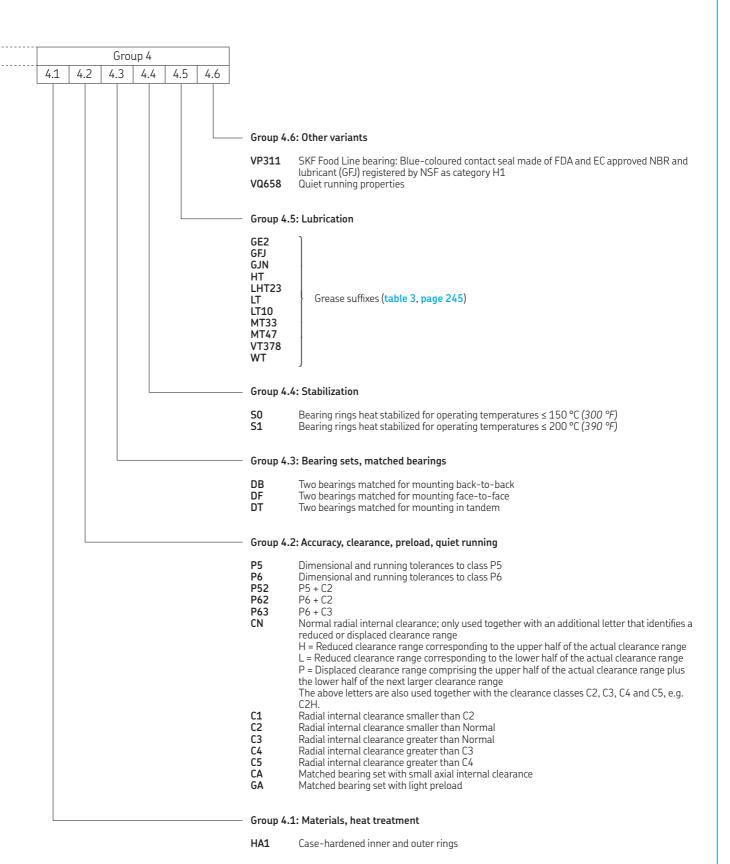
 d_m = bearing mean diameter [mm] = 0,5 (d + D)

n = rotational speed [r/min]

256 **SKF**

Table 9

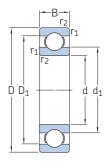
Calculation	factore	for doon	aroovo	ball bearings	
Laituiation	Iditions	ioi ueeb	uluuve	Dall Deal IIIus	

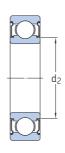

Calculation fa	Calculation factors for deep groove ball bearings											
Single row and double row bearings Normal clearance				Single C3 clea	row bearir Irance	igs	C4 clearance					
f_0F_a/C_0	e	X	Υ	e	Х	Υ	e	Х	Y			
0,172	0,19	0,56	2,3	0,29	0,46	1,88	0,38	0,44	1,47			
0,345	0,22	0,56	1,99	0,32	0,46	1,71	0,4	0,44	1,4			
0,689	0,26	0,56	1,71	0,36	0,46	1,52	0,43	0,44	1,3			
1,03	0,28	0,56	1,55	0,38	0,46	1,41	0,46	0,44	1,23			
1,38	0,3	0,56	1,45	0,4	0,46	1,34	0,47	0,44	1,19			
2,07	0,34	0,56	1,31	0,44	0,46	1,23	0,5	0,44	1,12			
3,45	0,38	0,56	1,15	0,49	0,46	1,1	0,55	0,44	1,02			
5,17	0,42	0,56	1,04	0,54	0,46	1,01	0,56	0,44	1			
6,89	0,44	0,56	1	0,54	0,46	1	0,56	0,44	1			

Calculation factors must be selected according to the operating clearance in the bearing, which may differ from the internal clearance before mounting. For additional information or for calculation factors for other clearance classes, contact the SKF application engineering service. Intermediate values can be obtained by linear interpolation.

Table 10 Calculation factors for paired single row deep groove ball bearings arranged back-to-back and face-to-face										
f ₀ F _a /C ₀	e	Y ₁	Y ₂							
0,17	0,23	2,8	3,7							
0,69	0,30	2,1	2,8							
2,08	0,40	1,6	2,15							
3,46	0,45	1,4	1,85							
5,19	0,50	1,26	1,7							

Designation system


				Grou	p1	Group 2	Grou	ıp 3	7	
			_		-					
Prefixes —										
ICOC										
ICOS- D/W	Oil sealed bearing unit Stainless steel, inch dimensions									
W	Stainless steel, metric dimensions									
WBB1	Stainless steel, metric dimensions, not in accordance									
	with ISO dimension series									
Basic designation —										
basic designation ————										
Listed in table 4, page 30										
2	Single row bearing with filling slots in the 02 dimension se	eries								
3	Single row bearing with filling slots in the 03 dimension s	eries								
EE, EEB, R, RLS, RMS	Inch bearing									
Bearing size for inch bearings 2	(/8) 1/4 in. (6,35 mm) bore diameter									
to	(10) In the location of the last of the la									
40	(/8) 5 in. (127 mm) bore diameter									
Suffixes —										
Julikes —										
Group 1: Internal design —										
A AA C B	D									
A, AA, C, D E	Deviating or modified internal design Reinforced ball set									
L	Neillorced ball set									
Group 2: External design (se	als, snap ring groove, etc.) ————————————————————————————————————									
N	Chan ring groove in the outer ring									
NR	Snap ring groove in the outer ring Snap ring groove in the outer ring, with snap ring									
N1	One locating slot (notch) in one outer ring side face									
R	Flanged outer ring									
-RS1, -2RS1	Contact seal, NBR, on one or both sides									
-RS2, -2RS2	Contact seal, FKM, on one or both sides									
-RSH, -2RSH -RSH2, -2RSH2	Contact seal, NBR, on one or both sides Contact seal, FKM, on one or both sides									
-RSL, -2RSL	Low-friction seal, NBR, on one or both sides									
-RST, -2RST	Low-friction seal, NBR, on one or both sides									
-RZ, -2RZ	Non-contact seal, NBR, on one or both sides									
-Z, -2Z	Shield on one or both sides									
-ZNBR	Shield on one side, snap ring groove in the outer ring, wit									
-ZNR -2ZNR	Shield on one side, snap ring groove in the outer ring, wit		the o	pposite	side of t	he shield				
-2ZNR -2ZS	Shield on both sides, snap ring groove in the outer ring, we Shield on both sides, held in place by a retaining ring	nui silah (1118								
X	Boundary dimensions not in accordance with ISO dimens	ion series								
	,									
Consum 2. Const. Let's										
Group 3: Cage design ——										
_	1 For stainless steel bearings: stamped stainless steel cad	ge, ball centred								
	2 For other bearings: stamped steel cage, ball centred	,								
М	Machined brass cage, ball centred; different designs or ma	aterial grades a	are ide	entified	by a nui	mber followin	g the			
144(5)	M, e.g. M2					•				
MA(S)	Machined brass cage, outer ring centred. The 'S' indicates									
MB(S) TN	Machined brass cage, inner ring centred. The 'S' indicates PA66 cage, ball centred	a lubrication g	ı uove	ın the (yulaing :	suriace.				
TN9	Glass fibre reinforced PA66 cage, ball centred									
TN9/VG1561	Glass fibre reinforced PA46 cage, ball centred									
TNH	Glass fibre reinforced PEEK cage, ball centred									
	<i>y</i> ,									


1.1 Single row deep groove ball bearings

d **3-6** mm

2RSL

2RZ

2Z

2RS1

2RSH

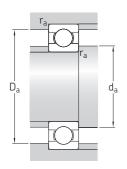
Principal dimensions	Basic load ratings dynamic static	Fatigue load lim

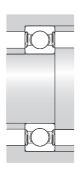
mit

Speed ratings Reference

2Z

Limiting

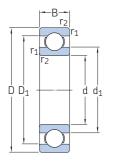

Designations Bearing Mass


d	D	В	С	C ₀	P _u	speed	speed ¹)		open or capped on both sides	capped on one side ¹⁾
mm			kN		kN	r/min		kg	_	
3	10	4	0,54	0,18	0,007	130 000	80 000	0,0015	► 623	-
	10	4	0,54	0,18	0,007	-	40 000	0,0015	► 623-2RS1	623-RS1
	10	4	0,54	0,18	0,007	130 000	60 000	0,0015	► 623-2Z	623-Z
4	9 9 9	2,5 3,5 4	0,423 0,54 0,54	0,116 0,18 0,18	0,005 0,07 0,07	140 000 140 000 140 000	85 000 70 000 70 000	0,0007 0,001 0,0013	618/4 628/4-2Z 638/4-2Z	<u>-</u>
	11	4	0,624	0,18	0,008	130 000	63 000	0,0017	619/4-2Z	-
	11	4	0,624	0,18	0,008	130 000	80 000	0,0017	619/4	-
	12	4	0,806	0,28	0,012	120 000	75 000	0,0021	604	-
	12	4	0,806	0,28	0,012	120 000	60 000	0,0021	► 604-2Z	604-Z
	13	5	0,936	0,29	0,012	110 000	67 000	0,0031	► 624	-
	13	5	0,936	0,29	0,012	110 000	53 000	0,0031	► 624-2Z	624-Z
	16	5	1,11	0,38	0,016	95 000	60 000	0,0054	634	-
	16	5	1,11	0,38	0,016	-	28 000	0,0054	634-2RS1	634-RS1
	16	5	1,11	0,38	0,016	95 000	48 000	0,0054	634-2RZ	634-RZ
	16	5	1,11	0,38	0,016	95 000	48 000	0,0054	► 634-2Z	634-Z
5	11	3	0,468	0,143	0,006	120 000	75 000	0,0012	618/5	-
	11	4	0,64	0,26	0,011	120 000	60 000	0,0014	628/5-2Z	-
	11	5	0,64	0,26	0,011	120 000	60 000	0,0016	638/5-2Z	-
	13	4	0,884	0,335	0,014	110 000	50 000	0,0025	619/5-2Z	-
	13	4	0,884	0,335	0,014	110 000	70 000	0,0025	619/5	-
	16	5	1,14	0,38	0,016	95 000	60 000	0,005	► 625	-
	16	5	1,14	0,38	0,016	95 000	48 000	0,005	► 625-2Z	625-Z
	19	6	2,34	0,95	0,04	80 000	50 000	0,0085	635	-
	19	6	2,34	0,95	0,04	-	24 000	0,009	635-2RS1	635-RS1
	19	6	2,34	0,95	0,04	80 000	40 000	0,009	635-2RZ	635-RZ
	19	6	2,34	0,95	0,04	80 000	40 000	0,0093	► 635-2Z	635-Z
6	13 13 15	3,5 5 5	0,715 0,88 0,884	0,224 0,35 0,27	0,01 0,015 0,011	110 000 110 000 100 000	67 000 53 000 50 000	0,002 0,0026 0,0039	618/6 628/6-2Z 619/6-2Z	- -
	15	5	0,884	0,27	0,011	100 000	63 000	0,0039	619/6	-
	19	6	2,34	0,95	0,04	80 000	50 000	0,0081	► 626	-
	19	6	2,34	0,95	0,04	-	24 000	0,0083	► 626-2RSH	626-RSH
	19	6	2,34	0,95	0,04	80 000	40 000	0,0083	► 626-2RSL	626-RSL
	19	6	2,34	0,95	0,04	80 000	40 000	0,0088	► 626-2Z	626-Z

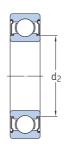
SKF Explorer bearing

▶ Popular item

1) For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.



Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
3	5,2	-	-	8,2	0,15	4,2	-	8,8	0,1	0,025	7,5
	5,2	-	-	8,2	0,15	4,2	5,1	8,8	0,1	0,025	7,5
	5,2	-	-	8,2	0,15	4,2	5,1	8,8	0,1	0,025	7,5
4	5,2	-	7,5	-	0,1	4,6	-	8,4	0,1	0,015	6,5
	5,2	-	-	8,1	0,1	4,6	5,1	8,4	0,1	0,015	10
	5,2	-	-	8,1	0,1	4,6	5,1	8,4	0,1	0,015	10
	6,1	-	-	9,9	0,15	4,8	5,8	10,2	0,1	0,02	6,4
	6,1	-	-	9,9	0,15	4,8	-	10,2	0,1	0,02	6,4
	6,1	-	-	9,8	0,2	5,4	-	10,6	0,2	0,025	10
	6,1	-	-	9,8	0,2	5,4	6	10,6	0,2	0,025	10
	6,7	-	-	11,2	0,2	5,8	-	11,2	0,2	0,025	10
	6,7	-	-	11,2	0,2	5,8	6,6	11,2	0,2	0,025	7,3
	8,4	-	-	13,3	0,3	6,4	-	13,6	0,3	0,03	8,4
	8,4	-	-	13,3	0,3	6,4	8,3	13,6	0,3	0,03	8,4
	8,4	-	-	13,3	0,3	6,4	8,3	13,6	0,3	0,03	8,4
	8,4	-	-	13,3	0,3	6,4	8,3	13,6	0,3	0,03	8,4
5	6,8	-	9,2	-	0,15	5,8	-	10,2	0,1	0,015	7,1
	6,8	-	-	9,9	0,15	5,8	6,7	10,2	0,1	0,015	11
	-	6,2	-	9,9	0,15	5,8	6	10,2	0,1	0,015	11
	7,5	-	-	11,2	0,2	6,4	7,5	11,6	0,2	0,02	11
	7,5	-	-	11,2	0,2	6,4	-	11,6	0,2	0,02	11
	8,4	-	-	13,3	0,3	7,4	-	13,6	0,3	0,025	8,4
	8,4	-	-	13,3	0,3	7,4	8,3	13,6	0,3	0,025	8,4
	11,1	-	-	16,5	0,3	7,4	-	16,6	0,3	0,03	13
	11,1	-	-	16,5	0,3	7,4	10,6	16,6	0,3	0,03	13
	11,1 11,1		-	16,5 16,5	0,3 0,3	7,4 7,4	10,6 10,6	16,6 16,6	0,3 0,3	0,03 0,03	13 13
6	8	-	11	-	0,15	6,8	-	12,2	0,1	0,015	7
	-	7,4	-	11,7	0,15	6,8	7,2	12,2	0,1	0,015	11
	8,2	-	-	13	0,2	7,4	8	13,6	0,2	0,02	6,8
	8,2	-	-	13	0,2	7,4	-	13,6	0,2	0,02	6,8
	11,1	-	-	16,5	0,3	8,4	-	16,6	0,3	0,025	13
	-	9,5	-	16,5	0,3	8,4	9,4	16,6	0,3	0,025	13
	-	9,5	-	16,5	0,3	8,4	9,4	16,6	0,3	0,025	13
	11,1	-	-	16,5	0,3	8,4	11	16,6	0,3	0,025	13


1.1 Single row deep groove ball bearings

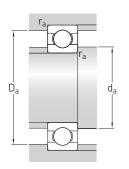
d **7-9** mm

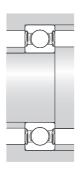
2RSL

2RZ

2Z

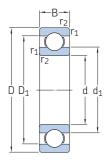
2RS1


2RS1


2RSH

2Z

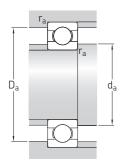
Princi	ipal dimen	sions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed ratin Reference	Limiting	Mass	Designations Bearing	
d	D	В	С	C_0	P_u	speed	speed ¹⁾		open or capped on both sides	capped on one side ¹⁾
nm			kN		kN	r/min		kg	_	
,	14	3,5	0,78	0,26	0,011	100 000	63 000	0,0022	618/7	-
	14	5	0,956	0,4	0,017	100 000	50 000	0,0031	628/7-2Z	-
	17	5	1,06	0,375	0,016	90 000	45 000	0,0049	619/7-2Z	-
	17	5	1,06	0,375	0,016	90 000	56 000	0,0049	619/7	-
	19	6	2,34	0,95	0,04	85 000	53 000	0,0076	► 607	-
	19	6	2,34	0,95	0,04	-	24 000	0,0078	► 607-2RSH	607-RSH
	19 19 22	6 6 7	2,34 2,34 3,45	0,95 0,95 1,37	0,04 0,04 0,057	85 000 85 000 70 000	43 000 43 000 45 000	0,0078 0,0084 0,012	► 607-2RSL ► 607-2Z ► 627	607-RSL 607-Z
	22 22 22	7 7 7	3,45 3,45 3,45	1,37 1,37 1,37	0,057 0,057 0,057	- 70 000 70 000	22 000 36 000 36 000	0,013 0,013 0,013	627-2RSH627-2RSL627-2Z	627-RSH 627-RSL 627-Z
	16	4	0,819	0,3	0,012	90 000	56 000	0,003	618/8	-
	16	5	1,33	0,57	0,024	-	26 000	0,0036	▶ 628/8-2RS1	-
	16	5	1,33	0,57	0,024	90 000	45 000	0,0036	▶ 628/8-2Z	-
	16	6	1,33	0,57	0,024	90 000	45 000	0,0043	638/8-2Z	-
	19	6	1,46	0,465	0,02	-	24 000	0,0071	619/8-2RS1	-
	19	6	1,46	0,465	0,02	85 000	43 000	0,0071	619/8-2Z	-
	19	6	1,46	0,465	0,02	85 000	53 000	0,0071	619/8	-
	19	6	2,34	0,95	0,04	85 000	43 000	0,0072	607/8-2Z	607/8-Z
	22	7	3,45	1,37	0,057	75 000	48 000	0,012	► 608	-
	22	7	3,45	1,37	0,057	-	22 000	0,012	► 608-2RSH	► 608-RSH
	22	7	3,45	1,37	0,057	75 000	38 000	0,012	► 608-2RSL	608-RSL
	22	7	3,45	1,37	0,057	75 000	38 000	0,013	► 608-2Z	608-Z
	22	11	3,45	1,37	0,057	-	22 000	0,016	► 630/8-2RS1	-
	24	8	3,9	1,66	0,071	63 000	40 000	0,018	628	-
	24	8	3,9	1,66	0,071	-	19 000	0,017	628-2RS1	628-RS1
	24	8	3,9	1,66	0,071	63 000	32 000	0,017	628-2RZ	628-RZ
	24	8	3,9	1,66	0,071	63 000	32 000	0,018	► 628-2Z	628-Z
	28	9	1,33	0,57	0,024	60 000	30 000	0,03	638-2RZ	638-RZ
	17	4	0,871	0,34	0,014	85 000	53 000	0,0034	618/9	-
	17	5	1,43	0,64	0,027	-	24 000	0,0043	628/9-2RS1	-
	17	5	1,43	0,64	0,027	85 000	43 000	0,0043	628/9-2Z	628/9-Z
	20	6	2,34	0,98	0,043	80 000	40 000	0,0076	619/9-2Z	-
	20	6	2,34	0,98	0,043	80 000	50 000	0,0076	619/9	-
	24	7	3,9	1,66	0,071	70 000	43 000	0,014	► 609	-

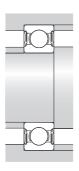

SKF Explorer bearing
Popular item
For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.

Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
7	9	-	12	-	0,15	7,8	-	13,2	0,1	0,015	7,2
	-	8,5	-	12,7	0,15	7,8	8	13,2	0,1	0,015	11
	10,4	-	-	14,3	0,3	9	9,7	15	0,3	0,02	7,3
	10,4	-	-	14,3	0,3	9	-	15	0,3	0,02	7,3
	11,1	-	-	16,5	0,3	9	-	17	0,3	0,025	13
	-	9,5	-	16,5	0,3	9	9,4	17	0,3	0,025	13
	-	9,5	-	16,5	0,3	9	9,4	17	0,3	0,025	13
	11,1	-	-	16,5	0,3	9	11	17	0,3	0,025	13
	12,1	-	-	19,2	0,3	9,4	-	19,6	0,3	0,025	12
	-	10,5	-	19,2	0,3	9,4	10,5	19,6	0,3	0,025	12
	-	10,5	-	19,2	0,3	9,4	10,5	19,6	0,3	0,025	12
	12,1	-	-	19,2	0,3	9,4	12,1	19,6	0,3	0,025	12
8	10,5	-	13,5	-	0,2	9,4	-	14,6	0,2	0,015	7,5
	10,1	-	-	14,2	0,2	9,4	9,4	14,6	0,2	0,015	11
	10,1	-	-	14,2	0,2	9,4	10	14,6	0,2	0,015	11
	-	9,6	-	14,2	0,2	9,4	9,5	14,6	0,2	0,015	11
	-	9,8	-	16,7	0,3	9,5	9,8	17	0,3	0,02	6,6
	-	9,8	-	16,7	0,3	9,5	9,8	17	0,3	0,02	6,6
	10,5	-	-	16,7	0,3	10	-	17	0,3	0,02	6,6
	11,1	-	-	16,5	0,3	10	11	17	0,3	0,025	13
	12,1	-	-	19,2	0,3	10	-	20	0,3	0,025	12
	-	10,5	-	19,2	0,3	10	10,5	20	0,3	0,025	12
	-	10,5	-	19,2	0,3	10	10,5	20	0,3	0,025	12
	12,1	-	-	19,2	0,3	10	12	20	0,3	0,025	12
	11,8	-	-	19	0,3	10	11,7	20	0,3	0,025	12
	14,4	-	-	21,2	0,3	10,4	-	21,6	0,3	0,025	13
	14,4	-	-	21,2	0,3	10,4	14,4	21,6	0,3	0,025	13
	14,4	-	-	21,2	0,3	10,4	14,4	21,6	0,3	0,025	13
	14,4	-	-	21,2	0,3	10,4	14,4	21,6	0,3	0,025	13
	14,8	-	-	22,6	0,3	10,4	14,7	25,6	0,3	0,03	12
9	11,5	-	14,5	-	0,2	10,4	-	15,6	0,2	0,015	7,7
	-	10,7	-	15,2	0,2	10,4	10,5	15,6	0,2	0,015	11
	-	10,7	-	15,2	0,2	10,4	10,5	15,6	0,2	0,015	11
	11,6	-	-	17,5	0,3	11	11,5	18	0,3	0,02	12
	11,6	-	-	17,5	0,3	11	-	18	0,3	0,02	12
	14,4	-	-	21,2	0,3	11	-	22	0,3	0,025	13

1.1 Single row deep groove ball bearings d 9-10 mm

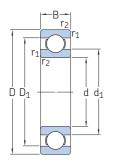
2RS1

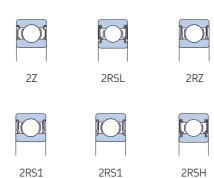



2RS1

2RSH

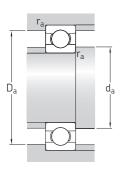
Princip	oal dimen	sions	Basic lo dynamic	oad ratings static	Fatigue load limit	Speed ratin Reference speed	i gs Limiting speed ¹)	Mass	Designations Bearing open or capped	capped on one
d	D	В	С	C_0	P_{u}	speeu	speeu-/		on both sides	side ¹⁾
nm			kN		kN	r/min		kg	_	
) ont.	24 24 24	7 7 7	3,9 3,9 3,9	1,66 1,66 1,66	0,071 0,071 0,071	- 70 000 70 000	19 000 34 000 34 000	0,015 0,014 0,015	609-2RSH609-2RSL609-2Z	609-RSH 609-RSL 609-Z
	26 26 26	8 8 8	4,75 4,75 4,75	1,96 1,96 1,96	0,083 0,083 0,083	60 000 - 60 000	38 000 19 000 30 000	0,02 0,02 0,02	► 629 ► 629-2RSH ► 629-2RSL	_ 629-RSH 629-RSL
	26	8	4,75	1,96	0,083	60 000	30 000	0,021	► 629-2Z	629-Z
10	19 19 19	5 5 5	1,72 1,72 1,72	0,83 0,83 0,83	0,036 0,036 0,036	- 80 000 80 000	22 000 38 000 48 000	0,0055 0,0055 0,0053	61800-2RS1 61800-2Z 61800	- - -
	22 22 22	6 6 6	2,7 2,7 2,7	1,27 1,27 1,27	0,054 0,054 0,054	- 70 000 70 000	20 000 36 000 45 000	0,01 0,01 0,01	61900-2RS1 61900-2Z 61900	- -
	26 26 26	8 8 8	4,75 4,75 4,75	1,96 1,96 1,96	0,083 0,083 0,083	67 000 - 67 000	40 000 19 000 34 000	0,019 0,019 0,019	► 6000 ► 6000-2RSH ► 6000-2RSL	- 6000-RSH 6000-RSL
	26 26 28	8 12 8	4,75 4,62 5,07	1,96 1,96 2,36	0,083 0,083 0,1	67 000 - 60 000	34 000 19 000 30 000	0,02 0,025 0,026	► 6000-2Z 63000-2RS1 16100-2Z	► 6000-Z - -
	28 30 30	8 9 9	5,07 5,4 5,4	2,36 2,36 2,36	0,1 0,1 0,1	60 000 56 000 -	38 000 36 000 17 000	0,024 0,031 0,032	16100 ► 6200 ► 6200-2RSH	- - 6200-RSH
	30 30 30	9 9 14	5,4 5,4 5,07	2,36 2,36 2,36	0,1 0,1 0,1	56 000 56 000 -	28 000 28 000 17 000	0,032 0,034 0,04	► 6200-2RSL ► 6200-2Z 62200-2RS1	6200-RSL 6200-Z
	35 35 35	11 11 11	8,52 8,52 8,52	3,4 3,4 3,4	0,143 0,143 0,143	50 000 - 50 000	32 000 15 000 26 000	0,053 0,054 0,053	► 6300 ► 6300-2RSH 6300-2RSL	- 6300-RSH 6300-RSL
	35 35	11 17	8,52 8,06	3,4 3,4	0,143 0,143	50 000 -	26 000 15 000	0,055 0,06	► 6300-2Z 62300-2RS1	6300-Z

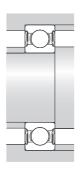

SKF Explorer bearing
Popular item
1) For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.



Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				_	
9 cont.	- - 14,4	12,8 12,8 -	- - -	21,2 21,2 21,2	0,3 0,3 0,3	11 11 11	12,5 12,5 14,3	22 22 22	0,3 0,3 0,3	0,025 0,025 0,025	13 13 13
	14,8	-	-	22,6	0,3	11,4	-	23,6	0,3	0,025	12
	-	12,5	-	22,6	0,3	11,4	12,5	23,6	0,3	0,025	12
	-	12,5	-	22,6	0,3	11,4	12,5	23,6	0,3	0,025	12
	14,8	-	-	22,6	0,3	11,4	14,7	23,6	0,3	0,025	12
10	-	11,8	-	17,2	0,3	11,8	11,8	17	0,3	0,015	15
	12,7	-	-	17,2	0,3	12	12,5	17	0,3	0,015	15
	12,7	-	16,3	-	0,3	12	-	17	0,3	0,015	15
	-	13,2	-	19,4	0,3	12	12	20	0,3	0,02	14
	13,9	-	-	19,4	0,3	12	12,9	20	0,3	0,02	14
	13,9	-	18,2	-	0,3	12	-	20	0,3	0,02	14
	14,8	-	-	22,6	0,3	12	-	24	0,3	0,025	12
	-	12,5	-	22,6	0,3	12	12,5	24	0,3	0,025	12
	-	12,5	-	22,6	0,3	12	12,5	24	0,3	0,025	12
	14,8	-	-	22,6	0,3	12	14,7	24	0,3	0,025	12
	14,8	-	-	22,6	0,3	12	14,7	24	0,3	0,025	12
	17	-	-	24,8	0,3	14,2	16,6	23,8	0,3	0,025	13
	17	-	-	24,8	0,3	14,2	-	23,8	0,3	0,025	13
	17	-	-	24,8	0,6	14,2	-	25,8	0,6	0,025	13
	-	15	-	24,8	0,6	14,2	15	25,8	0,6	0,025	13
	-	15	-	24,8	0,6	14,2	15	25,8	0,6	0,025	13
	17	-	-	24,8	0,6	14,2	16,9	25,8	0,6	0,025	13
	17	-	-	24,8	0,6	14,2	16,9	25,8	0,6	0,025	13
	17,5	-	-	28,7	0,6	14,2	-	30,8	0,6	0,03	11
	-	15,5	-	28,7	0,6	14,2	15,5	30,8	0,6	0,03	11
	-	15,5	-	28,7	0,6	14,2	15,5	30,8	0,6	0,03	11
	17,5 17,5	_	_ _	28,7 28,7	0,6 0,6	14,2 14,2	17,4 17,4	30,8 30,8	0,6 0,6	0,03 0,03	11 11

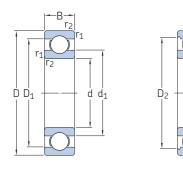
1.1 Single row deep groove ball bearings d 12 – 15 mm

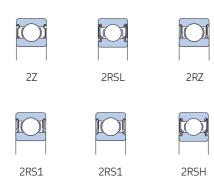



Princi	pal dimen	sions	Basic lo	ad ratings static	Fatigue load limit	Speed ration Reference	ngs Limiting speed ¹⁾	Mass	Designations Bearing open or capped	capped on one
d	D	В	С	C_0	P_u	speed	speea±/		on both sides	capped on one side ¹⁾
mm			kN		kN	r/min		kg	_	
12	21	5	1,74	0,915	0,039	-	20 000	0,0063	► 61801-2RS1	-
	21	5	1,74	0,915	0,039	70 000	36 000	0,0063	► 61801-2Z	-
	21	5	1,74	0,915	0,039	70 000	43 000	0,0063	► 61801	-
	24 24 24	6 6 6	2,91 2,91 2,91	1,46 1,46 1,46	0,062 0,062 0,062	- 67 000 67 000	19 000 32 000 40 000	0,011 0,011 0,011	61901-2RS161901-2Z61901	- - -
	28	8	5,4	2,36	0,1	60 000	38 000	0,021	► 6001	-
	28	8	5,4	2,36	0,1	-	17 000	0,022	► 6001-2RSH	6001-RSH
	28	8	5,4	2,36	0,1	60 000	30 000	0,021	► 6001-2RSL	6001-RSL
	28	8	5,4	2,36	0,1	60 000	30 000	0,022	► 6001-2Z	6001-Z
	28	12	5,07	2,36	0,1	-	17 000	0,029	63001-2RS1	-
	30	8	5,07	2,36	0,1	-	17 000	0,028	16101-2RS1	-
	30	8	5,07	2,36	0,1	56 000	28 000	0,028	16101-2Z	-
	30	8	5,07	2,36	0,1	60 000	38 000	0,026	16101	-
	32	10	7,28	3,1	0,132	50 000	32 000	0,037	▶ 6201	-
	32	10	7,28	3,1	0,132	-	15 000	0,038	► 6201-2RSH	6201-RSH
	32	10	7,28	3,1	0,132	50 000	26 000	0,038	► 6201-2RSL	6201-RSL
	32	10	7,28	3,1	0,132	50 000	26 000	0,039	► 6201-2Z	6201-Z
	32	14	6,89	3,1	0,132	-	15 000	0,045	62201-2RS1	-
	37	12	10,1	4,15	0,176	45 000	28 000	0,06	▶ 6301	-
	37	12	10,1	4,15	0,176	-	14 000	0,062	▶ 6301-2RSH	6301-RSH
	37 37 37	12 12 17	10,1 10,1 9,75	4,15 4,15 4,15	0,176 0,176 0,176	45 000 45 000 -	22 000 22 000 14 000	0,06 0,063 0,07	6301-2RSL ► 6301-2Z 62301-2RS1	6301-RSL 6301-Z
15	24	5	1,9	1,1	0,048	-	17 000	0,0074	► 61802-2RS1	-
	24	5	1,9	1,1	0,048	60 000	30 000	0,0074	► 61802-2Z	-
	24	5	1,9	1,1	0,048	60 000	38 000	0,0065	► 61802	-
	28	7	4,36	2,24	0,095	-	16 000	0,016	► 61902-2RS1	-
	28	7	4,36	2,24	0,095	56 000	28 000	0,016	► 61902-2RZ	-
	28	7	4,36	2,24	0,095	56 000	28 000	0,016	► 61902-2Z	-
	28	7	4,36	2,24	0,095	56 000	34 000	0,016	► 61902	-
	32	8	5,85	2,85	0,12	50 000	32 000	0,027	► 16002	-
	32	8	5,85	2,85	0,12	50 000	26 000	0,025	► 16002-2Z	16002-Z
	32	9	5,85	2,85	0,12	50 000	32 000	0,03	► 6002	_
	32	9	5,85	2,85	0,12	-	14 000	0,03	► 6002-2RSH	6002-RSH
	32	9	5,85	2,85	0,12	50 000	26 000	0,03	► 6002-2RSL	6002-RSL

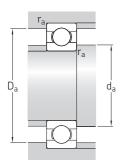
SKF Explorer bearing

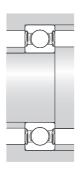
▶ Popular item


□ For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.

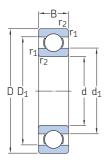


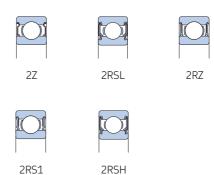
Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
12	-	14,1	-	19	0,3	13,6	13,8	19	0,3	0,015	13
	14,8	-	-	19	0,3	14	14,7	19	0,3	0,015	13
	14,8	-	18,3	-	0,3	14	-	19	0,3	0,015	13
	-	15,3	-	21,4	0,3	14	15,2	22	0,3	0,02	15
	16	-	-	21,4	0,3	14	15,8	22	0,3	0,02	15
	16	-	20,3	-	0,3	14	-	22	0,3	0,02	15
	17	-	-	24,8	0,3	14	-	26	0,3	0,025	13
	-	14,7	-	24,8	0,3	14	15	26	0,3	0,025	13
	-	14,7	-	24,8	0,3	14	15	26	0,3	0,025	13
	17	-	-	24,8	0,3	14	16,9	26	0,3	0,025	13
	17	-	-	24,8	0,3	14	16,9	26	0,3	0,025	13
	17	-	-	24,8	0,3	14,4	16,6	27,6	0,3	0,025	13
	17	-	-	24,8	0,3	14,4	16,6	27,6	0,3	0,025	13
	17	-	-	24,8	0,3	14,4	-	27,6	0,3	0,025	13
	18,4	-	-	27,4	0,6	16,2	-	27,8	0,6	0,025	12
	-	16,2	-	27,4	0,6	16,2	16,5	27,8	0,6	0,025	12
	-	16,2	-	27,4	0,6	16,2	16,5	27,8	0,6	0,025	12
	18,4	-	-	27,4	0,6	16,2	18,4	27,8	0,6	0,025	12
	18,5	-	-	27,4	0,6	16,2	18,4	27,8	0,6	0,025	12
	19,5	-	-	31,5	1	17,6	-	31,4	1	0,03	11
	-	17,5	-	31,5	1	17,6	17,8	31,4	1	0,03	11
	-	17,5	-	31,5	1	17,6	17,6	31,4	1	0,03	11
	19,5	-	-	31,5	1	17,6	19,4	31,4	1	0,03	11
	19,5	-	-	31,5	1	17,6	19,4	31,4	1	0,03	11
15	17,8	-	-	22,2	0,3	17	17,8	22	0,3	0,015	14
	17,8	-	-	22,2	0,3	17	17,8	22	0,3	0,015	14
	17,8	-	21,3	-	0,3	17	-	22	0,3	0,015	14
	18,8	-	-	25,3	0,3	17	18,3	26	0,3	0,02	14
	18,8	-	-	25,3	0,3	17	18,3	26	0,3	0,02	14
	18,8	-	-	25,3	0,3	17	18,3	26	0,3	0,02	14
	18,8	-	-	25,3	0,3	17	-	26	0,3	0,02	14
	20,5	-	-	28,2	0,3	17	-	30	0,3	0,02	14
	20,5	-	-	28,2	0,3	17	20,1	30	0,3	0,02	14
	20,5	-	-	28,2	0,3	17	-	30	0,3	0,025	14
	-	18,3	-	28,2	0,3	17	18,5	30	0,3	0,025	14
	-	18,3	-	28,2	0,3	17	18,5	30	0,3	0,025	14


1.1 Single row deep groove ball bearings d 15 – 17 mm



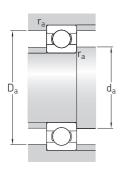
Princip	al dimen	sions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed rating Reference	Limiting	Mass	Designations Bearing	
d	D	В	С	C_0	$P_{\rm u}$	speed	speed ¹⁾		open or capped on both sides	capped on one side ¹⁾
mm			kN		kN	r/min		kg	-	
15 cont.	32 32 35	9 13 11	5,85 5,59 8,06	2,85 2,85 3,75	0,12 0,12 0,16	50 000 - 43 000	26 000 14 000 28 000	0,032 0,039 0,045	► 6002-2Z 63002-2RS1 ► 6202	6002-Z -
	35 35 35	11 11 11	8,06 8,06 8,06	3,75 3,75 3,75	0,16 0,16 0,16	- 43 000 43 000	13 000 22 000 22 000	0,046 0,046 0,048	6202-2RSH6202-2RSL6202-2Z	6202-RSH 6202-RSL 6202-Z
	35	14	7,8	3,75	0,16	-	13 000	0,054	62202-2RS1	-
	42	13	11,9	5,4	0,228	38 000	24 000	0,082	▶ 6302	-
	42	13	11,9	5,4	0,228	-	12 000	0,085	▶ 6302-2RSH	6302-RSH
	42	13	11,9	5,4	0,228	38 000	19 000	0,085	► 6302-2RSL	6302-RSL
	42	13	11,9	5,4	0,228	38 000	19 000	0,086	► 6302-2Z	6302-Z
	42	17	11,4	5,4	0,228	-	12 000	0,11	62302-2RS1	-
	52	7	4,49	3,75	0,16	_	7 500	0,034	▶ 61808-2RS1	-
17	26	5	2,03	1,27	0,054	-	16 000	0,0082	► 61803-2RS1	-
	26	5	2,03	1,27	0,054	56 000	28 000	0,0082	61803-2RZ	-
	26	5	2,03	1,27	0,054	56 000	28 000	0,0082	► 61803-2Z	-
	26	5	2,03	1,27	0,054	56 000	34 000	0,0075	► 61803	-
	30	7	4,62	2,55	0,108	-	14 000	0,017	► 61903-2RS1	-
	30	7	4,62	2,55	0,108	50 000	26 000	0,017	► 61903-2Z	-
	30	7	4,62	2,55	0,108	50 000	26 000	0,018	61903-2RZ	-
	30	7	4,62	2,55	0,108	50 000	32 000	0,016	▶ 61903	-
	35	8	6,37	3,25	0,137	45 000	22 000	0,032	▶ 16003-2Z	-
	35	8	6,37	3,25	0,137	45 000	28 000	0,031	► 16003	-
	35	10	6,37	3,25	0,137	45 000	28 000	0,038	► 6003	-
	35	10	6,37	3,25	0,137	-	13 000	0,039	► 6003-2RSH	6003-RSH
	35	10	6,37	3,25	0,137	45 000	22 000	0,039	► 6003-2RSL	6003-RSL
	35	10	6,37	3,25	0,137	45 000	22 000	0,041	► 6003-2Z	6003-Z
	35	14	6,05	3,25	0,137	-	13 000	0,052	63003-2RS1	-
	40	12	9,95	4,75	0,2	38 000	24 000	0,065	► 6203	_
	40	12	9,95	4,75	0,2	-	12 000	0,067	► 6203-2RSH	6203-RSH
	40	12	9,95	4,75	0,2	38 000	19 000	0,067	► 6203-2RSL	6203-RSL
	40	12	9,95	4,75	0,2	38 000	19 000	0,068	► 6203-2Z	6203-Z
	40	12	11,4	5,4	0,228	38 000	24 000	0,064	6203 ETN9	-
	40	16	9,56	4,75	0,2	-	12 000	0,089	62203-2RS1	-

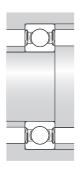

SKF Explorer bearing
Popular item
For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.



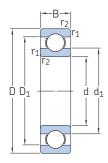
Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				_	
15 cont.	20,5	-	-	28,2	0,3	17	20,4	30	0,3	0,025	14
	20,5	-	-	28,2	0,3	17	20,4	30	0,3	0,025	14
	21,7	-	-	30,5	0,6	19,2	-	30,8	0,6	0,025	13
	-	18,6	-	30,5	0,6	19,2	19,4	31,3	0,6	0,025	13
	-	18,6	-	30,5	0,6	19,2	19,4	30,8	0,6	0,025	13
	21,7	-	-	30,5	0,6	19,2	21,6	30,8	0,6	0,025	13
	21,7	-	-	30,4	0,6	19,2	21,6	30,8	0,6	0,025	13
	23,7	-	-	36,3	1	20,6	-	36,4	1	0,03	12
	-	20,6	-	36,3	1	20,6	21	36,4	1	0,03	12
	-	20,6	-	36,3	1	20,6	21	36,4	1	0,03	12
	23,7	-	-	36,3	1	20,6	23,6	36,4	1	0,03	12
	23,7	-	-	36,3	1	20,6	23,6	36,4	1	0,03	12
	-	42,1	-	49,3	0,3	42	42	50	0,3	0,015	15
7	19,8	-	-	24,2	0,3	18	18,6	24	0,3	0,015	14
	19,8	-	-	24,2	0,3	19	19,6	24	0,3	0,015	14
	19,8	-	-	24,2	0,3	19	19,6	24	0,3	0,015	14
	19,8	-	23,3	-	0,3	19	-	24	0,3	0,015	14
	-	19,4	-	27,7	0,3	19	19,3	28	0,3	0,02	15
	20,4	-	-	27,7	0,3	19	20,3	28	0,3	0,02	15
	20,4	-	-	27,7	0,3	19	20,3	28	0,3	0,02	15
	20,4	-	-	27,7	0,3	19	-	28	0,3	0,02	15
	23	-	-	31,2	0,3	19	22,6	33	0,3	0,02	14
	23	-	-	31,2	0,3	19	-	33	0,3	0,02	14
	23	-	-	31,2	0,3	19	-	33	0,3	0,025	14
	-	20,4	-	31,2	0,3	19	20,5	33	0,3	0,025	14
	-	20,4	-	31,2	0,3	19	20,5	33	0,3	0,025	14
	23	-	-	31,2	0,3	19	22,9	33	0,3	0,025	14
	23	-	-	31,2	0,3	19	22,9	33	0,3	0,025	14
	24,5	-	-	35	0,6	21,2	-	35,8	0,6	0,025	13
	-	21,7	-	35	0,6	21,2	22	35,8	0,6	0,025	13
	-	21,7	-	35	0,6	21,2	22	35,8	0,6	0,025	13
	24,5	-	-	35	0,6	21,2	24,4	35,8	0,6	0,025	13
	24,5	-	32,7	-	0,6	21,2	-	35,8	0,6	0,03	12
	-	21,5	-	35	0,6	21,2	24,4	35,8	0,6	0,025	13

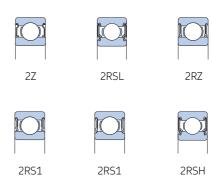
1.1 Single row deep groove ball bearings d 17 – 22 mm





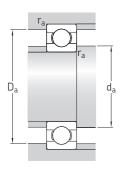
Princip	oal dimen	sions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed rati Reference speed	ngs Limiting speed ¹)	Mass	Designations Bearing open or capped	capped on one
t	D	В	С	C_0	P_{u}	speed	speeu-/		on both sides	side ¹⁾
nm			kN		kN	r/min		kg	_	
. 7 ont.	47 47 47	14 14 14	14,3 14,3 14,3	6,55 6,55 6,55	0,275 0,275 0,275	34 000 - 34 000	22 000 11 000 17 000	0,11 0,12 0,12	► 6303 ► 6303-2RSH 6303-2RSL	- 6303-RSH 6303-RSL
	47 47 62	14 19 17	14,3 13,5 22,9	6,55 6,55 10,8	0,275 0,275 0,455	34 000 - 28 000	17 000 11 000 18 000	0,12 0,16 0,27	► 6303-2Z 62303-2RS1 6403	6303-Z -
.0	32	7	4,03	2,32	0,104	-	13 000	0,018	► 61804-2RS1	-
	32	7	4,03	2,32	0,104	45 000	22 000	0,018	► 61804-2RZ	-
	32	7	4,03	2,32	0,104	45 000	28 000	0,018	► 61804	-
	37	9	6,37	3,65	0,156	-	12 000	0,038	► 61904-2RS1	-
	37	9	6,37	3,65	0,156	43 000	20 000	0,038	► 61904-2RZ	-
	37	9	6,37	3,65	0,156	43 000	26 000	0,037	► 61904	-
	42	8	7,28	4,05	0,173	38 000	24 000	0,051	► 16004	-
	42	12	9,95	5	0,212	38 000	24 000	0,067	► 6004	-
	42	12	9,95	5	0,212	-	11 000	0,067	► 6004-2RSH	6004-RSH
	42	12	9,95	5	0,212	38 000	19 000	0,069	► 6004-2RSL	6004-RSL
	42	12	9,95	5	0,212	38 000	19 000	0,071	► 6004-2Z	6004-Z
	42	16	9,36	5	0,212	-	11 000	0,086	63004-2RS1	-
	47	14	13,5	6,55	0,28	32 000	20 000	0,11	► 6204	_
	47	14	13,5	6,55	0,28	-	10 000	0,11	► 6204-2RSH	6204-RSH
	47	14	13,5	6,55	0,28	32 000	17 000	0,11	► 6204-2RSL	6204-RSL
	47	14	13,5	6,55	0,28	32 000	17 000	0,11	► 6204-2Z	6204-Z
	47	14	15,6	7,65	0,325	32 000	20 000	0,098	6204 ETN9	-
	47	18	12,7	6,55	0,28	-	10 000	0,13	62204-2RS1	-
	52	15	15,9	7,8	0,335	30 000	15 000	0,15	► 6304-2RSL	6304-RSL
	52	15	16,8	7,8	0,335	30 000	19 000	0,14	► 6304	-
	52	15	16,8	7,8	0,335	-	9 500	0,15	► 6304-2RSH	6304-RSH
	52	15	16,8	7,8	0,335	30 000	15 000	0,15	► 6304-2Z	6304-Z
	52	15	18,2	9	0,38	30 000	19 000	0,14	6304 ETN9	-
	52	21	15,9	7,8	0,335	-	9 500	0,21	62304-2RS1	-
	72	19	30,7	15	0,64	24 000	15 000	0,41	6404	-
22	50 50 56	14 14 16	14 14 18,6	7,65 7,65 9,3	0,325 0,325 0,39	- 30 000 28 000	9 000 19 000 18 000	0,12 0,12 0,18	62/22-2RS1 62/22 63/22	=

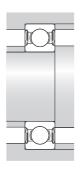

SKF Explorer bearing
Popular item
For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.



Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
17 cont.	26,5	-	-	39,6	1	22,6	-	41,4	1	0,03	12
	-	23,4	-	39,6	1	22,6	23,5	41,4	1	0,03	12
	-	23,4	-	39,6	1	22,6	23,5	41,4	1	0,03	12
	26,5	-	-	39,6	1	22,6	26,4	41,4	1	0,03	12
	26,5	-	-	39,6	1	22,6	26,4	41,4	1	0,03	12
	32,4	-	-	48,7	1,1	23,5	-	55	1	0,035	11
20	23,8	-	-	29,4	0,6	22	23,6	30	0,3	0,015	15
	23,8	-	-	29,4	0,6	22	23,6	30	0,3	0,015	15
	23,8	-	28,3	-	0,3	22	-	30	0,3	0,015	15
	25,5	-	-	32,7	0,3	22	23	35	0,3	0,02	15
	25,5	-	-	32,7	0,3	22	25,5	35	0,3	0,02	15
	25,5	-	-	32,7	0,3	22	-	35	0,3	0,02	15
	27,2	-	-	37,2	0,3	22	-	40	0,3	0,02	15
	27,2	-	-	37,2	0,6	23,2	-	38,8	0,6	0,025	14
	-	24,6	-	37,2	0,6	23,2	24,5	38,8	0,6	0,025	14
	-	24,6	-	37,2	0,6	23,2	24,5	38,8	0,6	0,025	14
	27,2	-	-	37,2	0,6	23,2	27,1	38,8	0,6	0,025	14
	27,2	-	-	37,2	0,6	23,2	27,1	38,8	0,6	0,025	14
	28,8	-	-	40,6	1	25,6	-	41,4	1	0,025	13
	-	26	-	40,6	1	25,6	26	41,4	1	0,025	13
	-	26	-	40,6	1	25,6	26	41,4	1	0,025	13
	28,8	-	-	40,6	1	25,6	28,7	41,4	1	0,025	13
	28,2	-	39,6	-	1	25,6	-	41,4	1	0,025	12
	28,8	-	-	40,6	1	25,6	28,7	41,4	1	0,025	13
	-	26,9	-	44,8	1,1	27	27	45	1	0,03	12
	30,3	-	-	44,8	1,1	27	-	45	1	0,03	12
	-	26,9	-	44,8	1,1	27	27,3	45	1	0,03	12
	30,3	-	-	44,8	1,1	27	30,3	45	1	0,03	12
	30,3	-	42,6	-	1,1	27	-	45	1	0,03	12
	30,3	-	-	44,8	1,1	27	30,3	45	1	0,03	12
	37,1	-	54,8	-	1,1	29	-	63	1	0,035	11
22	32,2	_	-	44	1	27,6	32	44,4	1	0,025	14
	32,2	_	-	44	1	27,6	-	44,4	1	0,025	14
	32,9	_	45,3	-	1,1	29	-	47	1	0,03	12

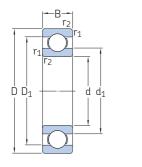
1.1 Single row deep groove ball bearings d 25 – 30 mm





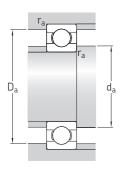
Princi	pal dimen	sions	Basic lo dynamic	oad ratings static	Fatigue load limit	Speed ration Reference	Limiting	Mass	Designations Bearing	canned an er-
d	D	В	С	C_0	P_{u}	speed	speed ¹⁾		open or capped on both sides	capped on one side ¹⁾
nm			kN		kN	r/min		kg	_	
25	37	7	4,36	2,6	0,125	-	11 000	0,022	► 61805-2RS1	-
	37	7	4,36	2,6	0,125	38 000	19 000	0,022	► 61805-2RZ	-
	37	7	4,36	2,6	0,125	38 000	24 000	0,022	► 61805	-
	42 42 42	9 9 9	7,02 7,02 7,02	4,3 4,3 4,3	0,193 0,193 0,193	- 36 000 36 000	10 000 18 000 22 000	0,045 0,045 0,045	61905-2RS161905-2RZ61905	- - -
	47	8	8,06	4,75	0,212	32 000	20 000	0,055	► 16005	-
	47	12	11,9	6,55	0,275	32 000	20 000	0,078	► 6005	-
	47	12	11,9	6,55	0,275	-	9 500	0,081	► 6005-2RSH	6005-RSH
	47	12	11,9	6,55	0,275	32 000	16 000	0,08	► 6005-2RSL	6005-RSL
	47	12	11,9	6,55	0,275	32 000	16 000	0,083	► 6005-2Z	6005-Z
	47	16	11,2	6,55	0,275	-	9 500	0,11	63005-2RS1	-
	52 52 52	15 15 15	14,8 14,8 14,8	7,8 7,8 7,8	0,335 0,335 0,335	28 000 - 28 000	18 000 8 500 14 000	0,13 0,13 0,13	62056205-2RSH6205-2RSL	_ 6205-RSH 6205-RSL
	52	15	14,8	7,8	0,335	28 000	14 000	0,13	► 6205-2Z	6205-Z
	52	15	17,8	9,3	0,4	28 000	18 000	0,12	6205 ETN9	-
	52	18	14	7,8	0,335	-	8 500	0,13	62205-2RS1	-
	62	17	23,4	11,6	0,49	24 000	16 000	0,23	► 6305	-
	62	17	23,4	11,6	0,49	-	7 500	0,24	► 6305-2RSH	6305-RSH
	62	17	23,4	11,6	0,49	24 000	13 000	0,23	6305-2RZ	6305-RZ
	62	17	23,4	11,6	0,49	24 000	13 000	0,23	► 6305-2Z	6305-Z
	62	17	26	13,4	0,57	24 000	16 000	0,22	6305 ETN9	-
	62	24	22,5	11,6	0,49	-	7 500	0,32	62305-2RS1	-
	80	21	35,8	19,3	0,815	20 000	13 000	0,54	6405	-
!8	58	16	16,8	9,5	0,405	26 000	16 000	0,17	62/28	-
	68	18	25,1	13,7	0,585	22 000	14 000	0,3	63/28	-
30	42 42 42	7 7 7	4,49 4,49 4,49	2,9 2,9 2,9	0,146 0,146 0,146	- 32 000 32 000	9 500 16 000 20 000	0,025 0,025 0,025	61806-2RS161806-2RZ61806	- - -
	47	9	7,28	4,55	0,212	-	8 500	0,051	► 61906-2RS1	-
	47	9	7,28	4,55	0,212	30 000	15 000	0,051	► 61906-2RZ	-
	47	9	7,28	4,55	0,212	30 000	19 000	0,049	► 61906	-

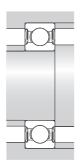
SKF Explorer bearing
Popular item
For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.



Dimen	sions					Abutm	ent and fi	let dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
25	-	27,4	-	34,2	0,6	27	27,3	35	0,3	0,015	14
	28,5	-	-	34,2	0,3	27	28,4	35	0,3	0,015	14
	28,5	-	33,2	-	0,6	27	-	35	0,3	0,015	14
	30,2	-	-	37,7	0,6	27	29	40	0,3	0,02	15
	30,2	-	-	37,7	0,6	27	29	40	0,3	0,02	15
	30,2	-	-	37,7	0,6	27	-	40	0,3	0,02	15
	33,3	-	-	42,4	0,3	27	-	45	0,3	0,02	15
	32	-	-	42,2	0,6	28,2	-	43,8	0,6	0,025	14
	-	29,4	-	42,2	0,6	28,2	29,5	43,8	0,6	0,025	14
	-	29,4	-	42,2	0,6	28,2	29,5	43,8	0,6	0,025	14
	32	-	-	42,2	0,6	28,2	31,9	43,8	0,6	0,025	14
	32	-	-	42,2	0,6	29,2	31,9	43,8	0,6	0,025	14
	34,3	-	-	46,3	1	30,6	-	46,4	1	0,025	14
	-	31,3	-	46,3	1	30,6	31,5	46,4	1	0,025	14
	-	31,3	-	46,3	1	30,6	31,5	46,4	1	0,025	14
	34,3	-	-	46,3	1	30,6	34,3	46,4	1	0,025	14
	33,1	-	-	46,3	1	30,6	-	46,4	1	0,025	13
	34,3	-	-	46,3	1	30,6	34,3	46,4	1	0,025	14
	36,6	-	-	52,7	1,1	32	-	55	1	0,03	12
	-	33	-	52,7	1,1	32	33	55	1	0,03	12
	36,6	-	-	52,7	1,1	32	36,5	55	1	0,03	12
	36,6	-	-	52,7	1,1	32	36,5	55	1	0,03	12
	36,3	-	51,7	-	1,1	32	-	55	1	0,03	12
	36,6	-	-	52,7	1,1	32	36,5	55	1	0,03	12
	45,4	-	62,9	-	1,5	34	-	71	1,5	0,035	12
28	37 41,7	-	-	51,5 57,8	1 1,1	33,6 35	-	52 61	1 1	0,025 0,03	14 13
30	-	32,6	-	39,4	0,6	32	32,5	40	0,3	0,015	14
	33,7	-	-	39,4	0,6	32	33,6	40	0,3	0,015	14
	33,7	-	38,4	-	0,3	32	-	40	0,3	0,015	14
	-	34,2	-	42,7	0,3	32	34	45	0,3	0,02	14
	35,2	-	-	42,7	0,3	32	35,1	45	0,3	0,02	14
	35,2	-	-	42,7	0,3	32	-	45	0,3	0,02	14

1.1 Single row deep groove ball bearings d 30 – 35 mm

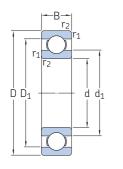


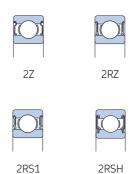


2RS1	2RSH

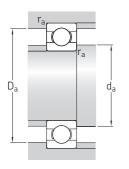
Princip	al dimen	sions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed ration Reference	n gs Limiting speed ¹)	Mass	Designations Bearing	cannod an er-
l	D	В	С	C_0	P_{u}	speed	speea±/		open or capped on both sides	capped on one side ¹⁾
nm			kN		kN	r/min		kg	_	
8 0 ont.	55 55 55	9 13 13	11,9 13,8 13,8	7,35 8,3 8,3	0,31 0,355 0,355	28 000 28 000 -	17 000 17 000 8 000	0,089 0,12 0,12	► 16006 ► 6006 ► 6006-2RS1	- - 6006-RS1
	55 55 55	13 13 19	13,8 13,8 13,3	8,3 8,3 8,3	0,355 0,355 0,355	28 000 28 000 -	14 000 14 000 8 000	0,12 0,12 0,17	► 6006-2RZ ► 6006-2Z 63006-2RS1	6006-RZ 6006-Z
	62 62 62	16 16 16	20,3 20,3 20,3	11,2 11,2 11,2	0,475 0,475 0,475	24 000 - 24 000	15 000 7 500 12 000	0,2 0,21 0,2	62066206-2RSH6206-2RZ	_ 6206-RSH 6206-RZ
	62 62 62	16 16 20	20,3 23,4 19,5	11,2 12,9 11,2	0,475 0,54 0,475	24 000 24 000 -	12 000 15 000 7 500	0,21 0,18 0,25	► 6206-2Z 6206 ETN9 62206-2RS1	6206-Z - -
	72 72 72	19 19 19	29,6 29,6 29,6	16 16 16	0,67 0,67 0,67	20 000 - 20 000	13 000 6 300 11 000	0,35 0,35 0,36	► 6306 ► 6306-2RSH 6306-2RZ	► 6306-RSH 6306-RZ
	72 72 72	19 19 27	29,6 32,5 28,1	16 17,3 16	0,67 0,735 0,67	20 000 22 000 -	11 000 14 000 6 300	0,36 0,33 0,5	► 6306-2Z 6306 ETN9 62306-2RS1	6306-Z - -
	90	23	43,6	23,6	1	18 000	11 000	0,75	6406	-
5	47 47 47	7 7 7	4,36 4,36 4,36	3,35 3,35 3,35	0,14 0,14 0,14	- 30 000 30 000	8 500 15 000 18 000	0,022 0,03 0,029	► 61807-2RS1 ► 61807-2RZ ► 61807	- - -
	55 55 55	10 10 10	10,8 10,8 10,8	7,8 7,8 7,8	0,325 0,325 0,325	- 26 000 26 000	7 500 13 000 16 000	0,08 0,08 0,08	► 61907-2RS1 ► 61907-2RZ ► 61907	- - -
	62 62 62	9 14 14	13 16,8 16,8	8,15 10,2 10,2	0,375 0,44 0,44	24 000 24 000 -	15 000 15 000 7 000	0,11 0,15 0,16	► 16007 ► 6007 ► 6007-2RS1	- - 6007-RS1
	62 62 62	14 14 20	16,8 16,8 15,9	10,2 10,2 10,2	0,44 0,44 0,44	24 000 24 000 -	12 000 12 000 7 000	0,16 0,16 0,22	6007-2RZ ► 6007-2Z 63007-2RS1	6007-RZ 6007-Z -
	72 72 72	17 17 17	27 27 27	15,3 15,3 15,3	0,655 0,655 0,655	20 000 - 20 000	13 000 6 300 10 000	0,29 0,3 0,3	► 6207 ► 6207-2RSH ► 6207-2Z	► 6207-RSH 6207-Z

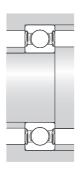
SKF Explorer bearing
Popular item
For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.




Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				_	
30 cont.	37,7	-	47,3	-	0,3	32	-	53	0,3	0,02	15
	38,2	-	-	49	1	34,6	-	50	1	0,025	15
	38,2	-	-	49	1	34,6	38,1	50	1	0,025	15
	38,2	-	-	49	1	34,6	38,1	50	1	0,025	15
	38,2	-	-	49	1	34,6	38,1	50	1	0,025	15
	38,2	-	-	49	1	34,6	38,1	50	1	0,025	15
	40,3	-	-	54,1	1	35,6	-	56	1	0,025	14
	-	37,3	-	54,1	1	35,6	37,3	56	1	0,025	14
	40,3	-	-	54,1	1	35,6	40,3	56	1	0,025	14
	40,3	-	-	54,1	1	35,6	40,3	56	1	0,025	14
	39,5	-	52,9	-	1	35,6	-	56	1	0,025	13
	40,3	-	-	54,1	1	35,6	40,3	56	1	0,025	14
	44,6	-	-	61,9	1,1	37	-	65	1	0,03	13
	-	41,1	-	63,2	1,1	37	40,8	65	1	0,03	13
	44,6	-	-	61,9	1,1	37	44,5	65	1	0,03	13
	44,6	-	-	61,9	1,1	37	44,5	65	1	0,03	13
	42,3	-	59,6	-	1,1	37	-	65	1	0,03	12
	44,6	-	-	61,9	1,1	37	44,5	65	1	0,03	13
	50,3	-	69,7	-	1,5	41	-	79	1,5	0,035	12
35	38,2	-	-	44,4	0,3	37	38	45	0,3	0,015	14
	38,2	-	-	44,4	0,3	37	38	45	0,3	0,015	14
	38,2	-	42,8	-	0,3	37	-	45	0,3	0,015	14
	42,2	-	-	52,2	0,6	38,2	41,5	51	0,6	0,02	16
	42,2	-	-	52,2	0,6	38,2	41,5	51	0,6	0,02	16
	42,2	-	-	52,2	0,6	38,2	-	51	0,6	0,02	16
	44	-	53	-	0,3	37	-	60	0,3	0,02	14
	43,7	-	-	55,7	1	39,6	-	57	1	0,025	15
	43,7	-	-	55,7	1	39,6	43,7	57	1	0,025	15
	43,7	-	-	55,7	1	39,6	43,7	57	1	0,025	15
	43,7	-	-	55,7	1	39,6	43,7	57	1	0,025	15
	43,7	-	-	55,7	1	39,6	43,7	57	1	0,025	15
	46,9	-	-	62,7	1,1	42	-	65	1	0,025	14
	-	43,5	-	64,1	1,1	42	43,2	65	1	0,025	14
	46,9	-	-	62,7	1,1	42	46,8	65	1	0,025	14

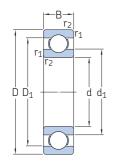
1.1 Single row deep groove ball bearings d 35 – 40 mm

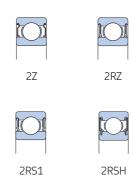




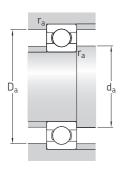
Princip	al dimen	sions	Basic lo dynamic	oad ratings c static	Fatigue load limit	Speed ration Reference	ngs Limiting speed ¹)	Mass	Designations Bearing open or capped cappe	d on one
d	D	В	С	C_0	P_u	speed	speea±/		on both sides side ¹⁾	
nm			kN		kN	r/min		kg	-	
3 5 ont.	72 72 80	17 23 21	31,2 25,5 35,1	17,6 15,3 19	0,75 0,655 0,815	20 000 - 19 000	13 000 6 300 12 000	0,26 0,4 0,46	6207 ETN9 - 62207-2RS1 - ► 6307 -	
	80 80 80	21 21 21	35,1 35,1 35,1	19 19 19	0,815 0,815 0,815	19 000 - 19 000	17 000 6 000 9 500	0,54 0,46 0,48	6307 M – • 6307-2RSH • 6307 • 6307-2Z 6307	
	80 100	31 25	33,2 55,3	19 31	0,815 1,29	- 16 000	6 000 10 000	0,68 0,97	62307-2RS1 – 6407 –	
40	52 52 62	7 7 12	4,49 4,49 13,8	3,75 3,75 10	0,16 0,16 0,425	26 000 26 000 -	13 000 16 000 6 700	0,034 0,032 0,12	► 61808-2RZ - ► 61808 - ► 61908-2RS1 -	
	62 62 68	12 12 9	13,8 13,8 13,8	10 10 10,2	0,425 0,425 0,44	24 000 24 000 22 000	12 000 14 000 14 000	0,12 0,12 0,13	► 61908-2RZ - ► 61908 - ► 16008 -	
	68 68 68	15 15 15	17,8 17,8 17,8	11 11 11	0,49 0,49 0,49	22 000 - 22 000	14 000 6 300 11 000	0,19 0,2 0,2	► 6008 - ► 6008-2RS1 6008 6008-2RZ 6008	
	68 68 80	15 21 18	17,8 16,8 32,5	11 11 19	0,49 0,49 0,8	22 000 - 18 000	11 000 6 300 11 000	0,2 0,27 0,37	► 6008-2Z 63008-2RS1 ► 6208	-Z
	80 80 80	18 18 18	32,5 32,5 32,5	19 19 19	0,8 0,8 0,8	- 18 000 18 000	5 600 9 000 9 000	0,37 0,38 0,38	► 6208-2RSH	-RZ
	80 80 90	18 23 23	35,8 30,7 42,3	20,8 19 24	0,88 0,8 1,02	18 000 - 17 000	11 000 5 600 11 000	0,34 0,47 0,63	6208 ETN9 – 62208-2RS1 – 6308 –	
	90 90 90	23 23 23	42,3 42,3 42,3	24 24 24	1,02 1,02 1,02	- 17 000 17 000	5 000 8 500 8 500	0,64 0,65 0,65	 ▶ 6308-2RSH ▶ 6308 ▶ 6308-2RZ ▶ 6308 ▶ 6308 ► 6308-2Z 	-RZ
	90 110	33 27	41 63,7	24 36,5	1,02 1,53	- 14 000	5 000 9 000	0,92 1,25	62308-2RS1 – 6408 –	

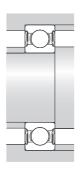
SKF Explorer bearing
Popular item
For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.



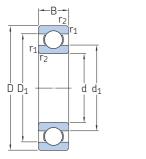

Dimensions						Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
35 cont.	46,1 46,9 49,5	- - -	61,7 - -	- 62,7 69,2	1,1 1,1 1,5	42 42 44	- 46,8 -	65 65 71	1 1 1,5	0,025 0,025 0,03	13 14 13
	49,5	-	-	69,2	1,5	44	-	71	1,5	0,03	13
	-	45,9	-	70,2	1,5	44	45,6	71	1,5	0,03	13
	49,5	-	-	69,2	1,5	44	49,5	71	1,5	0,03	13
	49,5 57,4	_	- 79,6	69,2 -	1,5 1,5	44 46	49,5 -	71 89	1,5 1,5	0,03 0,035	13 12
40	43,2	-	-	49,3	0,3	42	43	50	0,3	0,015	15
	43,2	-	48,1	-	0,3	42	-	50	0,3	0,015	15
	46,9	-	-	57,3	0,6	43,2	46,8	58	0,6	0,02	16
	46,9	-	-	57,3	0,6	43,2	46,8	58	0,6	0,02	16
	46,9	-	55,6	-	0,6	43,2	-	58	0,6	0,02	16
	49,4	-	58,6	-	0,3	42	-	66	0,3	0,02	16
	49,2	-	-	61,1	1	44,6	-	63	1	0,025	15
	49,2	-	-	61,1	1	44,6	49,2	63	1	0,025	15
	49,2	-	-	61,1	1	44,6	49,2	63	1	0,025	15
	49,2	-	-	61,1	1	44,6	49,2	63	1	0,025	15
	49,2	-	-	61,1	1	44,6	49,2	63	1	0,025	15
	52,6	-	-	69,8	1,1	47	-	73	1	0,025	14
	-	49,1	-	71,5	1,1	47	48,8	73	1	0,025	14
	52,6	-	-	69,8	1,1	47	52	73	1	0,025	14
	52,6	-	-	69,8	1,1	47	52	73	1	0,025	14
	52	-	68,8	-	1,1	47	-	73	1	0,025	13
	52,6	-	-	69,8	1,1	47	52	73	1	0,025	14
	56,1	-	-	77,7	1,5	49	-	81	1,5	0,03	13
	-	52,3	-	78,6	1,5	49	52	81	1,5	0,03	13
	56,1	-	-	77,7	1,5	49	56	81	1,5	0,03	13
	56,1	-	-	77,7	1,5	49	56	81	1,5	0,03	13
	56,1	_	-	77,7	1,5	49	56	81	1,5	0,03	13
	62,8	_	87	-	2	53	-	97	2	0,035	12

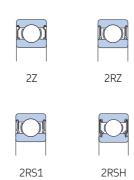
1.1 Single row deep groove ball bearings d 45 – 50 mm





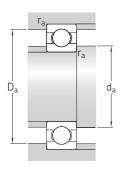
Princi	pal dimens	sions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed ration Reference	Limiting	Mass	Designations Bearing	
d	D	В	С	C_0	P_u	speed	speed ¹⁾		open or capped on both sides	capped on one side ¹⁾
mm			kN		kN	r/min		kg	_	
45	58	7	6,63	6,1	0,26	-	6 700	0,04	► 61809-2RS1	-
	58	7	6,63	6,1	0,26	22 000	11 000	0,04	► 61809-2RZ	-
	58	7	6,63	6,1	0,26	22 000	14 000	0,04	► 61809	-
	68	12	14	10,8	0,465	-	6 000	0,14	► 61909-2RS1	-
	68	12	14	10,8	0,465	20 000	10 000	0,14	► 61909-2RZ	-
	68	12	14	10,8	0,465	20 000	13 000	0,14	► 61909	-
	75	10	16,5	10,8	0,52	20 000	12 000	0,17	► 16009	-
	75	16	22,1	14,6	0,64	20 000	12 000	0,24	► 6009	-
	75	16	22,1	14,6	0,64	-	5 600	0,25	► 6009-2RS1	6009-RS1
	75	16	22,1	14,6	0,64	20 000	10 000	0,25	► 6009-2Z	6009-Z
	75	23	20,8	14,6	0,64	-	5 600	0,36	63009-2RS1	-
	85	19	35,1	21,6	0,915	17 000	11 000	0,42	► 6209	-
	85 85 85	19 19 23	35,1 35,1 33,2	21,6 21,6 21,6	0,915 0,92 0,915	- 17 000 -	5 000 8 500 5 000	0,42 0,43 0,51	► 6209-2RSH ► 6209-2Z 62209-2RS1	► 6209-RSH 6209-Z
	100	25	55,3	31,5	1,34	15 000	9 500	0,84	► 6309	-
	100	25	55,3	31,5	1,34	15 000	14 000	0,85	6309 M	-
	100	25	55,3	31,5	1,34	-	4 500	0,85	► 6309-2RSH	► 6309-RSH
	100	25	55,3	31,5	1,34	15 000	7 500	0,87	► 6309-2Z	6309-Z
	100	36	52,7	31,5	1,34	-	4 500	1,2	62309-2RS1	-
	120	29	76,1	45	1,9	13 000	8 500	1,55	6409	-
0	65	7	6,76	6,8	0,285	-	6 000	0,052	► 61810-2RS1	-
	65	7	6,76	6,8	0,285	20 000	10 000	0,052	► 61810-2RZ	-
	65	7	6,76	6,8	0,285	20 000	13 000	0,052	► 61810	-
	72	12	14,6	11,8	0,5	-	5 600	0,14	► 61910-2RS1	-
	72	12	14,6	11,8	0,5	19 000	9 500	0,14	► 61910-2RZ	-
	72	12	14,6	11,8	0,5	19 000	12 000	0,14	► 61910	-
	80	10	16,8	11,4	0,56	18 000	11 000	0,18	► 16010	-
	80	16	22,9	16	0,71	18 000	11 000	0,26	► 6010	-
	80	16	22,9	15,6	0,71	-	5 000	0,27	► 6010-2RS1	6010-RS1
	80 80 80	16 16 23	22,9 22,9 21,6	15,6 15,6 15,6	0,71 0,71 0,71	18 000 18 000 -	9 000 9 000 5 000	0,27 0,27 0,38	6010-2RZ ► 6010-2Z 63010-2RS1	6010-RZ 6010-Z
	90	20	37,1	23,2	0,98	15 000	10 000	0,46	► 6210	-
	90	20	37,1	23,2	0,98	15 000	14 000	0,52	6210 M	-
	90	20	37,1	23,2	0,98	-	4 800	0,46	► 6210-2RSH	► 6210-RSH

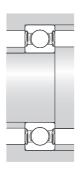

SKF Explorer bearing
Popular item
For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.



Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
45	48,2	-	-	55,4	0,3	47	49	56	0,3	0,015	17
	48,2	-	-	55,4	0,3	47	49	56	0,3	0,015	17
	48,2	-	54	-	0,3	47	–	56	0,3	0,015	17
	52,4	-	-	62,8	0,6	48,2	52	64	0,6	0,02	16
	52,4	-	-	62,8	0,6	48,2	52	64	0,6	0,02	16
	52,4	-	61,2	-	0,6	48,2	-	64	0,6	0,02	16
	55	-	65	-	0,6	48,2	-	71	0,6	0,02	14
	54,7	-	-	67,8	1	51	-	69	1	0,025	15
	54,7	-	-	67,8	1	51	54	69	1	0,025	15
	54,7	-	-	67,8	1	51	54	69	1	0,025	15
	54,7	-	-	67,8	1	51	54	69	1	0,025	15
	57,6	-	-	75,2	1,1	52	-	78	1	0,025	14
	-	54,1	-	76,5	1,1	52	53	78	1	0,025	14
	57,6	-	-	75,2	1,1	52	57	78	1	0,025	14
	57,6	-	-	75,2	1,1	52	57	78	1	0,025	14
	62,1	-	-	86,7	1,5	54	-	91	1,5	0,03	13
	62,1	-	-	86,7	1,5	54	-	91	1,5	0,03	13
	-	58,2	-	87,5	1,5	54	57	91	1,5	0,03	13
	62,1	-	-	86,7	1,5	54	62	91	1,5	0,03	13
	62,1	-	-	86,7	1,5	54	62	91	1,5	0,03	13
	68,9	-	95,9	-	2	58	-	107	2	0,035	12
50	54,6	-	-	61,8	0,3	52	55	63	0,3	0,015	17
	54,6	-	-	61,8	0,3	52	55	63	0,3	0,015	17
	54,6	-	60,3	-	0,3	52	-	63	0,3	0,015	17
	56,8	-	-	67,3	0,6	54	56	68	0,6	0,02	16
	56,8	-	-	67,3	0,6	54	56	68	0,6	0,02	16
	56,8	-	65,6	-	0,6	54	-	68	0,6	0,02	16
	60	-	70	-	0,6	54	-	76	0,6	0,02	14
	59,7	-	-	72,8	1	55	-	75	1	0,025	15
	59,7	-	-	72,8	1	55	59	75	1	0,025	15
	59,7	-	-	72,8	1	55	59	75	1	0,025	15
	59,7	-	-	72,8	1	55	59	75	1	0,025	15
	59,7	-	-	72,8	1	55	59	75	1	0,025	15
	62,5	-	-	81,7	1,1	57	-	83	1	0,025	14
	62,5	-	-	81,7	1,1	57	-	83	1	0,025	14
	-	58,8	-	82,2	1,1	57	58	83	1	0,025	14

1.1 Single row deep groove ball bearings d 50 – 55 mm

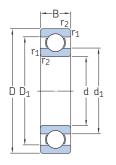



Princip	oal dimens	sions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed ¹⁾	Mass	Designations Bearing open or capped	capped on one
d	D	В	С	C_0	P_u	speed	speeu±/		on both sides	side ¹⁾
mm			kN		kN	r/min		kg	_	
50 ont.	90 90 90	20 20 23	37,1 37,1 35,1	23,2 23,2 23,2	0,98 0,98 0,98	15 000 15 000 -	8 000 8 000 4 800	0,47 0,48 0,54	► 6210-2Z 6210-2RZ 62210-2RS1	6210-Z 6210-RZ
	110 110 110	27 27 27	65 65 65	38 38 38	1,6 1,6 1,6	13 000 - 13 000	8 500 4 300 8 500	1,3 1,1 1,1	6310 M ► 6310-2RSH ► 6310	- 6310-RSH
	110 110 130	27 40 31	65 61,8 87,1	38 38 52	1,6 1,6 2,2	13 000 - 12 000	6 700 4 300 7 500	1,1 1,6 1,95	► 6310-2Z 62310-2RS1 6410	6310-Z - -
55	72 72 72	9 9 9	9,04 9,04 9,04	8,8 8,8 8,8	0,375 0,375 0,375	- 19 000 19 000	5 300 9 500 12 000	0,083 0,083 0,083	► 61811-2RS1 ► 61811-2RZ ► 61811	- - -
	80 80 80	13 13 13	16,5 16,5 16,5	14 14 14	0,6 0,6 0,6	- 17 000 17 000	5 000 8 500 11 000	0,19 0,19 0,19	► 61911-2RS1 61911-2RZ ► 61911	- - -
	90 90 90	11 18 18	20,3 29,6 29,6	14 21,2 21,2	0,695 0,9 0,9	16 000 16 000 16 000	10 000 14 000 10 000	0,26 0,44 0,38	► 16011 6011 M ► 6011	- - -
	90 90 100	18 18 21	29,6 29,6 46,2	21,2 21,2 29	0,9 0,9 1,25	- 16 000 14 000	4 500 8 000 9 000	0,4 0,4 0,61	► 6011-2RS1 ► 6011-2Z ► 6211	6011-RS1 6011-Z
	100 100 100	21 21 21	46,2 46,2 46,2	29 29 29	1,25 1,25 1,25	14 000 - 14 000	13 000 4 300 7 000	0,72 0,62 0,64	6211 M ▶ 6211-2RSH ▶ 6211-2Z	- 6211-RSH 6211-Z
	100 120 120	25 29 29	43,6 74,1 74,1	29 45 45	1,25 1,9 1,9	- 12 000 12 000	4 300 8 000 11 000	0,75 1,35 1,65	62211-2R51 • 6311 6311 M	- - -
	120 120 120	29 29 43	74,1 74,1 71,5	45 45 45	1,9 1,9 1,9	- 12 000 -	3 800 6 300 3 800	1,4 1,4 2,05	► 6311-2RSH ► 6311-2Z 62311-2RS1	6311-RSH 6311-Z
	140	33	99,5	62	2,6	11 000	7 000	2,35	6411	_

SKF Explorer bearing

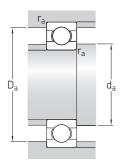
Popular item

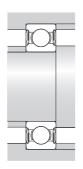
1) For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.



Dimen	cions					Abutm	ent and fi	llat dimon	sions	Calculati	on factors
Dillieli	SIUIIS					Abutiii	ent and n	net unnen	1510115	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				_	
50 cont.	62,5 62,5 62,5	- - -	- - -	81,7 81,7 81,7	1,1 1,1 1,1	57 57 57	62 62 62	83 83 83	1 1 1	0,025 0,025 0,025	14 14 14
	68,7	-	-	95,2	2	61	-	99	2	0,03	13
	-	64,7	-	95,9	2	61	64	99	2	0,03	13
	68,7	-	-	95,2	2	61	-	99	2	0,03	13
	68,7	-	-	95,2	2	61	68	99	2	0,03	13
	68,7	-	-	95,2	2	61	68	99	2	0,03	13
	75,4	-	105	-	2,1	64	-	116	2	0,035	12
55	60,3	-	-	68,6	0,3	57	60	70	0,3	0,015	17
	60,3	-	-	68,6	0,3	57	60	70	0,3	0,015	17
	60,3	-	67	-	0,3	57	-	70	0,3	0,015	17
	63	-	-	74,2	1	60	63	75	1	0,02	16
	63	-	-	74,2	1	60	63	75	1	0,02	16
	63	-	72,3	-	1	60	-	75	1	0,02	16
	67	-	78,1	-	0,6	59	-	86	0,6	0,02	14
	66,3	-	-	81,5	1,1	61	-	84	1	0,025	15
	66,3	-	-	81,5	1,1	61	-	84	1	0,025	15
	66,3	-	-	81,5	1,1	61	66	84	1	0,025	15
	66,3	-	-	81,5	1,1	61	66	84	1	0,025	15
	69	-	-	89,4	1,5	64	-	91	1,5	0,025	14
	69	-	-	89,4	1,5	64	-	91	1,5	0,025	14
	-	65,2	-	90,5	1,5	64	64	91	1,5	0,025	14
	69	-	-	89,4	1,5	64	69	91	1,5	0,025	14
	69	-	-	89,4	1,5	64	69	91	1,5	0,025	14
	75,3	-	-	104	2	66	-	109	2	0,03	13
	75,3	-	-	104	2	66	-	109	2	0,03	13
	-	71,1	-	105	2	66	70	109	2	0,03	13
	75,3	-	-	104	2	66	75	109	2	0,03	13
	75,3	-	-	104	2	66	75	109	2	0,03	13
	81,5	_	114	-	2,1	69	-	126	2	0,035	12

1.1 Single row deep groove ball bearings d 60 – 65 mm

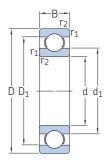


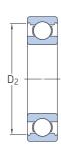

2RS1

2RSH

Princi	pal dimens	sions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed ration Reference	Limiting	Mass	Designations Bearing
d	D	В	С	C_0	P_u	speed	speed ¹⁾		open or capped capped on one on both sides side1)
nm			kN		kN	r/min		kg	-
60	78	10	11,9	11,4	0,49	-	4 800	0,11	► 61812-2RS1 -
	78	10	11,9	11,4	0,49	17 000	8 500	0,11	► 61812-2RZ -
	78	10	11,9	11,4	0,49	17 000	11 000	0,11	► 61812 -
	85	13	16,5	12	0,6	-	4 500	0,21	► 61912-2RS1 -
	85	13	16,5	12	0,6	16 000	10 000	0,2	► 61912 -
	85	13	16,5	14,3	0,6	16 000	8 000	0,2	61912-2RZ -
	95	11	20,8	15	0,735	15 000	9 500	0,29	► 16012 -
	95	18	30,7	23,2	0,98	15 000	9 500	0,41	► 6012 -
	95	18	30,7	23,2	0,98	-	4 300	0,43	► 6012-2RS1 6012-RS1
	95	18	30,7	23,2	0,98	15 000	7 500	0,43	6012-2RZ 6012-RZ
	95	18	30,7	23,2	0,98	15 000	7 500	0,43	► 6012-2Z 6012-Z
	110	22	55,3	36	1,53	13 000	8 000	0,78	► 6212 –
	110	22	55,3	36	1,53	13 000	8 000	0,93	6212 M −
	110	22	55,3	36	1,53	-	4 000	0,79	• 6212-2RSH • 6212-RSH
	110	22	55,3	36	1,53	13 000	6 300	0,81	• 6212-2Z 6212-Z
	110	28	52,7	36	1,53	-	4 000	1	62212-2RS1 –
	130	31	85,2	52	2,2	11 000	7 000	2,1	6312 M –
	130	31	85,2	52	2,2	-	3 400	1,75	6312-2RSH • 6312-RSH
	130	31	85,2	52	2,2	11 000	5 600	1,8	► 6312-2Z
	130	31	85,2	52	2,2	11 000	7 000	1,7	► 6312 –
	130	46	81,9	52	2,2	-	3 400	2,55	62312-2RS1 –
	150	35	108	69,5	2,9	10 000	6 300	2,85	6412 –
55	85	10	12,4	12,7	0,54	-	4 500	0,13	► 61813-2RS1 -
	85	10	12,4	12,7	0,54	16 000	8 000	0,13	► 61813-2RZ -
	85	10	12,4	12,7	0,54	16 000	10 000	0,13	► 61813 -
	90	13	17,4	16	0,68	-	4 300	0,22	► 61913-2RS1 -
	90	13	17,4	16	0,68	15 000	7 500	0,22	61913-2RZ -
	90	13	17,4	16	0,68	15 000	9 500	0,22	► 61913 -
	100	11	22,5	19,6	0,83	14 000	9 000	0,3	► 16013 -
	100	18	31,9	25	1,06	14 000	9 000	0,44	► 6013 -
	100	18	31,9	25	1,06	14 000	12 000	0,44	6013 M -
	100 100 120	18 18 23	31,9 31,9 58,5	25 25 40,5	1,06 1,06 1,73	- 14 000 12 000	4 000 7 000 10 000	0,45 0,46 1,2	► 6013-2RS1 6013-RS1 ► 6013-2Z 6013-Z -

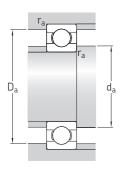
SKF Explorer bearing
Popular item
For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.





Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
60	65,4	-	-	74,5	0,3	62	65	76	0,3	0,015	17
	65,4	-	-	74,5	0,3	62	65	76	0,3	0,015	17
	65,4	-	72,9	-	0,3	62	–	76	0,3	0,015	17
	68,3	-	-	78,7	1	65	68	80	1	0,02	14
	68,3	-	-	78,7	1	65	-	80	1	0,02	14
	68,3	-	-	78,7	1	65	68	80	1	0,02	16
	72	-	83	-	0,6	64	-	91	0,6	0,02	14
	71,3	-	-	86,5	1,1	66	-	89	1	0,025	16
	71,3	-	-	86,5	1,1	66	71	89	1	0,025	16
	71,3	-	-	86,5	1,1	66	71	89	1	0,025	16
	71,3	-	-	86,5	1,1	66	71	89	1	0,025	16
	75,5	-	-	98	1,5	69	-	101	1,5	0,025	14
	75,5	-	-	98	1,5	69	-	101	1,5	0,025	14
	-	71,5	-	99,5	1,5	69	71	101	1,5	0,025	14
	75,5	-	-	98	1,5	69	75	101	1,5	0,025	14
	75,5	-	-	98	1,5	69	75	101	1,5	0,025	14
	81,8	-	-	113	2,1	72	-	118	2	0,03	13
	-	77,5	-	113	2,1	72	77	118	2	0,03	13
	81,8	-	-	113	2,1	72	81	118	2	0,03	13
	81,8	-	-	113	2,1	72	-	118	2	0,03	13
	81,8	-	-	113	2,1	72	81	118	2	0,03	13
	88,1	-	122	-	2,1	74	-	136	2	0,035	12
65	71,4	-	-	80,5	0,6	69	71	81	0,6	0,015	17
	71,4	-	-	80,5	0,6	69	71	81	0,6	0,015	17
	71,4	-	78,9	-	0,6	69	-	81	0,6	0,015	17
	73	-	-	84,2	1	70	73	85	1	0,02	17
	73	-	-	84,2	1	70	73	85	1	0,02	17
	73	-	82,3	-	1	70	-	85	1	0,02	17
	76,5	-	88,4	-	0,6	69	-	96	0,6	0,02	16
	76,3	-	-	91,5	1,1	71	-	94	1	0,025	16
	76,3	-	-	91,5	1,1	71	-	94	1	0,025	16
	76,3	_	_	91,5	1,1	71	76	94	1	0,025	16
	76,3	_	_	91,5	1,1	71	76	94	1	0,025	16
	83,3	_	_	106	1,5	74	–	111	1,5	0,025	15

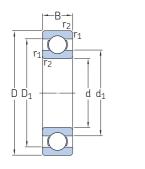
1.1 Single row deep groove ball bearings d 65 – 70 mm



2RS1

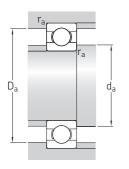
Principal dimensions		Basic load ratings dynamic static		Fatigue load limit	Speed ratin Reference speed	gs Limiting speed ¹⁾	Mass	Designations Bearing open or capped capp	capped on one	
	D	В	С	C_0	P_{u}	speed	speeu-/		on both sides side ¹	
nm			kN		kN	r/min		kg	_	
65 cont.	120 120 120	23 23 23	58,5 58,5 58,5	40,5 40,5 40,5	1,73 1,73 1,73	12 000 - 12 000	7 500 3 600 6 000	1 1,05 1,05	 ▶ 6213 ▶ 6213-2RS1 ▶ 6213-2Z 6213-2Z 	8-RS1 8-Z
	120 140 140	31 33 33	55,9 97,5 97,5	40,5 60 60	1,73 2,5 2,5	- 10 000 10 000	3 600 6 700 6 700	1,4 2,55 2,1	62213-2RS1 - 6313 M - 6313 -	
	140 140 140	33 33 48	97,5 97,5 92,3	60 60 60	2,5 2,5 2,5	- 10 000 -	3 200 5 300 3 200	2,15 2,15 3	► 6313-2RS1 6313 ► 6313-2Z 6313 62313-2RS1 -	8-RS1 8-Z
	160	37	119	78	3,15	9 500	6 000	3,35	6413 –	
70	90 90 90	10 10 10	12,4 12,4 12,4	13,2 13,2 13,2	0,56 0,56 0,56	- 15 000 15 000	4 300 7 500 9 000	0,14 0,14 0,14	► 61814-2RS1 - ► 61814-2RZ - ► 61814 -	
	100 100 100	16 16 16	23,8 23,8 23,8	18,3 21,2 21,2	0,9 0,9 0,9	14 000 - 14 000	8 500 4 000 7 000	0,34 0,35 0,35	► 61914 – 61914-2RS1 – 61914-2RZ –	
	110 110 110	13 20 20	29,1 39,7 39,7	25 31 31	1,06 1,32 1,32	13 000 13 000 13 000	8 000 11 000 8 000	0,44 0,7 0,61	► 16014 – 6014 M – ► 6014 –	
	110 110 125	20 20 24	39,7 39,7 60,5	31 31 45	1,32 1,32 1,9	- 13 000 11 000	3 600 6 300 10 000	0,63 0,64 1,3	► 6014-2RS1 6014 ► 6014-2Z 6014 6214 M –	4-RS1 4-Z
	125 125 125	24 24 24	63,7 63,7 63,7	45 45 45	1,9 1,9 1,9	11 000 - 11 000	7 000 3 400 5 600	1,1 1,1 1,15	► 6214 - ► 6214-2RS1 6214 ► 6214-2Z 6214	4-RS1 4-Z
	125 150 150	31 35 35	60,5 111 111	45 68 68	1,9 2,75 2,75	- 9 500 9 500	3 400 6 300 6 300	1,4 2,55 3,1	62214-2RS1 - 6314 - 6314 M -	
	150 150 150	35 35 51	111 111 104	68 68 68	2,75 2,75 2,75	- 9 500 -	3 000 5 000 3 000	2,6 2,65 3,75	► 6314-2RS1 6314 ► 6314-2Z 6314-2RS1 -	4-RS1 4-Z
	180	42	143	104	3,9	8 500	5 300	4,95	6414 –	

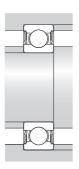
SKF Explorer bearing
Popular item
For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.



Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				_	
65 cont.	83,3 83,3 83,3	- - -	- - -	106 106 106	1,5 1,5 1,5	74 74 74	- 83 83	111 111 111	1,5 1,5 1,5	0,025 0,025 0,025	15 15 15
	83,3	-	-	106	1,5	74	83	111	1,5	0,025	15
	88,3	-	-	122	2,1	77	-	128	2	0,03	13
	88,3	-	-	122	2,1	77	-	128	2	0,03	13
	88,3	-	-	122	2,1	77	88	128	2	0,03	13
	88,3	-	-	122	2,1	77	88	128	2	0,03	13
	88,3	-	-	122	2,1	77	88	128	2	0,03	13
	94	-	131	-	2,1	79	-	146	2	0,035	12
0	76,4	-	-	85,5	0,6	74	76	86	0,6	0,015	17
	76,4	-	-	85,5	0,6	74	76	86	0,6	0,015	17
	76,4	-	83,9	-	0,6	74	–	86	0,6	0,015	17
	79,8	-	-	92,9	1	75	-	95	1	0,02	14
	79,8	-	-	92,9	1	75	79	95	1	0,02	16
	79,8	-	-	92,9	1	75	79	95	1	0,02	16
	83,3	-	96,8	-	0,6	74	-	106	0,6	0,02	16
	82,8	-	-	99,9	1,1	76	-	104	1	0,025	16
	82,8	-	-	99,9	1,1	76	-	104	1	0,025	16
	82,8	-	-	99,9	1,1	76	82	104	1	0,025	16
	82,8	-	-	99,9	1,1	76	82	104	1	0,025	16
	87	-	-	111	1,5	79	-	116	1,5	0,025	15
	87	-	-	111	1,5	79	-	116	1,5	0,025	15
	87	-	-	111	1,5	79	87	116	1,5	0,025	15
	87	-	-	111	1,5	79	87	116	1,5	0,025	15
	87	-	-	111	1,5	79	87	116	1,5	0,025	15
	94,9	-	-	130	2,1	82	-	138	2	0,03	13
	94,9	-	-	130	2,1	82	-	138	2	0,03	13
	94,9	-	-	130	2,1	82	94	138	2	0,03	13
	94,9	-	-	130	2,1	82	94	138	2	0,03	13
	94,9	-	-	130	2,1	82	94	138	2	0,03	13
	103	-	146	-	3	86	-	164	2,5	0,035	12

1.1 Single row deep groove ball bearings d 75 – 80 mm

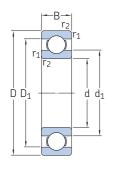




2RS1

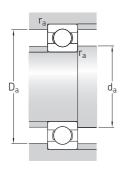
Principal dimensions		Basic load dynamic	ratings static	Fatigue load limit	Speed ratings Reference Limiting		Mass		Designations Bearing		
d	D	В	С	C_0	P_u	speed	speed ¹⁾			open or capped on both sides	capped on one side ¹⁾
mm			kN		kN	r/min		kg		_	
75	95 95 95	10 10 10	12,5 12,5 12,5	10,8 10,8 10,8	0,585 0,585 0,585	- 14 000 14 000	4 000 7 000 8 500	0,15 0,15 0,15	•	61815-2RS1 61815-2RZ 61815	- - -
	105 105 105	16 16 16	24,2 24,2 24,2	19,3 22,4 22,4	0,965 0,965 0,965	13 000 - 13 000	8 000 3 600 6 300	0,36 0,37 0,37	•	61915 61915-2RS1 61915-2RZ	- - -
	115 115 115	13 20 20	30,2 41,6 41,6	27 33,5 33,5	1,14 1,43 1,43	12 000 12 000 12 000	7 500 10 000 7 500	0,46 0,74 0,65		16015 6015 M 6015	- - -
	115 115 115	20 20 20	41,6 41,6 41,6	33,5 33,5 33,5	1,43 1,43 1,43	- 12 000 12 000	3 400 6 000 6 000	0,67 0,67 0,68		6015-2RS1 6015-2RZ 6015-2Z	6015-RS1 6015-RZ 6015-Z
	130 130 130	25 25 25	68,9 68,9 68,9	49 49 49	2,04 2,04 2,04	10 000 10 000 -	9 500 6 700 3 200	1,4 1,2 1,2		6215 M 6215 6215-2RS1	- - 6215-RS1
	130 160 160	25 37 37	68,9 119 119	49 76,5 76,5	2,04 3 3	10 000 9 000 9 000	5 300 5 600 5 600	1,25 3,05 3,7		6215-2Z 6315 6315 M	6215-Z - -
	160 160 190	37 37 45	119 119 153	76,5 76,5 114	3 3 4,15	- 9 000 8 000	2 800 4 500 5 000	3,15 3,15 5,8		6315-2RS1 6315-2Z 6415	6315-RS1 6315-Z
30	100 100 110	10 10 16	12,7 12,7 25,1	11,2 11,2 20,4	0,61 0,61 1,02	- 13 000 -	3 600 8 000 3 400	0,16 0,15 0,4	•	61816-2RS1 61816 61916-2RS1	- - -
	110 110 125	16 16 14	25,1 25,1 35,1	20,4 20,4 31,5	1,02 1,02 1,32	12 000 12 000 11 000	6 000 7 500 7 000	0,4 0,38 0,61	•	61916-2RZ 61916 16016	- - -
	125 125 125	22 22 22	49,4 49,4 49,4	40 40 40	1,66 1,66 1,66	11 000 - 11 000	7 000 3 200 5 600	0,86 0,88 0,89	•	6016 6016-2RS1 6016-2Z	- 6016-RS1 6016-Z
	140 140 140	26 26 26	72,8 72,8 72,8	55 55 55	2,2 2,2 2,2	9 500 9 500 -	6 000 8 500 3 000	1,45 1,7 1,5		6216 6216 M 6216-2RS1	- - 6216-RS1

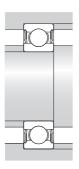
SKF Explorer bearing
Popular item
For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.



Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _{a.} min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
75	81,7	-	-	90,7	1,3	79	81	91	0,6	0,015	13
	81,7	-	-	90,7	1,3	79	81	91	0,6	0,015	13
	81,7	-	-	90,7	1,3	79	-	91	0,6	0,015	13
	84,8	-	-	97,9	1,9	80	-	100	1	0,02	14
	84,7	-	-	98,3	1	80	84	100	1	0,02	17
	84,7	-	-	98,3	1	80	84	100	1	0,02	17
	88,3	-	102	-	0,6	79	-	111	0,6	0,02	16
	87,8	-	-	105	1,1	81	-	109	1	0,025	16
	87,8	-	-	105	1,1	81	-	109	1	0,025	16
	87,8	-	-	105	1,1	81	87	109	1	0,025	16
	87,8	-	-	105	1,1	81	87	109	1	0,025	16
	87,8	-	-	105	1,1	81	87	109	1	0,025	16
	92	-	-	117	1,5	84	-	121	1,5	0,025	15
	92	-	-	117	1,5	84	-	121	1,5	0,025	15
	92	-	-	117	1,5	84	92	121	1,5	0,025	15
	92	-	-	117	1,5	84	92	121	1,5	0,025	15
	101	-	-	139	2,1	87	-	148	2	0,03	13
	101	-	-	139	2,1	87	-	148	2	0,03	13
	101	-	-	139	2,1	87	100	148	2	0,03	13
	101	-	-	139	2,1	87	100	148	2	0,03	13
	110	-	155	-	3	91	-	174	2,5	0,035	12
80	86,7	-	-	95,7	1,3	84	86	96	0,6	0,015	13
	86,7	-	-	95,7	1,3	84	-	96	0,6	0,015	13
	89,8	-	-	103	1	85	89	105	1	0,02	14
	89,8	-	-	103	1	85	89	105	1	0,02	14
	89,8	-	-	103	1	85	-	105	1	0,02	14
	95,3	-	110	-	0,6	84	-	121	0,6	0,02	16
	94,4	-	-	115	1,1	86	-	119	1	0,025	16
	94,4	-	-	115	1,1	86	94	119	1	0,025	16
	94,4	-	-	115	1,1	86	94	119	1	0,025	16
	101	-	-	127	2	91	-	129	2	0,025	15
	101	-	-	127	2	91	-	129	2	0,025	15
	101	-	-	127	2	91	100	129	2	0,025	15

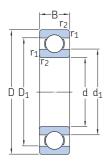
1.1 Single row deep groove ball bearings d 80 – 90 mm





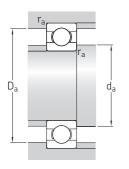
2RS1

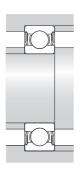
Princip	al dimens	sions	Basic lo dynamic	oad ratings static	Fatigue load limit	Speed ration Reference speed	n gs Limiting speed ¹)	Mass	Designations Bearing open or capped	capped on one
d	D	В	С	C_0	P_u	Speed	Speea±/		on both sides	side ¹⁾
mm			kN		kN	r/min		kg	_	
80 cont.	140 170 170	26 39 39	72,8 130 130	55 86,5 86,5	2,2 3,25 3,25	9 500 8 500 8 500	4 800 7 500 5 300	1,55 4,4 3,65	► 6216-2Z 6316 M ► 6316	6216-Z - -
	170 170 200	39 39 48	130 130 163	86,5 86,5 125	3,25 3,25 4,5	- 8 500 7 500	2 600 4 300 4 800	3,7 3,75 6,85	► 6316-2RS1 ► 6316-2Z 6416	6316-RS1 6316-Z
85	110 110 110	13 13 13	19,5 19,5 19,5	16,6 16,6 16,6	0,88 0,88 0,88	- 12 000 12 000	3 400 6 000 7 500	0,28 0,28 0,26	61817-2RS161817-2RZ61817	- - -
	120 130 130	18 14 22	31,9 35,8 52	30 33,5 43	1,25 1,37 1,76	11 000 11 000 11 000	7 000 6 700 6 700	0,55 0,64 0,9	► 61917 ► 16017 ► 6017	- - -
	130 130 150	22 22 28	52 52 87,1	43 43 64	1,76 1,76 2,5	- 11 000 9 000	3 000 5 300 8 000	0,93 0,94 2	► 6017-2RS1 ► 6017-2Z 6217 M	6017-RS1 6017-Z -
	150 150 150	28 28 28	87,1 87,1 87,1	64 64 64	2,5 2,5 2,5	9 000 - 9 000	5 600 2 800 4 500	1,8 1,9 1,9	62176217-2RS16217-2Z	- 6217-RS1 6217-Z
	180 180 180	41 41 41	140 140 140	96,5 96,5 96,5	3,55 3,55 3,55	8 000 8 000 -	5 000 7 500 2 400	4,25 5,2 4,35	► 6317 6317 M ► 6317-2RS1	- - 6317-RS1
	180 210	41 52	140 174	96,5 137	3,55 4,75	8 000 7 000	4 000 4 500	4,4 8,05	► 6317-2Z 6417	6317-Z -
90	115 115 115	13 13 13	19,5 19,5 19,5	17 17 17	0,915 0,915 0,915	- 11 000 11 000	3 200 5 600 7 000	0,29 0,29 0,28	61818-2RS161818-2RZ61818	- - -
	125 140 140	18 16 24	33,2 43,6 60,5	31,5 39 50	1,29 1,56 1,96	11 000 10 000 10 000	6 700 6 300 8 500	0,59 0,85 1,35	► 61918 ► 16018 6018 M	- - -
	140 140 140	24 24 24	60,5 60,5 60,5	50 50 50	1,96 1,96 1,96	10 000 - 10 000	6 300 2 800 5 000	1,15 1,2 1,2	60186018-2RS16018-2Z	_ 6018-RS1 6018-Z
	160 160 160	30 30 30	101 101 101	73,5 73,5 73,5	2,8 2,8 2,8	8 500 8 500 -	5 300 5 300 2 600	2,2 2,65 2,3	► 6218 6218 M ► 6218-2RS1	- - 6218-RS1


SKF Explorer bearing
Popular item
For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.

Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
80 cont.	101	-	-	127	2	91	100	129	2	0,025	15
	108	-	-	147	2,1	92	-	158	2	0,03	13
	108	-	-	147	2,1	92	-	158	2	0,03	13
	108	-	-	147	2,1	92	107	158	2	0,03	13
	108	-	-	147	2,1	92	107	158	2	0,03	13
	116	-	163	-	3	96	-	184	2,5	0,035	12
85	93,3	-	-	105	1,9	90	93	105	1	0,015	14
	93,3	-	-	105	1,9	90	93	105	1	0,015	14
	93,3	-	-	105	1,9	90	-	105	1	0,015	14
	96,4	-	109	-	1,1	91	-	114	1	0,02	16
	100	-	115	-	0,6	89	-	126	0,6	0,02	17
	99,4	-	-	120	1,1	92	-	123	1	0,025	16
	99,4	-	-	120	1,1	92	99	123	1	0,025	16
	99,4	-	-	120	1,1	92	99	123	1	0,025	16
	106	-	-	135	2	96	-	139	2	0,025	15
	106	-	-	135	2	96	-	139	2	0,025	15
	106	-	-	135	2	96	105	139	2	0,025	15
	106	-	-	135	2	96	105	139	2	0,025	15
	114 114 114	- - -	- - -	156 156 156	3 3	99 99 99	- - 114	166 166 166	2,5 2,5 2,5	0,03 0,03 0,03	13 13 13
	114 123		- 172	156 -	3 4	99 105	114 -	166 190	2,5 3	0,03 0,035	13 12
90	98,3	-	-	110	1	95	98	110	1	0,015	13
	98,3	-	-	110	1	95	98	110	1	0,015	13
	98,3	-	-	110	1	95	-	110	1	0,015	13
	101	-	114	-	1,1	96	-	119	1	0,02	17
	106	-	124	-	1	95	-	135	1	0,02	16
	105	-	-	129	1,5	97	-	133	1,5	0,025	16
	105	-	-	129	1,5	97	-	133	1,5	0,025	16
	105	-	-	129	1,5	97	105	133	1,5	0,025	16
	105	-	-	129	1,5	97	105	133	1,5	0,025	16
	112	-	-	143	2	101	-	149	2	0,025	15
	112	-	-	143	2	101	-	149	2	0,025	15
	112	-	-	143	2	101	112	149	2	0,025	15

1.1 Single row deep groove ball bearings d 90 – 100 mm

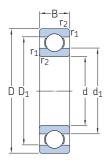




2RS1

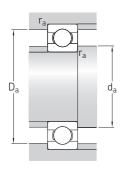
Princip	al dimens	sions	Basic lo dynamic	oad ratings c static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed ¹)	Mass	Designations Bearing open or capped	capped on one
d	D	В	С	C_0	P_u	Speed	speeu±/		on both sides	side ¹⁾
mm			kN		kN	r/min		kg	_	
90 cont.	160 190 190	30 43 43	101 151 151	73,5 108 108	2,8 3,8 3,8	8 500 7 500 7 500	4 300 7 000 4 800	2,3 6,1 4,95	► 6218-2Z 6318 M ► 6318	6218-Z - -
	190 190 225	43 43 54	151 151 186	108 108 150	3,8 3,8 5	- 7 500 6 700	2 400 3 800 4 300	5,1 5,15 9,8	► 6318-2RS1 ► 6318-2Z 6418	6318-RS1 6318-Z
95	120	13	19,9	17,6	0,93	-	3 000	0,31	► 61819-2RS1	-
	120	13	19,9	17,6	0,93	11 000	6 700	0,29	► 61819	-
	130	18	33,8	33,5	1,34	-	3 000	0,65	61919-2RS1	-
	130	18	33,8	33,5	1,34	10 000	6 300	0,61	61919	-
	145	16	44,9	41,5	1,63	9 500	6 000	0,89	▶ 16019	-
	145	24	63,7	54	2,08	9 500	6 000	1,2	▶ 6019	-
	145	24	63,7	54	2,08	-	2 800	1,25	► 6019-2RS1	-
	145	24	63,7	54	2,08	9 500	4 800	1,25	► 6019-2Z	6019-Z
	170	32	114	81,5	3	8 000	5 000	2,65	► 6219	-
	170	32	114	81,5	3	8 000	5 000	3,2	6219 M	-
	170	32	114	81,5	3	-	2 400	2,7	► 6219-2RS1	6219-RS1
	170	32	114	81,5	3	8 000	4 000	2,7	► 6219-2Z	6219-Z
	200	45	159	118	4,15	7 000	4 500	5,75	► 6319	-
	200	45	159	118	4,15	7 000	6 300	7,05	6319 M	-
	200	45	159	118	4,15	-	2 200	5,85	► 6319-2RS1	6319-RS1
	200	45	159	118	4,15	7 000	3 600	5,85	► 6319-2Z	6319-Z
100	125	13	17,8	18,3	0,95	-	3 000	0,32	► 61820-2RS1	-
	125	13	17,8	18,3	0,95	10 000	5 300	0,32	► 61820-2RZ	-
	125	13	17,8	18,3	0,95	10 000	6 300	0,3	► 61820	-
	140	20	42,3	41,5	1,63	9 500	6 000	0,83	61920	-
	150	16	46,2	44	1,7	9 500	5 600	0,94	► 16020	-
	150	24	63,7	54	2,04	9 500	7 500	1,45	6020 M	-
	150	24	63,7	54	2,04	9 500	5 600	1,25	► 6020	-
	150	24	63,7	54	2,04	-	2 600	1,3	► 6020-2RS1	6020-RS1
	150	24	63,7	54	2,04	9 500	4 500	1,3	► 6020-2Z	6020-Z
	180	34	127	93	3,35	7 500	4 800	3,2	► 6220	-
	180	34	127	93	3,35	7 500	7 000	3,8	6220 M	-
	180	34	127	93	3,35	-	2 400	3,3	► 6220-2RS1	6220-RS1

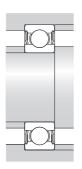
SKF Explorer bearing
Popular item
For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.



Dimens	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				_	
90 cont.	112	-	-	143	2	101	112	149	2	0,025	15
	121	-	-	164	3	104	-	176	2,5	0,03	13
	121	-	-	164	3	104	-	176	2,5	0,03	13
	121	-	-	164	3	104	120	176	2,5	0,03	13
	121	-	-	164	3	104	120	176	2,5	0,03	13
	132	-	181	-	4	110	-	205	3	0,035	13
95	103	-	-	115	1	100	102	115	1	0,015	13
	103	-	-	115	1	100	-	115	1	0,015	13
	106	-	-	122	1,1	101	105	124	1	0,02	17
	106	-	119	-	1,1	101	-	124	1	0,02	17
	111	-	129	-	1	100	-	140	1	0,02	16
	111	-	-	134	1,5	102	-	138	1,5	0,025	16
	111	-	_	134	1,5	102	111	138	1,5	0,025	16
	111	-	_	134	1,5	102	111	138	1,5	0,025	16
	118	-	_	152	2,1	107	-	158	2	0,025	14
	118	-	-	152	2,1	107	-	158	2	0,025	14
	118	-	-	152	2,1	107	118	158	2	0,025	14
	118	-	-	152	2,1	107	118	158	2	0,025	14
	127	-	-	172	3	109	-	186	2,5	0,03	13
	127	-	-	172	3	109	-	186	2,5	0,03	13
	127	-	-	172	3	109	127	186	2,5	0,03	13
	127	-	_	172	3	109	127	186	2,5	0,03	13
100	108	-	-	120	1	105	107	120	1	0,015	13
	108	-	-	120	1	105	107	120	1	0,015	13
	108	-	-	120	1	105	-	120	1	0,015	13
	112	-	128	-	1,1	106	-	134	1	0,02	16
	116	-	134	-	1	105	-	145	1	0,02	17
	115	-	-	139	1,5	107	-	143	1,5	0,025	16
	115	-	-	139	1,5	107	-	143	1,5	0,025	16
	115	-	-	139	1,5	107	115	143	1,5	0,025	16
	115	-	-	139	1,5	107	115	143	1,5	0,025	16
	124	-	-	160	2,1	112	-	168	2	0,025	14
	124	-	-	160	2,1	112	-	168	2	0,025	14
	124	-	-	160	2,1	112	124	168	2	0,025	14

1.1 Single row deep groove ball bearings d 100 – 110 mm

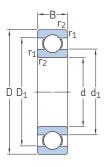




2RS1

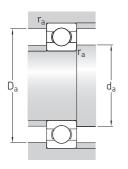
Princip	oal dimens	sions	Basic lo dynamic	oad ratings static	Fatigue load limit	Speed ratings Reference speed	Limiting speed ¹⁾	Mass	Designations Bearing open or capped	capped on one
l	D	В	С	C_0	P_{u}	speeu	speeu-/		on both sides	side ¹⁾
nm			kN		kN	r/min		kg	_	
. 00 ont.	180 215 215	34 47 47	127 174 174	93 140 140	3,35 4,75 4,75	7 500 6 700 6 700	3 800 4 300 6 000	3,3 7,1 8,7	► 6220-2Z ► 6320 6320 M	6220-Z - -
	215	47	174	140	4,75	-	2 000	7,2	► 6320-2RS1	6320-RS1
	215	47	174	140	4,75	6 700	3 400	7,3	► 6320-2Z	6320-Z
.05	130	13	20,8	19,6	1	-	2 800	0,33	► 61821-2RS1	-
	130	13	20,8	19,6	1	10 000	5 000	0,33	► 61821-2RZ	-
	130	13	20,8	19,6	1	10 000	6 300	0,31	► 61821	-
	145	20	44,2	44	1,7	9 500	5 600	0,87	61921	-
	160	18	54	51	1,86	8 500	5 300	1,2	▶ 16021	-
	160	26	76,1	65,5	2,4	8 500	5 300	1,6	▶ 6021	-
	160	26	76,1	65,5	2,4	8 500	7 500	1,85	6021 M	-
	160	26	76,1	65,5	2,4	-	2 400	1,65	► 6021-2RS1	6021-RS1
	160	26	76,1	65,5	2,4	8 500	4 300	1,65	► 6021-2Z	6021-Z
	190	36	140	104	3,65	7 000	4 500	3,8	► 6221	-
	190	36	140	104	3,65	7 000	3 600	3,9	► 6221-2Z	6221-Z
	225	49	182	153	5,1	6 300	3 200	8,25	6321-2Z	6321-Z
	225	49	182	153	5,1	6 300	4 000	8,2	► 632 1	-
10	140	16	28,1	26	1,25	-	2 600	0,6	► 61822-2RS1	-
	140	16	28,1	26	1,25	9 500	4 500	0,6	► 61822-2RZ	-
	140	16	28,1	26	1,25	9 500	5 600	0,47	► 61822	-
	150	20	43,6	45	1,66	9 000	5 600	0,9	► 61922	-
	150	20	43,6	45	1,66	9 000	7 500	1,05	► 61922 MA	-
	170	19	60,5	57	2,04	8 000	5 000	1,45	► 16022	-
	170	28	85,2	73,5	2,6	8 000	5 000	1,95	► 6022	-
	170	28	85,2	73,5	2,6	8 000	7 000	2,3	6022 M	-
	170	28	85,2	73,5	2,6	-	2 400	2	► 6022-2RS1	6022-RS1
	170	28	85,2	73,5	2,6	8 000	4 000	2,05	► 6022-2Z	6022-Z
	200	38	151	118	4	6 700	4 300	4,45	► 6222	-
	200	38	151	118	4	-	2 000	4,6	► 6222-2RS1	6222-RS1
	200 240 240	38 50 50	151 203 203	118 180 180	4 5,7 5,7	6 700 6 000 6 000	3 400 3 800 5 300	4,6 9,65 11,5	► 6222-2Z ► 6322 ► 6322 M	6222-Z -

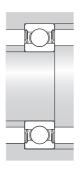
SKF Explorer bearing
Popular item
For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.



Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm			,	-	
100 cont.	124	-	-	160	2,1	112	124	168	2	0,025	14
	135	-	-	184	3	114	-	201	2,5	0,03	13
	135	-	-	184	3	114	-	201	2,5	0,03	13
	135	-	_	184	3	114	135	201	2,5	0,03	13
	135	-	_	184	3	114	135	201	2,5	0,03	13
105	112	-	_	125	1	110	112	125	1	0,015	13
	112	-	_	125	1	110	112	125	1	0,015	13
	112	-	_	125	1	110	-	125	1	0,015	13
	117	-	133	-	1,1	111	-	139	1	0,02	17
	123	-	142	-	1	110	-	155	1	0,02	16
	122	-	-	147	2	116	-	149	2	0,025	16
	122	-	-	147	2	116	-	149	2	0,025	16
	122	-	-	147	2	116	122	149	2	0,025	16
	122	-	-	147	2	116	122	149	2	0,025	16
	131	-	-	167	2,1	117	-	178	2	0,025	14
	131	-	-	167	2,1	117	131	178	2	0,025	14
	141	-	-	194	3	119	140	211	2,5	0,03	13
	141	-	188	-	3	119	-	211	2,5	0,03	13
110	118	-	-	135	1	115	118	135	1	0,015	14
	118	-	-	135	1	115	118	135	1	0,015	14
	118	-	-	135	1	115	-	135	1	0,015	14
	122	-	138	-	1,1	116	-	144	1	0,02	17
	122	-	-	81,5	1,1	116	-	144	1	0,02	17
	130	-	150	-	1	115	-	165	1	0,02	16
	129	-	-	156	2	119	-	161	2	0,025	16
	129	-	-	156	2	119	-	161	2	0,025	16
	129	-	-	156	2	119	128	161	2	0,025	16
	129	-	-	156	2	119	128	161	2	0,025	16
	138	-	-	177	2,1	122	-	188	2	0,025	14
	138	-	-	177	2,1	122	137	188	2	0,025	14
	138	-	-	177	2,1	122	137	188	2	0,025	14
	149	-	200	-	3	124	-	226	2,5	0,03	13
	149	-	200	-	3	124	-	226	2,5	0,03	13

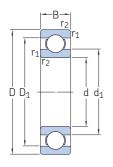
1.1 Single row deep groove ball bearings d 120 – 130 mm





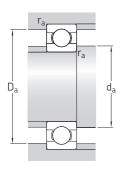
2RS1

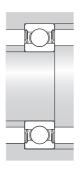
Princip	al dimens	sions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed rating Reference speed	gs Limiting speed ¹⁾	Mass	Designations Bearing open or capped	capped on one
d	D	В	С	C_0	P_{u}	speed	speeu±/		on both sides	side ¹⁾
mm			kN		kN	r/min		kg	_	
120	150 150 150	16 16 16	29,1 29,1 29,1	28 28 28	1,29 1,29 1,29	- 8 500 8 500	2 400 4 300 5 300	0,65 0,65 0,51	61824-2RS161824-2RZ61824	- - -
	165	22	55,3	57	2,04	8 000	5 000	1,2	61924	-
	165	22	55,3	57	2,04	8 000	6 700	1,4	61924 MA	-
	180	19	63,7	64	2,2	7 500	4 800	1,55	► 16024	-
	180	28	88,4	80	2,75	7 500	6 300	2,45	6024 MA	-
	180	28	88,4	80	2,75	7 500	4 800	2,1	► 6024	-
	180	28	88,4	80	2,75	–	2 200	2,15	► 6024-2RS1	6024-RS1
	180	28	88,4	80	2,75	7 500	3 800	2,2	► 6024-2Z	6024-Z
	215	40	146	118	3,9	6 300	4 000	5,25	► 6224	-
	215	40	146	118	3,9	6 300	5 600	6,1	► 6224 M	-
	215	40	146	118	3,9	-	1 900	5,35	► 6224-2RS1	6224-RS1
	215	40	146	118	3,9	6 300	3 200	5,35	6224-2Z	6224-Z
	260	55	208	186	5,7	5 600	3 400	12,5	► 6324	-
	260	55	208	186	5,7	5 600	5 000	14	► 6324 M	-
	260	55	208	186	5,7	-	1 700	12,5	► 6324-2RS1	6324-RS1
	260	55	208	186	5,7	5 600	2 800	12,5	6324-2Z	6324-Z
130	165	18	37,7	43	1,6	-	2 200	0,93	► 61826-2RS1	-
	165	18	37,7	43	1,6	8 000	3 800	0,93	► 61826-2RZ	-
	165	18	37,7	43	1,6	8 000	4 800	0,75	► 61826	-
	180	24	65	67	2,28	7 500	4 500	1,6	► 61926	-
	200	22	83,2	81,5	2,7	7 000	4 300	2,35	► 16026	-
	200	33	112	100	3,35	7 000	5 600	3,75	6026 M	-
	200 200 200	33 33 33	112 112 112	100 100 100	3,35 3,35 3,35	7 000 - 7 000	4 300 2 000 3 400	3,3 3,3 3,35	60266026-2RS16026-2Z	- 6026-RS1 6026-Z
	230	40	156	132	4,15	5 600	5 300	6,95	6226 M	-
	230	40	156	132	4,15	5 600	3 600	5,85	► 6226	-
	230	40	156	132	4,15	-	1 800	6	► 6226-2RS1	6226-RS1
	230	40	156	132	4,15	5 600	3 000	6	► 6226-2Z	6226-Z
	280	58	229	216	6,3	5 000	3 200	15	► 6326	-
	280	58	229	216	6,3	5 000	4 500	17,5	► 6326 M	-


SKF Explorer bearing
Popular item
For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.

Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
120	128	-	-	145	1	125	128	145	1	0,015	14
	128	-	-	145	1	125	128	145	1	0,015	14
	128	-	-	145	1	125	-	145	1	0,015	14
	134	-	151	-	1,1	126	-	159	1	0,02	17
	134	-	152	-	1,1	126	-	159	1	0,02	17
	139	-	161	-	1	125	-	175	1	0,02	17
	139	-	-	166	2	129	-	171	2	0,025	16
	139	-	-	166	2	129	-	171	2	0,025	16
	139	-	-	166	2	129	139	171	2	0,025	16
	139	-	-	166	2	129	139	171	2	0,025	16
	150	-	185	-	2,1	132	-	203	2	0,025	14
	150	-	185	-	2,1	132	-	203	2	0,025	14
	150	-	-	190	2,1	132	150	203	2	0,025	14
	150	-	-	190	2,1	132	150	203	2	0,025	14
	164	-	215	-	3	134	-	246	2,5	0,03	14
	164	-	215	-	3	134	-	246	2,5	0,03	14
	164	-	-	221	3	134	164	246	2,5	0,03	14
	164	-	-	221	3	134	164	246	2,5	0,03	14
130	140	-	-	158	1,1	136	139	159	1	0,015	16
	140	-	-	158	1,1	136	139	159	1	0,015	16
	140	-	-	158	1,1	136	-	159	1	0,015	16
	145	-	164	-	1,5	137	-	173	1,5	0,02	16
	153	-	176	-	1,1	136	-	192	1	0,02	16
	152	-	-	182	2	139	-	191	2	0,025	16
	152	-	-	182	2	139	-	191	2	0,025	16
	152	-	-	182	2	139	152	191	2	0,025	16
	152	-	-	182	2	139	152	191	2	0,025	16
	160	-	198	-	3	144	-	216	2,5	0,025	15
	160	-	198	-	3	144	-	216	2,5	0,025	15
	160	-	-	203	3	144	160	216	2,5	0,025	15
	160	-	-	203	3	144	160	216	2,5	0,025	15
	177	-	232	-	4	147	-	263	3	0,03	14
	177	-	232	-	4	147	-	263	3	0,03	14

1.1 Single row deep groove ball bearings d 140 – 160 mm

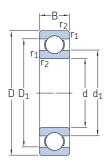



2RS1

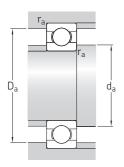
Princip	oal dimens	sions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designations Bearing	
d	D	В	С	C_0	P_u	speed	speed ¹⁾		open or capped on both sides	capped on one side ¹⁾
nm			kN		kN	r/min		kg	_	
140	175	18	39	46,5	1,66	-	2 000	0,99	61828-2RS1	-
	175	18	39	46,5	1,66	7 500	3 600	0,99	► 61828-2RZ	-
	175	18	39	46,5	1,66	7 500	4 500	0,82	► 61828	-
	190	24	66,3	72	2,36	7 000	4 300	1,7	61928	-
	190	24	66,3	72	2,36	7 000	5 600	2	► 61928 MA	-
	210	22	80,6	86,5	2,8	6 700	4 000	2,55	► 16028	-
	210	33	111	108	3,45	6 700	5 300	4	► 6028 M	-
	210	33	111	108	3,45	6 700	4 000	3,45	► 6028	-
	210	33	111	108	3,45	-	1 800	3,55	► 6028-2RS1	6028-RS1
	210	33	111	108	3,45	6 700	3 200	3,55	► 6028-2Z	6028-Z
	250	42	165	150	4,55	5 300	3 400	7,75	► 6228	-
	250	42	165	150	4,55	5 300	4 800	9,4	6228 MA	-
	300 300	62 62	251 251	245 245	7,1 7,1	4 800 4 800	3 000 4 300	18,5 21	► 6328 ► 6328 M	
.50	190	20	48,8	61	1,96	6 700	4 300	1,2	► 61830	-
	190	20	48,8	61	1,96	6 700	4 300	1,35	► 61830 MA	-
	210	28	88,4	93	2,9	6 300	5 300	3,05	61930 MA	-
	225	24	92,2	98	3,05	6 000	3 800	3,15	► 16030	-
	225	35	125	125	3,9	6 000	5 000	4,9	► 6030 M	-
	225	35	125	125	3,9	6 000	3 800	4,3	► 6030	-
	225	35	125	125	3,9	-	1 700	4,35	► 6030-2RS1	6030-RS1
	225	35	125	125	3,9	6 000	3 000	4,4	► 6030-2Z	6030-Z
	270	45	174	166	4,9	5 000	3 200	10	► 6230	-
	270	45	174	166	4,9	5 000	4 500	11,5	► 6230 M	-
	320	65	276	285	7,8	4 300	2 800	23	► 6330	-
	320	65	276	285	7,8	4 300	4 000	25,5	► 6330 M	-
60	200	20	49,4	64	2	6 300	4 000	1,25	► 61832	-
	220	28	92,3	98	3,05	6 000	3 800	2,7	61932	-
	220	28	92,3	98	3,05	6 000	5 000	3,2	► 61932 MA	-
	240	25	99,5	108	3,25	5 600	3 600	3,65	► 16032	-
	240	38	143	143	4,3	5 600	4 800	6	► 6032 M	-
	240	38	143	143	4,3	5 600	3 600	5,2	► 6032	-
	240	38	143	143	4,3	-	1 600	5,3	► 6032-2RS1	6032-RS1
	240	38	143	143	4,3	5 600	2 800	5,4	► 6032-2Z	6032-Z
	290	48	186	186	5,3	4 500	3 000	13	► 6232	-

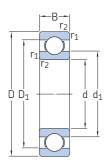
Popular item

1) For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.

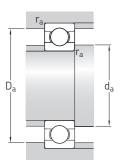


Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
140	150	-	-	167	1,1	146	150	169	1	0,015	16
	150	-	-	167	1,1	146	150	169	1	0,015	16
	150	-	-	167	2,5	146	-	169	1	0,015	16
	156	-	174	-	1,5	147	-	183	1,5	0,02	15
	156	-	175	-	1,5	147	-	183	1,5	0,02	17
	163	-	186	-	1,1	146	-	204	1	0,02	17
	162	-	-	192	2	149	-	201	2	0,025	16
	162	-	-	192	2	149	-	201	2	0,025	16
	162	-	-	192	2	149	162	201	2	0,025	16
	162	-	-	192	2	149	162	201	2	0,025	16
	175	-	213	-	3	154	-	236	2,5	0,025	15
	175	-	214	-	3	154	-	236	2,5	0,025	15
	190 190	- -	249 249	_	4 4	157 157	- -	283 283	3 3	0,03 0,03	14 14
150	162	-	178	-	2,5	156	-	184	1	0,015	17
	162	-	178	-	1,1	156	-	184	1	0,015	17
	169	-	192	-	2	159	-	201	2	0,02	16
	174	-	200	-	1,1	156	-	219	1	0,02	17
	174	-	-	206	2,1	160	-	215	2	0,025	16
	174	-	-	206	2,1	160	-	215	2	0,025	16
	174	-	-	206	2,1	160	173	215	2	0,025	16
	174	-	-	206	2,1	160	173	215	2	0,025	16
	190	-	228	-	3	164	-	256	2,5	0,025	15
	190	-	228		3	164	-	256	2,5	0,025	15
	205	-	264	-	4	167	-	303	3	0,03	14
	205	-	264	-	4	167	-	303	3	0,03	14
160	172	-	188	-	1,1	166	-	194	1	0,015	17
	179	-	201	-	2	169	-	211	2	0,02	17
	179	-	202	-	2	169	-	211	2	0,02	17
	185	-	214	-	1,5	167	-	233	1,5	0,02	17
	185	-	-	219	2,1	169	-	231	2	0,025	16
	185	-	-	219	2,1	169	-	231	2	0,025	16
	185	-	-	219	2,1	169	185	231	2	0,025	16
	185	-	-	219	2,1	169	185	231	2	0,025	16
	205	-	243	-	3	174	-	276	2,5	0,025	15


1.1 Single row deep groove ball bearings d 160 – 200 mm

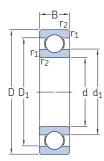

Princip	al dimens	sions	Basic lo dynamic	oad ratings static	Fatigue load limit	Speed ratin Reference	gs Limiting speed ¹⁾	Mass	Designations Bearing	canned an arra
d	D	В	С	C_0	P_u	speed	speea±)		open or capped on both sides	capped on one side ¹⁾
nm			kN		kN	r/min		kg	_	
160 ont.	290 340 340	48 68 68	186 276 276	186 285 285	5,3 7,65 7,65	4 500 4 000 4 000	4 300 2 600 3 800	14 26 30	► 6232 M ► 6332 ► 6332 M	- - -
.70	215	22	61,8	78	2,4	6 000	3 600	1,65	► 61834	-
	230	28	93,6	106	3,15	5 600	4 800	3,35	61934 MA	-
	260	28	119	129	3,75	5 300	3 200	5	► 16034	-
	260	42	168	173	5	5 300	3 200	7	6034	-
	260	42	168	173	5	5 300	4 300	8,15	► 6034 M	-
	310	52	212	224	6,1	4 300	2 800	16	► 6234	-
	310	52	212	224	6,1	4 300	3 800	17,5	► 6234 M	-
	360	72	312	340	8,8	3 800	2 400	31	► 6334	-
	360	72	312	340	8,8	3 800	3 400	35	► 6334 M	-
.80	225	22	62,4	81,5	2,45	5 600	3 400	1,75	► 61836	-
	250	33	119	134	3,9	5 300	3 200	5	61936	-
	250	33	119	134	3,9	5 300	4 300	5	► 61936 MA	-
	280	31	138	146	4,15	4 800	3 000	6,5	► 16036	-
	280	46	190	200	5,6	4 800	3 000	9,1	6036	-
	280	46	190	200	5,6	4 800	4 000	10,5	► 6036 M	-
	320	52	229	240	6,4	4 000	2 600	16	6236	-
	320	52	229	240	6,4	4 000	3 800	18	► 6236 M	-
	380	75	351	405	10,4	3 600	2 200	36,5	► 6336	-
	380	75	351	405	10,4	3 600	3 200	41	▶ 6336 M	-
190	240	24	76,1	98	2,8	5 300	3 200	2,25	► 61838	-
	260	33	117	134	3,8	5 000	3 200	4,5	61938	-
	260	33	117	134	3,8	5 000	4 300	5,2	► 61938 MA	-
	290	31	148	166	4,55	4 800	3 000	6,9	► 16038	-
	290	46	195	216	5,85	4 800	3 000	9,55	6038	-
	290	46	195	216	5,85	4 800	3 800	11	► 6038 M	-
	340	55	255	280	7,35	3 800	2 400	19,5	► 6238	-
	340	55	255	280	7,35	3 800	3 400	21,5	► 6238 M	-
	400	78	371	430	10,8	3 400	2 200	42	6338	-
	400	78	371	430	10,8	3 400	3 000	47,5	► 6338 M	-
200	250	24	76,1	102	2,9	5 000	3 200	2,35	► 61840	-
	280	38	148	166	4,55	4 800	3 000	6,3	61940	-
	280	38	148	166	4,55	4 800	3 800	7,3	► 61940 MA	-

[•] Popular item
1) For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.

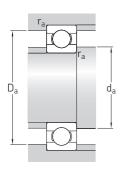

Dimen	sions					Abutm	ent and fi	llet dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				_	
160 cont.	205	-	243	-	3	174	-	276	2,5	0,025	15
	218	-	281	-	4	177	-	323	3	0,03	14
	218	-	281	-	4	177	-	323	3	0,03	14
170	184	-	202	-	1,1	176	-	209	1	0,015	17
	189	-	212	-	2	179	-	221	2	0,02	17
	200	-	229	-	1,5	177	-	253	1,5	0,02	16
	198	-	232	-	2,1	180	-	250	2	0,025	16
	198	-	232	-	2,1	180	-	250	2	0,025	16
	218	-	259	-	4	187	-	293	3	0,025	15
	218	-	259	-	4	187	-	293	3	0,025	15
	230	-	299	-	4	187	-	343	3	0,03	14
	230	-	299	-	4	187	-	343	3	0,03	14
180	194	-	211	-	1,1	186	-	219	1	0,015	17
	202	-	228	-	2	189	-	241	2	0,02	17
	202	-	229	-	2	189	-	241	2	0,02	17
	213	-	246	-	2	189	-	271	2	0,02	16
	212	-	248	-	2,1	190	-	270	2	0,025	16
	212	-	248	-	2,1	190	-	270	2	0,025	16
	226	-	274	-	4	197	-	303	3	0,025	15
	226	-	274	-	4	197	-	303	3	0,025	15
	244	-	315	-	4	197	-	363	3	0,03	14
	244	-	315	-	4	197	-	363	3	0,03	14
190	206	-	224	-	1,5	197	-	233	1,5	0,015	17
	212	-	238	-	2	199	-	251	2	0,02	17
	212	-	239	-	2	199	-	251	2	0,02	17
	223	-	256	-	2	199	-	281	2	0,02	16
	222	-	258	-	2,1	200	-	280	2	0,025	16
	222	-	258	-	2,1	200	-	280	2	0,025	16
	239	-	290	-	4	207	-	323	3	0,025	15
	239	-	290	-	4	207	-	323	3	0,025	15
	259	-	331	-	5	210	-	380	4	0,03	14
	259	-	331	-	5	210	-	380	4	0,03	14
200	216	-	234	-	1,5	207	-	243	1,5	0,015	17
	225	-	255	-	2,1	210	-	270	2	0,02	16
	225	-	256	-	2,1	210	-	270	2	0,02	16

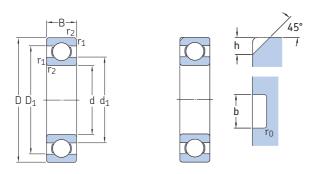
1.1 Single row deep groove ball bearings d 200 – 260 mm

Princip	oal dimen	sions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed ratin Reference speed	i gs Limiting speed ¹)	Mass	Designations Bearing open or capped capped on on
b	D	В	С	C_0	P_u				on both sides side ¹⁾
mm			kN		kN	r/min		kg	-
200 ont.	310 310 310	34 51 51	168 216 216	190 245 245	5,1 6,4 6,4	4 300 4 300 4 300	2 800 2 800 3 600	8,8 12,5 14	► 16040 - 6040 6040 M -
	360	58	270	310	7,8	3 600	2 200	23,5	6240 –
	360	58	270	310	7,8	3 600	3 200	26	► 6240 M –
220	270	24	78	110	3	4 500	2 800	2,55	► 61844 –
	300	38	151	180	4,75	4 300	2 600	6,8	61944 –
	300	38	151	180	4,75	4 300	3 600	7,95	► 61944 MA –
	340	37	174	204	5,2	4 000	2 400	11,5	► 16044 –
	340	56	247	290	7,35	4 000	2 400	16	6044 –
	340	56	247	290	7,35	4 000	3 200	18,5	► 6044 M –
	400	65	296	365	8,8	3 200	2 000	33,5	6244 –
	400	65	296	365	8,8	3 200	3 000	36,5	▶ 6244 M –
	460	88	410	520	12	3 000	2 600	73	▶ 6344 M –
240	300	28	108	150	3,8	4 000	2 600	3,9	► 61848 –
	320	38	159	200	5,1	4 000	2 400	7,3	61948 –
	320	38	159	200	5,1	4 000	3 200	8,55	► 61948 MA –
	360 360 360	37 37 56	203 203 255	255 255 315	6,3 6,3 7,8	3 600 3 600 3 600	2 200 3 000 2 200	12,5 14 17	► 16048
	360	56	255	315	7,8	3 600	3 000	19,5	► 6048 M –
	440	72	358	465	10,8	3 000	2 600	51	► 6248 M –
	500	95	442	585	12,9	2 600	2 400	97	6348 M –
260	320	28	111	163	4	3 800	2 400	4,15	► 61852 –
	360	46	212	270	6,55	3 600	2 200	12	61952 –
	360	46	212	270	6,55	3 600	3 000	14,5	► 61952 MA –
	400	44	238	310	7,2	3 200	2 000	18	16052 -
	400	44	238	310	7,2	3 200	2 800	22,5	▶ 16052 MA -
	400	65	291	375	8,8	3 200	2 000	25	6052 -
	400	65	291	375	8,8	3 200	2 800	29	► 6052 M –
	480	80	390	530	11,8	2 600	2 400	65,5	► 6252 M –


[•] Popular item
1) For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.

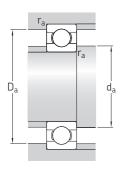
Dimen	sions					Abutm	ent and fil	let dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _{a.} min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
200 cont.	237	-	273	-	2	209	-	301	2	0,02	16
	235	-	275	-	2,1	210	-	300	2	0,025	16
	235	-	275	-	2,1	210	-	300	2	0,025	16
	254 254		303 303		4 4	217 217	-	343 343	3 3	0,025 0,025	15 15
220	236	-	254	-	1,5	227	-	263	1,5	0,015	17
	245	-	275	-	2,1	230	-	290	2	0,02	17
	245	-	276	-	2,1	230	-	290	2	0,02	17
	261	-	298	-	2,1	230	-	330	2	0,02	17
	258	-	302	-	3	233	-	327	2,5	0,025	16
	258	-	302	-	3	233	-	327	2,5	0,025	16
	282	-	335	-	4	237	-	383	3	0,025	15
	282	-	335	-	4	237	-	383	3	0,025	15
	301	-	379	-	5	240	-	440	4	0,03	14
240	259	-	281	-	2	249	-	291	2	0,015	17
	265	-	295	-	2,1	250	-	310	2	0,02	17
	265	-	296	-	2,1	250	-	310	2	0,02	17
	279	-	318	-	2,1	250	-	350	2	0,02	17
	279	-	321	-	2,1	250	-	350	2	0,02	17
	277	-	322	-	3	253	-	347	2,5	0,025	16
	277	-	322	-	3	253	-	347	2,5	0,025	16
	309	-	371	-	4	257	-	423	3	0,025	15
	331	-	409	-	5	260	-	480	4	0,03	15
260	279	-	301	-	2	269	-	311	2	0,015	17
	291	-	329	-	2,1	270	-	350	2	0,02	17
	291	-	330	-	2,1	270	-	350	2	0,02	17
	307	-	351	-	3	273	-	387	2,5	0,02	16
	307	-	353	-	3	273	-	387	2,5	0,02	16
	304	-	356	-	4	277	-	383	3	0,025	16
	304 337	_	356 403	- -	4 5	277 280		383 460	3 4	0,025 0,025	16 15

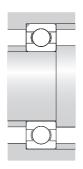

1.1 Single row deep groove ball bearings d 280 – 380 mm


Princip	pal dimens	sions	Basic lo dynami	oad ratings c static	Fatigue load limit	Speed ratings Reference	Limiting	Mass	Designations Bearing
d	D	В	С	C_0	P_{u}	speed	speed ¹⁾		open or capped capped on on on both sides side1)
nm			kN		kN	r/min		kg	_
280	350	33	138	200	4,75	3 400	2 200	6,25	► 61856 -
	350	33	138	200	4,75	3 400	2 800	7,25	► 61856 MA -
	380	46	216	285	6,7	3 200	2 000	12	61956 -
	380	46	216	285	6,7	3 200	2 800	15,5	► 61956 MA –
	420	44	242	335	7,5	3 000	1 900	19	16056 –
	420	44	242	335	7,5	3 000	2 600	23,5	► 16056 MA –
	420	65	302	405	9,3	3 000	1 900	26	6056 –
	420	65	302	405	9,3	3 000	2 600	31	► 6056 M –
	500	80	423	600	12,9	2 600	2 200	72	6256 M –
800	380	38	172	245	5,6	3 200	2 000	8,9	► 61860 -
	380	38	172	245	5,6	3 200	2 600	10,5	► 61860 MA -
	420	56	270	375	8,3	3 000	1 900	19	61960 -
	420	56	270	375	8,3	3 000	2 400	24,5	► 61960 MA –
	460	50	286	405	8,8	2 800	1 800	32	► 16060 MA –
	460	74	358	500	10,8	2 800	2 400	44	► 6060 M –
	540	85	462	670	13,7	2 400	2 000	88,5	6260 M –
20	400	38	172	255	5,7	3 000	1 900	9,5	61864 -
	400	38	172	255	5,7	3 000	2 400	11	► 61864 MA -
	440	56	276	400	8,65	2 800	2 400	25,5	► 61964 MA -
	480	50	281	405	8,65	2 600	2 200	34	► 16064 MA –
	480	74	371	540	11,4	2 600	2 200	46	► 6064 M –
340	420 420 460	38 38 56	178 178 281	275 275 425	6 6 9	2 800 2 800 2 600	1 800 2 400 2 200	10 11,5 26,5	61868
	520	57	345	520	10,6	2 400	2 000	45	16068 MA –
	520	82	423	640	13,2	2 400	2 200	62	▶ 6068 M –
860	440	38	182	285	6,1	2 600	2 200	12	► 61872 MA –
	480	56	291	450	9,15	2 600	2 200	28	► 61972 MA –
	540	57	351	550	11	1 800	1 400	49	16072 MA –
	540	82	442	695	14	2 400	1 900	64,5	► 6072 M –
880	480	46	242	390	8	2 400	2 000	20	► 61876 MA –
	520	65	338	540	10,8	2 400	1 900	40	► 61976 MA –
	560	57	377	620	12,2	2 200	1 400	51	16076 MA –
	560	82	436	695	13,7	2 200	1 800	70,5	► 6076 M –

[•] Popular item
1) For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.

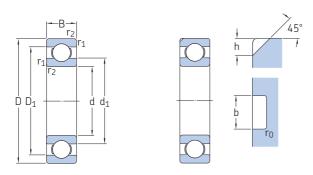
Dimen	sions					Abutm	ent and fil	let dimen	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
280	302	-	327	-	2	289	-	341	2	0,015	17
	302	-	328	-	3,8	289	-	341	2	0,015	17
	311	-	349	-	2,1	291	-	369	2	0,02	17
	311	-	350	-	2,1	291	-	369	2	0,02	17
	327	-	371	-	3	293	-	407	2,5	0,02	17
	327	-	374	-	3	293	-	407	2,5	0,02	17
	324	-	376	-	4	296	-	404	3	0,025	16
	324	-	376	-	4	296	-	404	3	0,025	16
	355	-	425	-	5	300	-	480	4	0,025	15
300	325	-	355	-	2,1	309	-	371	2	0,015	17
	325	-	356	-	2,1	309	-	371	2	0,015	17
	338	-	382	-	3	313	-	407	2,5	0,02	16
	338	-	384	-	3	313	-	407	2,5	0,02	16
	352	-	407	-	4	315	-	445	3	0,02	16
	351	-	409	-	4	315	-	445	3	0,025	16
	383	-	457	-	5	320	-	520	4	0,025	15
320	345	-	375	-	2,1	332	-	388	2	0,015	17
	345	-	376	-	2,1	332	-	388	2	0,015	17
	357	-	403	-	3	333	-	427	2,5	0,02	16
	372 370	- -	428 431	- -	4 4	335 335	-	465 465	3 3	0,02 0,025	17 16
340	365	-	395	-	2,1	352	-	408	2	0,015	17
	365	-	396	-	2,1	352	-	408	2	0,015	17
	378	-	422	-	3	353	-	447	2,5	0,02	17
	398 397	- -	462 463	-	4 5	355 360	-	505 500	3 4	0,02 0,025	16 16
360	385	-	415	-	2,1	372	-	428	2	0,015	17
	398	-	443	-	3	373	-	467	2,5	0,02	17
	418	-	482	-	4	375	-	525	3	0,02	16
	416	-	485	-	5	378	-	522	4	0,025	16
380	412	-	449	-	2,1	392	-	468	2	0,015	17
	425	-	476	-	4	395	-	505	3	0,02	17
	443	-	497	-	4	395	-	545	3	0,02	17
	437	-	503	-	5	400	_	542	4	0,025	16


1.1 Single row deep groove ball bearings d 400 – 710 mm

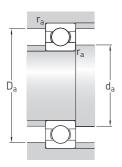


Designation	Dimension	ns		
	h	b	r_0	
_	mm			
60/500 N1MAS 60/530 N1MAS 60/560 N1MAS	20 20 25	15.5 15.5 20.5	3 3 3	
619/630 N1MAS 60/630 N1MBS 60/670 N1MAS	25 32 32	20.5 20.5 20.5	3 3 3	

Princip	oal dimens	ions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed rating Reference speed	s Limiting speed ¹⁾	Mass	Designations Bearing open or capped capped on on
l	D	В	С	C_0	P_u	Speed	Speed /		on both sides side ¹⁾
nm			kN		kN	r/min		kg	_
00	500	46	247	405	8,15	2 400	1 900	20,5	► 61880 MA –
	540	65	345	570	11,2	2 200	1 800	41,5	► 61980 MA –
	600	90	520	865	16,3	2 000	1 700	87,5	► 6080 M –
20	520	46	251	425	8,3	2 200	1 800	21,5	► 61884 MA –
	560	65	351	600	11,4	2 200	1 800	43	► 61984 MA –
	620	90	507	880	16,3	2 000	1 600	91,5	6084 M –
40	540	46	255	440	8,5	2 200	1 800	22,5	► 61888 MA –
	600	74	410	720	13,2	2 000	1 600	60,5	61988 MA –
	650	94	553	965	17,6	1 900	1 500	105	6088 M –
60	580	56	319	570	10,6	2 000	1 600	35	► 61892 MA –
	620	74	423	750	13,7	1 900	1 600	62,5	61992 MA –
	680	100	582	1 060	19	1 800	1 500	120	6092 MB –
80	600	56	325	600	10,8	1 900	1 600	36,5	► 61896 MA –
	650	78	449	815	14,6	1 800	1 500	74	61996 MA –
	700	100	618	1 140	20	1 700	1 400	125	6096 MB –
00	620	56	332	620	11,2	1 800	1 500	40,5	► 618/500 MA –
	670	78	462	865	15	1 700	1 400	81,5	619/500 MA –
	720	100	605	1 140	19,6	1 600	1 300	135	60/500 N1MAS –
30	650	56	332	655	11,2	1 700	1 400	39,5	► 618/530 MA –
	710	82	488	930	15,6	1 600	1 300	90,5	619/530 MA –
	780	112	650	1 270	20,8	1 500	1 200	185	60/530 N1MAS –
60	680	56	345	695	11,8	1 600	1 300	42	► 618/560 MA –
	750	85	494	980	16,3	1 500	1 200	105	619/560 MA –
	820	115	663	1 370	22	1 400	1 200	210	60/560 N1MAS –
00	730	60	364	765	12,5	1 500	1 200	52	► 618/600 MA –
	800	90	585	1 220	19,6	1 400	1 100	125	619/600 MA –
	870	118	728	1 500	23,6	1 300	1 100	230	60/600 MA –
30	780	69	442	965	15,3	1 400	1 100	73	► 618/630 MA –
	850	100	624	1 340	21,2	1 300	1 100	160	619/630 N1MA –
	920	128	819	1 760	27	1 200	1 000	285	60/630 N1MBS –
70	820	69	442	1 000	15,6	1 300	1 100	83,5	► 618/670 MA –
	900	103	676	1 500	22,4	1 200	1 000	192	619/670 MA –
	980	136	904	2 040	30	1 100	900	345	60/670 N1MAS –
10	870	74	475	1 100	16,6	1 200	1 000	93,5	► 618/710 MA –
	950	106	663	1 500	22	1 100	900	220	619/710 MA –
	1 030	140	956	2 200	31,5	1 000	850	382	60/710 MA –

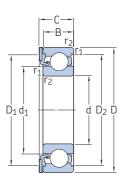

[•] Popular item
1) For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.

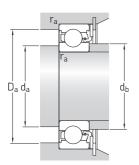
Dimen	sions					Abutm	ent and fil	llet dimen	sions	Calculation factors		
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0	
mm						mm				_		
400	432	-	471	-	2,1	412	-	488	2	0,015	17	
	445	-	496	-	4	415	-	525	3	0,02	17	
	463	-	537	-	5	418	-	582	4	0,025	16	
420	452	-	491	-	2,1	432	-	508	2	0,015	17	
	465	-	516	-	4	435	-	545	3	0,02	17	
	482	-	557	-	5	438	-	602	4	0,025	16	
440	472	-	510	-	2,1	452	-	528	2	0,015	17	
	492	-	549	-	4	455	-	585	3	0,02	17	
	506	-	584	-	6	463	-	627	5	0,025	16	
460	498	-	542	-	3	473	-	567	2,5	0,015	17	
	511	-	569	-	4	476	-	604	3	0,02	17	
	528	-	614	-	6	483	-	657	5	0,025	16	
480	518	-	564	-	3	493	-	587	2,5	0,015	17	
	535	-	595	-	5	498	-	632	4	0,02	17	
	550	-	630	-	6	503	-	677	5	0,025	16	
500	538	-	582	-	3	513	-	607	2,5	0,015	17	
	555	-	617	-	5	518	-	652	4	0,02	17	
	568	-	650	-	6	523	-	697	5	0,025	16	
530	568	-	613	-	3	543	-	637	2,5	0,015	17	
	587	-	653	-	5	548	-	692	4	0,02	17	
	612	-	700	-	6	553	-	757	5	0,025	16	
560	598	-	644	-	3	573	-	667	2,5	0,015	17	
	622	-	689	-	5	578	-	732	4	0,02	17	
	648	-	732	-	6	583	-	797	5	0,025	16	
600	642	-	688	-	3	613	-	717	2,5	0,015	17	
	663	-	736	-	5	618	-	782	4	0,02	17	
	689	-	781	-	6	623	-	847	5	0,025	16	
630	678	-	732	-	4	645	-	765	3	0,015	17	
	702	-	778	-	6	653	-	827	5	0,02	17	
	725	-	825	-	7,5	658	-	892	6	0,025	16	
670	718	-	772	-	4	685	-	805	3	0,015	17	
	745	-	825	-	6	693	-	877	5	0,02	17	
	771	-	878	-	7,5	698	-	952	6	0,025	16	
710	761	-	818	-	4	725	-	855	3	0,015	17	
	790	-	870	-	6	733	-	927	5	0,02	17	
	811	-	928	-	7,5	738	-	1 002	6	0,025	16	


1.1 Single row deep groove ball bearings d 750 – 1 500 mm

Dimensio	ns		
h	b	r_0	
mm			
32	20.5	3	
	h	mm	h b r ₀

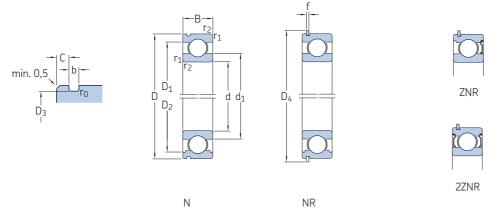
Principa	al dimensi	ions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed ratin Reference	Limiting	Mass	Designations Bearing	
d	D	В	С	C_0	P_u	speed	speed ¹⁾		open or capped capped on both sides side1)	d on one
mm			kN		kN	r/min		kg		
750	920 1 000 1 090	78 112 150	527 761 995	1 250 1 800 2 360	18,3 25,5 33,5	1 100 1 000 950	900 850 800	110 255 485	► 618/750 MA – 619/750 MA – 60/750 MA –	
800	980 1 060 1 150	82 115 155	559 832 1 010	1 370 2 040 2 550	19,3 28,5 34,5	1 000 950 900	850 800 750	130 275 523	► 618/800 MA – 619/800 MA – 60/800 N1MAS –	
850	1 030 1 120	82 118	559 852	1 430 2 120	19,6 28,5	950 850	750 750	140 320	► 618/850 MA – 619/850 MA –	
900	1 090	85	618	1 600	21,6	850	700	167	► 618/900 MA -	
950	1150	90	637	1 730	22,4	800	670	197	► 618/950 MA -	
1 000	1 220	100	637	1 800	22,8	750	600	245	► 618/1000 MA -	
1 060	1 280	100	728	2 120	26,5	670	560	260	618/1060 MA –	
1 120	1 360	106	741	2 200	26,5	630	530	315	► 618/1120 MA –	
1 180	1 420	106	761	2 360	27,5	560	480	337	618/1180 MB -	
1 320	1 600	122	956	3 150	35,5	480	400	500	618/1320 MA –	
L 500	1 820	140	1 170	4 150	43	380	240	638	618/1500 TN –	


[•] Popular item
1) For bearings with only one shield or one non-contact seal (Z, RZ) the limiting speeds of the open bearings are valid.


Dimens	ions					Abutme	ent and fil	let dimens	sions	Calculati	on factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
m						mm				_	
)	804 835 862	- - -	866 919 978	- - -	5 6 7,5	768 773 778	- - -	902 977 1 062	4 5 6	0,015 0,02 0,025	17 17 16
	857 884 914	- - -	922 975 1 032	- - -	5 6 7,5	818 823 828	- - -	962 1 037 1 122	4 5 6	0,015 0,02 0,025	17 17 16
	907 937	_ _	972 1 033	- -	5 6	868 873	- -	1 012 1 097	4 5	0,015 0,02	17 17
	960	_	1 029	-	5	918	-	1 072	4	0,015	18
	1 015	_	1 084	-	5	968	_	1 132	4	0,015	18
)	1 076	_	1 145	-	6	1 023	_	1 197	5	0,015	17
0	1132	_	1 208	-	6	1 083	_	1 257	5	0,015	18
0	1 201	-	1 278	-	6	1 143	-	1 337	5	0,015	18
0	1 262	_	1 338	_	6	1 203	-	1 397	5	0,015	18
)	1 414	-	1 506	_	6	1 343	-	1 577	5	0,015	18
)	1 606	_	1 712	_	7,5	1 528	-	1 792	6	0,015	18

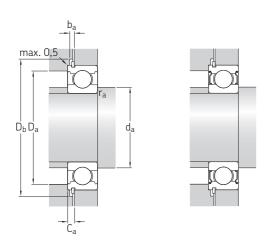
1.2 ICOS oil sealed bearing units d 12 – 30 mm

Princi	pal dimen	sions		Basic loa dynamic	d ratings static	Fatigue load limit	Limiting speed	Mass	Designation
d	D	В	С	С	C_0	P_u			
mm				kN		kN	r/min	kg	-
12	32	10	12,6	7,28	3,1	0,132	14 000	0,041	ICOS-D1B01TN9
15	35	11	13,2	8,06	3,75	0,16	12 000	0,048	ICOS-D1B02TN9
17	40	12	14,2	9,95	4,75	0,2	11 000	0,071	ICOS-D1B03 TN9
20	47	14	16,2	13,5	6,55	0,28	9 300	0,11	ICOS-D1B04 TN9
25	52	15	17,2	14,8	7,8	0,335	7 700	0,14	ICOS-D1B05 TN9
30	62	16	19,4	20,3	11,2	0,475	6 500	0,22	ICOS-D1B06 TN9



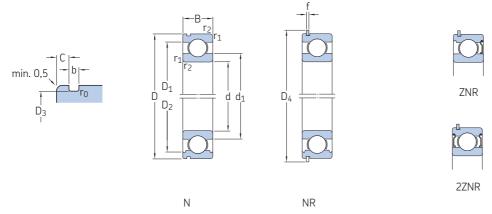
Dimens	sions				Abutme	ent and fil	let dimen	sions		Calculatio	n factors
d	d ₁ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a , d _b min.	d _a max.	d _b max.	D _a max.	r _a max.	k _r	f_0
mm					mm					_	
.2	18,4	_1)	27,4	0,6	16,2	18,4	18	27,8	0,6	0,025	12
5	21,7	30,8	30,5	0,6	19,2	21,7	21,5	30,8	0,6	0,025	13
	24,5	35,6	35	0,6	21,2	24,5	24	35,8	0,6	0,025	13
)	28,8	42	40,6	1	25,6	28,8	28,5	41,4	1	0,025	13
5	34,3	47	46,3	1	30,6	34,3	34	46,4	1	0,025	14
)	40,3	55,6	54,1	1	35,6	40,3	40	56	1	0,025	14

¹⁾ Full rubber cross section


1.3 Single row deep groove ball bearings with a snap ring groove d 10 - 35 mm

Prin	cipal dim	nensions	Basic lo dynamic	ad ratings static	Fatigue load limit	Reference	Limiting	Mass	Designations Bearings ¹⁾		Snap ring
d	D	В	С	C_0	P_u	speed	speed ¹⁾				
mm			kN		kN	r/min		kg	_		
10	30	9	5,4	2,36	0,1	56 000	28 000	0,035	6200-ZNR	6200-2ZNR	SP 30
	30	9	5,4	2,36	0,1	56 000	36 000	0,032	6200 N	6200 NR	SP 30
12	32	10	7,28	3,1	0,132	50 000	26 000	0,037	6201-ZNR	6201-2ZNR	SP 32
	32	10	7,28	3,1	0,132	50 000	32 000	0,037	6201 N	6201 NR	SP 32
15	35	11	8,06	3,75	0,16	43 000	22 000	0,045	6202-ZNR	6202-2ZNR	SP 35
	35	11	8,06	3,75	0,16	43 000	28 000	0,045	6202 N	6202 NR	SP 35
17	40	12	9,95	4,75	0,2	38 000	19 000	0,065	6203-ZNR	6203-2ZNR	SP 40
	40	12	9,95	4,75	0,2	38 000	24 000	0,065	6203 N	6203 NR	SP 40
	47	14	14,3	6,55	0,275	34 000	17 000	0,12	6303-ZNR	6303-2ZNR	SP 47
	47	14	14,3	6,55	0,275	34 000	22 000	0,12	6303 N	6303 NR	SP 47
20	42	12	9,95	5	0,212	38 000	19 000	0,069	6004-ZNR	6004-2ZNR	SP 42
	42	12	9,95	5	0,212	38 000	24 000	0,069	6004 N	6004 NR	SP 42
	47	14	13,5	6,55	0,28	32 000	17 000	0,11	6204-ZNR	6204-2ZNR	SP 47
	47	14	13,5	6,55	0,28	32 000	20 000	0,11	6204 N	6204 NR	SP 47
	52	15	16,8	7,8	0,335	30 000	15 000	0,16	6304-ZNR	6304-2ZNR	SP 52
	52	15	16,8	7,8	0,335	30 000	19 000	0,15	6304 N	6304 NR	SP 52
25	47	12	11,9	6,55	0,275	32 000	16 000	0,08	6005-ZNR	6005-2ZNR	SP 47
	47	12	11,9	6,55	0,275	32 000	20 000	0,08	6005 N	6005 NR	SP 47
	52	15	14,8	7,8	0,335	28 000	14 000	0,13	6205-ZNR	6205-2ZNR	SP 52
	52	15	14,8	7,8	0,335	28 000	18 000	0,13	6205 N	6205 NR	SP 52
	62	17	23,4	11,6	0,49	24 000	13 000	0,24	6305-ZNR	6305-2ZNR	SP 62
	62	17	23,4	11,6	0,49	24 000	16 000	0,23	6305 N	6305 NR	SP 62
30	55	13	13,8	8,3	0,355	28 000	17 000	0,12	6006 N	6006 NR	SP 55
	62	16	20,3	11,2	0,475	24 000	12 000	0,21	6206-ZNR	6206-2ZNR	SP 62
	62	16	20,3	11,2	0,475	24 000	15 000	0,21	6206 N	6206 NR	SP 62
	72	19	29,6	16	0,67	20 000	11 000	0,37	6306-ZNR	6306-2ZNR	SP 72
	72	19	29,6	16	0,67	20 000	13 000	0,36	6306 N	6306 NR	SP 72
35	62	14	16,8	10,2	0,44	24 000	15 000	0,16	6007 N	6007 NR	SP 62
	72	17	27	15,3	0,655	20 000	10 000	0,31	6207-ZNR	6207-2ZNR	SP 72
	72	17	27	15,3	0,655	20 000	13 000	0,3	6207 N	6207 NR	SP 72
	80	21	35,1	19	0,82	19 000	9 500	0,48	6307-ZNR	6307-2ZNR	SP 80
	80	21	35,1	19	0,82	19 000	12 000	0,47	6307 N	6307 NR	SP 80
	100	25	55,3	31	1,29	16 000	10 000	0,99	6407 N	6407 NR	SP 100

SKF Explorer bearing
1) For bearings with one shield (ZNR) the limiting speeds of the open bearings are valid.



Dime	nsions										Abutr	nent an	d fillet	dimens	ions			Calcula	
d	d ₁ ≈	D ₁ ≈	D ₂ ≈	D_3	D_4	b	f	С	r _{1,2} min.	r ₀ max.	d _a min.	d _a max.	D _a max.	D _b min.	b _a min.	C _a max.	r _a max.	k _r	f_0
mm											mm							_	
10	17 17	_ _	24,8 24,8	28,17 28,17	34,7 34,7	1,35 1,35	1,12 1,12	2,06 2,06	0,6 0,6	0,4 0,4	14,2 14,2	16,9 -	25,8 25,8	36 36	1,5 1,5	3,18 3,18	0,6 0,6	0,025 0,025	
12	18,4 18,4	- -	27,4 27,4	30,15 30,15	36,7 36,7	1,35 1,35	1,12 1,12	2,06 2,06	0,6 0,6	0,4 0,4	16,2 16,2	18,4 -	27,8 27,8	38 38	1,5 1,5	3,18 3,18	0,6 0,6	0,025 0,025	
15	21,7 21,7	_	30,5 30,5	33,17 33,17	39,7 39,7	1,35 1,35	1,12 1,12	2,06 2,06	0,6 0,6	0,4 0,4	19,2 19,2	21,6	30,8 30,8	41 41	1,5 1,5	3,18 3,18	0,6 0,6	0,025 0,025	
17	24,5 24,5 26,5	- - -	35 35 39,6	38,1 38,1 44,6	44,6 44,6 52,7	1,35 1,35 1,35	1,12 1,12 1,12	2,06 2,06 2,46	0,6 0,6 1	0,4 0,4 0,4	21,2 21,2 22,6	24,4 - 26,4	35,8 35,8 41,4	46 46 54	1,5 1,5 1,5	3,18 3,18 3,58	0,6 0,6 1	0,025 0,025 0,03	
	26,5	-	39,6	44,6	52,7	1,35	1,12	2,46	1	0,4	22,6	-	41,4	54	1,5	3,58	1	0,03	12
20	27,2 27,2 28,8	_ _ _	37,2 37,2 40,6	39,75 39,75 44,6	46,3 46,3 52,7	1,35 1,35 1,35	1,12 1,12 1,12	2,06 2,06 2,46	0,6 0,6 1	0,4 0,4 0,4	23,2 23,2 25,6	27,1 - 28,7	38,8 38,8 41,4	48 48 54	1,5 1,5 1,5	3,18 3,18 3,58	0,6 0,6 1	0,025 0,025 0,025	14
	28,8 30,3 30,3	- - -	40,6 44,8 44,8	44,6 49,73 49,73	52,7 57,9 57,9	1,35 1,35 1,35	1,12 1,12 1,12	2,46 2,46 2,46	1 1,1 1,1	0,4 0,4 0,4	25,6 27 27	- 30,3 -	41,4 45 45	54 59 59	1,5 1,5 1,5	3,58 3,58 3,58	1 1 1	0,025 0,03 0,03	13 12 12
25	32 32 34,3	- - -	42,2 42,2 46,3	44,6 44,6 49,73	52,7 52,7 57,9	1,35 1,35 1,35	1,12 1,12 1,12	2,06 2,06 2,46	0,6 0,6 1	0,4 0,4 0,4	28,2 28,2 30,6	31,9 - 34,3	43,8 43,8 46,4	54 54 59	1,5 1,5 1,5	3,18 3,18 3,58	0,6 0,6 1	0,025 0,025 0,025	14
	34,3 36,6 36,6	- - -	46,3 52,7 52,7	49,73 59,61 59,61	57,9 67,7 67,7	1,35 1,9 1,9	1,12 1,7 1,7	2,46 3,28 3,28	1 1,1 1,1	0,4 0,6 0,6	30,6 32 32	- 36,5 -	46,4 55 55	59 69 69	1,5 2,2 2,2	3,58 4,98 4,98	1 1 1	0,025 0,03 0,03	14 12 12
30	38,2 40,3 40,3	- - -	49 54,1 54,1	52,6 59,61 59,61	60,7 67,7 67,7	1,35 1,9 1,9	1,12 1,7 1,7	2,06 3,28 3,28	1 1 1	0,4 0,6 0,6	34,6 35,6 35,6	- 40,3 -	50 56 56	62 69 69	1,5 2,2 2,2	3,18 4,98 4,98	1 1 1	0,025 0,025 0,025	14
	44,6 44,6		61,9 61,9	68,81 68,81	78,6 78,6	1,9 1,9	1,7 1,7	3,28 3,28	1,1 1,1	0,6 0,6	37 37	44,5 -	65 65	80 80	2,2 2,2	4,98 4,98	1	0,03 0,03	13 13
35	43,7 46,9 46,9	- - -	55,7 62,7 62,7	59,61 68,81 68,81	67,7 78,6 78,6	1,9 1,9 1,9	1,7 1,7 1,7	2,06 3,28 3,28	1 1,1 1,1	0,6 0,6 0,6	39,6 42 42	- 46,8 -	57 65 65	69 80 80	2,2 2,2 2,2	3,76 4,98 4,98	1 1 1	0,025 0,025 0,025	14
	49,5 49,5 57,4	- - 79,6	69,2 69,2 -	76,81 76,81 96,8	86,6 86,6 106,5	1,9 1,9 2,7	1,7 1,7 2,46	3,28 3,28 3,28	1,5 1,5 1,5	0,6 0,6 0,6	44 44 46	49,5 - -	71 71 89	88 88 108	2,2 2,2 3	4,98 4,98 5,74	1,5 1,5 1,5	0,03 0,03 0,035	13 13 12

1.3 Single row deep groove ball bearings with a snap ring groove

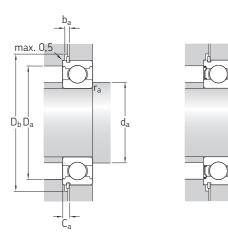

d **40 – 65** mm

Prin	cipal dim	ensions	Basic lo	ad ratings static	Fatigue load limit	Speed rati Reference speed	ings Limiting speed ¹⁾	Mass	Designations Bearings ¹⁾		Snap ring
d	D	В	С	C_0	P_{u}	speed	speeu±/				
mm			kN		kN	r/min		kg	-		
40	68	15	17,8	11	0,49	22 000	14 000	0,19	6008 N	6008 NR	SP 68
	80	18	32,5	19	0,8	18 000	9 000	0,39	6208-ZNR	6208-2ZNR	SP 80
	80	18	32,5	19	0,8	18 000	11 000	0,38	6208 N	6208 NR	SP 80
	90	23	42,3	24	1,02	17 000	8 500	0,64	6308-ZNR	6308-2ZNR	SP 90
	90	23	42,3	24	1,02	17 000	11 000	0,64	6308 N	6308 NR	SP 90
	110	27	63,7	36,5	1,53	14 000	9 000	1,3	6408 N	6408 NR	SP 110
45	75	16	22,1	14,6	0,64	20 000	12 000	0,24	6009 N	6009 NR	SP 75
	85	19	35,1	21,6	0,915	17 000	8 500	0,44	6209-ZNR	6209-2ZNR	SP 85
	85	19	35,1	21,6	0,915	17 000	11 000	0,43	6209 N	6209 NR	SP 85
	100	25	55,3	31,5	1,34	15 000	7 500	0,89	6309-ZNR	6309-2ZNR	SP 100
	100	25	55,3	31,5	1,34	15 000	9 500	0,85	6309 N	6309 NR	SP 100
	120	29	76,1	45	1,9	13 000	8 500	1,6	6409 N	6409 NR	SP 120
50	80	16	22,9	15,6	0,71	18 000	11 000	0,27	6010 N	6010 NR	SP 80
	90	20	37,1	23,2	0,98	15 000	8 000	0,49	6210-ZNR	6210-2ZNR	SP 90
	90	20	37,1	23,2	0,98	15 000	10 000	0,47	6210 N	6210 NR	SP 90
	110	27	65	38	1,6	13 000	6 700	1,15	6310-ZNR	6310-2ZNR	SP 110
	110	27	65	38	1,6	13 000	8 500	1,1	6310 N	6310 NR	SP 110
	130	31	87,1	52	2,2	12 000	7 500	2	6410 N	6410 NR	SP 130
55	90	18	29,6	21,2	0,9	16 000	10 000	0,4	6011 N	6011 NR	SP 90
	100	21	46,2	29	1,25	14 000	7 000	0,66	6211-ZNR	6211-2ZNR	SP 100
	100	21	46,2	29	1,25	14 000	9 000	0,63	6211 N	6211 NR	SP 100
	120	29	74,1	45	1,9	12 000	6 300	1,45	6311-ZNR	6311-2ZNR	SP120
	120	29	74,1	45	1,9	12 000	8 000	1,4	6311 N	6311 NR	SP120
	140	33	99,5	62	2,6	11 000	7 000	2,4	6411 N	6411 NR	SP140
60	95	18	30,7	23,2	0,98	15 000	9 500	0,43	6012 N	6012 NR	SP 95
	110	22	55,3	36	1,53	13 000	6 300	0,83	6212-ZNR	6212-2ZNR	SP 110
	110	22	55,3	36	1,53	13 000	8 000	0,8	6212 N	6212 NR	SP 110
	130	31	85,2	52	2,2	11 000	5 600	1,8	6312-ZNR	6312-2ZNR	SP 130
	130	31	85,2	52	2,2	11 000	7 000	1,75	6312 N	6312 NR	SP 130
	150	35	108	69,5	2,9	10 000	6 300	2,9	6412 N	6412 NR	SP 150
65	100	18	31,9	25	1,06	14 000	9 000	0,45	6013 N	6013 NR	SP 100
	120	23	58,5	40,5	1,73	12 000	6 000	1,1	6213-ZNR	6213-2ZNR	SP 120
	120	23	58,5	40,5	1,73	12 000	7 500	1,05	6213 N	6213 NR	SP 120
	140	33	97,5	60	2,5	10 000	5 300	2,25	6313-ZNR	6313-2ZNR	SP140
	140	33	97,5	60	2,5	10 000	6 700	2,15	6313 N	6313 NR	SP140
	160	37	119	78	3,15	9 500	6 000	3,4	6413 N	6413 NR	SP160


SKF Explorer bearing
1) For bearings with one shield (ZNR) the limiting speeds of the open bearings are valid.

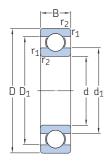
Dime	nsions										Abutr	nent an	d fillet	dimens	ions			Calcul factors	
d	d ₁ ≈	D ₁ ≈	D ₂ ≈	D_3	D_4	b	f	С	r _{1,2} min.	r ₀ max.	d _a min.	d _a max.	D _a max.	D _b min.	b _a min.	C _a max.	r _a max.	k _r	f_0
mm											mm							-	
40	49,2 52,6 52,6	- - -	61,1 69,8 69,8	64,82 76,81 76,81	74,6 86,6 86,6	1,9 1,9 1,9	1,7 1,7 1,7	2,49 3,28 3,28	1 1,1 1,1	0,6 0,6 0,6	44,6 47 47	- 52 -	63 73 73	76 88 88	2,2 2,2 2,2	4,19 4,98 4,98	1 1 1	0,025 0,025 0,025	14
	56,1 56,1 62,8	- - 87	77,7 77,7 –	86,79 86,79 106,81	96,5 96,5 116,6	2,7 2,7 2,7	2,46 2,46 2,46	3,28 3,28 3,28	1,5 1,5 2	0,6 0,6 0,6	49 49 53	56 - -	81 81 97	98 98 118	3 3 3	5,74 5,74 5,74	1,5 1,5 2	0,03 0,03 0,035	13 13 12
45	54,7 57,6 57,6	- - -	67,8 75,2 75,2	71,83 81,81 81,81	81,6 91,6 91,6	1,9 1,9 1,9	1,7 1,7 1,7	2,49 3,28 3,28	1 1,1 1,1	0,6 0,6 0,6	51 52 52	- 57 -	69 78 78	83 93 93	2,2 2,2 2,2	4,19 4,98 4,98	1 1 1	0,025 0,025 0,025	14
	62,1 62,1 68,9	- - 95,9	86,7 86,7 -	96,8 96,8 115	106,5 106,5 129,7	2,7	2,46 2,46 2,82	3,28 3,28 4,06	1,5 1,5 2	0,6 0,6 0,6	54 54 58	62 - -	91 91 107	108 108 131	3 3 3,5	5,74 5,74 6,88	1,5 1,5 2	0,03 0,03 0,035	13 13 12
50	59,7 62,5 62,5	- - -	72,8 81,7 81,7	76,81 86,79 86,79	86,6 96,5 96,5	1,9 2,7 2,7	1,7 2,46 2,46	2,49 3,28 3,28	1 1,1 1,1	0,6 0,6 0,6	55 57 57	- 62 -	75 83 83	88 98 98	2,2 3 3	4,19 5,74 5,74	1 1 1	0,025 0,025 0,025	14
	68,7 68,7 75,4	- - 105	95,2 95,2 –	106,81 106,81 125,22	116,6 116,6 139,7	2,7	2,46 2,46 2,82	3,28 3,28 4,06	2 2 2,1	0,6 0,6 0,6	61 61 64	68 - -	99 99 116	118 118 141	3 3 3,5	5,74 5,74 6,88	2 2 2	0,03 0,03 0,035	13 13 12
55	66,3 69 69	- - -	81,5 89,4 89,4	86,79 96,8 96,8	96,5 106,5 106,5		2,46 2,46 2,46	2,87 3,28 3,28	1,1 1,5 1,5	0,6 0,6 0,6	61 64 64	- 69 -	84 91 91	98 108 108	3 3 3	5,33 5,74 5,74	1 1,5 1,5	0,025 0,025 0,025	14
	75,3 75,3 81,5	- - 114	104 104 -	115,21 115,21 135,23	129,7 129,7 149,7	3,1	2,82 2,82 2,82	4,06 4,06 4,9	2 2 2,1	0,6 0,6 0,6	66 66 69	75 - -	109 109 126	131 131 151	3,5 3,5 3,5	6,88 6,88 7,72	2 2 2	0,03 0,03 0,035	13 13 12
60	71,3 75,5 75,5	- - -	86,5 98 98	91,82 106,81 106,81	101,6 116,6 116,6	2,7	2,46 2,46 2,46	2,87 3,28 3,28	1,1 1,5 1,5	0,6 0,6 0,6	66 69 69	- 75 -	89 101 101	103 118 118	3 3 3	5,33 5,74 5,74	1 1,5 1,5	0,025 0,025 0,025	14
	81,8 81,8 88,1	- - 122	113 113 -	125,22 125,22 145,24	139,7 139,7 159,7	3,1	2,82 2,82 2,82	4,06 4,06 4,9	2,1 2,1 2,1	0,6 0,6 0,6	72 72 74	81 - -	118 118 136	141 141 162	3,5 3,5 3,5	6,88 6,88 7,72	2 2 2	0,03 0,03 0,035	13 13 12
65	76,3 83,3 83,3	- - -	91,5 106 106	96,8 115,21 115,21	106,5 129,7 129,7	3,1	2,46 2,82 2,82	2,87 4,06 4,06	1,1 1,5 1,5	0,6 0,6 0,6	71 74 74	- 83 -	94 111 111	108 131 131	3 3,5 3,5	5,33 6,88 6,88	1 1,5 1,5	0,025 0,025 0,025	15
	88,3 88,3 94	- - 131	122 122 -	135,23 135,23 155,22	149,7 149,7 169,7	3,1	2,82 2,82 2,82	4,9 4,9 4,9	2,1 2,1 2,1	0,6 0,6 0,6	77 77 79	88 - -	128 128 146	151 151 172	3,5 3,5 3,5	7,72 7,72 7,72	2 2 2	0,03 0,03 0,035	13 13 12

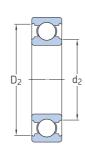
1.3 Single row deep groove ball bearings with a snap ring groove d 70 – 120 mm



2ZNR

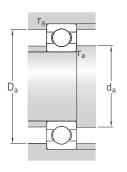
Princ	ipal dim	ensions	Basic loa dynamic	ad ratings static	Fatigue load limit	Reference	Limiting	Mass	Designations Bearings ¹⁾		Snap ring
d	D	В	С	C_0	P_u	speed	speed ¹⁾				
mm			kN		kN	r/min		kg	_		
70	110	20	39,7	31	1,32	13 000	8 000	0,63	6014 N	6014 NR	SP 110
	125	24	63,7	45	1,9	11 000	5 600	1,15	6214-ZNR	6214-2ZNR	SP 125
	125	24	63,7	45	1,9	11 000	7 000	1,15	6214 N	6214 NR	SP 125
	150	35	111	68	2,75	9 500	5 000	2,65	6314-ZNR	6314-2ZNR	SP 150
	150	35	111	68	2,75	9 500	6 300	2,6	6314 N	6314 NR	SP 150
75	115	20	41,6	33,5	1,43	12 000	7 500	0,67	6015 N	6015 NR	SP 115
	130	25	68,9	49	2,04	10 000	6 700	1,25	6215 N	6215 NR	SP 130
	160	37	119	76,5	3	9 000	5 600	3,05	6315 N	6315 NR	SP 160
80	125	22	49,4	40	1,66	11 000	7 000	0,92	6016 N	6016 NR	SP 125
	140	26	72,8	55	2,2	9 500	6 000	1,5	6216 N	6216 NR	SP 140
85	130	22	52	43	1,76	11 000	6 700	0,94	6017 N	6017 NR	SP 130
	150	28	87,1	64	2,5	9 000	5 600	1,85	6217 N	6217 NR	SP 150
90	140	24	60,5	50	1,96	10 000	6 300	1,2	6018 N	6018 NR	SP140
	160	30	101	73,5	2,8	8 500	5 300	2,25	6218 N	6218 NR	SP160
95	170	32	114	81,5	3	8 000	5 000	2,7	6219 N	6219 NR	SP 170
100	150	24	63,7	54	2,04	9 500	5 600	1,3	6020 N	6020 NR	SP 150
	180	34	127	93	3,35	7 500	4 800	3,25	6220 N	6220 NR	SP 180
105	160	26	76,1	65,5	2,4	8 500	5 300	1,65	6021 N	6021 NR	SP 160
110	170	28	85,2	73,5	2,6	8 000	5 000	2,05	6022 N	6022 NR	SP 170
120	180	28	88,4	80	2,75	7 500	4 800	2,2	6024 N	6024 NR	SP 180

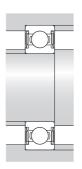

SKF Explorer bearing
1) For bearings with one shield (ZNR) the limiting speeds of the open bearings are valid.



Dime	nsions										Abutr	nent an	d fillet	dimens	ions			Calculation:	
d	d ₁ ≈	D ₁ ≈	D ₂ ≈	D_3	D_4	b	f	С	r _{1,2} min.	r ₀ max.	d _a min.	d _a max.	D _a max.	D _b min.	b _a min.	C _a max.	r _a max.	k _r	f_0
mm											mm							_	
70	82,8 87 87	- - -	99,9 111 111	106,81 120,22 120,22	116,6 134,7 134,7	3,1	2,46 2,82 2,82	2,87 4,06 4,06	1,1 1,5 1,5	0,6 0,6 0,6	76 79 79	- 87 -	104 116 116	118 136 136	3 3,5 3,5	5,33 6,88 6,88	1 1,5 1,5	0,025 0,025 0,025	15
	94,9 94,9	_ _	130 130	145,25 145,25	159,7 159,7		2,82 2,82	4,9 4,9	2,1 2,1	0,6 0,6	82 82	94 -	138 138	162 162	3,5 3,5	7,72 7,72	2 2	0,03 0,03	13 13
75	87,8 92 101	- - -	105 117 139	111,81 125,22 155,22	121,6 139,7 169,7	3,1	2,46 2,82 2,82	2,87 4,06 4,9	1,1 1,5 2,1	0,6 0,6 0,6	81 84 87	- - -	109 121 148	123 141 172	3 3,5 3,5	5,33 6,88 7,72	1 1,5 2	0,025 0,025 0,03	
80	94,4 101	_ _	115 127	120,22 135,23	134,7 149,7		2,82 2,82	2,87 4,9	1,1 2	0,6 0,6	86 91	- -	119 129	136 151	3,5 3,5	5,69 7,72	1 2	0,025 0,025	
35	99,4 106	_ _	120 135	125,22 145,24	139,7 159,7		2,82 2,82	2,87 4,9	1,1 2	0,6 0,6	92 96	- -	123 139	141 162	3,5 3,5	5,69 7,72	1 2	0,025 0,025	
90	105 112	_ _	129 143	135,23 155,22	149,7 169,7	- ,	2,82 2,82	3,71 4,9	1,5 2	0,6 0,6	97 101	- -	133 149	151 172	3,5 3,5	6,53 7,72	1,5 2	0,025 0,025	
95	118	-	152	163,65	182,9	3,5	3,1	5,69	2,1	0,6	107	-	158	185	4	8,79	2	0,025	14
100	115 124	_ _	139 160	145,24 173,66	159,7 192,9		2,82 3,1	3,71 5,69	1,5 2,1	0,6 0,6	107 112	_ _	143 168	162 195	3,5 4	6,53 8,79	1,5 2	0,025 0,025	
105	122	-	147	155,22	169,7	3,1	2,82	3,71	2	0,6	116	-	149	172	3,5	6,53	2	0,025	16
110	129	-	156	163,65	182,9	3,5	3,1	3,71	2	0,6	119	-	161	185	4	6,81	2	0,025	16
120	139	_	166	173,66	192,9	3,5	3,1	3,71	2	0,6	129	_	171	195	4	6,81	2	0,025	16

1.4 Stainless steel deep groove ball bearings d 1-5 mm

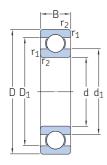


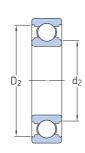


2RS1

Princip	al dimen	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Speed ratir Reference	i gs Limiting	Mass	Designation
d	D	В	C	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		g	_
1	3	1	0,052	0,012	0,001	240 000	150 000	0,03	W 618/1
1,5	4	1,2 2	0,062 0,062	0,016 0,016	0,001 0,001	220 000 220 000	140 000 110 000	0,1 0,1	W 618/1.5 W 638/1.5-2Z
2	5	1,5	0,094	0,025	0,001	200 000	120 000	0,1	W 618/2
	5	2,3	0,094	0,025	0,001	200 000	100 000	0,2	► W 638/2-2Z
	6	3	0,19	0,051	0,002	180 000	90 000	0,31	W 639/2-2Z
2,5	6	2,6	0,117	0,036	0,002	170 000	85 000	0,31	► W 638/2.5-2Z
3	6	3	0,117	0,036	0,002	170 000	85 000	0,31	► W 637/3-2Z
	7	2	0,178	0,057	0,002	160 000	100 000	0,3	W 618/3
	7	3	0,178	0,057	0,002	160 000	80 000	0,41	► W 638/3-2Z
	8	3	0,225	0,072	0,003	150 000	75 000	0,61	► W 619/3-2Z
	8	4	0,319	0,09	0,004	150 000	75 000	0,82	► W 639/3-2Z
	10	4	0,358	0,11	0,005	-	40 000	1,5	W 623-2RS1
	10	4	0,358	0,11	0,005	140 000	70 000	1,6	► W 623-2Z
4	7	2,5	0,143	0,053	0,002	150 000	75 000	0,31	W 627/4-2Z
	9	2,5	0,364	0,114	0,005	140 000	85 000	0,6	► W 618/4
	9	4	0,364	0,114	0,005	140 000	70 000	0,93	► W 638/4-2Z
	11	4	0,54	0,176	0,008	130 000	63 000	1,65	► W 619/4-2Z
	12	4	0,54	0,176	0,008	-	36 000	2,15	W 604-2R51
	12	4	0,54	0,176	0,008	130 000	63 000	2,15	► W 604-2Z
	12	4	0,54	0,176	0,008	130 000	80 000	2	W 604
	13	5	0,741	0,25	0,011	-	32 000	3,05	► W 624-2RS1
	13	5	0,741	0,25	0,011	110 000	56 000	2,95	► W 624-2Z
	16	5	0,761	0,265	0,011	_	30 000	5,15	W 634-2RS1
	16	5	0,761	0,265	0,011	100 000	50 000	5,15	W 634-2Z
5	8	2,5	0,121	0,045	0,002	140 000	70 000	0,41	W 627/5-2Z
	11	3	0,403	0,143	0,006	120 000	75 000	1,2	W 618/5
	11	4	0,403	0,143	0,006	120 000	60 000	1,55	W 628/5-2Z
	11	5	0,403	0,143	0,006	120 000	60 000	1,85	► W 638/5-2Z
	13	4	0,761	0,335	0,014	-	32 000	2,35	W 619/5-2RS1
	13	4	0,761	0,335	0,014	110 000	56 000	2,35	► W 619/5-2Z
	13	4	0,761	0,335	0,014	110 000	70 000	2,1	W 619/5
	14	5	0,761	0,26	0,011	-	30 000	3,45	W 605-2RS1
	14	5	0,761	0,26	0,011	110 000	53 000	3,35	W 605-2Z

[►] Popular item

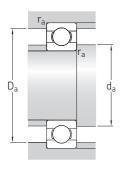


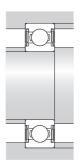

Dimen	sions					Abutm	ent and fill	et dimensio	ons	Calculat	ion factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
1	1,5	_	2,5		0,05	1,4	-	2,6	0,05	0,02	5,6
1,5	2,1 2,1	_	3,1 -	_ 3,5	0,05 0,05	2 1,9	- 2,1	3,6 3,6	0,05 0,05	0,02 0,02	6,4 6,4
2	2,7 2,7 3	- - -	3,9 - -	- 4,4 5,4	0,08 0,08 0,15	2,5 2,5 2,9	- 2,6 2,9	4,4 4,5 5,4	0,08 0,08 0,15	0,02 0,02 0,025	6,5 6,5 6
2,5	3,7	-	-	5,4	0,08	3,1	3,6	5,5	0,08	0,02	7,1
3	- 4,2 -	3,7 - 3,8	- 5,8 -	5,4 - 6,4	0,1 0,1 0,1	3,6 3,8 3,7	3,6 - 3,8	5,5 6,2 6,5	0,1 0,1 0,1	0,02 0,02 0,02	7,1 7,1 7,1
	5 4,3 -	- - 4,3	- - -	7,4 7,3 8	0,1 0,15 0,15	3,8 3,9 3,9	4,9 4,3 4,3	7,5 7,3 8,8	0,1 0,15 0,15	0,025 0,025 0,03	7,2 6,1 6,3
	-	4,3	_	8	0,15	3,9	4,3	8,8	0,15	0,03	6,3
4	4,8 5,2 5,2	- - -	- 7,5 -	6,5 - 8,1	0,1 0,1 0,1	4,6 4,8 4,8	4,7 - 5,1	6,5 8,2 8,2	0,1 0,1 0,1	0,015 0,02 0,02	7,6 6,5 6,5
	- - -	5,6 5,6 5,6	- - -	9,9 9,9 9,9	0,15 0,2 0,2	5,2 5,3 5,3	5,5 5,5 5,5	10 10,4 10,4	0,15 0,2 0,2	0,025 0,03 0,03	6,4 6,4 6,4
	- - -	5,6 6 6	- - -	9,9 11,4 11,4	0,2 0,2 0,2	5,3 5,6 5,6	- 5,9 5,9	10,4 11,5 11,5	0,2 0,2 0,2	0,03 0,03 0,03	6,4 6,4 6,4
	- -	6,7 6,7	_	13 13	0,3 0,3	6 6	6,6 6,6	14 14	0,3 0,3	0,035 0,035	6,8 6,8
5	5,8 6,8 6,8	- - -	- 9,2 -	7,5 - 9,9	0,1 0,15 0,15	5,6 6,2 6,2	5,7 - 6,7	7,5 9,8 10	0,1 0,15 0,15	0,015 0,02 0,02	7,8 7,1 7,1
	- - -	6,2 6,6 6,6	- - -	9,9 11,2 11,2	0,15 0,2 0,2	5,9 6,3 6,3	6,1 6,5 6,5	10 11,4 11,4	0,15 0,2 0,2	0,02 0,025 0,025	7,1 11 11
	 	6,6 6,9 6,9	_ _ _	11,2 12,2 12,2	0,2 0,2 0,2	6,3 6,6 6,6	- 6,8 6,8	11,4 12,4 12,4	0,2 0,2 0,2	0,025 0,03 0,03	11 6,6 6,6

1.4 Stainless steel deep groove ball bearings

d **5-8** mm

2Z

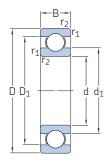


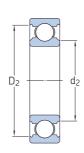

2ZS

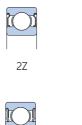
2RS1

Princip	al dimen	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Reference	Limiting	Mass	Designation
d	D	В	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		g	-
5 cont.	16 16 16	5 5 5	1,43 1,43 1,43	0,63 0,63 0,63	0,027 0,027 0,027	- 100 000 100 000	28 000 50 000 63 000	4,85 4,85 4,4	➤ W 625-2RS1 ➤ W 625-2Z W 625
6	10	3	0,286	0,112	0,005	120 000	60 000	0,72	W 627/6-2Z
	13	3,5	0,618	0,224	0,01	110 000	67 000	1,8	► W 618/6
	13	5	0,618	0,224	0,01	-	30 000	2,55	W 628/6-2RS1
	13	5	0,618	0,224	0,01	110 000	53 000	2,55	► W 628/6-2Z
	15	5	0,761	0,265	0,011	100 000	50 000	3,85	► W 619/6-2Z
	15	5	0,761	0,265	0,011	100 000	63 000	3,5	W 619/6
	17 17 19	6 6 6	1,95 1,95 1,53	0,83 0,83 0,585	0,036 0,036 0,025	- 95 000 -	26 000 48 000 24 000	5,8 6 7,65	W 606-2RS1 ► W 606-2Z ► W 626-2RS1
	19	6	1,53	0,585	0,025	85 000	43 000	7,75	► W 626-2Z
	19	6	1,53	0,585	0,025	85 000	56 000	7,1	► W 626
7	11	3	0,26	0,104	0,004	110 000	56 000	0,72	W 627/7-2ZS
	14	3,5	0,663	0,26	0,011	100 000	63 000	2	W 618/7
	14	5	0,663	0,26	0,011	100 000	50 000	2,75	W 628/7-2Z
	17	5	0,923	0,365	0,016	90 000	45 000	5,1	W 619/7-2Z
	17	5	0,923	0,365	0,016	90 000	56 000	4,8	W 619/7
	19	6	1,53	0,585	0,025	-	24 000	7,25	► W 607-2RS1
	19	6	1,53	0,585	0,025	85 000	43 000	7,35	W 607-2Z
	19	6	1,53	0,585	0,025	85 000	56 000	6,7	W 607
	22	7	1,99	0,78	0,034	-	22 000	12,5	W 627-2RS1
	22	7	1,99	0,78	0,034	75 000	38 000	12,5	W 627-2Z
	22	7	1,99	0,78	0,034	75 000	48 000	11,5	W 627
8	12	3,5	0,312	0,14	0,006	100 000	53 000	1,05	W 637/8-2Z
	16	4	0,715	0,3	0,012	90 000	56 000	3,1	► W 618/8
	16	5	0,715	0,3	0,012	-	26 000	3,85	► W 628/8-2RS1
	16	5	0,715	0,3	0,012	90 000	45 000	3,75	► W 628/8-2Z
	16	6	0,715	0,3	0,012	90 000	45 000	4,6	► W 638/8-2Z
	19	6	1,25	0,455	0,02	-	24 000	6,65	► W 619/8-2RS1
	19	6	1,25	0,455	0,02	85 000	43 000	6,75	► W 619/8-2Z
	19	6	1,25	0,455	0,02	85 000	53 000	6,1	W 619/8
	22	7	1,99	0,78	0,034	-	22 000	11,5	► W 608-2RS1

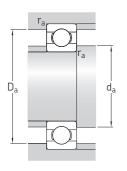
[►] Popular item

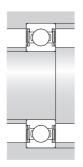





Dimens	ions					Abutm	ent and fille	et dimensio	ons	Calculat	ion factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
5 cont.	- - -	7,5 7,5 7,5	- - -	13,4 13,4 13,4	0,3 0,3 0,3	7 7 7	7,4 7,4 -	14 14 14	0,3 0,3 0,3	0,03 0,03 0,03	12 12 12
6	7	-	_	9,4	0,1	6,8	6,9	9,5	0,1	0,015	7,8
	8	-	11	-	0,15	7,2	-	11,8	0,15	0,02	7
	-	7,4	_	11,7	0,15	7,2	7,3	11,8	0,15	0,02	7
	-	7,4	-	11,7	0,15	7,2	7,3	11,8	0,15	0,02	7
	-	7,5	-	13	0,2	7,3	7,4	13,4	0,2	0,025	6,8
	-	7,5	-	13	0,2	7,3	-	13,4	0,2	0,025	6,8
	-	8,2	-	14,8	0,3	7,7	8,1	15	0,3	0,03	11
	-	8,2	-	14,8	0,3	7,7	8,1	15	0,3	0,03	11
	-	8,5	-	16,5	0,3	8	8,4	17	0,3	0,03	7,9
	-	8,5	-	16,5	0,3	8	8,4	17	0,3	0,03	7,9
	-	8,5	-	16,5	0,3	8	-	17	0,3	0,03	7,9
7	8	-	_	10,3	0,15	7,9	7,9	10,3	0,15	0,015	8,1
	9	-	12	-	0,15	8,2	-	12,8	0,15	0,02	7,2
	-	8,5	_	12,7	0,15	8,2	8,4	12,8	0,15	0,02	7,2
	-	9,2	-	14,3	0,3	8,7	9,1	15	0,3	0,025	7,3
	-	9,2	-	14,3	0,3	8,7	-	15	0,3	0,025	7,3
	-	9	-	16,5	0,3	8,7	8,9	17	0,3	0,03	7,9
	-	9	-	16,5	0,3	8,7	8,9	17	0,3	0,03	7,9
	-	9	-	16,5	0,3	8,7	-	17	0,3	0,03	7,9
	-	10,5	-	19,1	0,3	9	10,4	20	0,3	0,03	7,2
	-	10,5	-	19,1	0,3	9	10,4	20	0,3	0,03	7,2
	-	10,5	-	19,1	0,3	9	-	20	0,3	0,03	7,2
8	9	-	-	11,4	0,1	8,6	8,9	11,5	0,1	0,02	8,2
	10,5	-	13,5	-	0,2	9,6	-	14,4	0,2	0,02	7,5
	-	9,6	-	14,2	0,2	9,5	9,6	14,4	0,2	0,02	7,5
	-	9,6	-	14,2	0,2	9,5	9,6	14,4	0,2	0,02	7,5
	-	9,6	-	14,2	0,2	9,5	9,6	14,4	0,2	0,02	7,5
	-	9,8	-	16,7	0,3	9,7	9,7	17	0,3	0,025	6,6
	-	9,8	-	16,7	0,3	9,7	9,7	17	0,3	0,025	6,6
	-	9,8	-	16,7	0,3	9,7	-	17	0,3	0,025	6,6
	-	10,5	-	19,1	0,3	10	10,4	20	0,3	0,03	7,2

1.4 Stainless steel deep groove ball bearings d 8-12 mm

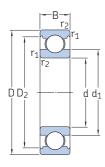


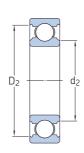


RS1	2RS2

Principal dimensions		Basic load ratings dynamic static		Fatigue load limit			Mass	Designation	
d	D	В	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min		g	-
8 cont.	22 22 24	7 7 8	1,99 1,99 2,47	0,78 0,78 1,12	0,034 0,034 0,048	75 000 75 000 70 000	38 000 48 000 36 000	11,5 11 17,5	► W 608-2Z ► W 608 W 628-2Z
9	17	4	0,761	0,335	0,014	85 000	53 000	3,4	W 618/9
	17	5	0,761	0,335	0,014	-	24 000	4,2	W 628/9-2RS1
	17	5	0,761	0,335	0,014	85 000	43 000	4,2	W 628/9-2Z
	20	6	1,95	0,93	0,045	80 000	40 000	7,65	► W 619/9-2Z
	20	6	1,95	0,93	0,045	80 000	50 000	7	W 619/9
	24	7	2,03	0,815	0,036	-	20 000	14	► W 609-2RS1
	24	7	2,03	0,815	0,036	70 000	36 000	14	W 609-2Z
	24	7	2,03	0,815	0,036	70 000	43 000	13	W 609
	26	8	3,97	1,96	0,083	-	19 000	19	W 629-2RS1
	26	8	3,97	1,96	0,083	67 000	32 000	19	W 629-2Z
10	19	5	1,48	0,83	0,036	-	22 000	5,2	► W 61800-2RS1
	19	5	1,48	0,83	0,036	80 000	38 000	5,1	► W 61800-2Z
	19	5	1,48	0,83	0,036	80 000	48 000	4,8	W 61800
	19 22 22	7 6 6	1,48 2,34 2,34	0,83 1,25 1,25	0,036 0,054 0,054	80 000 - 70 000	38 000 20 000 36 000	7,1 9,3 9,4	W 63800-2ZW 61900-2RS1W 61900-2Z
	22	6	2,34	1,25	0,054	70 000	45 000	8,7	W 61900
	26	8	3,97	1,96	0,083	-	19 000	18,5	► W 6000-2RS1
	26	8	3,97	1,96	0,083	67 000	32 000	18,5	► W 6000-2Z
	26	8	3,97	1,96	0,083	67 000	40 000	17	► W 6000
	30	9	4,36	2,32	0,1	-	16 000	30	► W 6200-2RS1
	30	9	4,36	2,32	0,1	60 000	30 000	30,5	► W 6200-2Z
	30	9	4,36	2,32	0,1	60 000	36 000	28,5	W 6200
	35	11	7,02	3,4	0,146	-	15 000	52,5	► W 6300-2RS1
	35	11	7,02	3,4	0,146	53 000	26 000	53	W 6300-2Z
	35	11	7,02	3,4	0,146	53 000	34 000	49,5	W 6300
12	21	5	1,51	0,9	0,039	-	20 000	6	► W 61801-2RS1
	21	5	1,51	0,9	0,039	70 000	36 000	5,7	W 61801-2Z
	24	6	2,51	1,46	0,062	-	19 000	10,5	► W 61901-2RS1
	24	6	2,51	1,46	0,062	67 000	32 000	11	► W 61901-2Z
	24	6	2,51	1,46	0,062	67 000	40 000	9,8	W 61901
	28	8	4,42	2,36	0,102	-	16 000	20	► W 6001-2RS1

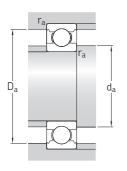
[►] Popular item





Dimens	sions					Abutmo	Abutment and fillet dimensions				Calculation factors		
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _{a.} min.	d _a max.	D _a max.	r _a max.	k _r	f_0		
mm						mm				_			
8 cont.	- - -	10,5 10,5 11,9	- - -	19,1 19,1 19,9	0,3 0,3 0,3	10 10 10	10,4 - 11,8	20 20 22	0,3 0,3 0,3	0,03 0,03 0,03	7,2 7,2 10		
9	11,5	-	14,5	-	0,2	10,6	-	15,4	0,2	0,02	7,7		
	-	10,7	-	15,2	0,2	10,3	10,6	15,4	0,2	0,02	7,7		
	-	10,7	-	15,2	0,2	10,3	10,6	15,4	0,2	0,02	7,7		
	11,6	-	-	17,5	0,3	11	11,1	18	0,3	0,025	12		
	11,6	-	-	17,5	0,3	11	-	18	0,3	0,025	12		
	-	12,1	-	20,5	0,3	11	12	22	0,3	0,03	7,5		
	-	12,1	-	20,5	0,3	11	12	22	0,3	0,03	7,5		
	-	12,1	-	20,5	0,3	11	-	22	0,3	0,03	7,5		
	-	13,9	-	22,4	0,6	13	13,8	22,6	0,6	0,03	12		
10	-	13,9	-	22,4	0,6	13	13,8	22,6	0,6	0,03	12		
	- - -	11,8 11,8 11,8	- - -	17,2 17,2 17,2	0,3 0,3 0,3	11,5 11,5 11,5	11,5 11,5 -	17,5 17,5 17,5	0,3 0,3 0,3	0,02 0,02 0,02	15 15 15		
	- - -	11,8 13,2 13,2	- - -	17,2 19,4 19,4	0,3 0,3 0,3	11,5 12 12	11,5 13 13	17,5 20 20	0,3 0,3 0,3	0,02 0,025 0,025	15 14 14		
	-	13,2	-	19,4	0,3	12	-	20	0,3	0,025	14		
	-	13,9	-	22,4	0,3	12	13,5	24	0,3	0,03	12		
	-	13,9	-	22,4	0,3	12	13,5	24	0,3	0,03	12		
	_	13,9	-	22,4	0,3	12	-	24	0,3	0,03	12		
	_	15,3	-	25,3	0,6	14	15	26	0,6	0,03	13		
	_	15,3	-	25,3	0,6	14	15	26	0,6	0,03	13		
	-	15,3	-	25,3	0,6	14	-	26	0,6	0,03	13		
	17,7	-	-	29,3	0,6	14	17,5	31	0,6	0,035	11		
	17,7	-	-	29,3	0,6	14	17,5	31	0,6	0,035	11		
	17,7	-	-	29,3	0,6	14	-	31	0,6	0,035	11		
12	-	13,8	-	19,2	0,3	13,5	13,5	19,5	0,3	0,02	13		
	-	13,8	-	19,2	0,3	13,5	13,5	19,5	0,3	0,02	13		
	-	15,3	-	21,4	0,3	14	15	22	0,3	0,025	15		
	-	15,3	-	21,4	0,3	14	15	22	0,3	0,025	15		
	-	15,3	-	21,4	0,3	14	-	22	0,3	0,025	15		
	-	16	-	25,2	0,3	14	15,5	26	0,3	0,03	13		

1.4 Stainless steel deep groove ball bearings d 12 – 17 mm

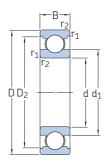


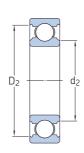

2RS1

2RS1

Principal dimensions		Basic load ratings dynamic static		Fatigue load limit	Speed rating Reference	Limiting	Mass	Designation	
d	D	В	С	C_0	P_u	speed	speed		
mm			kN	,	kN	r/min		g	-
12 cont.	28 28 32	8 8 10	4,42 4,42 5,72	2,36 2,36 3	0,102 0,102 0,127	60 000 60 000 -	30 000 36 000 15 000	20 18 36	► W 6001-2Z ► W 6001 ► W 6201-2RS1
	32	10	5,72	3	0,127	53 000	28 000	36	► W 6201-2Z
	32	10	5,72	3	0,127	53 000	34 000	33,5	W 6201
	37	12	8,32	4,15	0,176	-	14 000	58,5	► W 6301-2RS1
	37	12	8,32	4,15	0,176	48 000	24 000	59,5	W 6301-2Z
	37	12	8,32	4,15	0,176	48 000	30 000	55,5	W 6301
15	24	5	1,65	1,08	0,048	-	17 000	7,1	W 61802-2RS1
	24	5	1,65	1,08	0,048	60 000	30 000	6,7	W 61802-2Z
	28	7	3,71	2,24	0,095	-	16 000	15,5	► W 61902-2RS1
	28	7	3,71	2,24	0,095	56 000	28 000	16	► W 61902-2Z
	28	7	3,71	2,24	0,095	56 000	34 000	14,5	W 61902
	32	9	4,88	2,8	0,12	-	14 000	28,5	► W 6002-2RS1
	32	9	4,88	2,8	0,12	50 000	26 000	29	► W 6002-2Z
	32	9	4,88	2,8	0,12	50 000	32 000	26,5	W 6002
	35	11	6,37	3,6	0,156	-	13 000	44	► W 6202-2RS1
	35	11	6,37	3,6	0,156	48 000	24 000	44	► W 6202-2Z
	35	11	6,37	3,6	0,156	48 000	30 000	41,5	W 6202
	42	13	9,95	5,4	0,232	-	11 000	81	► W 6302-2RS1
	42	13	9,95	5,4	0,232	40 000	20 000	82	W 6302-2Z
	42	13	9,95	5,4	0,232	40 000	26 000	77	W 6302
17	26 26 30	5 5 7	1,78 1,78 3,97	1,27 1,27 2,55	0,054 0,054 0,108	- 56 000 -	16 000 28 000 14 000	8 7,6 16,5	W 61803-2RS1 ► W 61803-2Z ► W 61903-2RS1
	30	7	3,97	2,55	0,108	50 000	24 000	17	► W 61903-2Z
	30	7	3,97	2,55	0,108	50 000	32 000	15,5	W 61903
	35	10	4,94	3,15	0,137	-	13 000	38	► W 6003-2RS1
	35	10	4,94	3,15	0,137	45 000	22 000	38,5	➤ W 6003-2Z
	35	10	4,94	3,15	0,137	45 000	28 000	36	W 6003
	40	12	8,06	4,75	0,2	-	12 000	64,5	➤ W 6203-2RS1
	40	12	8,06	4,75	0,2	40 000	20 000	65,5	► W 6203-2Z
	40	12	8,06	4,75	0,2	40 000	26 000	61,5	W 6203
	47	14	11,7	6,55	0,28	-	10 000	112	► W 6303-2RS1
	47	14	11,7	6,55	0,28	36 000	18 000	113	W 6303-2Z
	47	14	11,7	6,55	0,28	36 000	22 000	107	W 6303

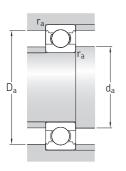
[►] Popular item

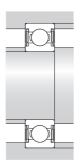




Dimens	sions					Abutm	ent and fillo	et dimensio	ons	Calculat	ion factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				-	
12 cont.	-	16	-	25,2	0,3	14	15,5	26	0,3	0,03	13
	-	16	-	25,2	0,3	14	-	26	0,3	0,03	13
	18,5	-	-	28	0,6	16	18	28,5	0,6	0,03	12
	18,5	_	-	28	0,6	16	18	28,5	0,6	0,03	12
	18,5	_	-	28	0,6	16	-	28,5	0,6	0,03	12
	19,3	_	-	32	1	17	19	32,5	1	0,035	11
	19,3 19,3	_ _	-	32 32	1 1	17 17	19 -	32,5 32,5	1 1	0,035 0,035	11 11
15	-	16,8	-	22,2	0,3	16,5	16,5	22,5	0,3	0,02	14
	-	16,8	-	22,2	0,3	16,5	16,5	22,5	0,3	0,02	14
	18,8	-	-	25,3	0,3	17	18,5	26	0,3	0,025	14
	18,8	-	-	25,3	0,3	17	18,5	26	0,3	0,025	14
	18,8	-	-	25,3	0,3	17	-	26	0,3	0,025	14
	-	18,6	-	29,1	0,3	17	18,5	30	0,3	0,03	14
	-	18,6	-	29,1	0,3	17	18,5	30	0,3	0,03	14
	-	18,6	-	29,1	0,3	17	-	30	0,3	0,03	14
	21,7	-	-	31,4	0,6	19	21,5	32	0,6	0,03	13
	21,7	_	-	31,4	0,6	19	21,5	32	0,6	0,03	13
	21,7	_	-	31,4	0,6	19	-	32	0,6	0,03	13
	24,5	_	-	36,8	1	20	24	37,5	1	0,035	12
	24,5 24,5	_	_	36,8 36,8	1 1	20 20	24 -	37,5 37,5	1 1	0,035 0,035	12 12
17	-	18,8	-	24,2	0,3	18,5	18,5	24,5	0,3	0,02	14
	-	18,8	-	24,2	0,3	18,5	18,5	24,5	0,3	0,02	14
	21	-	-	27,8	0,3	19	20,5	28,5	0,3	0,025	15
	21	-	-	27,8	0,3	19	20,5	28,5	0,3	0,025	15
	21	-	-	27,8	0,3	19	-	28,5	0,3	0,025	15
	23,5	-	-	31,9	0,3	19	23	33	0,3	0,03	14
	23,5	-	-	31,9	0,3	19	23	33	0,3	0,03	14
	23,5	-	-	31,9	0,3	19	-	33	0,3	0,03	14
	24,9	-	-	35,8	0,6	21	24,5	37,5	0,6	0,03	13
	24,9	_	-	35,8	0,6	21	24,5	37,5	0,6	0,03	13
	24,9	_	-	35,8	0,6	21	-	37,5	0,6	0,03	13
	27,5	_	-	41,1	1	22	27	42	1	0,035	12
	27,5 27,5	_ _	_	41,1 41,1	1 1	22 22	27 -	42 42	1 1	0,035 0,035	12 12

1.4 Stainless steel deep groove ball bearings d 20 – 30 mm

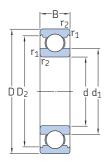


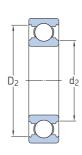


2RS1

Duiz'	a a l ali		Da=!=!	- d unitiv	Fatiens Is 1	Cmand		Mess	Designation
Princi	pal dimen	sions	dynamic	ad ratings static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed	Mass	Designation
d	D	В	С	C_0	P_{u}	Speeu	speed		
mm			kN		kN	r/min		g	-
20	32 32 37	7 7 9	3,12 3,12 5,53	2,08 2,08 3,65	0,09 0,09 0,156	- 48 000 -	13 000 24 000 12 000	17 17 35,5	W 61804-2RS1▶ W 61804-2Z▶ W 61904-2RS1
	37	9	5,53	3,65	0,156	43 000	26 000	32,5	W 61904
	42	12	8,06	5	0,212	-	11 000	64,5	► W 6004-2RS1
	42	12	8,06	5	0,212	38 000	19 000	64,5	► W 6004-2Z
	42	12	8,06	5	0,212	38 000	24 000	60,5	W 6004
	47	14	10,8	6,55	0,28	-	10 000	105	► W 6204-2RS1
	47	14	10,8	6,55	0,28	34 000	17 000	106	► W 6204-2Z
	47	14	10,8	6,55	0,28	34 000	22 000	100	W 6204
	52	15	13,8	7,8	0,335	-	9 500	143	► W 6304-2RS1
	52	15	13,8	7,8	0,335	34 000	17 000	144	W 6304-2Z
	52	15	13,8	7,8	0,335	34 000	20 000	136	W 6304
25	37	7	3,38	2,5	0,108	-	11 000	21	► W 61805-2RS1
	37	7	3,38	2,5	0,108	38 000	19 000	21	W 61805-2Z
	42	9	6,05	4,5	0,193	-	10 000	39,5	► W 61905-2RS1
	47	12	8,71	5,85	0,25	-	9 500	76,5	► W 6005-2RS1
	47	12	8,71	5,85	0,25	32 000	16 000	77,5	► W 6005-2Z
	47	12	8,71	5,85	0,25	32 000	20 000	71,5	W 6005
	52	15	11,7	7,65	0,335	-	8 500	128	► W 6205-2RS1
	52	15	11,7	7,65	0,335	30 000	15 000	130	► W 6205-2Z
	52	15	11,7	7,65	0,335	30 000	19 000	122	► W 6205
	62	17	17,8	11,2	0,48	-	7 500	234	► W 6305-2RS1
	62	17	17,8	11,2	0,48	26 000	13 000	235	W 6305-2Z
	62	17	17,8	11,2	0,48	26 000	17 000	224	W 6305
30	42 47 47	7 9 9	3,58 6,24 6,24	2,9 5 5	0,125 0,212 0,212	- 30 000	9 500 8 500 19 000	24 47 43,5	W 61806-2RS1 ► W 61906-2RS1 W 61906
	55	13	11,4	8,15	0,355	-	8 000	112	► W 6006-2RS1
	55	13	11,4	8,15	0,355	28 000	14 000	113	► W 6006-2Z
	55	13	11,4	8,15	0,355	28 000	17 000	105	W 6006
	62	16	16,5	11,2	0,48	-	7 000	196	► W 6206-2RS1
	62	16	16,5	11,2	0,48	26 000	13 000	196	► W 6206-2Z
	62	16	16,5	11,2	0,48	26 000	16 000	186	W 6206

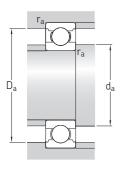
[►] Popular item

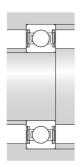




Dimens	sions					Abutm	ent and fill	et dimensi	ons	Calculat	ion factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm					
20	-	22,6	-	29,6	0,3	22	22,5	30,5	0,3	0,02	13
	-	22,6	-	29,6	0,3	22	22,5	30,5	0,3	0,02	13
	-	23,6	-	33,5	0,3	22	23,5	35	0,3	0,025	15
	-	23,6	-	33,5	0,3	22	–	35	0,3	0,025	15
	27,6	-	-	38,8	0,6	24	27,5	39,5	0,6	0,03	14
	27,6	-	-	38,8	0,6	24	27,5	39,5	0,6	0,03	14
	27,6	_	-	38,8	0,6	24	-	39,5	0,6	0,03	14
	29,5	_	-	41	1	25	29	42	1	0,03	13
	29,5	_	-	41	1	25	29	42	1	0,03	13
	29,5	-	-	41	1	25	-	42	1	0,03	13
	30	-	-	45,4	1,1	26,5	29,5	46	1	0,035	12
	30	-	-	45,4	1,1	26,5	29,5	46	1	0,035	12
	30	-	-	45,4	1,1	26,5	-	46	1	0,035	12
25	28,2	-	-	34,2	0,3	27	28	35	0,3	0,02	14
	28,2	-	-	34,2	0,3	27	28	35	0,3	0,02	14
	30,9	-	-	39,5	0,3	27	30,5	40,5	0,3	0,025	15
	31,7	_	-	42,8	0,6	29	31,5	44,5	0,6	0,03	15
	31,7	_	-	42,8	0,6	29	31,5	44,5	0,6	0,03	15
	31,7	_	-	42,8	0,6	29	-	44,5	0,6	0,03	15
	34	_	-	45,8	1	30	33,5	47	1	0,03	14
	34	_	-	45,8	1	30	33,5	47	1	0,03	14
	34	_	-	45,8	1	30	-	47	1	0,03	14
	38,1	-	-	53,3	1,1	31,5	38	55	1	0,035	13
	38,1	-	-	53,3	1,1	31,5	38	55	1	0,035	13
	38,1	-	-	53,3	1,1	31,5	-	55	1	0,035	13
30	33,1	-	-	39,2	0,3	32	33	40	0,3	0,02	14
	35,1	-	-	44,1	0,3	32	35	45	0,3	0,025	16
	35,1	-	-	44,1	0,3	32	-	45	0,3	0,025	16
	38	_	-	50	1	35	37,5	50	1	0,03	15
	38	_	-	50	1	35	37,5	50	1	0,03	15
	38	_	-	50	1	35	-	50	1	0,03	15
	40,7	-	-	55,2	1	35	40,5	57	1	0,03	14
	40,7	-	-	55,2	1	35	40,5	57	1	0,03	14
	40,7	-	-	55,2	1	35	-	57	1	0,03	14

1.4 Stainless steel deep groove ball bearings d 30 – 50 mm

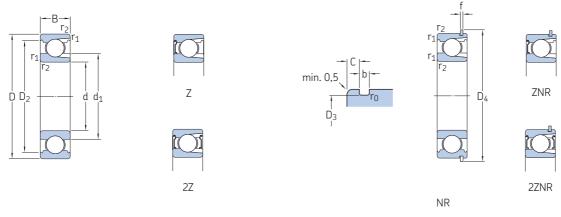


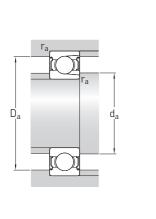

2RS1

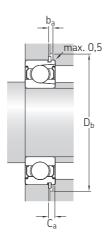
2RS1

Princip	al dimen	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rating Reference	Limiting	Mass	Designation
d	D	В	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min		g	-
30 cont.	72 72 72	19 19 19	22,9 22,9 22,9	15 15 15	0,64 0,64 0,64	- 22 000 22 000	6 300 11 000 14 000	346 345 331	► W 6306-2RS1 W 6306-2Z W 6306
35	47 55 62	7 10 14	3,71 9,36 13,8	3,35 7,65 10,2	0,14 0,325 0,44	- - -	8 500 7 500 6 700	29,5 73,5 147	W 61807-2RS1 W 61907-2RS1 ► W 6007-2RS1
	62 62 72	14 14 17	13,8 13,8 22,1	10,2 10,2 15,3	0,44 0,44 0,655	24 000 24 000 -	12 000 15 000 6 000	148 138 276	W 6007-2Z W 6007 ► W 6207-2RS1
	72 72 80	17 17 21	22,1 22,1 28,6	15,3 15,3 19	0,655 0,655 0,815	22 000 22 000 -	11 000 14 000 5 600	277 262 441	W 6207-2Z W 6207 W 6307-2RS1
40	62 68 68	12 15 15	11,9 14,6 14,6	9,8 11,4 11,4	0,425 0,49 0,49	- - 22 000	6 700 6 300 11 000	107 182 183	W 61908-2RS1 ► W 6008-2RS1 ► W 6008-2Z
	68 80 80	15 18 18	14,6 25,1 25,1	11,4 17,6 17,6	0,49 0,75 0,75	22 000 - 20 000	14 000 5 600 10 000	172 359 359	W 6008 ► W 6208-2RS1 ► W 6208-2Z
	80	18	25,1	17,6	0,75	20 000	12 000	342	W 6208
45	68 75 75	12 16 16	12,1 18,2 18,2	10,8 15 15	0,465 0,64 0,64	- - 20 000	6 000 5 600 10 000	125 236 237	W 61909-2RS1W 6009-2RS1W 6009-2Z
	85 85	19 19	28,1 28,1	20,4 20,4	0,865 0,865	- 18 000	5 000 9 000	395 394	► W 6209-2RS1 W 6209-2Z
50	65 80 80	7 16 16	5,07 19 19	5,5 16,6 16,6	0,236 0,71 0,71	- - 18 000	6 000 5 000 9 000	51 256 256	W 61810-2RS1 ► W 6010-2RS1 W 6010-2Z
	90 90	20 20	30,2 30,2	23,2 23,2	0,98 0,98	- 17 000	4 800 8 500	449 453	 W 6210-2RS1 W 6210-2Z
	90	20	30,2	23,2	0,98	17000	8 500	453	W 6210-22

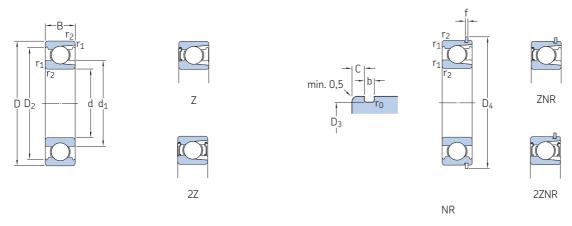
[►] Popular item

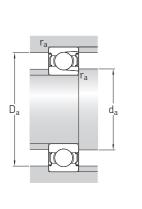


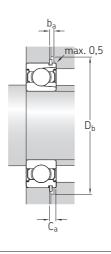

Dimens	ions					Abutme	ent and fille	et dimensio	ons	Calculat	ion factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				_	
30 cont.	44,9	-	-	62,4	1,1	36,5	44,5	65	1	0,035	13
	44,9	-	-	62,4	1,1	36,5	44,5	65	1	0,035	13
	44,9	-	-	62,4	1,1	36,5	-	65	1	0,035	13
35	38,2	-	-	43,7	0,3	37	38	45	0,3	0,02	14
	42,2	-	-	52,2	0,6	39	42	52	0,6	0,025	16
	44	-	-	57,1	1	40	43,5	57	1	0,03	15
	44	-	-	57,1	1	40	43,5	57	1	0,03	15
	44	-	-	57,1	1	40	-	57	1	0,03	15
	47,6	-	-	64,9	1,1	41,5	46,5	65	1	0,03	14
	47,6	-	-	64,9	1,1	41,5	46,5	65	1	0,03	14
	47,6	-	-	64,9	1,1	41,5	-	65	1	0,03	14
	-	46,7	-	71,6	1,5	43	46,5	73	1,5	0,035	13
40	46,9	-	-	57,6	0,6	44	46,5	59	0,6	0,025	16
	49,2	-	-	62,5	1	45	49	63	1	0,03	15
	49,2	-	-	62,5	1	45	49	63	1	0,03	15
	49,2	-	-	62,5	1	45	-	63	1	0,03	15
	-	50,1	-	70,8	1,1	46,5	50	73	1	0,03	14
	-	50,1	-	70,8	1,1	46,5	50	73	1	0,03	14
	_	50,1	_	70,8	1,1	46,5	_	73	1	0,03	14
45	-	50,3	-	63,2	0,6	49	52	64	0,6	0,025	16
	54,5	-	-	69	1	50	54	70	1	0,03	15
	54,5	-	-	69	1	50	54	70	1	0,03	15
	-	53,5 53,5	- -	76,4 76,4	1,1 1,1	52 52	53 53	78 78	1 1	0,03 0,03	14 14
50	54,6	-	-	61,6	0,3	52	54	63	0,3	0,02	15
	60	-	-	74,6	1	55	59	75	1	0,03	16
	60	-	-	74,6	1	55	59	75	1	0,03	16
	_ _	60 60	-	82,2 82,2	1,1 1,1	55 55	59 59	83 83	1	0,03 0,03	14 14


$\begin{array}{cc} \textbf{1.5} & \textbf{Single row deep groove ball bearings with filling slots} \\ & \textbf{d} & \textbf{25-50} \ \text{mm} \end{array}$

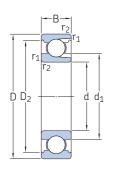
Princi	pal dimen	sions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed	Mass	Designations Bearing without	with	Snap ring
d	D	В	С	C_0	P_{u}	Speed	Speed		a snap ring	a snap ring	
mm			kN		kN	r/min		kg	-		
25	62	17	22,9	15,6	0,67	20 000	13 000	0,24	305	305 NR	SP 62
	62	17	22,9	15,6	0,67	20 000	13 000	0,24	305-Z	305-ZNR	SP 62
	62	17	22,9	15,6	0,67	20 000	10 400	0,24	305-2Z	305-2ZNR	SP 62
30	62	16	20,9	16,3	0,695	20 000	12 000	0,21	206	206 NR	SP 62
	62	16	20,9	16,3	0,695	20 000	12 000	0,21	206-Z	206-ZNR	SP 62
	62	16	20,9	16,3	0,695	20 000	9 600	0,21	206-2Z	206-2ZNR	SP 62
	72	19	29,7	21,6	0,93	18 000	11 000	0,37	306	306 NR	SP 72
	72	19	29,7	21,6	0,93	18 000	11 000	0,37	306-Z	306-ZNR	SP 72
	72	19	29,7	21,6	0,93	18 000	8 800	0,37	306-2Z	306-2ZNR	SP 72
35	72	17	27,5	22	0,93	17 000	10 000	0,31	207	207 NR	SP 72
	72	17	27,5	22	0,93	17 000	10 000	0,31	207-Z	207-ZNR	SP 72
	72	17	27,5	22	0,93	17 000	8 000	0,31	207-2Z	207-2ZNR	SP 72
	80	21	34,7	26,5	1,12	16 000	9 500	0,48	307	307 NR	SP 80
	80	21	34,7	26,5	1,12	16 000	9 500	0,48	307-Z	307-ZNR	SP 80
	80	21	34,7	26,5	1,12	16 000	7 600	0,48	307-2Z	307-2ZNR	SP 80
40	80	18	33,6	27	1,16	15 000	9 500	0,39	208	208 NR	SP 80
	80	18	33,6	27	1,16	15 000	9 500	0,39	208-Z	208-ZNR	SP 80
	80	18	33,6	27	1,16	15 000	7 600	0,39	208-2Z	208-2ZNR	SP 80
	90	23	45,7	36	1,53	14 000	8 500	0,64	308	308 NR	SP 90
	90	23	45,7	36	1,53	14 000	8 500	0,64	308-Z	308-ZNR	SP 90
	90	23	45,7	36	1,53	14 000	6 800	0,64	308-2Z	308-2ZNR	SP 90
45	85	19	35,2	30	1,27	14 000	8 500	0,44	209	209 NR	SP 85
	85	19	35,2	30	1,27	14 000	8 500	0,44	209-Z	209-ZNR	SP 85
	85	19	35,2	30	1,27	14 000	6 800	0,44	209-2Z	209-2ZNR	SP 85
	100	25	55	44	1,86	13 000	7 500	0,88	309	309 NR	SP 100
	100	25	55	44	1,86	13 000	7 500	0,88	309-Z	309-ZNR	SP 100
	100	25	55	44	1,86	13 000	6 000	0,88	309-2Z	309-2ZNR	SP 100
50	90	20	39,1	34,5	1,46	13 000	8 000	0,5	210	210 NR	SP 90
	90	20	39,1	34,5	1,46	13 000	8 000	0,5	210-Z	210-ZNR	SP 90
	90	20	39,1	34,5	1,46	13 000	6 400	0,5	210-2Z	210-2ZNR	SP 90
	110	27	64,4	52	2,2	11 000	7 000	1,15	310	310 NR	SP 110
	110	27	64,4	52	2,2	11 000	7 000	1,15	310-Z	310-ZNR	SP 110
	110	27	64,4	52	2,2	11 000	5 600	1,15	310-2Z	310-2ZNR	SP 110




Dime	ensions										nent and	l fillet di	mensio	ns			Minimum load
d	d ₁ ≈	D ₂ ≈	D ₃	D_4	b	f	С	r _{1,2} min.	r ₀ max.	d _a min.	d _a max.	D _a max.	D _b min.	b _a min.	C _a max.	r _a max.	factor k _r
mm										mm							-
25	36,6	52,7	59,61	67,7	1,9	1,7	3,28	1,1	0,6	32	-	55	69	2,2	4,98	1	0,05
	36,6	52,7	59,61	67,7	1,9	1,7	3,28	1,1	0,6	32	32,7	55	69	2,2	4,98	1	0,05
	36,6	52,7	59,61	67,7	1,9	1,7	3,28	1,1	0,6	32	32,7	55	69	2,2	4,98	1	0,05
30	40,3	54,06	59,61	67,7	1,9	1,7	3,28	1	0,6	35,6	-	56	69	2,2	4,98	1	0,04
	40,3	54,06	59,61	67,7	1,9	1,7	3,28	1	0,6	35,6	40,2	56	69	2,2	4,98	1	0,04
	40,3	54,06	59,61	67,7	1,9	1,7	3,28	1	0,6	35,6	40,2	56	69	2,2	4,98	1	0,04
	44,6	61,88	68,81	78,6	1,9	1,7	3,28	1,1	0,6	37	-	65	80	2,2	4,98	1	0,05
	44,6	61,88	68,81	78,6	1,9	1,7	3,28	1,1	0,6	37	44,5	65	80	2,2	4,98	1	0,05
	44,6	61,88	68,81	78,6	1,9	1,7	3,28	1,1	0,6	37	44,5	65	80	2,2	4,98	1	0,05
35	46,9	62,69	68,81	78,6	1,9	1,7	3,28	1,1	0,6	42	-	65	80	2,2	4,98	1	0,04
	46,9	62,69	68,81	78,6	1,9	1,7	3,28	1,1	0,6	42	46,8	65	80	2,2	4,98	1	0,04
	46,9	62,69	68,81	78,6	1,9	1,7	3,28	1,1	0,6	42	46,8	65	80	2,2	4,98	1	0,04
	49,5	69,2	76,81	86,6	1,9	1,7	3,28	1,5	0,6	44	-	71	88	2,2	4,98	1,5	0,05
	49,5	69,2	76,81	86,6	1,9	1,7	3,28	1,5	0,6	44	49,4	71	88	2,2	4,98	1,5	0,05
	49,5	69,2	76,81	86,6	1,9	1,7	3,28	1,5	0,6	44	49,4	71	88	2,2	4,98	1,5	0,05
40	52,6	69,8	76,81	86,6	1,9	1,7	3,28	1,1	0,6	47	-	73	88	2,2	4,98	1	0,04
	52,6	69,8	76,81	86,6	1,9	1,7	3,28	1,1	0,6	47	52	73	88	2,2	4,98	1	0,04
	52,6	69,8	76,81	86,6	1,9	1,7	3,28	1,1	0,6	47	52	73	88	2,2	4,98	1	0,04
	56,1	77,7	86,79	96,5	2,7	2,46	3,28	1,5	0,6	49	-	81	98	3	5,74	1,5	0,05
	56,1	77,7	86,79	96,5	2,7	2,46	3,28	1,5	0,6	49	56	81	98	3	5,74	1,5	0,05
	56,1	77,7	86,79	96,5	2,7	2,46	3,28	1,5	0,6	49	56	81	98	3	5,74	1,5	0,05
45	57,6	75,19	81,81	91,6	1,9	1,7	3,28	1,1	0,6	52	-	78	93	2,2	4,98	1	0,04
	57,6	75,19	81,81	91,6	1,9	1,7	3,28	1,1	0,6	52	57	78	93	2,2	4,98	1	0,04
	57,6	75,19	81,81	91,6	1,9	1,7	3,28	1,1	0,6	52	57	78	93	2,2	4,98	1	0,04
	62,1	86,7	96,8	106,5	2,7	2,46	3,28	1,5	0,6	54	-	91	108	3	5,74	1,5	0,05
	62,1	86,7	96,8	106,5	2,7	2,46	3,28	1,5	0,6	54	62	91	108	3	5,74	1,5	0,05
	62,1	86,7	96,8	106,5	2,7	2,46	3,28	1,5	0,6	54	62	91	108	3	5,74	1,5	0,05
50	62,5	81,61	86,79	96,5	2,7	2,46	3,28	1,1	0,6	57	-	83	98	3	5,74	1	0,04
	62,5	81,61	86,79	96,5	2,7	2,46	3,28	1,1	0,6	57	62	83	98	3	5,74	1	0,04
	62,5	81,61	86,79	96,5	2,7	2,46	3,28	1,1	0,6	57	62	83	98	3	5,74	1	0,04
	68,7	95,2	106,81	116,6	2,7	2,46	3,28	2	0,6	61	-	99	118	3	5,74	2	0,05
	68,7	95,2	106,81	116,6	2,7	2,46	3,28	2	0,6	61	68	99	118	3	5,74	2	0,05
	68,7	95,2	106,81	116,6	2,7	2,46	3,28	2	0,6	61	68	99	118	3	5,74	2	0,05

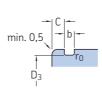

$\begin{array}{cc} \textbf{1.5} & \text{Single row deep groove ball bearings with filling slots} \\ & \text{d} & \textbf{55-80} \text{ mm} \end{array}$

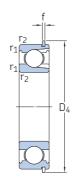
Princi	pal dimen	sions		oad ratings c static	Fatigue load limit	Speed ration	Limiting	Mass	Designations Bearing		Snap ring
d	D	В	С	C_0	P_{u}	speed	speed		without a snap ring	with a snap ring	
mm			kN		kN	r/min		kg	-		
55	100	21	48,4	44	1,86	12 000	7 000	0,66	211	211 NR	SP 100
	100	21	48,4	44	1,86	12 000	7 000	0,66	211-Z	211-ZNR	SP 100
	100	21	48,4	44	1,86	12 000	5 600	0,66	211-2Z	211-2ZNR	SP 100
	120	29	79,2	67	2,85	10 000	6 300	1,5	311	311 NR	SP 120
	120	29	79,2	67	2,85	10 000	6 300	1,5	311-Z	311-ZNR	SP 120
	120	29	79,2	67	2,85	10 000	5 000	1,5	311-2Z	311-2ZNR	SP 120
60	110	22	56,1	50	2,12	11 000	6 700	0,85	212	212 NR	SP 110
	110	22	56,1	50	2,12	11 000	6 700	0,85	212-Z	212-ZNR	SP 110
	110	22	56,1	50	2,12	11 000	5 400	0,85	212-2Z	212-2ZNR	SP 110
	130	31	91,3	78	3,35	9 500	6 000	1,85	312	312 NR	SP 130
	130	31	91,3	78	3,35	9 500	6 000	1,85	312-Z	312-ZNR	SP 130
	130	31	91,3	78	3,35	9 500	4 800	1,85	312-2Z	312-2ZNR	SP 130
65	120	23	60,5	58,5	2,5	10 000	6 000	1,05	213	213 NR	SP 120
	120	23	60,5	58,5	2,5	10 000	6 000	1,05	213-Z	213-ZNR	SP 120
	120	23	60,5	58,5	2,5	10 000	4 800	1,05	213-2Z	213-2ZNR	SP 120
	140	33	102	90	3,75	9 000	5 300	2,3	313	313 NR	SP 140
	140	33	102	90	3,75	9 000	5 300	2,3	313-Z	313-ZNR	SP 140
	140	33	102	90	3,75	9 000	4 300	2,3	313-2Z	313-2ZNR	SP 140
70	125	24	66	65,5	2,75	9 500	5 600	1,15	214	214 NR	SP 125
	125	24	66	65,5	2,75	9 500	5 600	1,15	214-Z	214-ZNR	SP 125
	125	24	66	65,5	2,75	9 500	4 500	1,15	214-2Z	214-2ZNR	SP 125
	150	35	114	102	4,15	8 000	5 000	2,75	314	314 NR	SP 150
	150	35	114	102	4,15	8 000	5 000	2,75	314-Z	314-ZNR	SP 150
	150	35	114	102	4,15	8 000	4 000	2,75	314-2Z	314-2ZNR	SP 150
75	130	25	72,1	72	3	9 000	5 300	1,25	215	215 NR	SP 130
	130	25	72,1	72	3	9 000	5 300	1,25	215-Z	215-ZNR	SP 130
	130	25	72,1	72	3	9 000	4 300	1,25	215-2Z	215-2ZNR	SP 130
	160	37	125	116	4,55	7 500	4 800	3,25	315	-	_
	160	37	125	116	4,55	7 500	4 800	3,25	315-Z	-	_
	160	37	125	116	4,55	7 500	3 840	3,25	315-2Z	-	_
80	140	26	88	85	3,45	8 500	5 000	1,55	216	216 NR	SP 140
	140	26	88	85	3,45	8 500	5 000	1,55	216-Z	216-ZNR	SP 140
	140	26	88	85	3,45	8 500	4 000	1,55	216-2Z	216-2ZNR	SP 140
	170	39	138	129	4,9	7 000	4 300	3,95	316	-	-
	170	39	138	129	4,9	7 000	4 300	3,95	316-Z	-	-
	170	39	138	129	4,9	7 000	3 440	3,95	316-2Z	-	-



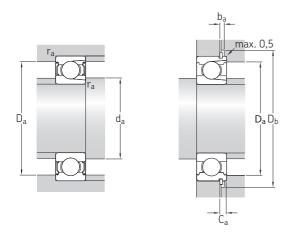
Dime	nensions									Abutment and fillet dimensions						Minimum load factor	
d	d ₁ ≈	D ₂ ≈	D_3	D ₄	b	f	С	r _{1,2} min.	r ₀ max.	d _a min.	d _a max.	D _a max.	D _b min.	b _a min.	C _a max.	r _a max.	k _r
mm										mm				,			-
55	69	89,4	96,8	106,5	2,7	2,46	3,28	1,5	0,6	64	-	91	108	3	5,74	1,5	0,04
	69	89,4	96,8	106,5	2,7	2,46	3,28	1,5	0,6	64	68	91	108	3	5,74	1,5	0,04
	69	89,4	96,8	106,5	2,7	2,46	3,28	1,5	0,6	64	68	91	108	3	5,74	1,5	0,04
	75,3	103,7	115,21	129,7	3,1	2,82	4,06	2	0,6	66	-	109	131	3,5	6,88	2	0,05
	75,3	103,7	115,21	129,7	3,1	2,82	4,06	2	0,6	66	75	109	131	3,5	6,88	2	0,05
	75,3	103,7	115,21	129,7	3,1	2,82	4,06	2	0,6	66	75	109	131	3,5	6,88	2	0,05
60	75,5	98	106,81	116,6	2,7	2,46	3,28	1,5	0,6	69	-	101	118	3	5,74	1,5	0,04
	75,5	98	106,81	116,6	2,7	2,46	3,28	1,5	0,6	69	75	101	118	3	5,74	1,5	0,04
	75,5	98	106,81	116,6	2,7	2,46	3,28	1,5	0,6	69	75	101	118	3	5,74	1,5	0,04
	81,8	112,2	125,22	139,7	3,1	2,82	4,06	2,1	0,6	72	-	118	141	3,5	6,88	2	0,05
	81,8	112,2	125,22	139,7	3,1	2,82	4,06	2,1	0,6	72	81	118	141	3,5	6,88	2	0,05
	81,8	112,2	125,22	139,7	3,1	2,82	4,06	2,1	0,6	72	81	118	141	3,5	6,88	2	0,05
65	83,3	105,8	115,21	129,7	3,1	2,82	4,06	1,5	0,6	74	-	111	131	3,5	6,88	1,5	0,04
	83,3	105,8	115,21	129,7	3,1	2,82	4,06	1,5	0,6	74	83	111	131	3,5	6,88	1,5	0,04
	83,3	105,8	115,21	129,7	3,1	2,82	4,06	1,5	0,6	74	83	111	131	3,5	6,88	1,5	0,04
	88,3	121,3	135,23	149,7	3,1	2,82	4,9	2,1	0,6	77	-	128	151	3,5	7,72	2	0,05
	88,3	121,3	135,23	149,7	3,1	2,82	4,9	2,1	0,6	77	88	128	151	3,5	7,72	2	0,05
	88,3	121,3	135,23	149,7	3,1	2,82	4,9	2,1	0,6	77	88	128	151	3,5	7,72	2	0,05
70	87	111	120,22	134,7	3,1	2,82	4,06	1,5	0,6	79	-	116	136	3,5	6,88	1,5	0,04
	87	111	120,22	134,7	3,1	2,82	4,06	1,5	0,6	79	87	116	136	3,5	6,88	1,5	0,04
	87	111	120,22	134,7	3,1	2,82	4,06	1,5	0,6	79	87	116	136	3,5	6,88	1,5	0,04
	93,7	129,9	145,24	159,7	3,1	2,82	4,9	2,1	0,6	82	-	138	162	3,5	7,72	2	0,05
	93,7	129,9	145,24	159,7	3,1	2,82	4,9	2,1	0,6	82	93	138	162	3,5	7,72	2	0,05
	93,7	129,9	145,24	159,7	3,1	2,82	4,9	2,1	0,6	82	93	138	162	3,5	7,72	2	0,05
75	92	116,5	125,22	139,7	3,1	2,82	4,06	1,5	0,6	84	-	121	141	3,5	6,88	1,5	0,04
	92	116,5	125,22	139,7	3,1	2,82	4,06	1,5	0,6	84	92	121	141	3,5	6,88	1,5	0,04
	92	116,5	125,22	139,7	3,1	2,82	4,06	1,5	0,6	84	92	121	141	3,5	6,88	1,5	0,04
	99,7	138,4	-	-	-	-	-	2,1	-	87	-	148	_	-	-	2	0,05
	99,7	138,4	-	-	-	-	-	2,1	-	87	99	148	_	-	-	2	0,05
	99,7	138,4	-	-	-	-	-	2,1	-	87	99	148	_	-	-	2	0,05
80	95,8	126,5	135,23	149,7	3,1	2,82	4,9	2	0,6	89	-	129	151	3,5	7,72	2	0,04
	95,8	126,5	135,23	149,7	3,1	2,82	4,9	2	0,6	89	88	129	151	3,5	7,72	2	0,04
	95,8	126,5	135,23	149,7	3,1	2,82	4,9	2	0,6	89	88	129	151	3,5	7,72	2	0,04
	106	146,9	-	-	-	-	-	2,1	-	92	-	158	-	-	-	2	0,05
	106	146,9	-	-	-	-	-	2,1	-	92	105	158	-	-	-	2	0,05
	106	146,9	-	-	-	-	-	2,1	-	92	105	158	-	-	-	2	0,05

1.5 Single row deep groove ball bearings with filling slots d 85 – 100 mm



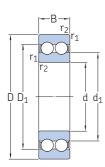


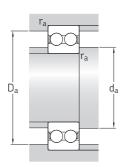
2Z



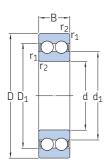
NR

Princip	pal dimen:	sions	Basic lo dynami	oad ratings static	Fatigue load limit	Speed ration Reference speed	n gs Limiting speed	Mass	Designations Bearing without	with	Snap ring
d	D	В	С	C_0	P_{u}	Speeu	Speed		a snap ring	a snap ring	
mm			kN		kN	r/min		kg	-		
85	150	28	96,8	100	3,9	7 500	4 800	1,95	217	217 NR	SP 150
	150	28	96,8	100	3,9	7 500	4 800	1,95	217-Z	-	-
	150	28	96,8	100	3,9	7 500	3 900	1,95	217-2Z	-	-
	180 180 180	41 41 41	147 147 147	146 146 146	5,3 5,3 5,3	6 700 6 700 6 700	4 000 4 000 3 200	4,6 4,6 4,6	317 317-Z 317-2Z	- -	- - -
90	160	30	112	114	4,3	7 000	4 300	2,35	218	218 NR	SP 160
	160	30	112	114	4,3	7 000	4 300	2,35	218-Z	-	-
	160	30	112	114	4,3	7 000	4 300	2,35	218-2Z	-	-
	190	43	157	160	5,7	6 300	4 000	5,4	318	_	-
	190	43	157	160	5,7	6 300	4 000	5,4	318-Z	_	-
	190	43	157	160	5,7	6 300	3 200	5,4	318-2Z	_	-
95	170	32	121	122	4,5	6 700	4 000	2,7	219	219 NR	SP 170
	170	32	121	122	4,5	6 700	4 000	2,7	219-Z	-	-
	170	32	121	122	4,5	6 700	4 000	2,7	219-2Z	-	-
100	180	34	134	140	5	6 300	4 000	3,45	220	-	-
	180	34	134	140	5	6 300	4 000	3,45	220-Z	-	-
	180	34	134	140	5	6 300	4 000	3,45	220-2Z	-	-

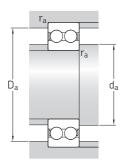


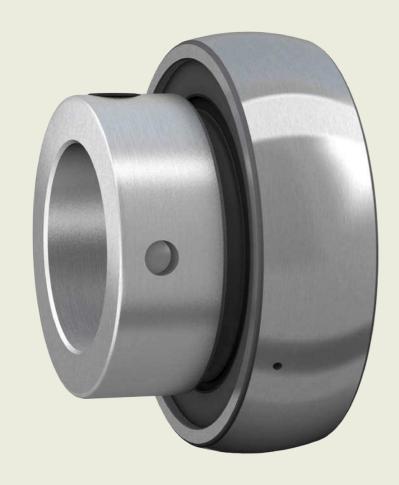

Dime	nsions										nent and	d fillet di	mensio	ns			Minimum load
d	d ₁ ≈	D ₂ ≈	D_3	D_4	b	f	С	r _{1,2} min.	r ₀ max.	d _a min.	d _a max.	D _a max.	D _b min.	b _a min.	C _a max.	r _a max.	factor k _r
mm										mm							_
85	104	134,3	145,24	159,7	3,1	2,82	4,9	2	0,6	96	-	139	162	3,5	7,72	2	0,04
	104	134,3	-	-	-	-	-	2	-	96	96	139	-	-	-	2	0,04
	104	134,3	-	-	-	-	-	2	-	96	96	139	-	-	-	2	0,04
	112	155,4	-	-	-	-	-	3	-	98	-	167	-	-	-	2,5	0,05
	112	155,4	-	-	-	-	-	3	-	98	112	167	-	-	-	2,5	0,05
	112	155,4	-	-	-	-	-	3	-	98	112	167	-	-	-	2,5	0,05
90	110	142,6	155,22	169,7	3,1	2,82	4,9	2	0,6	100	-	150	172	3,5	7,72	2	0,04
	110	142,6	-	-	-	-	-	2	-	100	110	150	-	-	-	2	0,04
	110	142,6	-	-	-	-	-	2	-	100	110	150	-	-	-	2	0,04
	119	163,9	-	-	-	-	-	3	-	103	-	177	-	-	-	2,5	0,05
	119	163,9	-	-	-	-	-	3	-	103	118	177	-	-	-	2,5	0,05
	119	163,9	-	-	-	-	-	3	-	103	118	177	-	-	-	2,5	0,05
95	116	151,3	163,65	182,9	3,5	3,1	5,69	2,1	0,6	107	-	158	185	4	8,79	2	0,04
	116	151,3	-	-	-	-	-	2,1	-	107	116	158	-	-	-	2	0,04
	116	151,3	-	-	-	-	-	2,1	-	107	116	158	-	-	-	2	0,04
100	123	159,9	-	-	-	-	-	2,1	-	112	-	168	-	-	-	2	0,04
	123	159,9	-	-	-	-	-	2,1	-	112	122	168	-	-	-	2	0,04
	123	159,9	-	-	-	-	-	2,1	-	112	122	168	-	-	-	2	0,04

1.6 Double row deep groove ball bearings d 10 - 75 mm


Princi	pal dimen	sions		oad ratings c static	Fatigue load limit	Speed ration Reference	Limiting	Mass	Designation	
d	D	В	С	C_0	$P_{\rm u}$	speed	speed			
mm			kN		kN	r/min		kg	_	
10	30	14	9,23	5,2	0,224	40 000	22 000	0,049	4200 ATN9	
12	32	14	10,6	6,2	0,26	36 000	20 000	0,052	4201 ATN9	
	37	17	13	7,8	0,325	34 000	18 000	0,092	4301 ATN9	
15	35	14	11,9	7,5	0,32	32 000	17 000	0,059	4202 ATN9	
	42	17	14,8	9,5	0,405	28 000	15 000	0,12	4302 ATN9	
17	40	16	14,8	9,5	0,405	28 000	15 000	0,09	4203 ATN9	
	47	19	19,5	13,2	0,56	24 000	13 000	0,16	4303 ATN9	
20	47	18	17,8	12,5	0,53	24 000	13 000	0,14	4204 ATN9	
	52	21	23,4	16	0,68	22 000	12 000	0,21	4304 ATN9	
25	52	18	19	14,6	0,62	20 000	11 000	0,17	4205 ATN9	
	62	24	31,9	22,4	0,95	18 000	10 000	0,34	4305 ATN9	
30	62	20	26	20,8	0,88	17 000	9 500	0,29	4206 ATN9	
	72	27	41	30	1,27	16 000	8 500	0,5	4306 ATN9	
35	72	23	35,1	28,5	1,2	15 000	8 000	0,4	4207 ATN9	
	80	31	50,7	38	1,63	14 000	7 500	0,68	4307 ATN9	
40	80	23	37,1	32,5	1,37	13 000	7 000	0,5	4208 ATN9	
	90	33	55,9	45	1,9	12 000	6 700	0,95	4308 ATN9	
45	85	23	39	36	1,53	12 000	6 700	0,54	4209 ATN9	
	100	36	68,9	56	2,4	11 000	6 000	1,25	4309 ATN9	
50	90	23	41	40	1,7	11 000	6 000	0,58	4210 ATN9	
	110	40	81,9	69,5	2,9	10 000	5 300	1,7	4310 ATN9	
55	100	25	44,9	44	1,9	10 000	5 600	0,8	4211 ATN9	
	120	43	97,5	83	3,45	9 000	5 000	2,15	4311 ATN9	
60	110	28	57,2	55	2,36	9 500	5 300	1,1	4212 ATN9	
	130	46	112	98	4,15	8 500	4 500	2,65	4312 ATN9	
65	120	31	67,6	67	2,8	8 500	4 800	1,45	4213 ATN9	
	140	48	121	106	4,5	8 000	4 300	3,25	4313 ATN9	
70	125	31	70,2	73,5	3,1	8 000	4 300	1,5	4214 ATN9	
75	130	31	72,8	80	3,35	7 500	4 000	1,6	4215 ATN9	
	160	55	156	143	5,5	6 700	3 600	4,8	4315 ATN9	

Dimens	sions			Abutmer	nt and fillet di	mensions	Calculati	on factors	
d	d ₁ ≈	D ₁ ≈	r _{1,2} min.	d _{a.} min.	D _a max.	r _a max.	k _r	f_0	
mm	,			mm			_		
10	16,7	23,3	0,6	14,2	25,8	0,6	0,05	12	
12	18,3 20,5	25,7 28,5	0,6 1	16,2 17,6	27,8 31,4	0,6 1	0,05 0,06	12 12	
15	21,5 24,5	29 32,5	0,6 1	19,2 20,6	30,8 36,4	0,6 1	0,05 0,06	13 13	
17	24,3 28,7	32,7 38,3	0,6 1	21,2 22,6	35,8 41,4	0,6 1	0,05 0,06	13 13	
20	29,7 31,8	38,3 42,2	1 1,1	25,6 27	41,4 45	1 1	0,05 0,06	14 13	
25	34,2 37,3	42,8 49,7	1 1,1	30,6 32	46,4 55	1 1	0,05 0,06	14 13	
30	40,9 43,9	51,1 58,1	1 1,1	35,6 37	56 65	1 1	0,05 0,06	14 13	
35	47,5 49,5	59,5 65,4	1,1 1,5	42 44	65 71	1 1,5	0,05 0,06	14 13	
40	54 56,9	66 73,1	1,1 1,5	47 49	73 81	1 1,5	0,05 0,06	15 14	
45	59,5 63,5	71,5 81,5	1,1 1,5	52 54	78 91	1 1,5	0,05 0,06	15 14	
50	65,5 70	77,5 90	1,1 2	57 61	83 99	1 2	0,05 0,06	15 14	
55	71,2 76,5	83,8 98,5	1,5 2	64 66	91 109	1,5 2	0,05 0,06	16 14	
60	75,6 83,1	90,4 107	1,5 2,1	69 72	101 118	1,5 2	0,05 0,06	15 14	
65	82,9 89,6	99,1 115	1,5 2,1	74 77	111 128	1,5 2	0,05 0,06	15 14	
70	89,4	106	1,5	79	116	1,5	0,05	15	
75	96,9 103	114 132	1,5 2,1	84 87	121 148	1,5 2	0,05 0,06	16 14	


1.6 Double row deep groove ball bearings d 80 – 90 mm



Principal dimensions		Basic load ratings dynamic static		Fatigue load limit	Speed ratin Reference	ngs Limiting speed	Mass	Designation		
d	D	В	С	C_0	P_u	speed	speea			
mm			kN		kN	r/min		kg	-	
80	140	33	80,6	90	3,6	7 000	3 800	2	4216 ATN9	
85	150	36	93,6	102	4	7 000	3 600	2,55	4217 ATN9	
90	160	40	112	122	4,65	6 300	3 400	3,2	4218 ATN9	

Dimensions				Abutmen	t and fillet dir	nensions	Calculation	on factors
d	d ₁ ≈	D ₁ ≈	r _{1,2} min.	d _a min.	D _a max.	r _a max.	k _r	f_0
mm				mm			-	
80	102	120	2	91	129	2	0,05	16
85	105	125	2	96	139	2	0,05	15
90	114	136	2	101	149	2	0,05	15

2

Insert bearings (Y-bearings)

2 1

2 Insert bearings (Y-bearings)

Designs and variants	341	Mounting and dismounting	359
Insert bearings with grub screws	342	Assembling insert bearings into housings with fitting	
Basic design bearings	342	slots	362
Bearings with zinc-coated rings	342	SKF ConCentra insert bearings	363
Stainless steel bearings	342		
Insert bearings with an eccentric locking collar	343	Designation system	364
SKF ConCentra insert bearings	344		
Insert bearings with a tapered bore	344	Product tables	
Insert bearings with a standard inner ring	345	2.1 Insert bearings with grub screws, metric shafts	366
Sealing solutions	345	2.2 Insert bearings with grub screws, inch shafts	368
Standard seals	345	2.3 Insert bearings with an eccentric locking collar,	
Standard seals with additional flingers	345	metric shafts	372
Multiple seals	346	2.4 Insert bearings with an eccentric locking collar,	
5-lip seals	346	inch shafts	374
RS1 seals	346	2.5 SKF ConCentra insert bearings, metric shafts	376
Shields	346	2.6 SKF ConCentra insert bearings, inch shafts	377
Cages	347	2.7 Insert bearings with a tapered bore on an adapter	
Rubber seating rings	347	sleeve, metric shafts	378
		2.8 Insert bearings with a tapered bore on an adapter	
Lubrication	348	sleeve, inch shafts	379
Greases for capped bearings	348	2.9 Insert bearings with a standard inner ring, metric	
Grease life for insert bearings	348	shafts	380
Relubrication	348		
Bearing data	350		
(Dimension standards, tolerances, radial internal			
clearance, permissible misalignment)			
Loads	353		
(Minimum load, axial load carrying capacity, equivalent	333		
dynamic bearing load, equivalent static bearing load)			
dynamic bearing load, equivalent static bearing load)			
Temperature limits	355		
		Other insert bearings (Y-bearings)	
Permissible speed	355	High temperature bearings	1005
		Bearings with Solid Oil	1023
Design considerations	356	Bearings with a customized design or customized	
Axial displacement	356		ntact SKF
Shaft tolerances	358	Ball bearing units (Y-bearing units) → skf.com	/bearings

5KF. 339

2

2 Insert bearings (Y-bearings)

More information

General bearing	knowledge	17
-----------------	-----------	----

Bearing selection process 59

SKF bearing maintenance handbook ISBN 978-91-978966-4-1 Insert bearings (SKFY-bearings) are based on sealed deep groove ball bearings in the 62 and 63 series, but have a convex outer ring and in most cases an extended inner ring with a specific locking device (fig. 1), enabling quick and easy mounting onto the shaft.

Bearing features

• Quick and easy to mount

The different locking methods enable quick and easy mounting of insert bearings onto the shaft.

• Accommodate initial misalignment

The spherically shaped outside surface enables initial misalignment by tilting in the housing (fig. 2).

• Long service life

The different sealing solutions available provide a long service life for a wide variety of applications with high contamination levels.

· Reduced noise and vibration levels

Where high requirements on noise and vibration levels are important, SKF can provide the appropriate shaft locking method.

Typical applications

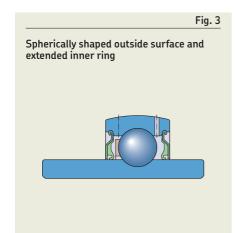
Because of their versatility and costeffectiveness, insert bearings are typically used in the following applications:

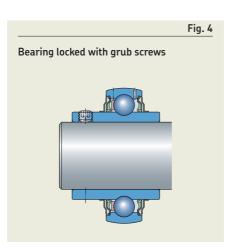
- Agricultural machinery
- Food and beverage processing and packaging
- Conveyor systems
- Material handling systems
- Textile equipment
- Industrial fans
- Special machinery, e.g. car wash systems, gym equipment, go-karts

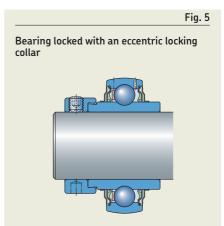
Ball bearing units (Y-bearing units)

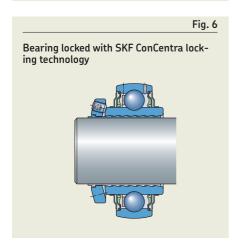
SKF also supplies a wide variety of ball bearing units that are not listed in this rolling bearing catalogue. For information about ball bearing units, refer to the product information available online at skf.com/bearings.

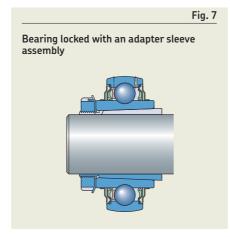
Designs and variants

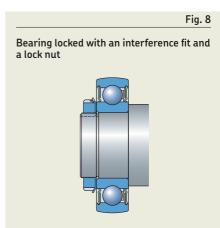

Insert bearings typically have a spherically shaped (convex) outside surface and an extended inner ring (fig. 3) with different types of locking device. The various insert bearing series differ in the way the bearing is locked onto the shaft:


- with grub (set) screws (fig. 4)
- with an eccentric locking collar (fig. 5)
- with SKF ConCentra locking technology (fig. 6)
- with an adapter sleeve (fig. 7)
- with an interference fit (fig. 8)


Insert bearings with an inner ring that is extended on both sides run more smoothly, as the extent to which the inner ring can tilt on the shaft is reduced.


The standard SKF insert bearing assortment presented in this section also includes application-specific variants, such as:


- bearings made of stainless steel or with zinc-coated rings for the food industry (Insert bearings with grub screws, page 342)
- bearings for agricultural applications



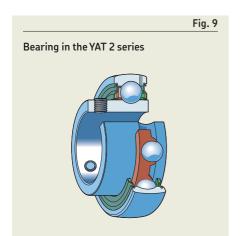
Insert bearings with grub screws

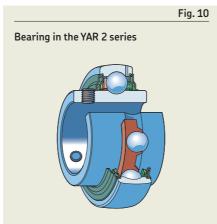
- are suitable for applications for both constant and alternating directions of rotation
- are locked onto the shaft by tightening the two cup point hexagonal grub (set) screws, positioned 120° apart in the inner ring

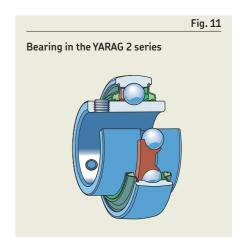
Basic design bearings

- are available with an inner ring extended on one side (fig. 9, bearing series YAT 2)
- are available with an inner ring extended on both sides (fig. 10, bearing series YAR 2)
- are capped on both sides with:
 - a rugged standard seal (Standard seals, page 345) for bearing series YAT 2
 - a rugged standard seal and an additional plain sheet steel flinger (Standard seals with additional flingers, page 345, designation suffix 2F) or a rubberized sheet steel flinger (Multiple seals, page 346, designation suffix 2RF) for bearing series YAR 2
- have two lubrication holes in the outer ring as standard, one on each side, positioned 120° apart
- can be supplied without lubrication holes on request (designation suffix W)

For demanding operating conditions that occur in agricultural applications, such as combines and balers, harvesters and disk harrows, SKF has designed the YARAG 2 bearing series (fig. 11). These bearings:

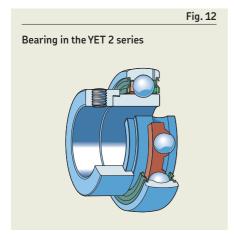

- are fitted with a patented 5-lip seal (5-lip seals, page 346)
- are supplied without any lubrication holes in the outer ring

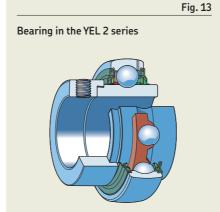

Bearings with zinc-coated rings

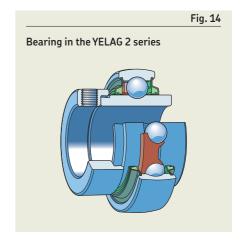

- are intended for use in corrosive environments
- are available with an inner ring extended on both sides (bearing series YAR 2..-2RF/VE495)
- have grub screws made of stainless steel
- are capped on both sides with a highly effective multiple seal (Multiple seals, page 346) made of food-compatible rubber with a stainless steel insert and a stainless steel flinger
- are filled with a food-grade grease
- have two lubrication holes in the outer ring, one on each side, positioned 120° apart

Stainless steel bearings

- are intended for use in corrosive environments
- are available with an inner ring extended on both sides (bearing series YAR 2..-2RF/HV)
- have all steel components made of stainless steel, including rings, balls, sheet metal parts of both seals and flingers, and grub screws
- are capped on both sides with a highly effective multiple seal (Multiple seals, page 346) made of food-compatible rubber with a stainless steel insert and a stainless steel flinger
- are filled with a food-grade grease
- have an annular groove with one lubrication hole in the outer ring, located on the side opposite the locking device
- have a lower dynamic load carrying capacity than same-sized bearings made of high grade carbon chromium steel




Insert bearings with an eccentric locking collar


- are intended for use in applications where the direction of rotation is constant
- have, on one side, an eccentric step at the extended inner ring to accommodate the locking collar, which is:
 - zinc-coated for bearings with a metric bore
 - black-oxidized for bearings with an inch bore
- are locked onto the shaft by turning the locking collar in the direction of rotation; a single grub screw further secures the collar to the shaft
- are available with an inner ring extended on one side (fig. 12, bearing series YET 2)
- are available with an inner ring extended on both sides (fig. 13, bearing series YEL 2)
- are capped on both sides with:
 - a rugged standard seal (Standard seals, page 345) for bearing series YET 2
 - a rugged standard seal and an additional plain sheet steel flinger (Standard seals with additional flingers, page 345, designation suffix 2F) or a rubberized sheet steel flinger (Multiple seals, page 346 designation suffix 2RF/VL065) for bearing series YEL 2
- have two lubrication holes in the outer ring as standard, one on each side, positioned 120° apart
- can be supplied without lubrication holes on request (designation suffix W)

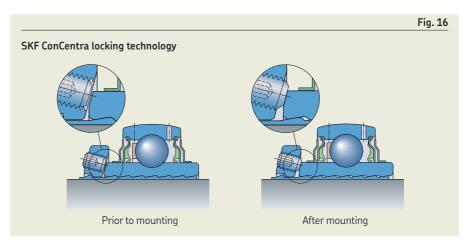
For demanding operating conditions that occur in agricultural applications, such as combines and balers, harvesters and disk harrows, SKF has designed the YELAG 2 bearing series (fig. 14). These bearings:

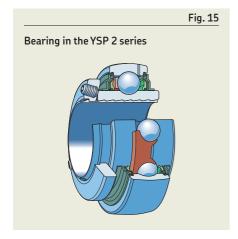
- are fitted with a patented 5-lip seal (5-lip seals, page 346)
- are supplied without any lubrication holes in the outer ring

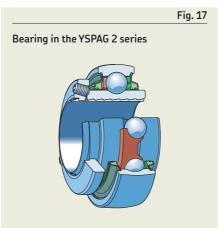
SKF ConCentra insert bearings

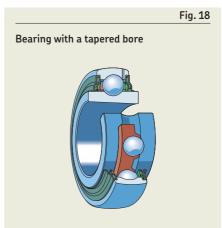
- are suitable for applications for both constant and alternating directions of rotation
- provide an easy, quick and reliable way to lock a bearing onto a shaft, even in applications where there are heavy loads and/ or high speeds
- permit the full limiting speed to be achieved, even where using commercial grade shafts
- have an inner ring symmetrically extended on both sides (fig. 15, bearing series YSP 2)
- comprise the patented SKF ConCentra locking technology, which is based on the expansion and contraction of the following two mating surfaces, which have precisionengineered serrations:
 - the bearing bore
 - the external surface of the stepped sleeve
- provide a true concentric fit on the shaft, because when the grub screws in the mounting collar are tightened, the inner ring is axially displaced relative to the stepped sleeve (fig. 16), forcing the bearing inner ring to expand and the stepped sleeve to contract evenly

- provide low noise and vibration levels, and virtually eliminate fretting corrosion
- are capped on both sides with a rugged standard seal and an additional plain sheet steel flinger (Standard seals with additional flingers)
- have two lubrication holes in the outer ring as standard, one on each side, positioned 120° apart
- can be supplied without lubrication holes on request (designation suffix W)


For demanding operating conditions that occur in agricultural applications, such as combines and balers, harvesters and disk harrows, SKF has designed the YSPAG 2 bearing series (fig. 17). These bearings:


- are fitted with a patented 5-lip seal (5-lip seals, page 346)
- are supplied without any lubrication holes in the outer ring


Insert bearings with a tapered bore


- are suitable for applications for both constant and alternating directions of rotation
- fit the following adapter sleeves:
 - H 23 series for metric shafts
 - HA 23 and HE 23 series for inch shafts
- permit the full limiting speed to be achieved when mounted on an adapter sleeve, even where using commercial grade shafts
- have an inner ring symmetrically extended on both sides and a tapered bore (taper 1:12) (fig. 18, bearing series YSA 2)
- are capped on both sides with a rugged standard seal and an additional plain sheet steel flinger (Standard seals with additional flingers)
- have two lubrication holes in the outer ring as standard, one on each side, positioned 120° apart
- can be supplied without lubrication holes on request (designation suffix W)

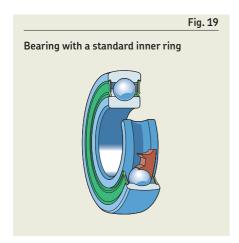
The associated adapter sleeves must be ordered separately from the bearings.

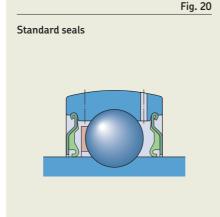
Insert bearings with a standard inner ring

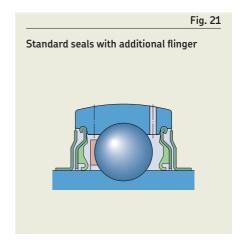
- are suitable for applications where smooth running is a key operational parameter
- have normal tolerances for the bearing bore diameter and are locked onto the shaft using an appropriate interference fit
- have the same dimensions and features as deep groove ball bearings in the 62 and 63 series, but have a spherically shaped (convex) outside surface (fig. 19, bearing series 17262 and 17263)
- accommodate heavier axial loads than any other insert bearing
- can operate at the same speeds as a corresponding sealed deep groove ball bearing
- are capped on both sides with:
 - an NBR contact seal (RS1 seals, page 346, designation suffix 2FRS1) as standard
 - a rugged standard seal (Standard seals, designation suffix 2FRS1/VP274)
- do not have any lubrication holes in the outer ring as standard
- can be supplied with two lubrication holes in the outer ring, one on each side, positioned 120° apart (designation suffix B)

Sealing solutions

SKF supplies all insert bearings capped with a seal or shield on both sides. In typical insert bearing applications, no additional external protection is necessary. Therefore, insert bearings are available with several sealing arrangement designs to meet the demands of a wide range of operating conditions.


When capped bearings must operate under certain conditions, such as very high speeds or high temperatures, grease may appear between the inner ring and capping device. For bearing arrangements where this would be detrimental, appropriate actions should be taken.


Standard seals


- consist of a stamped sheet steel washer with a seal lip made of NBR, vulcanized to its inner surface (fig. 20, designation suffix VP274 for bearings with a standard inner ring and no designation suffix for other insert bearings)
- form, with its non-contact sheet steel washer, a narrow gap with the inner ring shoulder to protect the seal against coarse contaminants

Standard seals with additional flingers

- are recommended for the more contaminated environments
- consist of a a standard seal and an additional sheet steel or stainless sheet steel plain flinger (fig. 21, designation suffix 2F)
- have an interference fit for the flinger on the inner ring shoulder to improve considerably the effectiveness of the seal without increasing friction
- are only available for bearings with an inner ring extended on both sides

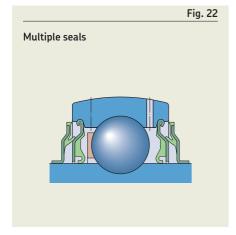
Multiple seals

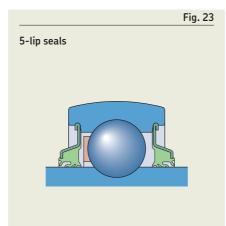
- are recommended for very contaminated environments
- consist of a standard seal and a flinger with a vulcanized NBR lip, which seals axially against the standard seal (fig. 22, designation suffix 2RF)
- have the space between the flinger lip and the inner ring shoulder filled with grease to provide additional protection
- are only available for bearings with an inner ring extended on both sides

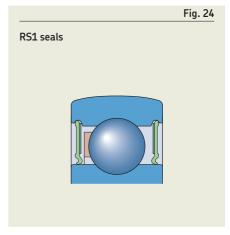
5-lip seals

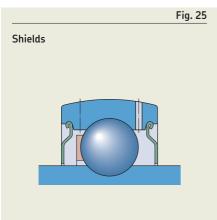
- are recommended for extremely contaminated environments, such as agricultural applications
- · are patented by SKF
- consist of a sheet steel insert with a vulcanized 5-lip contact seal made of a low-friction NBR compound (fig. 23):

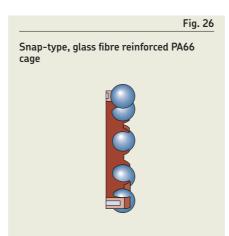
- The steel insert is held in place by a groove in the bearing outer ring and protects the seal from solid contaminants.
- Each seal lip has a different design to provide superior sealing performance in response to different operating conditions, including dynamic misalignment.
- The outermost and innermost lips act as a labyrinth to prevent contaminant ingress and grease leakage, respectively.
- The three inner lips make constant contact with the inner ring shoulder.
- are only available for bearings with an inner ring extended on both sides


Shields


- are designed for applications where the contamination level is low and additional friction should be avoided
- are fitted in a recess on the outer ring (fig. 25, designation suffix VP076)
- do not make contact with the inner ring, but form a narrow gap
- are made of sheet steel
- are only available for insert bearings on request


Bearings with shields should not be used where water, steam or moisture can enter the bearing.


RS1 seals


- were originally developed for standard SKF deep groove ball bearings
- are fitted in a recess on the outer ring and ride against the inner ring shoulder to act as contact seals (fig. 24, designation suffix 2RS1)
- are made of sheet steel reinforced NBR

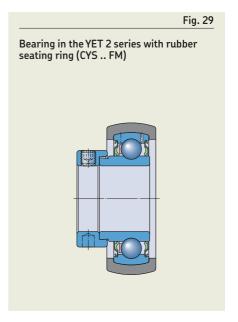
Cages

SKF insert bearings are fitted as standard with a snap-type, glass fibre reinforced PA66 cage (fig. 26), no designation suffix.

When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For additional information about the suitability of cages, refer to *Cages*, page 187.

- are intended to dampen vibration and noise
- are intended to enable the bearings to be displaced slightly in their housings to accommodate minor shaft expansion or misalignment
- are located on the bearing outer ring and in the housing bore (fig. 28)
- are made of NBR
- can withstand temperatures ranging from -30 to +100 °C (-20 to +210 °F)

Rubber seating rings are available as an accessory and must be ordered separately. However, insert bearings in the YET 2 series can be supplied with the seating ring already fitted (fig. 29). These products are identified by the series prefix CYS, followed by the bearing bore diameter and the bearing identification suffix FM, e.g. CYS 20 FM is a YET 204 bearing with a 20 mm bore, fitted with an RIS 204 rubber seating ring.


Rubber seating rings

- are available in the RIS 2 series (fig. 27, table 1)
- can be fitted on all SKF insert bearings, except for those with a standard inner ring (17262 and 17263 series)
- are primarily intended to "cushion" insert bearings in pressed steel plummer block housings

Rubber seating ring, located between bearing and housing

		Table 1
Rubber seating rings		
	D ₁	

Insert bearing Outside Size		Rubber seati Designation		sions				Mass
diameter D			D_1	d_1	d ₂	В	С	
mm	-	-	mm					g
40	03	RIS 203	47,3	35,5	39,8	12	18	12
47	04	RIS 204	52,3	41,2	46,8	14	19	11,5
52	05	RIS 205	62,3	46,4	51,8	15	20,5	26,5
62	06	RIS 206 A	72,3	54,6	61,8	18	21,5	31
72	07	RIS 207 A	80,3	63,7	71,8	19	23	32
80	08	RIS 208 A	85,3	70,7	79,7	21	24	26

Lubrication

SKF insert bearings are supplied capped on both sides and are greased.

Greases for capped bearings

Insert bearings are filled with one of the following greases (table 2):

- zinc-coated and stainless steel insert bearings
 - → food-grade grease GFJ, registered by NSF as category H1

The NSF registration confirms the grease fulfils the requirements listed in the US Food and Drug Administration's guidelines under 21 CFR section 178.3570 (lubricant acceptable with incidental food contact, for use in and around food processing areas).

- all other insert bearings
 - → standard grease VT307

Grease life for insert bearings

- is presented as L₁₀, i.e. the time period at the end of which 90% of the bearings are still reliably lubricated
- depends on the load, operating temperature and the nd_m value (diagram 1)

The indicated grease life is valid for the following combination of operating conditions:

- horizontal shaft
- very light to moderate loads (P ≤ 0,05 C)
- stationary machine
- low vibration levels

Where the operating conditions vary, the grease life obtained from the diagram should be adjusted as follows:

- vertical shafts → 50% of the obtained value
- heavier loads (P > 0,05 C) → apply reduction factor (table 4)

The values for adjusting the grease life are estimates. Vibration can have a negative influence on grease life. The extent cannot be quantified, and the influence increases with increasing operating temperature.

Relubrication

Insert bearings do not need relubrication if the grease life exceeds the *SKF rating life*, page 89 of the bearing.

Relubrication can extend bearing service life under any of the following conditions:

- The bearings are exposed to high humidity or severe contamination.
- The bearings accommodate normal or heavy loads.
- The bearings operate for extended periods at high speeds or at temperatures above 55 °C (130 °F).
- The bearings are subjected to high vibration levels

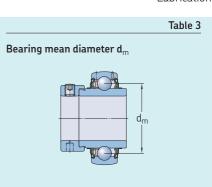
To relubricate insert bearings, the following greases can be used:

- zinc-coated and stainless steel insert bearings
 - → food-grade grease SKF LGFP 2
- all other insert bearings
 - → SKF LGWA 2, LGMT 2 or LGMT 3 grease

							Thickener			Base oil type	NLGI grade	Base oil viscosity [mm ² /s]	
	-50	0	50	100	150	200	250	°C				at 40 °C (105 °F)	at 100 °C (210 °F)
T307									Lithium-calcium soap	Mineral	2	190	15
FJ	•		-						Aluminium-complex soap	Synthetic hydrocarbon	2	100	14
	-60	30	120	210	300	390	480	°F	-				

If relubrication is needed, the relubrication intervals can be estimated by following the method explained under Estimating the relubrication interval for grease, page 111.

When relubricating, the shaft should be turned and the grease pumped slowly until fresh grease starts to escape from the seal(s). Excessive pressure from pumping too quickly can damage the seals. When machines and equipment are used for a limited period of time, SKF recommends relubricating each bearing at the end of the operational period, i.e. immediately before being laid up.


Relubrication features

SKF insert bearings are designed to facilitate relubrication. They have two lubrication holes in the outer ring as standard, one on each side, positioned 120° apart. Bearings without lubrication holes can be supplied on request (designation suffix W).

The following bearings do not have the standard relubrication features:

- Stainless steel insert bearings with grub screws have a lubrication groove in the outer ring located on the side opposite the locking device and one lubrication hole within this groove.
- Insert bearings with a standard inner ring without designation suffix B and insert bearings with 5-lip seals are lubricated for life and cannot be relubricated. They do not have any lubrication holes.

Diagram 1

Bearing size ¹⁾	Bearing mean diameter d _m
_	mm
03	28,5
04	33,5
05	39
06	46
07	53,5
08	60
09	65
10	70
11	77,5
12	85
13	92,5
14	97,5
15	102,5
16	110
17	117,5
18	126
20	141

100

(210)

110

(230)

Operating temperature [°C (°F)]

120

(250)

90

(195)

Grease life for insert bearings with VT307 or GFJ grease where P = 0,05 C

= rotational speed [r/min] n = mean diameter [mm] (table 3)

40

(105)

50

(120)

60

(140)

70

(160)

80

(175)

1) For example, bearing size 06 includes all bearings based on a 206 insert bearing, such as YAR 206-2F, YAR 206-101-2F, YAR 206-104-2F, YAR 206-104-2F,

Reduction factor for the grease life, depending on the load							
Load P	Reduction factor						
≤ 0,05 C 0,1 C	1 0,7						
0,125 C 0,25 C	0,5 0,2						

Table 4

Grease life L₁₀ [h] 100 000 = 100 00 70 000 20 000 150 000 200 000 50 000 5h 000 30 000 20 000 10 000 7 000 5 000 3 000 2 000 1 000

Bearing data

Dimension standards

Boundary dimensions: ISO 9628

Except for:

Bearing series YAT 2

- · not standardized
- bore, outside diameter and outer ring width: ISO 9628

Bearing series YSP 2, YSPAG 2

- not standardized
- outside diameter and outer ring width: ISO 9628

Bearing series YSA 2

- JIS B 1558
- ISO 2982-1 for H 23 series adapter sleeves
- ANSI/ABMA Std. 8.2 for HA 23 and HE 23 series adapter sleeves

Bearing series 17262, 17263

- ISO 15
- outside diameter: ISO 9628

Tolerances

Bearing series YAT 2, YAR 2, YARAG 2, YET 2, YEL 2, YELAG 2

- Bore and outside diameter: table 5, page 352
- Bore and outside diameter tolerance values are slightly tighter than those listed in ISO 9628.

Bearing series YSP 2, YSPAG 2

- Outside diameter: table 5
- Before mounting, the sleeve bore is larger than the nominal value to ease sliding on the shaft.

Bearing series YSA 2

- Outside diameter: table 5
- The tapered bore fits H 23 series adapter sleeves for metric shafts and HA 23 and HE 23 series adapter sleeves for inch shafts.

For additional information

→ page 35

Bearing series 17262, 17263

- Normal: Values (ISO 492, table 2, page 38)
- Outside diameter: table 5

Radial internal clearance

Values: ISO 9628 - Group N (table 6, page 352)

Except for:

For additional information

→ page 182

Bearing series 17262, 17263

Normal: Values (ISO 5753-1, table 6, page 252)

Values are valid for unmounted bearings under zero measuring load.

350

Bearing data, continued

Permissible misalignment

Static misalignment

Insert bearings can accommodate static initial misalignment by tilting in the housing (fig. 2, page 340). The permissible values are:

- SKF housings
 - relubrication is not required: 5°
 - relubrication is required (where applicable): 2°
- SKF pressed steel housings
 - Misalignment cannot be accommodated once the attachment bolts have been fully tightened, unless a rubber seating ring is used (page 347).

Dynamic misalignment

Insert bearings can accommodate a few minutes of arc (misalignment) between the inner and outer rings.

						Table 5
Tolerances	for SKF insert bea	arings				
Nominal d	iameter	Inner ring Bearing so YAT 2, YAF YET 2, YEF	g eries R 2, YARAG 2, _ 2, YELAG 2	Outer rin All bearin	g gs	
d, D >	≤	Δ _{dmp}	L	Δ_{Dmp} \cup	L	
mm		μm		μm		
10 18 31,75	18 31,75 50,8	+15 +18 +19	+5 +5 +5	- - 0	- - -10	
50,8 80,962 120	80,962 120 150	+21 +25 -	+5 +5 -	0 0 0	-10 -15 -15	
150	180	-	-	0	-20	
d = nominal bo D = nominal ou						

Dadial internal alas		aut basuinus			Table
Radial internal clea	Radial in YAT 2, YA	ternal clearance of i R 2, YARAG 2, L 2, YELAG 2 max.	nsert bearings in YSP 2,YS YSA 2 min.		
		IIIdA.	111111.	IIIaA.	
- 	μm 				
03 04 05-06	10 12 12	25 28 28	- - 23	- - 41	
07-08 09-10 11-13	13 14 18	33 36 43	28 30 38	46 51 61	
14-16 17-20	20 24	51 58	- -	Ξ	

352 **5KF**.

Loads

Minimum load	F _{rm} = 0,01 C	Symbols
For additional information → page 111	The importance of imposing a minimum load increases where accelerations in the bearing are rapid, and where speeds are in the region of 75% or more of the limiting speed quoted in the product tables.	C basic dynamic load rating [kN] (product tables, page 366) C ₀ basic static load rating [kN] (product tables) e limiting value (table 7, page 354)
Axial load carrying capacity	$F_a \leq 0.25 \ C_0$ The maximal permissible axial load of any locking mechanism is always > 0.25 \ C_0.	F _o calculation factor (table 8, page 354) F _a axial load [kN] F _r radial load [kN] F _{rm} minimum radial load [kN] P equivalent dynamic bearing load [kN]
Equivalent dynamic bearing load	$F_a/F_r \le e \rightarrow P = F_r$ $F_a/F_r > e \rightarrow P = XF_r + YF_a$	P ₀ equivalent static bearing load [kN] X radial load factor (table 7) Y axial load factor (table 7)
For additional information → page 96		
Equivalent static bearing load	$P_0 = 0.6 F_r + 0.5 F_a$	
For additional information → page 110		

5KF. 353

Calculation factors							
	Bearing series YAT 2, YAR 2, YARAG 2, YET 2, YEL 2, YELAG, YSP 2, YSPAG 2, YSA 2		17262, 172	17262,17263			
$f_0 F_a/C_0$	e	X	Υ	е	X	Υ	
0,172	0,29	0,46	1,88	0,19	0,56	2,3	
0,345	0,32	0,46	1,71	0,22	0,56	1,99	
0,689	0,36	0,46	1,52	0,26	0,56	1,71	
1,03	0,38	0,46	1,41	0,28	0,56	1,55	
1,38	0,4	0,46	1,34	0,3	0,56	1,45	
2,07	0,44	0,46	1,23	0,34	0,56	1,31	
3,45	0,49	0,46	1,1	0,38	0,56	1,15	
5,17	0,54	0,46	1,01	0,42	0,56	1,04	
6,89	0,54	0,46	1	0,44	0,56	1	

		Table 8
Calculation factor f ₀		
Bearing series sizes	Factor f ₀	
YAT 2, YAR 2, YARAG 2, YET 2, YEL 2, YELAG 2, YSP 2, YSPAG 2, YSA 2 03-04 05-12 13-18 20	13 14 15 14	
17262 03-04 05-12	13 14	
17263 05 06-10	12 13	

354 **5KF**.

Temperature limits

The permissible operating temperature for insert bearings can be limited by:

- the dimensional stability of the bearing rings and balls
- the cage
- the seals
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings and balls

SKF insert bearings are heat stabilized up to at least 150 °C (300 °F).

Cages

For temperature limits of PA66 cages, refer to *Polymer cages*, page 188.

Seals

The permissible operating temperature for NBR seals is -40 to +100 °C (-40 to +210 °F). Temperatures up to 120 °C (250 °F) can be tolerated for brief periods. Typically, temperature peaks are at the seal lip.

Lubricants

Temperature limits for the greases used in SKF insert bearings are provided in **table 2**, **page 348**. For temperature limits of other SKF greases, refer to *Selecting a suitable SKF grease*, **page 116**.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Permissible speed

Insert bearings should not operate at speeds above the limiting speed listed in the **product tables**, **page 366**. This speed limit is set by the seal design.

For insert bearings with grub screws or an eccentric locking collar, the permissible speed is also influenced by the shaft tolerance. Where using these bearings on shafts with tolerances other than h6, compare the speed values listed in the product tables with those in table 9. The lower value is the permissible speed.

The permissible speed of insert bearings with 5-lip seals is valid under the following conditions:

- outer ring temperature ≤ 60 °C (140 °F)
- ambient temperature ≤ 25 °C (80 °F)
- very light to moderate loads (P ≤ 0,05 C)
- cast iron housing

For other conditions, contact SKF.

For applications operating at elevated speeds or where low vibration levels or quiet running is required, SKF recommends the use of either SKF ConCentra insert bearings, insert bearings on an adapter sleeve or insert bearings with a standard inner ring.

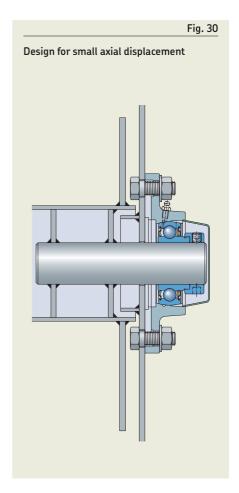
Bearing size ¹⁾	eds for insert bearings with grub screws or an eccentric locking collar Permissible speed				
	for shafts m h7©	achined to tolera h8©	nce class h9©	h11©	
-	r/min				
03	6 000	4 300	1 500	950	
04	5 300	3 800	1 300	850	
05	4 500	3 200	1 000	700	
06	4 000	2 800	900	630	
07	3 400	2 200	750	530	
08	3 000	1 900	670	480	
09	2 600	1 700	600	430	
10	2 400	1 600	560	400	
11	2 000	1 400	500	360	
12	1 900	1 300	480	340	
13	1 700	1 100	430	300	
14	1 600	1 000	400	280	
15	1 500	950	380	260	
16	1 400	900	360	240	
17	1 300	850	340	220	
18	1 200	800	320	200	
20	1 100	750	300	190	

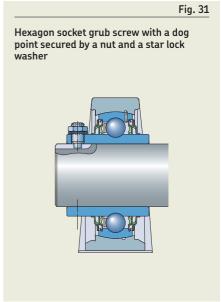
¹ For example, bearing size 06 includes all bearings based on a 206 insert bearing, such as YAR 206-2F, YAR 206-101-2F, YAR 206-102-2F, YAR 206-103-2F, YAR 206-104-2F.

Axial displacement

Insert bearings are not intended to accommodate axial displacement of the shaft relative to the housing. The distance between bearing positions should therefore be short to avoid excessive induced axial loads as a result of thermal expansion of the shaft.

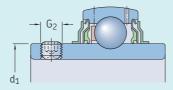
Design for small axial displacement


To accommodate small axial displacement, the bearings should be supported by resilient sheet metal support surfaces or walls (fig. 30).


Design for larger axial displacement

In applications where there are low speeds and light loads, an insert bearing with grub screws can be used to accommodate axial displacement. The shaft at the non-locating bearing position should be provided with one or two grooves, 120° apart, to engage a modified grub screw:

 Hexagon socket grub (set) screws with a dog point, in accordance with ISO 4028, but with a fine thread according to table 10. The grub screw should be secured by a nut and a spring or star lock washer (fig. 31).


The screws and groove(s) accommodate changes in shaft length and prevent the shaft from turning independently of the bearing. The sliding surfaces between the shaft and inner ring and those in the shaft grooves should be coated with a lubricant paste.

356 **SKF**

Threaded holes in the inner ring of bearings in the YAT 2, YAR 2 and YARAG 2 series

Bearing size ¹⁾	Outside diameter of inner ring	Threaded holes YAR bearing with metric bore	YAR bearing with inch bore	YAT bearing with metric bore	YAT bearing with inch bore
	d_1	G ₂	G ₂	G_2	G_2
-	mm	-			
03	24,2	M 6x0,75	#10-32 UNF	M 6x0,75	#10-32 UNF
04 05	28,2 33,7	M 6x0,75 M 6x0,75	1/4-28 UNF 1/4-28 UNF	M 6x0,75 M 6x0,75	1/4-28 UNF 1/4-28 UNF
06	39,7	M 6x0,75	1/4-28 UNF	M 6x0,75	5/16-24 UNF
07 08	46,1 51,8	M 6x0,75 M 8x1	5/16-24 UNF 5/16-24 UNF	M 6x0,75 M 6x0,75	5/16-24 UNF 5/16-24 UNF
09	56,8	M 8x1	5/16-24 UNF	M 6x0,75	5/16-24 UNF
10 11	62,5 69,1	M 10x1 M 10x1	3/8-24 UNF 3/8-24 UNF	M 8x1 -	3/8-24 UNF 3/8-24 UNF
12	75,6	M 10x1	3/8-24 UNF	-	3/8-24 UNF
13 14	82,5 87	M 10x1 M 10x1	3/8-24 UNF 7/16-20 UNF	- -	_ _
15	92	M 10x1	7/16-20 UNF	-	3/8-24 UNF
16 17	97,4 105	M 10x1 M 12x1,5	7/16-20 UNF -	-	3/8-24 UNF -
18 20	112,5 124,8	M 12x1,5 M 12x1,5	-	-	-

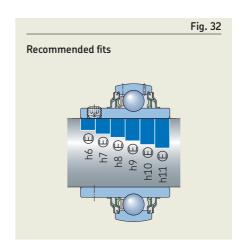
¹⁾ For example, bearing size 06 includes all bearings based on a 206 insert bearing, such as YAR 206-2F, YAR 206-101-2F, YAR 206-102-2F, YAR 206-103-2F, YAR 206-104-2F.

5KF. 357

Shaft tolerances

Recommended seat tolerances for insert bearings are listed in **table 11**. The relative position of the upper and lower limits of the most commonly used ISO shaft tolerance classes for insert bearings, except for those with a standard inner ring, is illustrated in **fig. 32**. The values for these tolerance classes are listed in **table 12**.

Insert bearings on an adapter sleeve or SKF ConCentra insert bearings


The shaft seat total radial run-out should be IT5/2 for ISO tolerance class h9 (table 12).

Insert bearings with a standard inner ring

The same recommendations apply as for standard deep groove ball bearings (table 11). The values for these ISO tolerance classes are listed in table 12, page 156, and table 14, page 160.

358

Operating conditions	Tolerance class ¹⁾
Insert bearings with grub screws or an eccentric P > 0,05 C and/or high speeds	locking collar h6
0,035 C < P ≤ 0,05 C	h7
0,02 C < P ≤ 0,035 C and/or low speeds	h8
Simple bearing arrangements or P ≤ 0,02 C	h9 – h11
Insert bearings with a tapered bore on an adapte All loads and speeds	r sleeve or SKF ConCentra insert bearings h9/IT5
Insert bearings with a standard inner ring	
P > 0,035 C Shaft diameter ≤ 17 mm Shaft diameter ≥ 20 mm	j5 k5
P ≤ 0,035 C Shaft diameter > 20 mm	j6

Mounting and dismounting

When mounting insert bearings on a shaft, suitable tools should be used and the locking components should be tightened to the torque values / tightening angles listed in:

- table 13, page 360, for bearings with grub screws and bearings with an eccentric locking collar
- table 14, page 361, for bearings on an adapter sleeve
- table 15, page 362, for SKF ConCentra bearings

For additional information about mounting and dismounting insert bearings and assembling ball bearing units, refer to the *SKF bearing maintenance handbook*.

Shaft diame			t diameter o	deviations	5								
d > <		h6© Devia		h7€	h7©		h8©		h9€		Ð	h11©	
>	≤	U	L	U	L	U	L	U	L	U	L	U	L
mm		μm											
10 18 30	18 30 50	0 0 0	-11 -13 -16	0 0 0	-18 -21 -25	0 0 0	-27 -33 -39	0 0 0	-43 -52 -62	0 0 0	-70 -84 -100	0 0 0	-110 -130 -160
50 30	80 120	0	-19 -22	0	-30 -35	0	-46 -54	0	-74 -87	0	-120 -140	0	-190 -220

Grub screws in inner rings and eccentric locking collars – key sizes and recommended tightening torques



Bearing size ¹⁾	Bearing with metric bore Hexagonal key size N	Tightening torque	Bearing with inch bore Hexagonal key size N	h Tightening torque	Bearing size ¹⁾	Bearing with metric bore Hexagonal key size N	Tightening torque	Bearing with inch bore Hexagonal key size N	Tightening torque
_	mm	Nm	in.	Nm	_	mm	Nm	in.	Nm
Bearings ir	the YAR 2 or YA	ARAG 2 series			Bearings ir	n the YAT 2 serie	s		
03 04 05	3 3 3	4 4 4	3/32 1/8 1/8	4 4 4	03 04 05	3 3 3	4 4 4	3/32 1/8 1/8	4 4 4
06 07 08	3 3 4	4 4 6,5	1/8 5/32 5/32	4 6,5 6,5	06 07 08	3 3 3	4 4 4	5/32 5/32 5/32	6,5 6,5 6,5
09 10 11	4 5 5	6,5 16,5 16,5	5/32 3/16 3/16	6,5 16,5 16,5	09 10 11	3 4 -	4 6,5 –	5/32 5/32 3/16	6,5 6,5 16,5
12 13 14	5 5 5	16,5 16,5 16,5	³ / ₁₆ ³ / ₁₆ ⁷ / ₃₂	16,5 16,5 28,5	12 15 16	- - -	- - -	3/16 3/16 3/16	16,5 16,5 16,5
15 16 17	5 5 6	16,5 16,5 28,5	7/ ₃₂ 7/ ₃₂ –	28,5 28,5 -	Bearings ir	the YET 2, YEL	2 or YELAG 2	series	4
18 20	6	28,5 28,5	- -	- -	04 05	3 3 3	4	1/8 1/8	4 4
					06 07 08	4 5 5	6,5 16,5 16,5	5/32 3/16 3/16	6,5 16,5 16,5
					09 10 11	5 5 5	16,5 16,5 16,5	3/16 3/16 7/32	16,5 16,5 28,5
					12	5	16,5	7/32	28,5

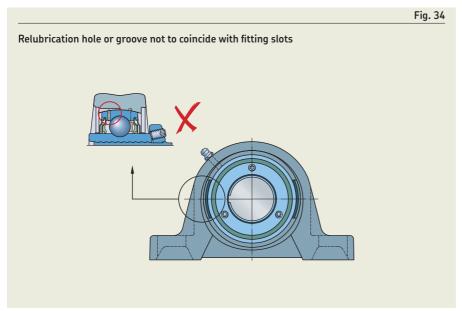
¹⁾ For example, bearing size 06 includes all bearings based on a 206 insert bearing, such as YAR 206-2F, YAR 206-101-2F, YAR 206-102-2F, YAR 206-103-2F, YAR 206-104-2F.

Hook spanners for insert bearings on an adapter sleeve – sizes and recommended tightening angles

Designation	Shaft diameter		Hook spanner	Lock nut tightening angle ¹⁾
Insert bearing + adapter sleeve	d		- , -,	α
_	mm	in.	_	0
YSA 205-2FK + HE 2305	_	3/4	HN 5	90
YSA 205-2FK + H 2305	20	-	HN 5	90
YSA 206-2FK + HA 2306	-	¹⁵ / ₁₆	HN 6	95
YSA 206-2FK + H 2306	25	-	HN 6	95
YSA 206-2FK + HE 2306	-	1	HN 6	95
YSA 207-2FK + H 2307	30	-	HN 7	100
YSA 207-2FK + HA 2307	-	1 ³ /16	HN 7	100
YSA 208-2FK + HE 2308	_	1 ¹ / ₄	HN 8	105
YSA 208-2FK + H 2308	35		HN 8	105
YSA 209-2FK + HA 2309	-	1 ⁷ /16	HN 9	110
YSA 209-2FK + HE 2309	-	1 ¹ /2	HN 9	110
YSA 209-2FK + H 2309	40	-	HN 9	110
YSA 210-2FK + HA 2310 YSA 210-2FK + HE 2310 YSA 210-2FK + H 2310	- - 45	1 ¹¹ / ₁₆ 1 ³ / ₄	HN 10 HN 10 HN 10	115 115 115
YSA 211-2FK + HA 2311	_	1 ¹⁵ / ₁₆	HN 11	90
YSA 211-2FK + H 2311	50	-	HN 11	90
YSA 211-2FK + HE 2311 B	_	2	HN 11	90
YSA 212-2FK + H 2312	55	-	HN 12	95
YSA 213-2FK + HA 2313	-	2 ³ /16	HN 13	100
YSA 213-2FK + HE 2313	-	2 ¹ /4	HN 13	100
YSA 213-2FK + H 2313	60	-	HN 13	100

 $[\]overline{\ \ }$ The listed values are to be used as guideline values only, as it is difficult to establish an exact starting position.

Table 15


Grub screws in SKF ConCentra insert bearings – key sizes and recommended tightening torques

Bearing size	l) ≤	Screw size	Hexagonal key size N	Tightening torque
_		_	mm	Nm
05 07	06 13	M5 M6	2,5 3	4,2 7,4

¹⁾ For example, bearing size 07 includes all bearings based on a 207 insert bearing, such as YSP 207 SB-2F, YSP 207-104 SB-2F, YSP 207-106 SB-2F, YSP 207-107 SB-2F.

Assembling insert bearings into housings with fitting slots

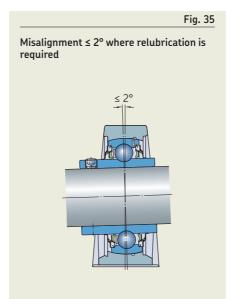
When mounting an insert bearing into a housing with fitting slots, the bearing should be inserted into the fitting slot in the housing bore (fig. 33) and then swivelled into position. The misalignment of the bearing relative to the housing should not exceed 5°. Eccentric locking collars should be removed from the bearing prior to mounting and reinstalled when the bearing is in position in the housing.

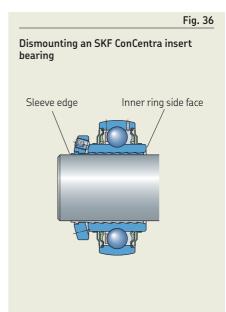
The locking device should face in the same direction as the fitting slots, except for stainless steel housings and composite housings for SKF Food Line with designation suffix L. Where mounting bearings into these housings, the locking device should face in the opposite direction to the fitting slots.

Make sure that no relubrication hole or groove in the bearing outside diameter coincides with either of the fitting slots in the housing, otherwise grease leakage may result or contamination might enter the bearing (fig. 34).

If the bearing has to be relubricated, make sure the relubrication features in the outer ring (hole, or groove and hole) coincide with the relubrication feature in the housing bore. The misalignment of the bearing relative to the housing should not exceed 2°, otherwise relubrication will not be possible (fig. 35).

SKF recommends mounting SKF insert bearings only into SKF housings to avoid a mismatch of components and to enable proper bearing relubrication.

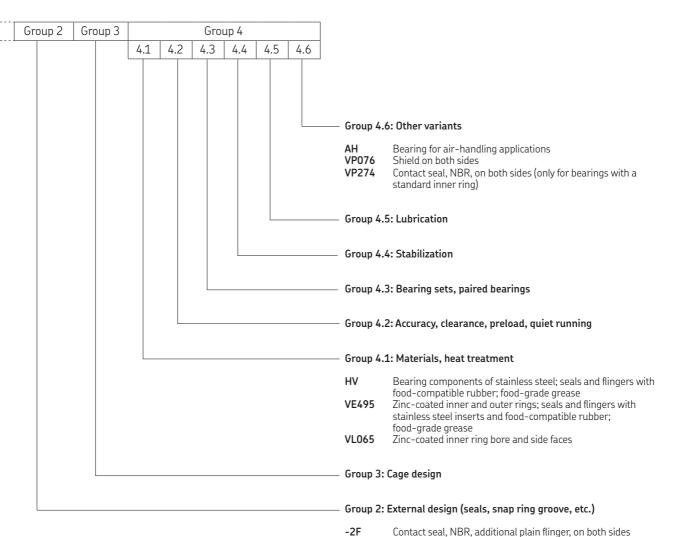

362 **SKF**


SKF ConCentra insert bearings

When mounting SKF ConCentra insert bearings, position the collar so that one grub screw is directly opposite the slit in the sleeve.

CAUTION: Do not tighten the grub (set) screws until the bearing is positioned on the shaft. If the screws are tightened prematurely, the stepped sleeve may deform. No attempt should be made to remove the sleeve and the mounting collar from the bearing prior to mounting.

To dismount SKF ConCentra insert bearings, loosen the grub screws first. Then gently tap the edge of the sleeve on the collar side or the inner ring side face on the opposite side to loosen the lock (fig. 36).



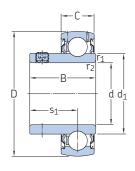
Designation system

						Gro	up
Prefixes -							
Basic des	ignation —						
Bearing c	lesign ————————————————————————————————————						
YAR YARAG YAT	Bearing with grub screws, inner ring extended on both sides Bearing with grub screws, inner ring extended on both sides, 5-lip seals, with lubrication holes Bearing with grub screws, inner ring extended on one side	out					
YEL YELAG YET	Bearing with an eccentric locking collar, inner ring extended on both sides Bearing with an eccentric locking collar, inner ring extended on both sides, 5-l without lubrication holes Bearing with an eccentric locking collar, inner ring extended on one side	ip seals,					
YSA YSP	Bearing with a tapered bore, inner ring symmetrically extended on both sides Bearing with SKF ConCentra locking technology, inner ring symmetrically extended on both sides						
YSPAG 172 CYS	Bearing with SKF ConCentra locking technology, inner ring symmetrically extended on both sides, 5-lip seals, without lubrication holes Bearing with a standard inner ring Bearing in the YET 2 series fitted with a rubber seating ring						
L13	bearing in the FET 2 Series littled with a rubber seating ring						
Dimensio	n series						
2 52	Outside diameter to ISO 15, diameter series 2 Bearing in accordance with ISO 15, dimension series 02, spherically shaped o surface	utside					
63	Bearing in accordance with ISO 15, dimension series 03, spherically shaped o surface	utside					
Bore dian	neter d ———————————————————————————————————						
03/12 03/15 03 04 to 20	Bearings for metric shafts 12 mm 15 mm 17 mm 20 mm to 100 mm						
	Bearings for inch shafts Three-digits combination that follows the designation of the basic metric bear separated from this by a hyphen: the first digit is the number of whole inches a second and third digits are the number of sixteenths of an inch, e.g. 204-012	ring and and the	is				
-008 to	1/2 in. (12,7 mm) to						
300	3 in. (76,2 mm)						

Lubrication holes in the outer ring (only for bearings with a standard inner ring) SKF ConCentra ball bearing with shortened inner ring $\,$

B SB

W


-2RF
-2RS1 Contact seal, NBR, additional rubberized flinger, on both sides
Contact seal, NBR, on both sides
Cylindrical outside surface
Cylindrical outside surface
Cubrication groove in the outside surface, located at the side opposite the locking device
CR
Lubrication groove in the outside surface, located at the side of the locking device
K
Tapered bore, taper 1:12
U
Bearing without locking device

Bearing without lubrication hole(s)

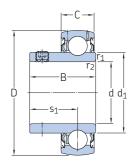
2.1 Insert bearings with grub screws, metric shafts

d **12 – 100** mm

YAR ..-2RF

YAT

Dime	nsions						Basic lo dynamic	ad ratings static	Fatigue load limit	Limiting speed with shaft	Mass	Designation
d	D	В	С	d ₁ ≈	s ₁	r _{1,2} min.	С	C_0	P_{u}	tolerance h6		
mm							kN		kN	r/min	kg	_
12	40	27,4	12	24,2	15,9	0,3	9,56	4,75	0,2	9 500	0,12	► YAR 203/12-2F
L 5	40	27,4	12	24,2	15,9	0,3	9,56	4,75	0,2	9 500	0,11	► YAR 203/15-2F
L7	40 40	22,1 27,4	12 12	24,2 24,2	15,9 15,9	0,3 0,3	9,56 9,56	4,75 4,75	0,2 0,2	9 500 9 500	0,08 0,1	► YAT 203 ► YAR 203-2F
20	47 47 47	25,5 31 31	14 14 14	28,2 28,2 28,2	18,3 18,3 18,3	0,6 0,6 0,6	12,7 10,8 10,8	6,55 6,55 6,55	0,28 0,28 0,28	8 500 5 000 5 000	0,13 0,15 0,15	YAT 204YAR 204-2RF/HV YAR 204-2RFGR/HV
	47 47 47	31 31 31	14 14 14	28,2 28,2 28,2	18,3 18,3 18,3	0,6 0,6 0,6	12,7 12,7 12,7	6,55 6,55 6,55	0,28 0,28 0,28	1 800 5 000 5 000	0,15 0,15 0,15	YARAG 204 ► YAR 204-2RF YAR 204-2RF/VE49
	47	31	14	28,2	18,3	0,6	12,7	6,55	0,28	8 500	0,15	► YAR 204-2F
25	52 52 52	27,2 34,1 34,1	15 15 15	33,7 33,7 33,7	19,5 19,8 19,8	0,6 0,6 0,6	14 11,9 11,9	7,8 7,8 7,8	0,335 0,335 0,335	7 000 4 300 4 300	0,16 0,19 0,19	YAT 205YAR 205-2RF/HVYAR 205-2RFGR/HV
	52 52 52	34,1 34,1 34,1	15 15 15	33,7 33,7 33,7	19,8 19,8 19,8	0,6 0,6 0,6	14 14 14	7,8 7,8 7,8	0,335 0,335 0,335	1 500 4 300 4 300	0,19 0,19 0,19	YARAG 205YAR 205-2RFYAR 205-2RF/VE49
	52	34,1	15	33,7	19,8	0,6	14	7,8	0,335	7 000	0,19	► YAR 205-2F
80	62 62 62	30,2 38,1 38,1	18 18 18	39,7 39,7 39,7	21 22,2 22,2	0,6 0,6 0,6	19,5 16,3 16,3	11,2 11,2 11,2	0,475 0,475 0,475	6 300 3 800 3 800	0,26 0,3 0,3	YAT 206YAR 206-2RF/HV YAR 206-2RFGR/HV
	62 62 62	38,1 38,1 38,1	18 18 18	39,7 39,7 39,7	22,2 22,2 22,2	0,6 0,6 0,6	19,5 19,5 19,5	11,2 11,2 11,2	0,475 0,475 0,475	1 200 3 800 3 800	0,3 0,31 0,31	YARAG 206 ► YAR 206-2RF YAR 206-2RF/VE49
	62	38,1	18	39,7	22,2	0,6	19,5	11,2	0,475	6 300	0,31	► YAR 206-2F
35	72 72 72	33 42,9 42,9	19 19 19	46,1 46,1 46,1	23,3 25,4 25,4	1 1 1	25,5 21,6 21,6	15,3 15,3 15,3	0,655 0,655 0,655	5 300 3 200 3 200	0,38 0,45 0,45	YAT 207YAR 207-2RF/HVYAR 207-2RFGR/HV
	72 72 72	42,9 42,9 42,9	19 19 19	46,1 46,1 46,1	25,4 25,4 25,4	1 1 1	25,5 25,5 25,5	15,3 15,3 15,3	0,655 0,655 0,655	1 100 3 200 3 200	0,44 0,45 0,45	YARAG 207YAR 207-2RFYAR 207-2RF/VE49
	72	42,9	19	46,1	25,4	1	25,5	15,3	0,655	5 300	0,45	► YAR 207-2F


[►] Popular item

Dime	nsions						Basic load dynamic	l ratings static	Fatigue load limit	Limiting speed with shaft	Mass	Designation
d	D	В	С	d ₁ ≈	s ₁	r _{1,2} min.	С	C_0	P_{u}	tolerance h6		
mm							kN		kN	r/min	kg	-
40	80 80 80	36 49,2 49,2	21 21 21	51,8 51,8 51,8	25,3 30,2 30,2	1 1 1	30,7 24,7 24,7	19 19 19	0,8 0,8 0,8	4 800 2 800 2 800		➤ YAT 208 ➤ YAR 208-2RF/HV YAR 208-2RFGR/HV
	80 80 80	49,2 49,2 49,2	21 21 21	51,8 51,8 51,8	30,2 30,2 30,2	1 1 1	30,7 30,7 30,7	19 19 19	0,8 0,8 0,8	950 2 800 2 800		➤ YARAG 208 ➤ YAR 208-2RF YAR 208-2RF/VE495
	80	49,2	21	51,8	30,2	1	30,7	19	0,8	4 800	0,6	➤ YAR 208-2F
45	85 85 85	37 49,2 49,2	22 22 22	56,8 56,8 56,8	25,8 30,2 30,2	1 1 1	33,2 33,2 33,2	21,6 21,6 21,6	0,915 0,915 0,915	4 300 850 2 400	0,66	➤ YAT 209 YARAG 209 ➤ YAR 209-2RF
	85	49,2	22	56,8	30,2	1	33,2	21,6	0,915	4 300	0,67	▶ YAR 209-2F
50	90 90 90	38,8 51,6 51,6	22 22 22	62,5 62,5 62,5	27,6 32,6 32,6	1 1 1	35,1 29,6 29,6	23,2 23,2 23,2	0,98 0,98 0,98	4 000 2 200 2 200	0,76	➤ YAT 210 ➤ YAR 210-2RF/HV ➤ YAR 210-2RFGR/HV
	90 90 90	51,6 51,6 51,6	22 22 22	62,5 62,5 62,5	32,6 32,6 32,6	1 1 1	35,1 35,1 35,1	23,2 23,2 23,2	0,98 0,98 0,98	800 2 200 2 200	0,77	➤ YARAG 210 ➤ YAR 210-2RF ➤ YAR 210-2RF/VE495
	90	51,6	22	62,5	32,6	1	35,1	23,2	0,98	4 000	0,76	▶ YAR 210-2F
55	100 100	55,6 55,6	25 25	69 69	33,4 33,4	1	43,6 43,6	29 29	1,25 1,25	1 900 3 600	1,05 1,05	YAR 211-2RF ➤ YAR 211-2F
60	110 110	65,1 65,1	26 26	75,6 75,6	39,7 39,7	1,5 1,5	52,7 52,7	36 36	1,53 1,53	1 800 3 400	, .	➤ YAR 212-2RF ➤ YAR 212-2F
65	120 120	68,3 68,3	27 27	82,5 82,5	42,9 42,9	1,5 1,5	57,2 57,2	40 40	1,7 1,7	1 600 3 000	1,8 1,8	YAR 213-2RF ➤ YAR 213-2F
70	125	69,9	28	87	39,7	1,5	62,4	45	1,86	2 800	1,95	➤ YAR 214-2F
75	130	73,3	29	92	46,3	1,5	66,3	49	2,04	2 600	2,15	➤ YAR 215-2F
80	140	77,8	30	97,4	47,6	2	72,8	53	2,16	2 400	2,5	➤ YAR 216-2F
90	160	89	36	112	54	2	95,6	72	2,7	2 000	4	YAR 218-2F
100	180	98,4	40	124	63,4	1,9	124	93	3,35	1 900	5,6	YAR 220-2F

[►] Popular item

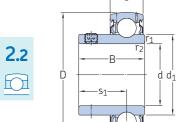
2.2 Insert bearings with grub screws, inch shafts

d 1/2 - 1 3/4 in. 12,7 – 44,45 mm

YAR ..-2RF

YAT

Dimens	ions						Basic load dynamic	l ratings static	Fatigue load limit	Limiting speed	Mass	Designation
d	D	В	С	d ₁ ≈	s ₁	r _{1,2} min.	С	C_0	P_{u}	with shaft tolerance h6		
in./mm	mm						kN		kN	r/min	kg	_
1 <mark>/2</mark> 12,7	40	27,4	12	24,2	15,9	0,3	9,56	4,75	0,2	9 500	0,12	YAR 203-008-2F
5 /8 15,875	40 40	22,1 27,4	12 12	24,2 24,2	15,9 15,9	0,3 0,3	9,56 9,56	4,75 4,75	0,2 0,2	9 500 9 500	0,09 0,1	YAT 203-010 YAR 203-010-2F
3 /4 19,05	47 47 47	25,5 31 31	14 14 14	28,2 28,2 28,2	18,3 18,3 18,3	0,6 0,6 0,6	12,7 10,8 10,8	6,55 6,55 6,55	0,28 0,28 0,28	8 500 5 000 5 000	0,14 0,16 0,16	YAT 204-012 YAR 204-012-2RF/HV YAR 204-012-2RFGR/H
	47 47 47	31 31 31	14 14 14	28,2 28,2 28,2	18,3 18,3 18,3	0,6 0,6 0,6	12,7 12,7 12,7	6,55 6,55 6,55	0,28 0,28 0,28	5 000 5 000 8 500	0,16 0,16 0,16	YAR 204-012-2RF YAR 204-012-2RF/VE49 ► YAR 204-012-2F
<mark>7/8</mark> 22,225	52	27,2	15	33,7	19,5	0,6	14	7,8	0,335	7 000	0,19	YAT 205-014
15/₁₆ 23,813	52 52 52	27,2 34,1 34,1	15 15 15	33,7 33,7 33,7	19,5 19,8 19,8	0,6 0,6 0,6	14 14 14	7,8 7,8 7,8	0,335 0,335 0,335	7 000 4 300 7 000	0,17 0,21 0,2	YAT 205-015 YAR 205-015-2RF/VE49 YAR 205-015-2F
1 25,4	52 52 52	27,2 34,1 34,1	15 15 15	33,7 33,7 33,7	19,5 19,8 19,8	0,6 0,6 0,6	14 11,9 11,9	7,8 7,8 7,8	0,335 0,335 0,335	7 000 4 300 4 300	0,16 0,19 0,19	YAT 205-100 YAR 205-100-2RF/HV YAR 205-100-2RFGR/H
	52 52 52	34,1 34,1 34,1	15 15 15	33,7 33,7 33,7	19,8 19,8 19,8	0,6 0,6 0,6	14 14 14	7,8 7,8 7,8	0,335 0,335 0,335	1 500 4 300 4 300	0,18 0,19 0,19	YARAG 205-100 ► YAR 205-100-2RF YAR 205-100-2RF/VE4
	52	34,1	15	33,7	19,8	0,6	14	7,8	0,335	7 000	0,19	► YAR 205-100-2F
1 ¹/16 26, 988	62	38,1	18	39,7	22,2	0,6	19,5	11,2	0,475	6 300	0,35	YAR 206-101-2F
1 1/8 28,575	62 62	38,1 38,1	18 18	39,7 39,7	22,2 22,2	0,6 0,6	19,5 19,5	11,2 11,2	0,475 0,475	1 200 6 300	0,32 0,32	YARAG 206-102 YAR 206-102-2F
1 ³/16 30,163	62 62 62	30,2 38,1 38,1	18 18 18	39,7 39,7 39,7	21 22,2 22,2	0,6 0,6 0,6	19,5 16,3 16,3	11,2 11,2 11,2	0,475 0,475 0,475	6 300 3 800 3 800	0,26 0,3 0,3	YAT 206-103 YAR 206-103-2RF/HV YAR 206-103-2RFGR/H
	62 62 62	38,1 38,1 38,1	18 18 18	39,7 39,7 39,7	22,2 22,2 22,2	0,6 0,6 0,6	19,5 19,5 19,5	11,2 11,2 11,2	0,475 0,475 0,475	1 200 3 800 6 300	0,3 0,3 0,3	YARAG 206-103 YAR 206-103-2RF/VE49 YAR 206-103-2F


[►] Popular item

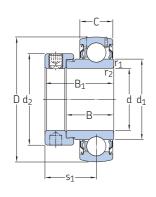
Dimens	ions						Basic loa dynamic	d ratings static	Fatigue load limit	Limiting speed	Mass	Designation
d	D	В	С	d ₁ ≈	s ₁	r _{1,2} min.	С	C_0	P_u	with shaft tolerance h6		
in./mm	mm						kN		kN	r/min	kg	_
1 ¹/4 31,75	62 62 62	30,2 38,1 38,1	18 18 18	39,7 39,7 39,7	21 22,2 22,2	0,6 0,6 0,6	19,5 16,3 16,3	11,2 11,2 11,2	0,475 0,475 0,475	6 300 3 800 3 800	0,24 0,28 0,28	YAT 206-104 YAR 206-104-2RF/HV YAR 206-104-2RFGR/HV
	62 62 62	38,1 38,1 38,1	18 18 18	39,7 39,7 39,7	22,2 22,2 22,2	0,6 0,6 0,6	19,5 19,5 19,5	11,2 11,2 11,2	0,475 0,475 0,475	1 200 3 800 6 300	0,27 0,28 0,28	YARAG 206-104 YAR 206-104-2RF/VE495 YAR 206-104-2F
	72 72 72	42,9 42,9 42,9	19 19 19	46,1 46,1 46,1	25,4 25,4 25,4	1 1 1	21,6 21,6 25,5	15,3 15,3 15,3	0,655 0,655 0,655	3 200 3 200 1 100	0,5 0,5 0,49	 YAR 207-104-2RF/HV YAR 207-104-2RFGR/HV YARAG 207-104
	72 72 72	42,9 42,9 42,9	19 19 19	46,1 46,1 46,1	25,4 25,4 25,4	1 1 1	25,5 25,5 25,5	15,3 15,3 15,3	0,655 0,655 0,655	3 200 3 200 5 300	0,51 0,51 0,5	YAR 207-104-2RF YAR 207-104-2RF/VE495 ► YAR 207-104-2F
1 5/16 33,338	72	42,9	19	46,1	25,4	1	25,5	15,3	0,655	5 300	0,48	YAR 207-105-2F
1 ³/8 34,925	72 72 72	42,9 42,9 42,9	19 19 19	46,1 46,1 46,1	25,4 25,4 25,4	1 1 1	21,6 21,6 25,5	15,3 15,3 15,3	0,655 0,655 0,655	3 200 3 200 1 100	0,45 0,45 0,44	YAR 207-106-2RF/HV YAR 207-106-2RFGR/HV YARAG 207-106
	72 72	42,9 42,9	19 19	46,1 46,1	25,4 25,4	1	25,5 25,5	15,3 15,3	0,655 0,655	3 200 5 300	0,45 0,45	YAR 207-106-2RF/VE495 YAR 207-106-2F
1 7/ 16 36,513	72 72 72	33 42,9 42,9	19 19 19	46,1 46,1 46,1	23,3 25,4 25,4	1 1 1	25,5 21,6 21,6	15,3 15,3 15,3	0,655 0,655 0,655	5 300 3 200 3 200	0,36 0,42 0,42	YAT 207-107 ► YAR 207-107-2RF/HV YAR 207-107-2RFGR/HV
	72 72 72	42,9 42,9 42,9	19 19 19	46,1 46,1 46,1	25,4 25,4 25,4	1 1 1	25,5 25,5 25,5	15,3 15,3 15,3	0,655 0,655 0,655	1 100 3 200 5 300	0,41 0,42 0,42	YARAG 207-107 YAR 207-107-2RF/VE495 YAR 207-107-2F
	80	49,2	21	51,8	30,2	1	30,7	19	0,8	4 800	0,68	YAR 208-107-2F
1 ½ 38,1	80 80 80	36 49,2 49,2	21 21 21	51,8 51,8 51,8	25,3 30,2 30,2	1 1 1	30,7 24,7 24,7	19 19 19	0,8 0,8 0,8	4 800 2 800 2 800	0,53 0,65 0,65	YAT 208-108 ► YAR 208-108-2RF/HV YAR 208-108-2RFGR/HV
	80 80 80	49,2 49,2 49,2	21 21 21	51,8 51,8 51,8	30,2 30,2 30,2	1 1 1	30,7 30,7 30,7	19 19 19	0,8 0,8 0,8	950 2 800 2 800	0,63 0,65 0,65	YARAG 208-108 ► YAR 208-108-2RF YAR 208-108-2RF/VE495
	80 85	49,2 49,2	21 22	51,8 56,8	30,2 30,2		30,7 33,2	19 21,6	0,8 0,915	4 800 4 300	0,65 0,84	 YAR 208-108-2F YAR 209-108-2F
1 %/16 39,688	80	49,2	21	51,8	30,2	1	30,7	19	0,8	4 800	0,61	YAR 208-109-2F
1 5/8 41,275	85 85	49,2 49,2	22 22	56,8 56,8	30,2 30,2		33,2 33,2	21,6 21,6	0,915 0,915	850 4 300	0,75 0,77	YARAG 209-110 YAR 209-110-2F
1 ¹¹/16 42,863	85 85 85	37 49,2 49,2	22 22 22	56,8 56,8 56,8	25,8 30,2 30,2	1	33,2 33,2 33,2	21,6 21,6 21,6	0,915 0,915 0,915	4 300 850 4 300	0,61 0,71 0,73	YAT 209-111 YARAG 209-111 YAR 209-111-2F
1 3/4 44,45	85 85 85	37 49,2 49,2	22 22 22	56,8 56,8 56,8	25,8 30,2 30,2	1	33,2 33,2 33,2	21,6 21,6 21,6	0,915 0,915 0,915	4 300 2 400 4 300	0,58 0,69 0,69	YAT 209-112 YAR 209-112-2RF ➤ YAR 209-112-2F

[►] Popular item

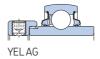
${\color{red}2.2 \hspace{0.1cm} \textbf{Insert bearings with grub screws, inch shafts}}$

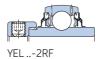
d 115/16 - 3 in. 49,213 - 76,2 mm

YAR ..-2RFGR/HV


YAT

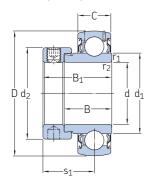
Dimens	ions						Basic loa dynamic	ad ratings static	Fatigue load limit	Limiting speed	Mass	Designation
d	D	В	С	d ₁ ≈	s ₁	r _{1,2} min.	С	C_0	P_u	with shaft tolerance h6		
in./mm	mm						kN		kN	r/min	kg	_
1 ^{15/16} 49,213	90 90 90	38,8 51,6 51,6	22 22 22	62,5 62,5 62,5	27,6 32,6 32,6	1 1 1	35,1 29,6 29,6	23,2 23,2 23,2	0,98 0,98 0,98	4 000 2 200 2 200	0,65 0,79 0,79	YAT 210-115 YAR 210-115-2RF/HV YAR 210-115-2RFGR/HV
	90 90 90	51,6 51,6 51,6	22 22 22	62,5 62,5 62,5	32,6 32,6 32,6	1 1 1	35,1 35,1 35,1	23,2 23,2 23,2	0,98 0,98 0,98	800 2 200 2 200	0,77 0,79 0,79	YARAG 210-115 YAR 210-115-2RF YAR 210-115-2RF/VE49!
	90	51,6	22	62,5	32,6	1	35,1	23,2	0,98	4 000	0,79	YAR 210-115-2F
2 50,8	100 100 100	45 55,6 55,6	25 25 25	69 69 69	32,5 33,4 33,4	1 1 1	43,6 43,6 43,6	29 29 29	1,25 1,25 1,25	3 600 1 900 3 600	1 1,2 1,2	YAT 211-200 YAR 211-200-2RF ► YAR 211-200-2F
2 ³/16 55,563	100 110	55,6 65,1	25 26	69 75,6	33,4 39,7	1 1,5	43,6 52,7	29 36	1,25 1,53	3 600 3 400	1 1,6	YAR 211-203-2F YAR 212-203-2F
2 1/4 57,15	110 110	48,5 65,1	26 26	75,6 75,6	35 39,7	1,5 1,5	52,7 52,7	36 36	1,53 1,53	3 400 3 400	1,25 1,55	YAT 212-204 YAR 212-204-2F
2 ⁷/16 61,913	110 110 125	48,5 65,1 69,9	26 26 28	75,6 75,6 87	35 39,7 39,7	1,5 1,5 1,5	52,7 52,7 62,4	36 36 45	1,53 1,53 1,86	3 400 3 400 2 800	1,1 1,3 2,4	YAT 212-207 YAR 212-207-2F YAR 214-207-2F
2 ¹/₂ 63,5	120 120 125	68,3 68,3 69,9	27 27 28	82,5 82,5 87	42,9 42,9 39,7	1,5 1,5 1,5	57,2 57,2 62,4	40 40 45	1,7 1,7 1,86	1 600 3 000 2 800	1,9 1,85 2,3	YAR 213-208-2RF ► YAR 213-208-2F YAR 214-208-2F
2 11/16 68,263	120	68,3	27	82,5	42,9	1,5	57,2	40	1,7	3 000	1,6	YAR 213-211-2F
2 ¹⁵/₁₆ 74,613		53,5 73,3	29 29	92 92	39 46,3	1,5 1,5	66,3 66,3	49 49	2,04 2,04	2 600 2 600	1,75 2,15	YAT 215-215 YAR 215-215-2F
3 76,2	140 140	55,5 77,8	30 30	97,4 97,4	39 47,6	2 2	72,8 72,8	53 53	2,16 2,16	2 400 2 400	2,2 2,8	YAT 216-300 YAR 216-300-2F

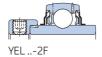

2.3 Insert bearings with an eccentric locking collar, metric shafts


d **15 – 60** mm

YET

Dime	nsions								Basic loa dynamic	ad ratings static	Fatigue load limit	Limiting speed with shaft	Mass	Designation
d	D	В	B ₁	С	d ₁ ≈	d ₂	s ₁	r _{1,2} min.	С	C_0	$P_{\rm u}$	tolerance h6		
mm									kN		kN	r/min	kg	_
15	40	19,1	28,6	12	24,2	27,2	22,1	0,3	9,56	4,75	0,2	9 500	0,12	► YET 203/15
17	40	19,1	28,6	12	24,2	27,2	22,1	0,3	9,56	4,75	0,2	9 500	0,11	► YET 203
20	47 47 47	21 21 34,2	30,5 30,5 43,7	14 14 14	28,2 28,2 28,2	32,4 32,4 32,4	23,5 23,5 26,6	0,6 0,6 0,6	12,7 12,7 12,7	6,55 6,55 6,55	0,28 0,28 0,28	8 500 8 500 1 800	0,16 0,16 0,2	► YET 204 YET 204/VL065 ► YELAG 204
	47 47	34,2 34,2	43,7 43,7	14 14	28,2 28,2	32,4 32,4	26,6 26,6	0,6 0,6	12,7 12,7	6,55 6,55	0,28 0,28	5 000 8 500	0,2 0,2	YEL 204-2RF/VL065 ► YEL 204-2F
25	52 52 52	21,5 21,5 34,9	31 31 44,4	15 15 15	33,7 33,7 33,7	37,4 37,4 37,4	23,5 23,5 26,9	0,6 0,6 0,6	14 14 14	7,8 7,8 7,8	0,335 0,335 0,335	7 000 7 000 1 500	0,2 0,2 0,24	► YET 205 YET 205/VL065 ► YELAG 205
	52 52	34,9 34,9	44,4 44,4	15 15	33,7 33,7	37,4 37,4	26,9 26,9	0,6 0,6	14 14	7,8 7,8	0,335 0,335	4 300 7 000	0,25 0,24	► YEL 205-2RF/VL06! ► YEL 205-2F
30	62 62 62	23,8 23,8 36,5	35,7 35,7 48,4	18 18 18	39,7 39,7 39,7	44,1 44,1 44,1	26,7 26,7 30,1	0,6 0,6 0,6	19,5 19,5 19,5	11,2 11,2 11,2	0,475 0,475 0,475	6 300 6 300 1 200	0,32 0,32 0,38	► YET 206 YET 206/VL065 ► YELAG 206
	62 62	36,5 36,5	48,4 48,4	18 18	39,7 39,7	44,1 44,1	30,1 30,1	0,6 0,6	19,5 19,5	11,2 11,2	0,475 0,475	3 800 6 300	0,38 0,38	► YEL 206-2RF/VL06! ► YEL 206-2F
35	72 72 72	25,4 25,4 37,6	38,9 38,9 51,1	19 19 19	46,1 46,1 46,1	51,1 51,1 51,1	29,4 29,4 32,3	1 1 1	25,5 25,5 25,5	15,3 15,3 15,3	0,655 0,655 0,655	5 300 5 300 1 100	0,46 0,46 0,53	► YET 207 YET 207/VL065 YELAG 207
	72 72	37,6 37,6	51,1 51,1	19 19	46,1 46,1	51,1 51,1	32,3 32,3	1	25,5 25,5	15,3 15,3	0,655 0,655	3 200 5 300	0,54 0,54	► YEL 207-2RF/VL06! ► YEL 207-2F
40	80 80 80	29,7 29,7 42,8	43,2 43,2 56,3	21 21 21	51,8 51,8 51,8	56,5 56,5 56,5	32,7 32,7 34,9	1 1 1	30,7 30,7 30,7	19 19 19	0,8 0,8 0,8	4 800 4 800 950	0,6 0,6 0,69	► YET 208 YET 208/VL065 YELAG 208
	80 80	42,8 42,8	56,3 56,3	21 21	51,8 51,8	56,5 56,5	34,9 34,9	1	30,7 30,7	19 19	0,8 0,8	2 800 4 800	0,71 0,7	► YEL 208-2RF/VL06! ► YEL 208-2F


Dime	nsions								Basic load dynamic	d ratings static	Fatigue load limit	Limiting speed	Mass	Designation
d	D	В	B ₁	С	d ₁ ≈	d ₂	s ₁	r _{1,2} min.	С	C_0	P_{u}	with shaft tolerance h6		
mm									kN		kN	r/min	kg	_
45	85 85 85	30,2 42,8 42,8	43,7 56,3 56,3	22 22 22	56,8 56,8 56,8	62 62 62	32,7 34,9 34,9	1 1 1	33,2 33,2 33,2	21,6 21,6 21,6	0,915 0,915 0,915	4 300 850 4 300	0,68 0,78 0,79	➤ YET 209 ➤ YELAG 209 ➤ YEL 209-2F
50	90 90 90	30,2 49,2 49,2	43,7 62,7 62,7	22 22 22	62,5 62,5 62,5	67,2 67,2 67,2	32,7 38,1 38,1	1 1 1	35,1 35,1 35,1	23,2 23,2 23,2	0,98 0,98 0,98	4 000 800 4 000	0,74 0,9 0,92	YET 210YELAG 210YEL 210-2F
55	100 100	32,6 55,6	48,4 71,4	25 25	69 69	74,5 74,5	35,9 43,6	1 1	43,6 43,6	29 29	1,25 1,25	3 600 3 600	1,05 1,3	YET 211 ► YEL 211-2F
60	110 110	36,7 61,9	52,6 77,8	26 26	75,6 75,6	82 82	39,6 46,8	1,5 1,5	52,7 52,7	36 36	1,53 1,53	3 400 3 400	1,35 1,7	► YET 212 ► YEL 212-2F


[►] Popular item

2.4 Insert bearings with an eccentric locking collar, inch shafts

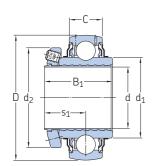
d 1/2 - 2 7/16 in.

12,7 – 61,913 mm

YET

Dimens	ions									ad ratings	Fatigue	Limiting	Mass	Designation
d	D	В	B ₁	С	d_1	d ₂	s ₁	r _{1,2}	dynamic C	static C ₀	load limit P _u	speed with shaft tolerance h6		
. ,					≈			min.						
in./mm	mm								kN ————		kN	r/min	kg	
1/2 12,7	40	19,1	28,6	12	24,2	27,2	22,1	0,3	9,56	4,75	0,2	9 500	0,13	YET 203-008
/4 19,05	47 47	21 34,2	30,5 43,7	14 14	28,2 28,2	32,4 32,4	23,5 26,6	0,6 0,6	12,7 12,7	6,55 6,55	0,28 0,28	8 500 8 500	0,17 0,21	► YET 204-012 YEL 204-012-2
L 25,4	52 52 52	21,5 34,9 34,9	31 44,4 44,4	15 15 15	33,7 33,7 33,7	37,4 37,4 37,4	23,5 26,9 26,9	0,6 0,6 0,6	14 14 14	7,8 7,8 7,8	0,335 0,335 0,335	7 000 1 500 7 000	0,19 0,23 0,24	➤ YET 205-100 YELAG 205-100 YEL 205-100-2
L 1/8 28,575	62 62 62	23,8 36,5 36,5	35,7 48,4 48,4	18 18 18	39,7 39,7 39,7	44,1 44,1 44,1	26,7 30,1 30,1	0,6 0,6 0,6	19,5 19,5 19,5	11,2 11,2 11,2	0,475 0,475 0,475	6 300 1 200 6 300	0,34 0,4 0,41	YET 206-102 YELAG 206-102 YEL 206-102-2
L 3/16 30,163	62 62 62	23,8 36,5 36,5	35,7 48,4 48,4	18 18 18	39,7 39,7 39,7	44,1 44,1 44,1	26,7 30,1 30,1	0,6 0,6 0,6	19,5 19,5 19,5	11,2 11,2 11,2	0,475 0,475 0,475	6 300 1 200 6 300	0,32 0,37 0,38	YET 206-103 YELAG 206-103 YEL 206-103-2
L 1/4 B1,75	62 72 72	23,8 25,4 37,6	35,7 38,9 51,1	18 19 19	39,7 46,1 46,1	44,1 51,1 51,1	26,7 29,4 32,3	0,6 1 1	19,5 25,5 25,5	11,2 15,3 15,3	0,475 0,655 0,655	6 300 5 300 1 100	0,3 0,51 0,6	YET 206-104 YET 207-104 YELAG 207-104
	72	37,6	51,1	19	46,1	51,1	32,3	1	25,5	15,3	0,655	5 300	0,61	YEL 207-104-2
5 /16 33,338	72	25,4	38,9	19	46,1	51,1	29,4	1	25,5	15,3	0,655	5 300	0,49	YET 207-105
L 3/8 34,925	72 72 72	25,4 37,6 37,6	38,9 51,1 51,1	19 19 19	46,1 46,1 46,1	51,1 51,1 51,1	29,4 32,3 32,3	1 1 1	25,5 25,5 25,5	15,3 15,3 15,3	0,655 0,655 0,655	5 300 1 100 5 300	0,46 0,54 0,55	YET 207-106 YELAG 207-106 YEL 207-106-2
1 ⁷/16 36,513	72 72 72	25,4 37,6 37,6	38,9 51,1 51,1	19 19 19	46,1 46,1 46,1	51,1 51,1 51,1	29,4 32,3 32,3	1 1 1	25,5 25,5 25,5	15,3 15,3 15,3	0,655 0,655 0,655	5 300 1 100 5 300	0,44 0,5 0,51	YET 207-107 YELAG 207-107 YEL 207-107-2
L 1/2 38,1	80 80 80	29,7 42,8 42,8	43,2 56,3 56,3	21 21 21	51,8 51,8 51,8	56,5 56,5 56,5	32,7 34,9 34,9	1 1 1	30,7 30,7 30,7	19 19 19	0,8 0,8 0,8	4 800 950 4 800	0,64 0,74 0,76	 YET 208-108 YELAG 208-108 YEL 208-108-2
L 11/₁₆ 42,863	85 85 85	30,2 42,8 42,8	43,7 56,3 56,3	22 22 22	56,8 56,8 56,8	62 62 62	32,7 34,9 34,9	1 1 1	33,2 33,2 33,2	21,6 21,6 21,6	0,915 0,915 0,915	4 300 850 4 300	0,73 0,84 0,86	YET 209-111 YELAG 209-111 YEL 209-111-2

374 **5KF**.


[►] Popular item

Dimens	sions								Basic loa dynamic	d ratings static	Fatigue load limit	Limiting speed with shaft	Mass	Designation
d	D	В	B ₁	С	d ₁ ≈	d ₂	s ₁	r _{1,2} min.	С	C_0	P_u	tolerance h6		
in./mm	mm								kN		kN	r/min	kg	_
1 ³/4 44,45	85 85 85	30,2 42,8 42,8	43,7 56,3 56,3	22 22 22	56,8 56,8 56,8	62 62 62	32,7 34,9 34,9	1 1 1	33,2 33,2 33,2	21,6 21,6 21,6	0,915 0,915 0,915	4 300 850 4 300	0,69 0,8 0,81	YET 209-112 YELAG 209-112 YEL 209-112-2F
1 ¹⁵/16 49,213	90 90	49,2 49,2	62,7 62,7	22 22	62,5 62,5	67,2 67,2	38,1 38,1	1	35,1 35,1	23,2 23,2	0,98 0,98	800 4 000	0,94 0,95	YELAG 210-115 YEL 210-115-2F
2 50,8	100	55,6	71,4	25	69	74,5	43,6	1	43,6	29	1,25	3 600	1,5	YEL 211-200-2F
2 ³/16 55,563	100	55,6	71,4	25	69	74,5	43,6	1	43,6	29	1,25	3 600	1,25	YEL 211-203-2F
27/16 61,913	110 110	36,7 61,9	52,6 77,8	26 26	75,6 75,6	82 82	39,6 46,8	1,5 1,5	52,7 52,7	36 36	1,53 1,53	3 400 3 400	1,25 1,6	YET 212-207 YEL 212-207-2F

${\bf 2.5~SKF~ConCentra~insert~bearings,~metric~shafts}$

d **25 – 60** mm

YSP..SB-2F

Dime	imensions							ad ratings	Fatigue Limiting load limit speed		Mass	Designation
d	D	B ₁ ¹) ≈	С	d ₁ ≈	d_2	s ₁ 1) ≈	dynamic C	C_0	P _u	-		
nm							kN			r/min	kg	-
25	52	33,2	15	33,7	41,7	21,2	14	7,8	0,335	1 500	0,18	YSPAG 205
	52	33,2	15	33,7	41,7	21,2	14	7,8	0,335	7 000	0,19	YSP 205 SB-2F
30	62	37,2	18	39,7	48	23,2	19,5	11,2	0,475	1 200	0,3	YSPAG 206
	62	37,2	18	39,7	48	23,2	19,5	11,2	0,475	6 300	0,31	YSP 206 SB-2F
35	72	39,7	19	46,1	57	24,5	25,5	15,3	0,655	1 100	0,44	YSPAG 207
	72	39,7	19	46,1	57	24,5	25,5	15,3	0,655	5 300	0,45	► YSP 207 SB-2F
0	80	43,1	21	51,8	62	26,2	30,7	19	0,8	950	0,58	YSPAG 208
	80	43,1	21	51,8	62	26,2	30,7	19	0,8	4 800	0,59	► YSP 208 SB-2F
5	85	44,2	22	56,8	67	26,7	33,2	21,6	0,915	850	0,64	YSPAG 209
	85	44,2	22	56,8	67	26,7	33,2	21,6	0,915	4 300	0,66	YSP 209 SB-2F
0	90	46,2	22	62,5	72	27,7	35,1	23,2	0,98	800	0,72	YSPAG 210
	90	46,2	22	62,5	72	27,7	35,1	23,2	0,98	4 000	0,74	► YSP 210 SB-2F
55	100	49,2	25	69	77,6	29,2	43,6	29	1,25	3 600	0,98	YSP 211 SB-2F
50	110	51,7	26	75,6	83	30,5	52,7	36	1,53	3 400	1,25	YSP 212 SB-2F

[•] Popular item 1) Width/distance before the grub screw is tightened (sleeve and inner ring bore at starting position).

Dimens	sions						Basic load	d ratings static	Fatigue load limit	Limiting speed	Mass	Designation
d	D	B ₁ ¹) ≈	С	d ₁ ≈	d ₂	s ₁ 1) ≈	С	C_0	P_u			
in./mm	mm						kN		kN	r/min	kg	_
1 25,4	52 52	33,2 33,2	15 15	33,74 33,74	41,7 41,7	21,2 21,2	14 14	7,8 7,8	0,335 0,335	1 500 7 000	0,18 0,18	YSPAG 205-100 YSP 205-100 SB-2F
1 ³ / ₁₆ 30,163	62 62	37,2 37,2	18 18	39,7 39,7	48 48	23,2 23,2	19,5 19,5	11,2 11,2	0,475 0,475	1 200 6 300	0,3 0,3	YSPAG 206-103 YSP 206-103 SB-2F
1 ¹/4 31,75	72 72	39,7 39,7	19 19	46,1 46,1	57 57	24,5 24,5	25,5 25,5	15,3 15,3	0,655 0,655	1 100 5 300	0,49 0,5	YSPAG 207-104 YSP 207-104 SB-2F
1 ³/8 34, 925	72 72	39,7 39,7	19 19	46,1 46,1	57 57	24,5 24,5	25,5 25,5	15,3 15,3	0,655 0,655	1 100 5 300	0,44 0,45	YSPAG 207-106 YSP 207-106 SB-2F
1 7/16 36,513	72 72	39,7 39,7	19 19	46,1 46,1	57 57	24,5 24,5	25,5 25,5	15,3 15,3	0,655 0,655	1 100 5 300	0,42 0,42	YSPAG 207-107 YSP 207-107 SB-2F
1 ¹/2 38,1	80 80	43,1 43,1	21 21	51,8 51,8	62 62	26,2 26,2	30,7 30,7	19 19	0,8 0,8	950 4 800	0,61 0,62	YSPAG 208-108 YSP 208-108 SB-2F
1 ¹¹/16 42,863		44,2 44,2	22 22	56,8 56,8	67 67	26,7 26,7	33,2 33,2	21,6 21,6	0,915 0,915	850 4 300	0,69 0,7	YSPAG 209-111 YSP 209-111 SB-2F
1 ¹⁵/16 49,213		46,2 46,2	22 22	62,51 62,51	72 72	27,7 27,7	35,1 35,1	23,2 23,2	0,98 0,98	800 4 000	0,74 0,76	YSPAG 210-115 YSP 210-115 SB-2F
2 50,8	100	49,2	25	69,06	77,6	29,2	43,6	29	1,25	3 600	1,1	YSP 211-200 SB-2F
2 3/16 55,563	100	49,2	25	69,06	77,6	29,2	43,6	29	1,25	3 600	0,97	YSP 211-203 SB-2F
2 ¹/ ₄ 57,15	110	51,7	26	75,64	83	30,5	52,7	36	1,53	3 400	1,35	YSP 212-204 SB-2F
2 7/16 61,913	110	51,7	26	75,64	87,6	30,5	52,7	36	1,53	3 400	1,2	YSP 212-207 SB-2F

57,2 40

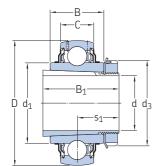
1,7

3 000

1,4

YSP 213-211 SB-2F

2 ¹¹/16 120 52,7 27 82,5 89,4 31 68,263


2.6

Popular item

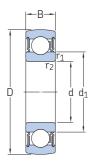
1) Width/distance before the grub screw is tightened (sleeve and inner ring bore at starting position).

$2.7\,$ Insert bearings with a tapered bore on an adapter sleeve, metric shafts

d **20 – 60** mm

Dime	mensions							Basic loa dynamic	d ratings static	Fatigue load limit	Limiting speed	Mass Bearing + sleeve		Adapter sleeve
d	D	В	В1	С	d ₁ ≈	d ₃	s ₁ 1) ≈	С	C_0	P_u		+ sieeve		SICEVE
mm								kN		kN	r/min	kg	_	
20	52	24	35	15	33,7	38	20,5	14	7,8	0,335	7 000	0,25	YSA 205-2FK	H 2305
25	62	28	38	18	39,7	45	22,5	19,5	11,2	0,475	6 300	0,38	YSA 206-2FK	H 2306
30	72	30,5	43	19	46,1	52	24,8	25,5	15,3	0,655	5 300	0,54	YSA 207-2FK	H 2307
35	80	33,9	46	21	51,8	58	27,5	30,7	19	0,8	4 800	0,71	YSA 208-2FK	H 2308
40	85	35	50	22	56,8	65	29	33,2	21,6	0,915	4 300	0,84	YSA 209-2FK	H 2309
45	90	37	55	22	62,5	70	31,1	35,1	23,2	0,98	4 000	0,97	YSA 210-2FK	H 2310
50	100	40	59	25	69	75	32,5	43,6	29	1,25	3 600	1,25	YSA 211-2FK	H 2311
55	110	42,5	62	26	75,6	80	33,8	52,7	36	1,53	3 400	1,55	YSA 212-2FK	H 2312
60	120	43,5	65	27	82,5	85	35,3	57,2	40	1,7	3 000	1,9	YSA 213-2FK	H 2313

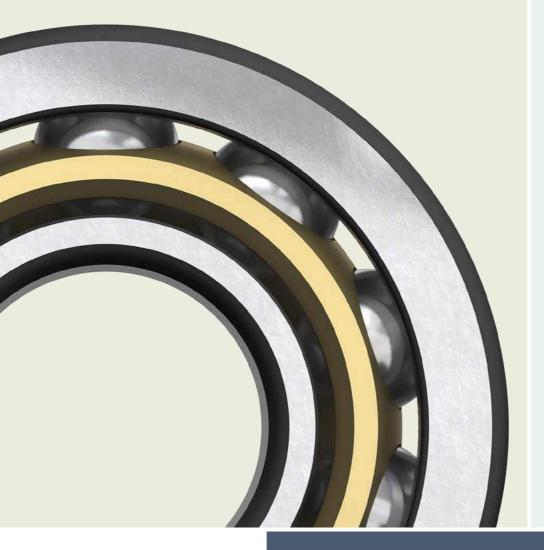
 $[\]overline{\ ^{1)}}$ Distance before the sleeve is driven into the bearing bore (sleeve and inner ring bore at starting position).


Dimens	ions							Basic load dynamic	d ratings static	Fatigue load limit	Limiting speed	Mass Bearing + sleeve	Designations Bearing	Adapter sleeve
d	D	В	B ₁	С	d ₁ ≈	d_3	s ₁ 1) ≈	С	C_0	P_u		+ Sieeve		steeve
in./mm	mm							kN			r/min	kg		
3/4 19,05	52	24	35	15	33,74	38	20,5	14	7,8	0,335	7 000	0,25	YSA 205-2FK	HE 2305
15/₁₆ 23,813	62	28	38	18	39,7	45	22,5	19,5	11,2	0,475	6 300	0,39	YSA 206-2FK	HA 2306
1 25,4	62	28	38	18	39,7	45	22,5	19,5	11,2	0,475	6 300	0,37	YSA 206-2FK	HE 2306
1.187 30,136	72	30,5	43	19	46,1	52	24,8	25,5	15,3	0,655	5 300	0,54	YSA 207-2FK	HA 2307
1 ¹/4 31,75	80	33,9	46	21	51,8	58	27,5	30,7	19	0,8	4 800	0,77	YSA 208-2FK	HE 2308
1 7/16 36,513	85	35	50	22	56,8	65	29	33,2	21,6	0,915	4 300	0,92	YSA 209-2FK	HA 2309
1 ¹/2 38,1	85	35	50	22	56,8	65	29	33,2	21,6	0,915	4 300	0,88	YSA 209-2FK	HE 2309
1 ¹¹/₁₆ 42,863	90	37	55	22	62,51	70	31,1	35,1	23,2	0,98	4 000	1,05	YSA 210-2FK	HA 2310
1 ³/4 44,45	90	37	55	22	62,51	70	31,1	35,1	23,2	0,98	4 000	0,98	YSA 210-2FK	HE 2310
1 ¹⁵/₁₆ 49,213	100	40	59	25	69,06	75	32,5	43,6	29	1,25	3 600	1,3	YSA 211-2FK	HA 2311
2 50,8	100	40	59	25	69,06	75	32,5	43,6	29	1,25	3 600	1,2	YSA 211-2FK	HE 2311 E
2 ³/16 55,563	120	43,5	65	27	82,5	85	35,3	57,2	40	1,7	3 000	2,1	YSA 213-2FK	HA 2313
2 1/4 57,15	120	43,5	65	27	82,5	85	35,3	57,2	40	1,7	3 000	2,05	YSA 213-2FK	HE 2313
. ,														

¹⁾ Distance before the sleeve is driven into the bearing bore (sleeve and inner ring bore at starting position).

$2.9\,$ Insert bearings with a standard inner ring, metric shafts

d **17 – 60** mm


B-2RS1/VP274

-2RS1

Dimer	sions				Basic loa dynamic	d ratings static	Fatigue load limit	Limiting speed	Mass	Designation
d	D	В	d ₁ ≈	r _{1,2} min.	С	C_0	P_u			
mm			,		kN		kN	r/min	kg	_
17	40	12	24,5	0,6	9,56	4,75	0,2	12 000	0,06	▶ 1726203-2RS1
20	47	14	28,8	1	12,7	6,55	0,28	10 000	0,1	▶ 1726204-2RS1
25	52 62	15 17	34,3 36,6	1 1,1	14 22,5	7,8 11,6	0,335 0,49	8 500 7 500	0,12 0,22	► 1726205-2RS1 1726305-2RS1
30	62 72	16 19	40,3 44,6	1 1,1	19,5 28,1	11,2 16	0,475 0,67	7 500 6 300	0,19 0,34	► 1726206-2RS1 1726306-2RS1
35	72 80	17 21	46,9 49,5	1,1 1,5	25,5 33,2	15,3 19	0,655 0,815	6 300 6 000	0,28 0,44	► 1726207-2RS1 ► 1726307-2RS1
40	80 90	18 23	52,6 56,1	1,1 1,5	30,7 41	19 24	0,8 1	5 600 5 000	0,35 0,61	► 1726208-2RS1 ► 1726308-2RS1
45	85 85 100	19 19 25	56,6 56,6 62,1	1 1 1,5	33,2 33,2 52,7	21,6 21,6 31,5	0,915 0,915 1,34	4 300 5 000 4 500	0,39 0,4 0,8	1726209 B-2RS1/VP27 ▶ 1726209-2RS1 1726309-2RS1
	100	25	62,1	1,5	52,7	31,5	1,34	4 500	0,81	1726309 B-2RS1/VP27
50	90 110 110	20 27 27	62,5 68,7 68,7	1,1 2 2	35,1 61,8 61,8	23,2 38 38	0,98 1,6 1,6	4 800 4 300 4 300	0,44 1 1,05	► 1726210-2RS1 1726310 B-2RS1/VP27 1726310-2RS1
55	100	21	69	1,5	43,6	29	1,25	4 300	0,6	► 1726211-2RS1
60	110	22	75,5	1,5	52,7	36	1,53	4 000	0,77	► 1726212-2RS1

380

[►] Popular items

3

Angular contact ball bearings

3 Angular contact ball bearings

Designs and variants	385	Desi	gnation system		404
Single row angular contact ball bearings	385				
Basic design bearings	385	Proc	uct tables		
Bearings for universal matching	385	3.1	Single row angular contact ball be	arings	406
Bearings with 25° contact angle (AC series)	386	3.2	Double row angular contact ball be	earings	424
Double row angular contact ball bearings	386	3.3	Capped double row angular contact	ct ball bearings .	428
Basic design bearings	386	3.4	Four-point contact ball bearings.		430
Bearings with a two-piece inner ring	386				
Four-point contact ball bearings	387				
Bearings with locating slots	387				
SKF Explorer bearings	387				
Capped bearings	388				
Greases for capped bearings	389				
Grease life for capped bearings	389				
Cages	390				
Bearing data	392				
(Dimension standards, tolerances, contact angle, internal					
clearance, preload, permissible misalignment)					
Loads	398				
(Minimum load, equivalent dynamic bearing load,					
equivalent static bearing load)					
Calculating the axial load for bearings mounted singly or					
paired in tandem	400				
Load carrying capacity of bearing pairs	400				
Temperature limits	402				
Permissible speed	402				
Design considerations	403				
Single row angular contact ball bearings	403				
Proper adjustment	403	Othe	r angular contact ball bearings		
Axial loads in one direction	403	Cam	rollers		931
Load ratio	403	Bear	ings with Solid Oil		1023
Four-point contact ball bearings	403	NoW	ear coated bearings		1059
Used as a thrust bearing	403	Supe	er-precision bearings	→ skf.com/super-	precisior
Load ratio	403	Hvbr	id bearings	→ skf.com/super-	precision

SKF 383

3 Angular contact ball bearings

More information

General bearing knowledge	17
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Seat tolerances for standard	
conditions	148
Selecting internal clearance or	
preload	182
Sealing, mounting and	
dismounting	193

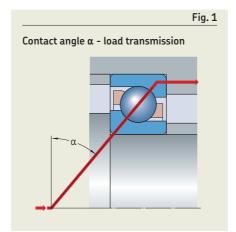
Mounting instructions for individual bearings → skf.com/mount

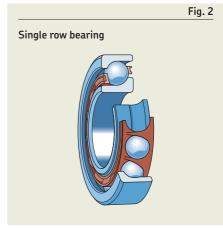
Angular contact ball bearings have inner and outer ring raceways that are displaced relative to each other in the direction of the bearing axis. This means that these bearings are designed to accommodate combined loads, i.e. simultaneously acting radial and axial loads.

The axial load carrying capacity of angular contact ball bearings increases as the contact angle increases. The contact angle is defined as the angle between the line joining the points of contact of the ball and the raceways in the radial plane, along which the combined load is transmitted from one raceway to another, and a line perpendicular to the bearing axis (fig. 1).

The most commonly used designs are:

- single row angular contact ball bearings (fig. 2)
- double row angular contact ball bearings (fig. 3)
- four-point contact ball bearings (fig. 4)


In addition to the bearings presented in this catalogue, other angular contact ball bearings include:


- Super-precision angular contact ball bearings
 - → skf.com/super-precision
- Fixed section angular contact ball bearings

These bearings have very thin rings and a constant cross-sectional height within a particular series, irrespective of the bearing size. They are characterized by a low weight and high stiffness. SKF fixed section bearings have inch sizes and are available open or sealed in up to eight different cross-sectional heights.

The designs include:

- single row angular contact ball bearings
- four-point contact ball bearings

384 **SKF**

· Hub bearing units

Hub bearing units (HBU) for the automotive industry are based on double row angular contact ball bearings. They have made an appreciable contribution to the achievement of more compact weight-saving designs, simplified assembly and enhanced reliability.

Detailed information about these products and variants for industrial applications can be supplied on request.

Bearing features

Accommodate combined loads

- Axial loads in one direction only for single row bearings
- Axial loads in either direction for double row and four-point contact bearings

· High load carrying capacity

- The lower shoulder enables a large number of balls to be incorporated in single row bearings, giving them their relatively high load carrying capacity.
- Because of the second row of balls, a large number of balls are incorporated in double row bearings, giving them their high load carrying capacity.
- A large number of balls are incorporated in four-point contact bearings, giving them their high load carrying capacity.

Good running properties

High speeds, rapid accelerations and decelerations are possible.

Designs and variants

Single row angular contact ball bearings

SKF single row angular contact ball bearings (fig. 2) can accommodate axial loads in one direction only. This type of bearing is typically adjusted against a second bearing. Their bearing rings have an upper and a lower shoulder and are non-separable.

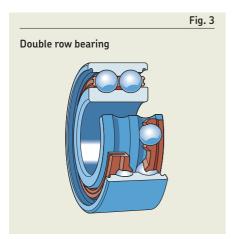
SKF standard assortment

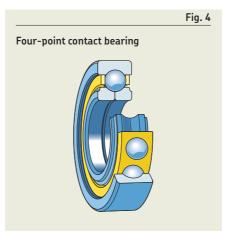
- bearings in the 72 B(E) and 73 B(E) series with 40° contact angle
- some sizes in the 70 B series
- sealed bearings:
 - in series 72 B(E) (15 ≤ d ≤ 55 mm)
 in series 73 B(E) (12 ≤ d ≤ 50 mm)
- bearings in the 72 AC series with 25° contact angle (15 ≤ d ≤ 70 mm)
- bearings in the 73 AC series with 25° contact angle (17 ≤ d ≤ 70 mm)
- some large size bearings with a flanged outer ring (skf.com/go/17000-3-1)
- SKF inch bearings (ALS and AMS series, skf.com/go/17000-3-1)

Basic design bearings

- are intended for adjusted arrangements where only one bearing is used at each bearing position and are not suitable for mounting immediately adjacent to each other
- have Normal tolerances on bearing width and standout of the rings
- have different performance capabilities compared with SKF Explorer bearings

Bearings for universal matching


- are available with 25° and 40° contact angles
- are intended to be used in sets
- have ring widths and standouts manufactured to tight tolerances
- can also be used in place of basic design bearings for arrangements with single bearings, as they typically have higher precision, and increased load carrying capacity and speed capability


When two bearings are mounted immediately adjacent to each other, a given internal clearance or preload or an even load distribution between the two bearings is obtained without the use of shims or similar devices.

Bearings for universal matching are identified by the following suffixes:

- CA, CB, CC or G for internal clearance
- GA, GB or GC for preload

When ordering, indicate the number of individual bearings required and not the number of sets.

Tandem arrangement

- is used where the load carrying capacity of a single bearing is inadequate
- shares the radial and axial loads equally
- has parallel load lines
- can accommodate axial loads in one direction only

If axial loads act in both directions, a third bearing, adjusted against the tandem pair, must be added.

· Back-to-back arrangement

- provides a relatively stiff bearing arrangement
- can accommodate tilting moments
- has load lines that diverge from the bearing axis
- can accommodate axial loads in both directions, but only by one bearing in each direction

• Face-to-face arrangement

- is less sensitive to misalignment but not as stiff as a back-to-back arrangement
- has load lines that converge towards the bearing axis
- can accommodate axial loads in both directions, but only by one bearing in each direction

Bearings with 25° contact angle (AC series)

- have a raceway geometry optimized for high speeds
- have reduced sensitivity to axial loading and misalignment, including the ability to accommodate two times higher impact loads before edge stresses can occur
- are equipped with an optimized machined brass cage as standard

Compared with bearings with 40° contact angle, benefits include:

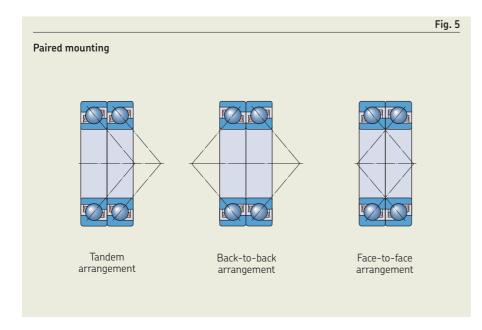
- 20% higher limiting speeds
- higher radial load carrying capacity (by trading off lower axial load carrying
- increased robustness when used as the backup bearing in sets that are predominantly loaded in one direction

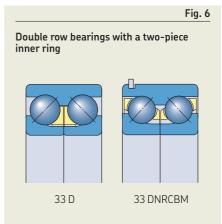
Double row angular contact ball bearings

The design of SKF double row angular contact ball bearings (fig. 3, page 385) corresponds to two single row angular contact ball bearings arranged back-to-back, but takes up less axial space. They can accommodate radial loads, axial loads in either direction and tilting moments. Double row angular contact ball bearings provide stiff bearing arrangements.

SKF standard assortment

- bearings in the 32 A and 33 A series
- bearings with a two-piece inner ring
- capped bearings
- open bearings (that are also available capped) that may have recesses in the ring side faces


Bearings in the 52 and 53 series are no longer available and have been replaced with 32 A and 33 A series bearings, which are dimensionally interchangeable. Only size 3200 A is different, and has a width of 14 mm instead of 14,3 mm.


Basic design bearings

• have different tolerances and performance capabilities compared with SKF Explorer bearings

Bearings with a two-piece inner ring

- incorporate a larger number of balls, and have a larger contact angle, giving the bearing its high load carrying capacity, especially in the axial direction
- are separable in the 33 D series (fig. 6), i.e. the outer ring with ball and cage assemblies can be mounted independently of the inner ring halves
- are non-separable in the 33 DNRCBM series (fig. 6)
 - have a snap ring groove with a snap ring in the outer ring, enabling simple and space-saving axial location in the
 - have been designed specifically for centrifugal pumps, but can also be used in other applications

387

Four-point contact ball bearings

Four-point contact ball bearings (fig. 4, page 385) are radial single row angular contact ball bearings with raceways that are designed to support axial loads in both directions. For a given axial load, a limited radial load can also be supported (*Load ratio*, page 403). The bearings are separable, i.e. the outer ring with ball and cage assembly can be mounted separately from the two inner ring halves.

These bearings take up considerably less axial space than double row bearings.

Both inner ring halves of SKF Explorer four-point contact ball bearings have a recessed shoulder. This improves oil flow when the bearing is used in combination with an SKF cylindrical roller bearing (fig. 12, page 403). In addition, these recesses can be used to facilitate dismounting.

When four-point contact ball bearings are subjected to high clamping forces their inner ring deformation is limited.

SKF standard assortment

- bearings in the QJ 2 and QJ 3 series
- some sizes in the QJ 10 and QJ 12 series (skf.com/go/17000-3-4)

Fig. 7 Four-point contact bearing with locating slots

SKF.

Bearings with locating slots

Four-point contact ball bearings can be supplied with two locating slots in the outer ring (designation suffix N2, fig. 7):

- preventing the bearing from turning
- positioned 180° apart

The dimensions and tolerances of the locating slots are in accordance with ISO 20515 and are listed in **table 1**.

SKF Explorer bearings

For information, refer to page 7

	Table 1
Locating slots in the outer ring of four-	-point contact ball bearings
A b t A	45°

Outside diameter			_			_	Tolerance ¹
						_	
	h	b	r_0	h	þ	r_0	t U
	mm						mm
45	2,5	3,5	0,5	. .	- _	- _	0,2
60 72	3,5	4,5 4,5	0,5 0,5	3,5 3,5	4,5 4,5	0,5 0,5	0,2 0,2
95	4	5,5	0,5	4	5,5	0,5	0,2
115 130	5 6,5	6,5 6,5	0,5 0,5	5 8,1	6,5 6,5	0,5 1	0,2 0,2
145	8,1	6,5	1	8,1	6,5	1	0,2
170 190	8,1 10,1	6,5 8,5	1 2	10,1 11,7	8,5 10,5	2	0,2 0,2
210	10,1	8,5	2	11,7	10,5	2	0,2
240 270	11,7 11,7	10,5 10,5	2 2	11,7 11,7	10,5 10,5	2 2	0,2 0,2
400	12,7	10,5	2	12,7	10,5	2	0,4
	45 60 72 95 115 130 145 170 190 210 240	Diame h 45 2,5 60 3 72 3,5 95 4 115 5 130 6,5 145 8,1 170 8,1 190 10,1 210 10,1 240 11,7	Diameter series h b mm 45	Diameter series 2 h b r ₀ mm 45 2,5 3,5 0,5 60 3 4,5 0,5 72 3,5 4,5 0,5 115 5 6,5 0,5 130 6,5 6,5 0,5 145 8,1 6,5 1 170 8,1 6,5 1 190 10,1 8,5 2 210 10,1 8,5 2 210 10,1 8,5 2 210 10,1 8,5 2 210 11,7 10,5 2	Diameter series 2 h b r ₀ mm 45 2,5 3,5 0,5 − 60 3 4,5 0,5 3,5 72 3,5 4,5 0,5 3,5 72 3,5 6,5 0,5 4 115 5 6,5 0,5 5 130 6,5 6,5 0,5 8,1 145 8,1 6,5 1 8,1 170 8,1 6,5 1 8,1 170 8,1 6,5 1 10,1 190 10,1 8,5 2 11,7 210 10,1 8,5 2 11,7 240 11,7 10,5 2 11,7	Diameter series 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Capped bearings

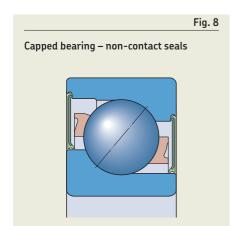
SKF supplies the following angular contact ball bearings capped with a shield or seal on both sides:

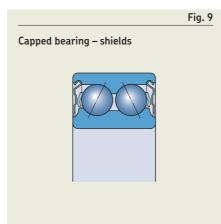
- single row bearings in the 72 B(E) and 73 B(E) series:
 - non-contact seals (designation suffix 2RZ, fig. 8)
- most common double row basic design and SKF Explorer bearings:
 - shields (designation suffix 2Z, fig. 9)
 - contact seals (designation suffix 2RS1, fig. 10)

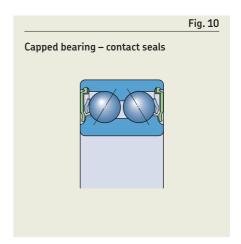
For additional information, refer to *Integral* sealing, page 26.

When capped bearings must operate under certain conditions, such as very high speeds or high temperatures, grease may appear between the inner ring and capping device. For bearing arrangements where this would be detrimental, appropriate actions should be taken.

Shields


- are made of sheet steel
- extend into a recess on the inner ring


Non-contact seals


- have no additional frictional moment
- have the same limiting speeds as open bearings
- form an extremely narrow gap with the inner ring shoulder
- are made of sheet steel reinforced NBR (oil and wear-resistant)
- make good, positive contact with the recess in which they are fitted

Contact seals

- are made of NBR
- are reinforced with a sheet steel insert
- are fitted in a recess on the outer ring and make good, positive contact with the recess
- have a lip that exerts light pressure against the recess on the inner ring to provide an effective seal

388 **SKF**

Greases for capped bearings

Bearings capped on both sides are lubricated for the life of the bearing and are virtually maintenance-free. They are filled with one of the following greases (table 2):

- single row bearings
 - as standard → GXN
- double row bearings
 - as standard → GJN
 - in Europe → MT33 (commonly used and widely available)
 - low-friction grease → GE2
- other greases (table 2) can be supplied on request

The standard grease is not identified in the bearing designation (no designation suffix). Other greases are indicated by the corresponding grease suffix.

Grease life for capped bearings

Grease life for capped angular contact ball bearings can be estimated as described for deep groove ball bearings (page 246). The required grease information is provided in table 2.

5KF 389

3 Angular contact ball bearings

Cages

SKF angular contact ball bearings are fitted with one or two (double row bearings) of the cages shown in table 3.

The standard cages of double row bearings are either made of PA66 or of stamped steel

The machined brass cage (designation suffix M) of single row bearings has been upgraded as follows:

- optimized cage pocket geometry
- a smaller cross section and reduced mass
- increased material strength with reduced lead content

When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For additional information about the suitability of cages, refer to *Cages*, page 187.

1) Check availability prior to ordering

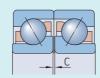
	Single row angula	r contact ball beari	ngs 	I	Double row angular of bearings	ontact ball
Cage type	Window-type, ball	centred	Window-type, ball centred	Window-type, ball centred	Snap-type, ball centred	Snap-type, ball centred
Material	PA66, glass fibre reinforced	PEEK, glass fibre reinforced	Stamped brass, stamped steel	Machined brass, machined steel ¹⁾	PA66, glass fibre reinforced	Stamped steel
Suffix	Р	PH	Υ, J	M, F1)	TN9	_, J1

390 **SKF**

 г.,	h	l۸	

Snap-type, crown, ball centred Window-type, ball centred water ring centred when the guiding surface, outer ring centred water has been made and the guiding surface.

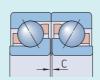
Bearing data


	Single row angular contact ball bearings								
Dimension standards	Boundary dimensions: ISO 15 and ISO 12044								
Tolerances	Normal Except for: • SKF Explorer bearings: - P6 dimensional tolerance - P5 geometrical tolerance • Bearings with D ≥ 400 mm: - P6 geometrical tolerance								
For additional information → page 35	Values: ISO 492 (table 2, page 38, to table 4, page 40)								
Contact angle	 suffix B: 40° suffix AC: 25° For availability of bearings with 30° contact angle, contact SKF. 								
Internal clearance	Single bearings Obtained after mounting, depending on adjustment against a second bearing. Pairs of universally matchable bearings CA – smaller than Normal axial clearance (table 4, page 394) CB – Normal axial clearance (standard) (table 4) CC – larger than Normal axial clearance (table 4) G (standard for larger bearings) - Normal axial clearance (table 5, page 394)								
For additional information → page 182	Values are valid for unmounted bearing sets, arranged back-to-back or face-to-face under zero measuring load.								
Preload	Single bearings Obtained after mounting, depending on adjustment against a second bearing. Pairs of universally matchable bearings GA – light preload (standard) GB – moderate preload GC – heavy preload								
For additional information → page 182	Values (table 6, page 395) apply to unmounted bearing sets, arranged back-to-back or face-to-face.								
Permissible misalignment	Back-to-back: ≈ 2 minutes of arc Face-to-face: ≈ 4 minutes of arc								
	Misalignment increases bearing noise and reduces bearing service life, and when it exceeds								

392 **5KF**.

Double row angular contact ball bearings	Four-point contact ball bearings
Boundary dimensions: ISO 15 Except for: • bearing 3200 A: width = 14 mm instead of 14,3 mm • snap rings and grooves: ISO 464 (table 7, page 395)	Boundary dimensions: ISO 15 Except for: • Locating slots: ISO 20515 (table 1, page 387)
Normal Except for: • SKF Explorer bearings and 33 DNRCBM series: - P6	Normal P6 geometrical tolerance on request Except for: • SKF Explorer bearings: - P6 - width tolerance reduced to 0/–40 µm
 32 A and 33 A series: 30° 33 D series: 45° 33 DNRCBM series: 40° 	• 35°
Normal Check availability of C2, C3 or C4 clearance classes	Normal Check availability of C2, C3, C4 or reduced ranges of standard clearance classes
Values: (table 8, page 396)	Values: ISO 5753-2 (table 9, page 397)
Values are valid for unmounted bearings under zero measuring	ng load.
-	_
≈ 2 minutes of arc	≈ 2 minutes of arc
the guideline values, these effects become particularly not	ireable

Axial internal clearance of universally matchable single row angular contact ball bearings arranged back-to-back or face-to-face



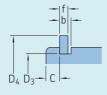
Bore diameter d >		Axial i i Class CA min.	max.	CB min.	max.	CC min.	max.		
mm		μm							
- 18 30	18 30 50	5 7 9	13 15 17	15 18 22	23 26 30	24 32 40	32 40 48		
50 80 120	80 120 160	11 14 17	23 26 29	26 32 35	38 44 47	48 55 62	60 67 74		
160 180 250	180 250 315	17 21 26	29 37 42	35 45 52	47 61 68	62 74 90	74 90 106		

Table 5

Axial internal clearance of G design universally matchable single row angular contact ball bearings arranged back-to-back or face-to-face

Bore	diameter	Axial internal clearance of bearings in the series													
d		718 A		719 A		70 A		70 B		72 B		73 B		74 B	
>	≤	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
mm		μm													
30	60	_	-	_	_	_	_	-	-	-	-	-	-	24	64
60	70	-	-	-	-	Ξ.	Ξ.	<u>-</u> .	Ξ.	-	-	-	-	24	74
100	160	-	-	-	-	24	76	26	76	-	-	-	-	-	-
160	240	_	_	_	_	15	68	20	72	_	_	_	_	_	_
240	280	15	68	15	68	15	68	20	72	30	80	-	-	-	-
280	300	15	68	15	68	30	80	30	80	30	80	-	-	-	-
300	340	15	68	30	80	30	80	30	80	30	80	40	100	_	_
340	400	15	68	40	100	40	100	40	100	30	80	60	120	_	_
400	420	40	100	40	100	40	100	40	100	40	100	60	120	-	-
420	460	40	100	40	100	40	100	40	100	60	120	60	120	_	_
460	500	60	120	60	120	60	120	60	120	60	120	60	120	_	_
500	750	_	_	_	_	160	260	_	_	_	_	_	_	_	_
						_00									

Preload of universally matchable single row angular contact ball bearings arranged back-to-back or face-to-face



Bore dia	meter	Preload Class					
d >	≤	GA min.	max.	GB min.	max.	GC min.	max.
mm		μm		μm		μm	
10	18	+4	-4	-2	-10	-8	-16
18	30	+4	-4	-2	-10	-8	-16
30	50	+4	-4	-2	-10	-8	-16
50	80	+6	-6	-3	-15	-12	-24
80	120	+6	-6	-3	-15	-12	-24
120	180	+6	-6	-3	-15	-12	-24
180	250	+8	-8	-4	-20	-16	-32
250	315	+8	-8	-4	-20	-16	-32

Table 7

Dimensions of snap ring grooves and snap rings

Bearing Designation	Dimensio	ons	Snap ring Designation				
	С	b	f	D_3	D_4		
-	mm					-	
3308 DNRCBM 3309 DNRCBM 3310 DNRCBM	3,28 3,28 3,28	2,7 2,7 2,7	2,46 2,46 2,46	86,8 96,8 106,8	96,5 106,5 116,6	SP 90 SP 100 SP 110	
3311 DNRCBM 3313 DNRCBM	4,06 4,9	3,1 3,1	2,82 2,82	115,2 135,2	129,7 149,7	SP 120 SP 140	

5KF. 395

Axial internal clearance of double row angular contact ball bearings

Bore d	iameter		nternal cle	earance of	bearings	in the se	ries			33 D		33 DN	33 DNRCBM	
d >	≤	C2 min.	max.	Norma min.	ıl max.	C3 min.	max.	C4 min.	max.	min.	max.	min.	max.	
mm		μm								μm		μm		
- 10 18	10 18 24	1 1 2	11 12 14	5 6 7	21 23 25	12 13 16	28 31 34	25 27 28	45 47 48	25 27 27	45 47 47	- - 6	- - 26	
24 30 40	30 40 50	2 2 2	15 16 18	8 9 11	27 29 33	18 21 23	37 40 44	30 33 36	50 54 58	30 33 36	50 54 58	6 10 10	26 30 30	
50 65 80	65 80 100	3 3 3	22 24 26	13 15 18	36 40 46	26 30 35	48 54 63	40 46 55	63 71 83	40 46 55	63 71 83	18 18 -	38 38 -	
100	110	4	30	22	53	42	73	65	96	65	96	-	_	

Axial internal clearance of four-point contact ball bearings

Bore dian	neter	C2	ternal clearance	Normal		C3		C4	
>	≤	min.	max.	min.	max.	min.	max.	min.	max.
mm		μm							
10	18	15	65	50	95	85	130	120	165
18	40	25	75	65	110	100	150	135	185
40	60	35	85	75	125	110	165	150	200
60	80	45	100	85	140	125	175	165	215
80	100	55	110	95	150	135	190	180	235
100	140	70	130	115	175	160	220	205	265
140	180	90	155	135	200	185	250	235	300
180	220	105	175	155	225	210	280	260	330
220	260	120	195	175	250	230	305	290	360
260	300	135	215	195	275	255	335	315	390
300	350	155	240	220	305	285	370	350	430
350	400	175	265	245	330	310	400	380	470
400	450	190	285	265	360	340	435	415	510
450	500	210	310	290	390	365	470	445	545

5KF. 397

Loads

	Single row angular contact ball bearings	Double row angular contact ball bearings
Minimum load	Minimum axial load for single bearings and bearing pairs arranged in tandem:	-
	$F_{am} = A \left(\frac{n}{1000} \right)^2$	
	Minimum radial load for bearing pairs arranged back-to-back or face-to-face:	Minimum radial load:
For additional information → page 106	$F_{rm} = k_r \left(\frac{v n}{1000} \right)^{2/3} \left(\frac{d_m}{100} \right)^2$	$F_{rm} = k_r \left(\frac{v n}{1000} \right)^{2/3} \left(\frac{d_m}{100} \right)^2$
Equivalent dynamic bearing load	Single bearings and bearing pairs arranged in tandem: $F_a/F_r \le e \Rightarrow P = F_r \\ F_a/F_r > e \Rightarrow P = X F_r + Y_2 F_a$	$F_a/F_r \le e \rightarrow P = F_r + Y_1 F_a$ $F_a/F_r > e \rightarrow P = X F_r + Y_2 F_a$
	When determining the axial load F _a , refer to Calculating the axial load for bearings mounted singly or paired in tandem page 400.	
For additional information → page 91	Bearing pairs arranged back-to-back or face-to-face: $F_a/F_r \le e \Rightarrow P = F_r + Y_1 F_a$ $F_a/F_r > e \Rightarrow P = X F_r + Y_2 F_a$	
Equivalent static bearing load	Single bearings and bearing pairs arranged in tandem: $P_0 = 0.5 F_r + Y_0 F_a$ $P_0 < F_r \Rightarrow P_0 = F_r$	$P_0 = F_r + Y_0 F_a$
	When determining the axial load F _a , refer to <i>Calculating</i> the axial load for bearings mounted singly or paired in tandem, page 400.	
For additional information → page 105	Bearing pairs arranged back-to-back or face-to-face: $P_0 = F_r + Y_0 F_a$	

398 **5KF**.

Four-point contact ball bearings	
Minimum axial load: $F_{am} = A \left(\frac{n}{1000}\right)^{2}$ - Locating bearings to accommodate radial and axial load:	Symbols A minimum axial load factor (product tables) • Single row bearings, page 406 • Four-point contact bearings, page 430 d _m bearing mean diameter [mm] = 0,5 (d + D) e calculation factor for single and double row bearings (table 10, page 400) F _a axial load [kN] F _r radial load [kN] F _r radial load [kN] k _r minimum radial load factor (product tables) • Single row bearings, page 406
$\begin{aligned} F_a/F_r &\leq 0.95 &\Rightarrow & P = F_r + 0.66 \ F_a \\ F_a/F_r &> 0.95 &\Rightarrow & P = 0.6 \ F_r + 1.07 \ F_a \end{aligned}$ For a proper functionality, SKF recommends $F_a &\geq 1.27 \ F_r.$ Thrust bearings with radial clearance in the housing in combination with a radial bearing (fig. 12, page 403): $P = 1.07 \ F_a$	• Double row bearings, page 424 n rotational speed [r/min] P equivalent dynamic bearing load [kN] P ₀ equivalent static bearing load [kN] X, Y ₀ , Y ₁ , Y ₂ calculation factors for single and double row bearings (table 10 v actual operating viscosity of the lubricant [mm²/s]
$P_0 = F_r + 0.58 F_a$	

5KF. 399

Calculating the axial load for bearings mounted singly or paired in tandem

When a radial load is applied to a single row angular contact ball bearing, the load is transmitted from one raceway to the other at an angle to the bearing axis and an internal axial load is induced. This must be considered when calculating the equivalent bearing loads for bearings in adjusted arrangements consisting of two single bearings and/or bearing pairs arranged in tandem.

The equations (table 11) are only valid if the bearings have identical contact angles and are adjusted against each other to practically zero clearance, but without any preload. In the table, bearing A is subjected to a radial load F_{rA} and bearing B to a radial load F_{rB} . Both F_{rA} and F_{rB} are always considered positive, even when they act in the direction opposite to that shown in the figures. The radial loads act at the pressure centres of the bearings (distance a, refer to product tables, page 406).

These calculations can easily be done with SKF's online calculation tools. When the bearings are adjusted with clearance or preload, or when bearings with different contact angles are used, the equations become more complex and can be done using the SKF SimPro platform (skf.com/simpro).

Load carrying capacity of bearing pairs

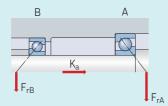
The values for basic load ratings and fatigue load limits listed in the **product tables**, **page 406**, apply to single bearings. For bearing pairs mounted immediately adjacent to each other, the following values apply:

- basic dynamic load rating for standard bearings in all arrangements and for SKF Explorer bearings in a back-to-back or face-to-face arrangement C = 1,62 C_{single bearing}
- basic dynamic load rating for SKF Explorer bearings in a tandem arrangement
 - $C = 2 C_{\text{single bearing}}$
- basic static load rating
 - $C_0 = 2 C_{0 \text{ single bearing}}$
- fatigue load limit
 - $P_u = 2 P_{u \text{ single bearing}}$

					Table 10
Calculation factors for single a	nd double	row angular	contact ball	bearings	
	6 1 1 1				
Bearing types	Calculati e	on factor X	Y ₁	Y_2	Y_0
Single year bearings					
Single row bearings					
Single bearings or bearing pairs arranged in tandem					
Suffix B	1,4	0,35	-	0,57	0,26
Suffix AC	0,68	0,41	-	0,87	0,38
Bearing pairs arranged back- to-back or face-to-face					
Suffix B	1,14	0,57	0,55	0,93	0,52
Suffix AC	0,68	0,67	0,92	1,41	0,76
Double row bearings					
Series 32 A, 33 A	0,8	0,63	0,78	1,24	0,66
Series 33 D Series 33 DNRCBM	1,34 1,14	0,54 0,57	0,47 0,55	0,81 0,93	0,44 0,52

400 **SKF**

Table 11

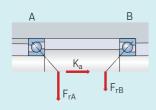

Axial loading of bearing arrangements incorporating two single row angular contact ball bearings and/or bearing pairs in tandem

Bearing arrangement

Load case

Axial loads

Back-to-back


Case 1a

$$F_{rA} \ge F_{rB}$$
 $K_a \ge 0$

$$F_{aA} = R F_{rA}$$

$$F_{aB} = F_{aA} + K_a$$

Face-to-face

Case 1b

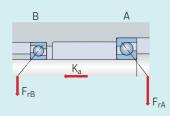
$$F_{rA} < F_{rB}$$

 $K_a \ge R (F_{rB} - F_{rA})$

$$F_{aA} = R F_{rA}$$

$$F_{aB} = F_{aA} + K_a$$

Case 1c

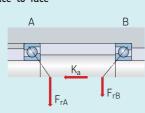

$$\mathsf{F}_{\mathsf{rA}} < \mathsf{F}_{\mathsf{rB}}$$

 $K_a < R (F_{rB} - F_{rA})$

$$F_{aA} = F_{aB} - K_a$$

$$F_{aB} = R F_{rB}$$

Back-to-back


Case 2a

$$F_{rA} \le F_{rB}$$

 $K_a \ge 0$

$$F_{aA} = F_{aB} + K_a$$

$$F_{aB} = R F_{rB}$$

Face-to-face

Case 2b

$$F_{rA} > F_{rB}$$

$$K_a \ge R (F_{rA} - F_{rB})$$

$$F_{aA} = F_{aB} + K_a$$

$$F_{aB} = R F_{rB}$$

Case 2c

$$\mathsf{F}_{\mathsf{rA}} \! > \! \mathsf{F}_{\mathsf{rB}}$$

 $K_a < R (F_{rA} - F_{rB})$

$$F_{aA} = R F_{rA}$$

$$F_{aB} = F_{aA} - K_a$$

- For bearings with:

 20° contact angle \rightarrow R = 0,50

 25° contact angle \rightarrow R = 0,57

 30° contact angle \rightarrow R = 0,66

 40° contact angle \rightarrow R = 0,88

Temperature limits

The permissible operating temperature for angular contact ball bearings can be limited by:

- the dimensional stability of the bearing rings and balls
- the cage
- the seals
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings and balls

The bearings are heat stabilized up to at least 150 °C (300 °F).

Cages

Steel, brass or PEEK cages can be used at the same operating temperatures as the bearing rings and balls. For temperature limits of cages made of other polymer materials, refer to *Polymer cages*, page 188.

Seals

The permissible operating temperature for NBR seals is –40 to +100 °C (–40 to +210 °F). Temperatures up to 120 °C (250 °F) can be tolerated for brief periods.

Typically, temperature peaks are at the

Lubricants

seal lip.

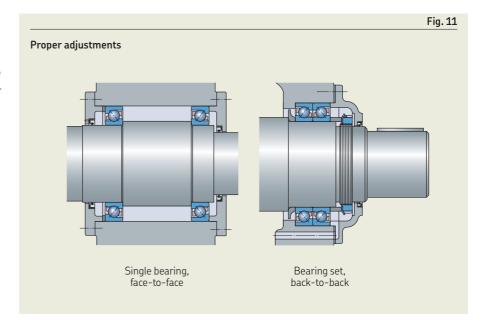
Temperature limits for greases used in sealed SKF angular contact ball bearings are provided in **table 2**, **page 389**. For temperature limits of other SKF greases, refer to Selecting a suitable SKF grease, **page 116**.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Permissible speed

The speed ratings in the **product tables** indicate:

- the reference speed, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the limiting speed, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds


For additional information, refer to *Operating temperature and speed*, **page 130**.

SKF recommends oil lubrication for bearings with a ring centred cage (designation suffix MA or PHAS). When these bearings are grease lubricated, the nd_m value is limited to 250 000 mm/min.

where

Bearing pairs

For bearings arranged in pairs, the limiting speed should be reduced to approximately 80% of the value quoted for a single bearing.

Design considerations

Single row angular contact ball bearings

Proper adjustment

Single row angular contact ball bearings must be used (fig. 11):

- with a second bearing
- in sets

The bearings must be adjusted against each other until the requisite clearance or preload is obtained (*Selecting preload*, page 186.

Universally matchable bearings mounted immediately adjacent to each other:

- require no further adjustment (Bearings for universal matching, page 385)
- obtain requisite clearance or preload by:
 - choosing bearings from an appropriate clearance or preload class
 - applying suitable fits for the bearings on the shaft and in the housing

Performance and operational reliability depend on:

- proper adjustment for single bearings
- the correct selection of clearance and preload for universally matchable bearings If there is too much clearance in the bearing arrangement during operation, the load carrying capacity of the bearings will not be fully utilized. Excessive preload produces more friction and higher operating temperatures, leading to a reduction in bearing service life.

Axial loads in one direction

When the axial load acts predominantly in one direction in back-to-back and face-to-face arrangements, unfavourable rolling conditions for the balls of the axially unloaded bearing may occur, which can lead to:

- increased noise levels
- discontinuity in the lubricant film
- increased stresses on the cage

Under these circumstances, SKF recommends zero operating clearance, which can be attained by using springs. When springs are not sufficient, using bearings with a 25° contact angle as a backup bearing may help.

Load ratio

- of $F_a/F_r \ge 1$ is required by bearings in the 70 B, 72 B(E) and 73 B(E) series
- of F_a/F_r ≥ 0,55 is required by bearings in the 72 AC and 73 AC series

If the load ratio requirement is not met in each case, bearing service life can be reduced.

Four-point contact ball bearings

Used as a thrust bearing

Four-point contact ball bearings are often used as entirely thrust bearings, together with a radial bearing. When used in this way, the four-point contact ball bearing should be mounted with radial clearance in the housing (fig. 12).

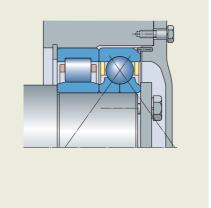
- in combination with a cylindrical roller hearing;
 - the radial internal clearance of the cylindrical roller bearing should be smaller than the theoretical radial internal clearance of the four-point contact ball bearing after both have been mounted
 - the theoretical radial clearance can be calculated from:

$$C_{r} = 0.7 C_{a}$$

where

C_r = theoretical radial internal clearance C_a = axial internal clearance (table 9, page 397)

- the outer ring of the four-point contact ball bearing must be able to accommodate thermal movements
 - Therefore, it should not be clamped axially, but a small gap should be maintained between the outer ring and the cover flange.
- bearings with locating slots should be used (fig. 12) to prevent the outer ring from turning


If clamping the outer ring cannot be avoided, the outer ring must be carefully centred during mounting.

Load ratio

For proper functionality, the balls should contact only one inner ring raceway and the opposite side of the outer ring raceway. This is the case when the load ratio is $F_a/F_r \ge 1,27$.

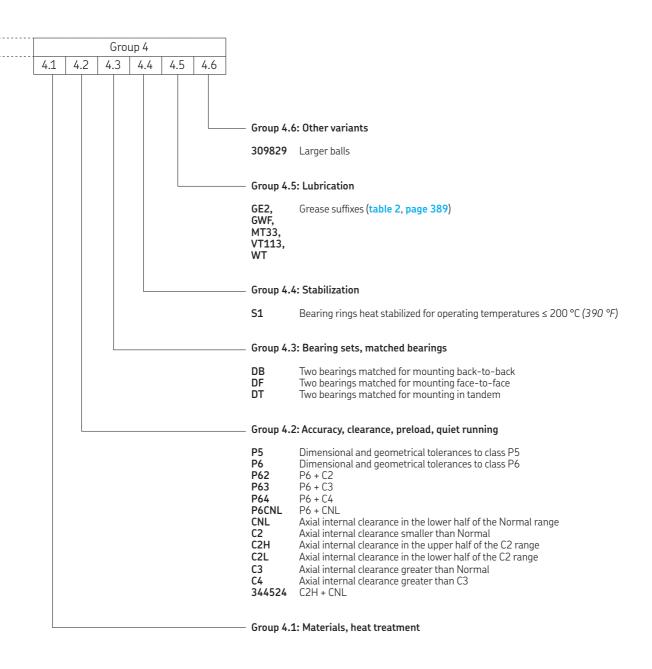
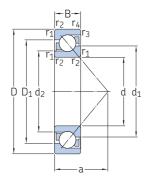
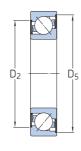
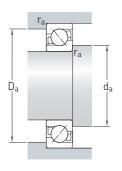

A load ratio that is smaller than recommended can reduce bearing service life.

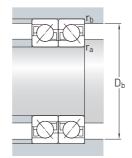
Fig. 12
Bearing mounted with radial clearance in the housing


Designation system

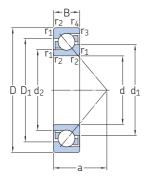

		Group 1	Group 2	Group 3 /
Prefixes				
Basic des	ignation————————————————————————————————————			
ALS	able 4, page 30 Inch bearing			
AMS	Inch bearing			
Suffixes]		
Group 1:	Internal design			
Α	Single row bearing, 30° contact angle			
Α	Double row bearing, no filling slots			
AB AC	Single row inch bearing, 20° contact angle Single row bearing, 25° contact angle			
В	Single row bearing, 40° contact angle			
D E	Two-piece inner ring Optimized internal design			
_	opunized internal design			
Group 2:	External design (seals, snap ring groove, execution, etc.)			
•				
N NR	Snap ring groove in the outer ring Snap ring groove in the outer ring, with appropriate snap ring			
N1	One locating slot (notch) in one outer ring side face			
N2 CB	Two locating slots (notches) in one outer ring side face, 180° apart Double row bearing, controlled axial internal clearance			
CA	Bearing for universal matching. Two bearings arranged back-to-back or face-to-face			
СВ	have axial internal clearance smaller than Normal (CB). Bearing for universal matching. Two bearings arranged back-to-back or face-to-face			
	have Normal axial internal clearance.			
CC	Bearing for universal matching. Two bearings arranged back-to-back or face-to-face have axial internal clearance greater than Normal (CB).			
G	Bearing for universal matching. Two bearings arranged back-to-back or face-to-face			
GA	have axial internal clearance. Bearing for universal matching. Two bearings arranged back-to-back or face-to-face			
	have light preload.			
GB	Bearing for universal matching. Two bearings arranged back-to-back or face-to-face have moderate preload.			
GC	Bearing for universal matching. Two bearings arranged back-to-back or face-to-face			
-2RS1	have heavy preload. Contact seal, NBR, on both sides			
-2RZ	Non-contact seal, NBR, on both sides			
-2Z	Shield on both sides			
Group 3:	Cage design —			
Oroup 3.				
– F	Stamped steel cage, ball centred (double row bearing) Machined steel cage, ball centred			
FA	Machined steel cage, outer ring centred			
J J1	Stamped steel cage, ball centred (single row bearing) Stamped steel cage, ball centred (double row bearing with a two-piece inner ring)			
M	Machined brass cage, ball centred; different designs are identified by a number following			
MA	the M, e.g. M2 Machined brass cage, outer ring centred.			
MB	Machined brass cage, inner ring centred			
P PH	Glass fibre reinforced PA66 cage, ball centred Glass fibre reinforced PEEK cage, ball centred			
PHAS	Glass fibre reinforced PEEK cage, with lubrication grooves in the guiding surfaces, outer			
TN9	ring centred Glass fibre reinforced PA66 cage, ball centred			
Υ Υ	Stamped brass cage, ball centred			

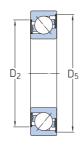
5KF 405


$\begin{array}{ccc} \textbf{3.1 Single row angular contact ball bearings} \\ & \textbf{d} & \textbf{10} - \textbf{20} \text{ mm} \end{array}$

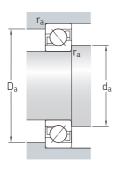


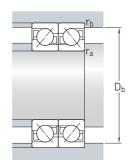
2RZ


Princ	cipal di	mensions		oad ratings c static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designations Universally matchable	Basic design / sealed bearing
d	D	В	С	C_0	P_{u}	speed	speed		bearing	sealed bearing
nm			kN		kN	r/min		kg	_	
.0	30	9	7,02	3,35	0,14	30 000	30 000	0,03	► 7200 BECBP	► 7200 BEP
12	32 37 37	10 12 12	7,61 10,6 10,6	3,8 5 5	0,16 0,208 0,208	28 000 26 000 26 000	26 000 20 000 24 000	0,036 0,06 0,06	► 7201 BECBP - -	7201 BEP7301 BE-2RZ7301 BEP
L5	35	11	8,32	4,4	0,183	24 000	20 000	0,045	-	► 7202 BE-2RZ
	35	11	8,32	4,4	0,183	24 000	24 000	0,045	-	► 7202 BEP
	35	11	8,8	4,65	0,196	24 000	26 000	0,045	> 7202 BECBP	-
	35	11	10,2	5,2	0,224	26 000	40 000	0,045	7202 ACCBM	_
	42	13	13	6,7	0,28	22 000	17 000	0,082	-	► 7302 BE-2RZ
	42	13	13	6,7	0,28	22 000	20 000	0,08	► 7302 BECBP	► 7302 BEP
.7	40	12	10,4	5,5	0,236	22 000	17 000	0,063	-	► 7203 BE-2RZ
	40	12	10,4	5,5	0,236	22 000	20 000	0,065	-	► 7203 BEP
	40	12	11	5,85	0,25	22 000	22 000	0,065	► 7203 BECBP	-
	40	12	11	5,85	0,25	22 000	28 000	0,065	► 7203 BECBM	–
	40	12	11,1	6,1	0,26	22 000	20 000	0,065	-	7203 BEY
	40	12	12,5	6,7	0,285	24 000	34 000	0,065	7203 ACCBM	–
	47	14	15,9	8,3	0,355	20 000	15 000	0,11	-	► 7303 BE-2RZ
	47	14	15,9	8,3	0,355	20 000	19 000	0,11	▶ 7303 BECBP	► 7303 BEP
20	47	14	13,3	7,65	0,325	19 000	14 000	0,15	-	► 7204 BE-2RZ
	47	14	13,3	7,65	0,325	19 000	18 000	0,11	-	► 7204 BEP
	47	14	14,3	8,15	0,345	19 000	19 000	0,11	► 7204 BECBP	-
	47	14	14,3	8,15	0,345	19 000	19 000	0,11	7204 BECBPH	-
	47	14	14,3	8,15	0,345	19 000	19 000	0,11	► 7204 BECBY	-
	47	14	14,3	8,15	0,345	19 000	24 000	0,11	► 7204 BECBM	-
	47	14	16	9,3	0,39	20 000	30 000	0,11	7204 ACCBM	_
	52	15	17,4	9,5	0,4	17 000	13 000	0,14	-	► 7304 BE-2RZ
	52	15	17,4	9,5	0,4	17 000	16 000	0,14	-	► 7304 BEP
	52	15	19	10	0,425	17 000	18 000	0,14	➤ 7304 BECBP	-
	52	15	19	10	0,425	17 000	18 000	0,14	7304 BECBPH	-
	52	15	19	10	0,425	17 000	22 000	0,14	➤ 7304 BECBM	-
	52 52	15 15	20,4 20,8	11,2 11,2	0,475 0,475	17 000 19 000	18 000 26 000	0,14 0,14	7304 BECBY7304 ACCBM	- -

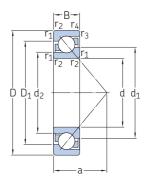


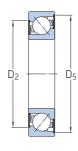
Dimer	imensions							Abutment and fillet dimensions						Calculation factors	
d	d ₁ ≈	d ₂ ≈	D ₁ , D ₂ ≈	D ₅ ≈	r _{1,2} min.	r _{3,4} min.	a	d _a min.	d _a max.	D _a max.	D _b max.	r _a max.	r _b max.	А	k _r
mm								mm						_	
10	18,3	14,5	22,9	-	0,6	0,3	13	14,2	-	25,8	27,6	0,6	0,3	0,000 224	0,095
12	20,2	16,5	25	-	0,6	0,3	14	16,2	-	27,8	30	0,6	0,3	0,000 283	0,095
	21,9	16,9	29,5	33,5	1	0,6	16,3	17,6	21,5	31,4	32,8	1	0,6	0,000 537	0,1
	21,7	16,9	28,3	-	1	0,6	16,3	17,6	-	31,4	32,8	1	0,6	0,000 537	0,1
15	22,7	18,9	28,5	32,4	0,6	0,3	16	19,2	22,5	30,8	32,6	0,6	0,3	0,000 383	0,095
	22,7	18,9	27,8	-	0,6	0,3	16	19,2	-	30,8	32,6	0,6	0,3	0,000 383	0,095
	22,7	18,9	27,8	-	0,6	0,3	16	19,2	-	30,8	32,6	0,6	0,3	0,000 383	0,095
	22,8	18,8	27,6	-	0,6	0,3	16	19,2	-	30,8	32,6	0,6	0,3	0,000 156	0,095
	26	20,7	33,8	38,6	1	0,6	18,6	21	25,5	36	38	1	0,6	0,000 907	0,1
	26	20,7	32,6	-	1	0,6	18,6	21	-	36	38	1	0,6	0,000 907	0,1
17	26,2	21,6	34	36,5	0,6	0,6	18	21,2	26,2	35,8	35,8	0,6	0,6	0,000 625	0,095
	26,2	21,6	31,2	-	0,6	0,6	18	21,2	-	35,8	35,8	0,6	0,6	0,000 625	0,095
	26,2	21,6	31,2	-	0,6	0,6	18	21,2	-	35,8	35,8	0,6	0,6	0,000 625	0,095
	26,2	21,6	31,2	-	0,6	0,6	18	21,2	-	35,8	35,8	0,6	0,6	0,000 625	0,095
	26,2	21,6	31,2	-	0,6	0,6	18	21,2	-	35,8	35,8	0,6	0,6	0,000 687	0,095
	26	21,5	31,4	-	0,6	0,6	12	21,2	-	35,8	35,8	0,6	0,6	0,000 254	0,095
	28,6 28,6	22,8 22,8	37,4 36,2	42,6 -	1	0,6 0,6	20,4 20,4	22,6 22,6	28 -	41,4 41,4	42,8 42,8	1	0,6 0,6	0,00141 0,00141	0,1 0,1
20	30,8	25,8	37,7	43,2	1	0,6	21	25,6	30	41,4	42,8	1	0,6	0,00113	0,095
	30,8	25,8	37	-	1	0,6	21	25,6	-	41,4	42,8	1	0,6	0,00113	0,095
	30,8	25,8	37	-	1	0,6	21	25,6	-	41,4	42,8	1	0,6	0,00113	0,095
	30,8	25,8	37	-	1	0,6	21	25,6	-	41,4	42,8	1	0,6	0,00113	0,095
	30,8	25,8	37	-	1	0,6	21	25,6	-	41,4	42,8	1	0,6	0,00113	0,095
	30,8	25,8	37	-	1	0,6	21	25,6	-	41,4	42,8	1	0,6	0,00113	0,095
	30,7	25,7	36,7	-	1	0,6	14	25,6	-	41,4	42,8	1	0,6	0,000 461	0,095
	33,1	26,7	41,6	48,1	1,1	0,6	22,8	27	30,5	45	47,8	1	0,6	0,00191	0,1
	33,1	26,7	40,5	-	1,1	0,6	22,8	27	-	45	47,8	1	0,6	0,00191	0,1
	33,1	26,7	40,5	-	1,1	0,6	22,8	27	-	45	47,8	1	0,6	0,00191	0,1
	33,1	26,7	40,5	-	1,1	0,6	22,8	27	-	45	47,8	1	0,6	0,00191	0,1
	33,1	26,7	40,5	-	1,1	0,6	22,8	27	-	45	47,8	1	0,6	0,00191	0,1
	33,1 32,9	26,7 26,6	40,5 40,4	_ _	1,1 1,1	0,6 0,6	22,8 15	27 27	-	45 45	47,8 47,8	1	0,6 0,6	0,00212 0,000 771	0,1 0,1


$\begin{array}{ccc} \textbf{3.1 Single row angular contact ball bearings} \\ \textbf{d} & \textbf{25-30} \ \text{mm} \end{array}$

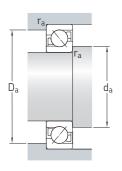


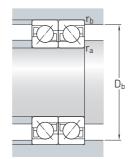
2RZ


Princ	cipal di	mensions		oad ratings c static	Fatigue load limit	Speed rati	Limiting	Mass	Designations Universally matchable	Basic design /
d	D	В	С	C_0	P_{u}	speed	speed		bearing	sealed bearing
mm			kN		kN	r/min		kg	_	
25	52 52 52	15 15 15	14,8 14,8 14,8	9,3 9,3 9,3	0,4 0,4 0,4	16 000 16 000 16 000	12 000 15 000 15 000	0,13 0,13 0,13	Ξ	7205 BE-2RZF7205 BEP7205 BEY
	52 52 52	15 15 15	15,6 15,6 15,6	10 10 10	0,43 0,43 0,43	16 000 16 000 16 000	17 000 17 000 20 000	0,13 0,13 0,13	7205 BECBP7205 BECBY7205 BECBM	- - -
	52	15	15,6	10	0,43	16 000	17 000	0,13	7205 BECBPH	-
	52	15	18	11,4	0,49	17 000	26 000	0,13	7205 ACCBM	-
	62	17	24,2	14	0,6	14 000	11 000	0,23	-	> 7305 BE-2RZ
	62	17	24,2	14	0,6	14 000	14 000	0,23	-	► 7305 BEP
	62	17	24,2	14	0,6	14 000	14 000	0,23	-	7305 BEY
	62	17	26,5	15,3	0,655	14 000	15 000	0,23	- 7305 BECBP	-
	62	17	26,5	15,3	0,655	14 000	15 000	0,23	7305 BECBPH	-
	62	17	26,5	15,3	0,655	14 000	15 000	0,23	➤ 7305 BECBY	-
	62	17	26,5	15,3	0,655	14 000	19 000	0,23	➤ 7305 BECBM	-
	62	17	29	17	0,72	15 000	22 000	0,23	► 7305 ACCBM	-
30	62	16	22,5	14,3	0,61	13 000	10 000	0,26	-	► 7206 BE-2RZI
	62	16	22,5	14,3	0,61	13 000	13 000	0,2	-	► 7206 BEP
	62	16	24	15,6	0,655	13 000	14 000	0,2	> 7206 BECBP	-
	62	16	24	15,6	0,655	13 000	14 000	0,2	7206 BECBPH	-
	62	16	24	15,6	0,655	13 000	18 000	0,2	➤ 7206 BECBM	-
	62	16	25,5	17	0,71	13 000	14 000	0,2	➤ 7206 BECBY	-
	62	16	27,5	17,3	0,735	15 000	20 000	0,2	7206 ACCBM	-
	72	19	32,5	19,3	0,815	12 000	9 500	0,35	-	▶ 7306 BE-2RZ
	72	19	32,5	19,3	0,815	12 000	12 000	0,34	-	▶ 7306 BEP
	72	19	35,5	21,2	0,9	12 000	13 000	0,34	➤ 7306 BECBP	-
	72	19	35,5	21,2	0,9	12 000	13 000	0,34	7306 BEGAPH	-
	72	19	35,5	21,2	0,9	12 000	16 000	0,34	➤ 7306 BECBM	-
	72 72	19 19	37,5 39	23,2 23,6	0,98 1	12 000 13 000	13 000 19 000	0,34 0,34	7306 BECBY7306 ACCBM	- -

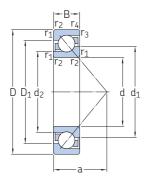


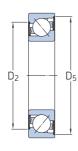
Dimer	ensions							Abutment and fillet dimensions						Calculation factors		
d	d ₁ ≈	d ₂ ≈	D ₁ , D ₂ ≈	D ₅ ≈	r _{1,2} min.	r _{3,4} min.	a	d _a min.	d _a max.	D _a max.	D _b max.	r _a max.	r _b max.	Α	k _r	
mm								mm						_		
25	36,1	30,8	42,7	48	1	0,6	24	30,6	35,5	46,4	47,8	1	0,6	0,00159	0,095	
	36,1	30,8	41,6	-	1	0,6	24	30,6	-	46,4	47,8	1	0,6	0,00159	0,095	
	36,1	30,8	41,6	-	1	0,6	24	30,6	-	46,4	47,8	1	0,6	0,00159	0,095	
	36,1	30,8	41,5	-	1	0,6	24	30,6	-	46,4	47,8	1	0,6	0,00159	0,095	
	36,1	30,8	41,5	-	1	0,6	24	30,6	-	46,4	47,8	1	0,6	0,00159	0,095	
	36,1	30,8	41,5	-	1	0,6	24	30,6	-	46,4	47,8	1	0,6	0,00159	0,095	
	36,1	30,8	41,5	-	1	0,6	24	30,6	-	46,4	47,8	1	0,6	0,00159	0,095	
	35,8	30,7	41,7	-	1	0,6	16	30,6	-	46,4	47,8	1	0,6	0,00656	0,095	
	39,7	32,3	50,5	56,9	1,1	0,6	26,8	32	39	55	57	1	0,6	0,00391	0,1	
	39,7	32,3	48,3	-	1,1	0,6	26,8	32	-	55	57	1	0,6	0,00391	0,1	
	39,7	32,3	48,3	-	1,1	0,6	26,8	32	-	55	57	1	0,6	0,00391	0,1	
	39,7	32,3	48,3	-	1,1	0,6	26,8	32	-	55	57	1	0,6	0,00391	0,1	
	39,7	32,3	48,3	-	1,1	0,6	26,8	32	-	55	57	1	0,6	0,00391	0,1	
	39,7	32,3	48,3	-	1,1	0,6	26,8	32	-	55	57	1	0,6	0,00391	0,1	
	39,7	32,3	48,3	-	1,1	0,6	26,8	32	-	55	57	1	0,6	0,00391	0,1	
	39,5	32,2	48,1	-	1,1	0,6	18	32	-	55	57	1	0,6	0,00158	0,1	
30	42,6	36,1	51,8	57,6	1	0,6	27,3	35,6	42	56	57	1	0,6	0,00377	0,095	
	42,6	36,1	50,1	-	1	0,6	27,3	35,6	-	56	57	1	0,6	0,00377	0,095	
	42,6	36,1	50,1	-	1	0,6	27,3	35,6	-	56	57	1	0,6	0,00377	0,095	
	42,6	36,1	50,1	-	1	0,6	27,3	35,6	-	56	57	1	0,6	0,00377	0,095	
	42,6	36,1	50,1	-	1	0,6	27,3	35,6	-	56	57	1	0,6	0,00377	0,095	
	42,6	36,1	50,1	-	1	0,6	27,3	35,6	-	56	57	1	0,6	0,00408	0,095	
	42,4	35,9	50,1	-	1	0,6	18	35,6	-	56	57	1	0,6	0,00155	0,095	
	46,5	37,9	58,8	66,45	1,1	0,6	31	37	46	65	67	1	0,6	0,0074	0,1	
	46,5	37,9	56,6	-	1,1	0,6	31	37	-	65	67	1	0,6	0,0074	0,1	
	46,5	37,9	56,6	-	1,1	0,6	31	37	-	65	67	1	0,6	0,0074	0,1	
	46,5	37,9	56,6	-	1,1	0,6	31	37	-	65	67	1	0,6	0,0074	0,1	
	46,5	37,9	56,6	-	1,1	0,6	31	37	-	65	67	1	0,6	0,0074	0,1	
	46,5 46,3	37,9 37,8	56,6 56,4	- -	1,1 1,1	0,6 0,6	31 21	37 37	_	65 65	67 67	1	0,6 0,6	0,00814 0,003	0,1 0,1	


$\begin{array}{ccc} \textbf{3.1 Single row angular contact ball bearings} \\ \textbf{d} & \textbf{35-40} \ \text{mm} \end{array}$

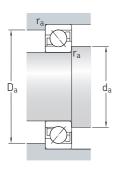


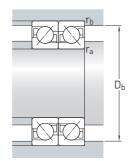
2RZ


Princ	ipal di	mensions		oad ratings c static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designations Universally matchable	Basic design /
d	D	В	С	C_0	P_u	speed	speed		bearing	sealed bearing
mm			kN		kN	r/min		kg	-	
35	72 72 72	17 17 17	29,1 29,1 31	19 19 20,8	0,815 0,815 0,88	11 000 11 000 11 000	9 000 11 000 12 000	0,35 0,28 0,28	- - ► 7207 BECBP	► 7207 BE-2RZF ► 7207 BEP -
	72 72 72	17 17 17	31 32,5 35,5	20,8 22,4 23,2	0,88 0,95 0,98	11 000 11 000 12 000	15 000 12 000 18 000	0,28 0,28 0,28	7207 BECBM7207 BECBY7207 ACCBM	- - -
	80 80 80	21 21 21	39 39 41,5	24,5 24,5 26,5	1,04 1,04 1,14	11 000 11 000 11 000	8 500 10 000 11 000	0,45 0,45 0,45	- - ► 7307 BECBP	► 7307 BE-2RZF ► 7307 BEP -
	80 80 80	21 21 21	41,5 41,5 41,5	26,5 26,5 26,5	1,14 1,14 1,14	11 000 11 000 11 000	11 000 11 000 14 000	0,45 0,45 0,45	▶ 7307 BECBY 7307 BEGAPH▶ 7307 BECBM	- - -
	80	21	46,5	30	1,27	11 000	17 000	0,45	► 7307 ACCBM	-
40	80 80 80	18 18 18	34,5 34,5 36,5	24 24 26	1,02 1,02 1,1	10 000 10 000 10 000	8 000 10 000 11 000	0,42 0,37 0,37	- - > 7208 BECBP	► 7208 BE-2RZF ► 7208 BEP -
	80 80 80	18 18 18	36,5 36,5 39	26 26 28	1,1 1,1 1,2	10 000 10 000 10 000	11 000 13 000 11 000	0,37 0,37 0,37	7208 BECBPH ► 7208 BECBM ► 7208 BECBY	- - -
	80 90 90	18 23 23	41,5 46,2 46,2	29 30,5 30,5	1,25 1,29 1,29	11 000 9 500 9 500	16 000 7 500 9 000	0,37 0,62 0,62	7208 ACCBM - -	- ► 7308 BE-2RZF ► 7308 BEP
	90 90 90	23 23 23	50 50 50	32,5 32,5 32,5	1,37 1,37 1,37	9 500 9 500 9 500	10 000 10 000 12 000	0,62 0,62 0,68	→ 7308 BECBP→ 7308 BEGAPH→ 7308 BECBM	- - -
	90 90	23 23	53 56	35,5 36	1,5 1,53	9 500 10 000	10 000 15 000	0,64 0,68	▶ 7308 BECBY▶ 7308 ACCBM	<u>-</u>

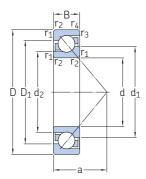


Dime	nsions							Abutn	nent and	fillet din	nensions	5		Calculation	n factors
d	d ₁ ≈	d ₂ ≈	D ₁ , D ₂ ≈	D ₅ ≈	r _{1,2} min.	r _{3,4} min.	a	d _a min.	d _a max.	D _a max.	D _b max.	r _a max.	r _b max.	А	k _r
mm								mm						-	
35	49,6	41,9	59,9	67,7	1,1	0,6	31	42	49	65	67	1	0,6	0,00674	0,095
	49,6	41,9	58,3	-	1,1	0,6	31	42	-	65	67	1	0,6	0,00674	0,095
	49,6	41,9	58,3	-	1,1	0,6	31	42	-	65	67	1	0,6	0,00674	0,095
	49,6	41,9	58,3	_	1,1	0,6	31	42	-	65	67	1	0,6	0,00674	0,095
	49,6	41,9	58,3	_	1,1	0,6	31	42	-	65	67	1	0,6	0,0073	0,095
	49,4	41,9	58,3	_	1,1	0,6	20	42	-	65	67	1	0,6	0,00277	0,095
	52,5	43,6	65,1	74,3	1,5	1	35	44	52	71	74	1,5	1	0,0111	0,1
	52,5	43,6	63,5	-	1,5	1	35	44	-	71	74	1,5	1	0,0111	0,1
	52,5	43,6	63,5	-	1,5	1	35	44	-	71	74	1,5	1	0,0111	0,1
	52,5	43,6	63,5	_	1,5	1	35	44	-	71	74	1,5	1	0,0111	0,1
	52,5	43,6	63,5	_	1,5	1	35	44	-	71	74	1,5	1	0,0111	0,1
	52,5	43,6	63,5	_	1,5	1	35	44	-	71	74	1,5	1	0,0111	0,1
	52,5	43,5	63,2	-	1,5	1	23	44	-	71	74	1,5	1	0,00453	0,1
40	56,2	48	67,2	75,3	1,1	0,6	34	47	55	73	75	1	0,6	0,0102	0,095
	56,2	48	65,6	-	1,1	0,6	34	47	-	73	75	1	0,6	0,0102	0,095
	56,2	48	65,6	-	1,1	0,6	34	47	-	73	75	1	0,6	0,0102	0,095
	56,2	48	65,6	-	1,1	0,6	34	47	-	73	75	1	0,6	0,0102	0,095
	56,2	48	65,6	-	1,1	0,6	34	47	-	73	75	1	0,6	0,0102	0,095
	56,2	48	65,6	-	1,1	0,6	34	47	-	73	75	1	0,6	0,0109	0,095
	56	48	65,5	-	1,1	0,6	23	47	-	73	75	1	0,6	0,00419	0,095
	59,7	49,5	73,9	83	1,5	1	39	49	59	81	84	1,5	1	0,0173	0,1
	59,7	49,5	71,6	-	1,5	1	39	49	-	81	84	1,5	1	0,0173	0,1
	59,7	49,5	71,6	-	1,5	1	39	49	-	81	84	1,5	1	0,0173	0,1
	59,7	49,5	71,6	-	1,5	1	39	49	-	81	84	1,5	1	0,0173	0,1
	59,5	49,5	71,6	-	1,5	1	39	49	-	81	84	1,5	1	0,0173	0,1
	59,5 59,7	49,5 49,5	71,6 71,4	_	1,5 1,5	1 1	39 26	49 49	_	81 81	84 84	1,5 1,5	1 1	0,0189 0,00707	0,1 0,1


3.1 Single row angular contact ball bearings d 45 – 50 mm

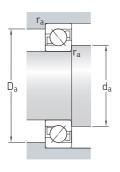


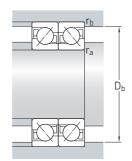
2RZ


Princ	cipal din	nensions		oad ratings ic static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designations Universally matchable	Basic design /
d	D	В	С	C_0	P_{u}	speed	speed		bearing	sealed bearing
nm			kN		kN	r/min		kg	-	
45	85 85 85	19 19 19	35,8 38 38	26 28,5 28,5	1,12 1,22 1,22	9 500 9 500 9 500	7 500 10 000 10 000	0,52 0,42 0,42	_ ► 7209 BECBP 7209 BEGAPH	► 7209 BE-2RZ - -
	85 85 85	19 19 19	38 40 44	28,5 30,5 32	1,22 1,29 1,37	9 500 9 500 10 000	12 000 10 000 15 000	0,42 0,42 0,42	► 7209 BECBM 7209 BECBY 7209 ACCBM	- - -
	100 100 100	25 25 25	55,9 55,9 61	37,5 37,5 40,5	1,6 1,6 1,73	8 500 8 500 8 500	6 700 8 000 9 000	0,85 0,82 0,82	- - > 7309 BECBP	► 7309 BE-2RZ ► 7309 BEP -
	100 100 100	25 25 25	61 61 64	40,5 40,5 45	1,73 1,73 1,9	8 500 8 500 8 500	9 000 11 000 9 000	0,82 0,91 0,87	7309 BEGAPH ► 7309 BECBM ► 7309 BECBY	- - -
	100	25	68	45,5	1,93	9 000	13 000	0,91	7309 ACCBM	-
50	90 90	20 20	37,7 37,7	28,5 28,5	1,22 1,22	9 000 9 000	7 000 8 500	0,55 0,47	-	► 7210 BE-2RZ ► 7210 BEP
	90 90 90	20 20 20	40 40 40	31 31 31	1,32 1,32 1,32	9 000 9 000 9 000	9 000 9 000 11 000	0,47 0,47 0,47	 7210 BECBP 7210 BECBPH 7210 BECBM 	- - -
	90 90 110	20 20 27	41,5 45,5 68,9	33,5 35,5 47,5	1,4 1,5 2	9 000 9 500 7 500	9 000 14 000 6 000	0,47 0,47 1,2	► 7210 BECBY 7210 ACCBM —	- - ► 7310 BE-2RZ
	110 110 110	27 27 27	75 75 75	51 51 51	2,16 2,16 2,16	7 500 7 500 7 500	8 000 8 000 10 000	1,1 1,1 1,1	7310 BECBP7310 BEGAPH7310 BECBM	- - -
	110 110	27 27	78 83	56 57	2,36 2,4	7 500 8 000	8 000 12 000	1,15 1,1	► 7310 BECBY 7310 ACCBM	<u>-</u>

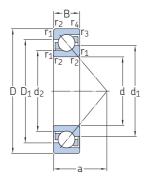


Dime	nsions							Abutn	nent and	fillet dir	nensions	5		Calculation	n factors
d	d ₁ ≈	d ₂ ≈	D ₁ , D ₂ ≈	D ₅ ≈	r _{1,2} min.	r _{3,4} min.	a	d _a min.	d _a max.	D _a max.	D _b max.	r _a max.	r _b max.	А	k _r
mm								mm						_	
45	60,8	52,6	71,8	79,9	1,1	0,6	37	52	60	78	80	1	0,6	0,012	0,095
	60,8	52,6	70,2	-	1,1	0,6	37	52	-	78	80	1	0,6	0,012	0,095
	60,8	52,6	70,2	-	1,1	0,6	37	52	-	78	80	1	0,6	0,012	0,095
	60,8	52,6	70,2	-	1,1	0,6	37	52	-	78	80	1	0,6	0,012	0,095
	60,8	52,6	70,2	-	1,1	0,6	37	52	-	78	80	1	0,6	0,0128	0,095
	60,6	52,6	70,1	-	1,1	0,6	24	52	-	78	80	1	0,6	0,00496	0,095
	66,5	55,2	81,4	90,8	1,5	1	43	54	66	91	94	1,5	1	0,0268	0,1
	66,5	55,2	79,9	-	1,5	1	43	54	-	91	94	1,5	1	0,0268	0,1
	66,5	55,2	79,9	-	1,5	1	43	54	-	91	94	1,5	1	0,0268	0,1
	66,5	55,2	79,9	-	1,5	1	43	54	-	91	94	1,5	1	0,0268	0,1
	66,5	55,2	79,9	-	1,5	1	43	54	-	91	94	1,5	1	0,0268	0,1
	66,5	55,2	79,9	-	1,5	1	43	54	-	91	94	1,5	1	0,0292	0,1
	66,3	55,2	79,6	_	1,5	1	29	54	_	91	94	1,5	1	0,0109	0,1
50	65,7 65,7	57,6 57,6	76,8 75,2	84,9 -	1,1 1,1	0,6 0,6	39 39	57 57	65 -	83 83	85 85	1	0,6 0,6	0,014 0,014	0,095 0,095
	65,7	57,6	75,2	-	1,1	0,6	39	57	-	83	85	1	0,6	0,014	0,095
	65,7	57,6	75,2	-	1,1	0,6	39	57	-	83	85	1	0,6	0,014	0,095
	65,7	57,6	75,2	-	1,1	0,6	39	57	-	83	85	1	0,6	0,014	0,095
	65,7	57,6	75,2	-	1,1	0,6	39	57	-	83	85	1	0,6	0,015	0,095
	65,6	57,6	75,1	-	1,1	0,6	26	57	-	83	85	1	0,6	0,00584	0,095
	73,8	61,1	91,6	101	2	1	47	61	73	99	104	2	1	0,0418	0,1
	73,8	61,1	88,8	-	2	1	47	61	-	99	104	2	1	0,0418	0,1
	73,8	61,1	88,8	-	2	1	47	61	-	99	104	2	1	0,0418	0,1
	73,8	61,1	88,8	-	2	1	47	61	-	99	104	2	1	0,0418	0,1
	73,8 73,6	61,1 61,1	88,8 88,4		2 2	1 1	47 32	61 61	_ _	99 99	104 104	2 2	1	0,0456 0,017	0,1 0,1


3.1 Single row angular contact ball bearings d 55 - 60 mm

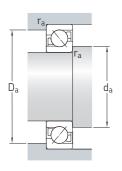


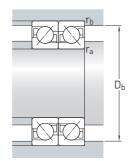
2RZ


Princ	cipal din	nensions		oad ratings ic static	Fatigue load limit	Speed ra Reference	e Limiting	Mass	Designations Universally matchable	Basic design /
d	D	В	С	C_0	P_u	speed	speed		bearing	sealed bearing
nm			kN		kN	r/min		kg	-	
55	100 100 100	21 21 21	46,2 46,2 49	36 36 40	1,53 1,53 1,66	8 000 8 000 8 000	6 300 7 500 8 000	0,62 0,62 0,62	- - - ► 7211 BECBP	► 7211 BE-2RZF ► 7211 BEP
	100 100 100	21 21 21	49 49 51	40 40 42,5	1,66 1,66 1,8	8 000 8 000 8 000	8 000 10 000 8 000	0,62 0,62 0,62	7211 BECBPH • 7211 BECBM • 7211 BECBY	- - -
	100 120 120	21 29 29	57 79,3 85	45 55 60	1,9 2,32 2,55	8 500 7 000 7 000	12 000 6 700 7 000	0,62 1,4 1,4	7211 ACCBM - ► 7311 BECBP	- ▶ 7311 BEP -
	120 120 120	29 29 29	85 85 90	60 60 65,5	2,55 2,55 2,75	7 000 7 000 7 000	7 000 9 000 7 000	1,4 1,4 1,4	7311 BECBPH ► 7311 BECBM ► 7311 BECBY	- - -
	120	29	96,5	67	2,85	7 500	11 000	1,4	7311 ACCBM	-
60	110 110	22 22	57,2 61	45,5 50	1,93 2,12	7 000 7 000	7 000 7 500	0,8 0,8	- ▶ 7212 BECBP	► 7212 BEP -
	110 110 110	22 22 22	61 61 61	50 50 50	2,12 2,12 2,12	7 000 7 000 7 000	7 500 7 500 9 500	0,8 0,8 0,8	7212 BECBPH ► 7212 BECBY ► 7212 BECBM	- - -
	110 130 130	22 31 31	69,5 95,6 104	56 69,5 76,5	2,36 3 3,2	8 000 6 300 6 300	11 000 6 000 6 700	0,8 1,75 1,75	7212 ACCBM - ► 7312 BECBP	- ▶ 7312 BEP -
	130 130 130	31 31 31	104 104 104	76,5 76,5 76,5	3,2 3,2 3,2	6 300 6 300 6 300	6 700 6 700 8 500	1,75 1,75 1,75	7312 BECBPH ► 7312 BECBY ► 7312 BECBM	- - -
	130	31	116	85	3,6	7 000	10 000	1,75	7312 ACCBM	_

Dimer	nsions							Abutn	nent and	fillet dir	nension	5		Calculation	n factors
d	d ₁ ≈	d ₂ ≈	D ₁ , D ₂ ≈	D ₅ ≈	r _{1,2} min.	r _{3,4} min.	a	d _a min.	d _a max.	D _a max.	D _b max.	r _a max.	r _b max.	Α	k _r
mm								mm	ı					_	
55	72,5	63,6	85,1	94,3	1,5	1	43	64	72	91	94	1,5	1	0,022	0,095
	72,5	63,6	83,7	-	1,5	1	43	64	-	91	94	1,5	1	0,022	0,095
	72,4	63,6	83,7	-	1,5	1	43	64	-	91	94	1,5	1	0,022	0,095
	72,4	63,6	83,7	-	1,5	1	43	64	-	91	94	1,5	1	0,022	0,095
	72,4	63,6	83,7	-	1,5	1	43	64	-	91	94	1,5	1	0,022	0,095
	72,4	63,6	83,7	-	1,5	1	43	64	-	91	94	1,5	1	0,0235	0,095
	72,6	63,6	83,2	-	1,5	1	28	64	-	91	94	1,5	1	0,00917	0,095
	80,3	66,6	96,6	-	2	1	51	66	-	109	114	2	1	0,0574	0,1
	80,3	66,6	96,6	-	2	1	51	66	-	109	114	2	1	0,0574	0,1
	80,3	66,6	96,6	-	2	1	51	66	-	109	114	2	1	0,0574	0,1
	80,3	66,6	96,6	-	2	1	51	66	-	109	114	2	1	0,0574	0,1
	80,3	66,6	96,6	-	2	1	51	66	-	109	114	2	1	0,0627	0,1
	80,1	66,6	96,2	-	2	1	34	66	-	109	114	2	1	0,0234	0,1
60	79,6 79,6	69,3 69,3	91,6 91,6	_	1,5 1,5	1	47 47	69 69	_ _	101 101	104 104	1,5 1,5	1 1	0,0344 0,0344	0,095 0,095
	79,6	69,3	91,6	-	1,5	1	47	69	-	101	104	1,5	1	0,0344	0,095
	79,6	69,3	91,6	-	1,5	1	47	69	-	101	104	1,5	1	0,0344	0,095
	79,6	69,3	91,6	-	1,5	1	46	69	-	101	104	1,5	1	0,0344	0,095
	79,5	69,2	91,5	-	1,5	1	30	69	-	101	104	1,5	1	0,0143	0,095
	87,2	72,6	105	-	2,1	1,1	55	72	-	118	123	2	1	0,0846	0,1
	87,2	72,6	105	-	2,1	1,1	55	72	-	118	123	2	1	0,0846	0,1
	87,2	72,6	105	-	2,1	1,1	55	72	-	118	123	2	1	0,0846	0,1
	87,2	72,6	105	-	2,1	1,1	55	72	-	118	123	2	1	0,0846	0,1
	87,2	72,6	105	-	2,1	1,1	55	72	-	118	123	2	1	0,0846	0,1
	87,1	72,6	105	-	2,1	1,1	37	72	-	118	123	2	1	0,0345	0,1

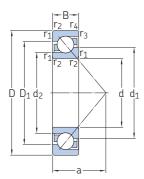
3.1 Single row angular contact ball bearings d 65 – 75 mm




3.1	
	1

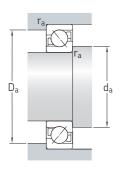
Prin	cipal dir	nensions		oad ratings ic static	Fatigue load limit	Speed rati Reference		Mass	Designations Universally matchable bearing	Basic design / sealed bearing
d	D	В	С	C_0	P_{u}	speed	speed		bearing	sealed bearing
mm			kN		kN	r/min		kg	-	
65	120 120 120	23 23 23	66,3 69,5 69,5	54 57 57	2,28 2,45 2,45	6 700 6 700 6 700	6 300 6 700 6 700	1 1 1	- ► 7213 BECBP ► 7213 BECBY	► 7213 BEP - -
	120 120 120	23 23 23	69,5 69,5 81,5	57 57 65,5	2,45 2,45 2,8	6 700 6 700 7 000	6 700 8 500 10 000	1 1 1	7213 BEGAPH ► 7213 BECBM 7213 ACCBM	- - -
	140 140 140	33 33 33	108 116 116	80 86,5 86,5	3,35 3,65 3,65	6 000 6 000 6 000	5 600 6 300 6 300	2,15 2,15 2,15	- ► 7313 BECBP 7313 BECBPH	► 7313 BEP - -
	140 140 140	33 33 33	116 116 132	86,5 86,5 96,5	3,65 3,65 4,05	6 000 6 000 6 300	6 300 8 000 9 500	2,15 2,15 2,15	7313 BECBY7313 BECBM7313 ACCBM	- - -
70	125 125 125	24 24 24	67,6 72 72	56 60 60	2,36 2,55 2,55	6 300 6 300 6 300	6 000 6 300 6 300	1,1 1,1 1,1	- ► 7214 BECBP 7214 BECBPH	► 7214 BEP - -
	125	24	72	60	2,55	6 300	8 000	1,1	► 7214 BECBM	-
	125 125 150	24 24 35	75 83 119	64 68 90	2,7 2,9 3,65	6 300 6 700 5 600	6 300 10 000 5 300	1,1 1,1 2,65	► 7214 BECBY 7214 ACCBM	- - ► 7314 BEP
	150 150 150	35 35 35	127 127 127	98 98 98	3,9 3,9 3,9	5 600 5 600 5 600	5 600 5 600 5 600	2,65 2,65 2,65	7314 BECBP7314 BECBPH7314 BECBY	- - -
	150 150 150	35 35 35	127 127 143	98 98 110	3,9 3,9 4,4	5 600 5 600 6 000	5 600 7 000 8 500	2,65 2,65 2,65	7314 BEGAPH ► 7314 BECBM 7314 ACCBM	- - -
75	130 130 130	25 25 25	70,2 73,5 73,5	60 65,5 65,5	2,5 2,7 2,7	6 000 6 000 6 000	5 600 6 300 6 300	1,2 1,2 1,2	- ► 7215 BECBM ► 7215 BECBP	► 7215 BEP - -
	130 130 160	25 25 37	73,5 76,5 125	65,5 69,5 98	2,7 2,9 3,8	6 000 6 000 5 300	6 300 6 300 5 000	1,2 1,2 3,2	7215 BECBPH ► 7215 BECBY	- - ► 7315 BEP
	160 160 160	37 37 37	132 132 132	104 104 104	4,15 4,15 4,15	5 300 5 300 5 300	5 300 5 300 5 300	3,2 3,2 3,2	7315 BECBP7315 BECBY7315 BEGAPH	- - -
	160	37	132	104	4,15	5 300	6 700	3,2	► 7315 BECBM	-

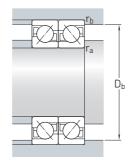
SKF Explorer bearing


Popular item

Dime	nsions							Abutn	nent and	fillet din	nensions	5		Calculatio	n factors
d	d ₁ ≈	d ₂ ≈	D ₁ , D ₂ ≈	D ₅ ≈	r _{1,2} min.	r _{3,4} min.	a	d _a min.	d _a max.	D _a max.	D _b max.	r _a max.	r _b max.	А	k _r
mm								mm						_	
65	86,3	75,4	100	-	1,5	1	50	74	-	111	114	1,5	1	0,0478	0,095
	86,3	75,4	99,5	-	1,5	1	50	74	-	111	114	1,5	1	0,0478	0,095
	86,3	75,4	99,5	-	1,5	1	50	74	-	111	114	1,5	1	0,0478	0,095
	86,3	75,4	100	-	1,5	1	50	74	-	111	114	1,5	1	0,0478	0,095
	86,3	75,4	99,5	-	1,5	1	50	74	-	111	114	1,5	1	0,0478	0,095
	86,5	75,5	99,5	-	1,5	1	33	74	-	111	114	1,5	1	0,0199	0,095
	94,1	78,4	113	-	2,1	1,1	60	77	-	128	133	2	1	0,112	0,1
	94,1	78,4	113	-	2,1	1,1	60	77	-	128	133	2	1	0,112	0,1
	94,1	78,4	113	-	2,1	1,1	60	77	-	128	133	2	1	0,112	0,1
	94,1	78,4	113	-	2,1	1,1	60	77	-	128	133	2	1	0,112	0,1
	94,1	78,4	113	-	2,1	1,1	60	77	-	128	133	2	1	0,112	0,1
	94	78,4	113	-	2,1	1,1	40	77	-	128	133	2	1	0,0456	0,1
70	91,5	80,2	105	-	1,5	1	53	79	-	116	119	1,5	1	0,0529	0,095
	91,5	80,2	105	-	1,5	1	53	79	-	116	119	1,5	1	0,0529	0,095
	91,5	80,2	105	-	1,5	1	53	79	-	116	119	1,5	1	0,0529	0,095
	91,5	80,2	105	-	1,5	1	53	79	-	116	119	1,5	1	0,0529	0,095
	91,5	80,2	105	_	1,5	1	53	79	-	116	119	1,5	1	0,0564	0,095
	91,4	80,2	105	_	1,5	1	34	79	-	116	119	1,5	1	0,022	0,095
	101	84,4	122	_	2,1	1,1	64	82	-	138	143	2	1	0,145	0,1
	101	84,4	122	_	2,1	1,1	64	82	-	138	143	2	1	0,145	0,1
	101	84,4	122	_	2,1	1,1	64	82	-	138	143	2	1	0,145	0,1
	101	84,4	122	_	2,1	1,1	64	82	-	138	143	2	1	0,145	0,1
	101	84,4	122	-	2,1	1,1	64	82	-	138	143	2	1	0,145	0,1
	101	84,4	122	-	2,1	1,1	64	82	-	138	143	2	1	0,145	0,1
	100	84,4	121	-	2,1	1,1	43	82	-	138	143	2	1	0,0592	0,1
75	96,3	85,2	111	-	1,5	1	56	84	-	121	124	1,5	1	0,0599	0,095
	96,3	85,2	111	-	1,5	1	56	84	-	121	124	1,5	1	0,0599	0,095
	96,3	85,2	111	-	1,5	1	56	84	-	121	124	1,5	1	0,0599	0,095
	96,3	85,2	111	-	1,5	1	56	84	-	121	124	1,5	1	0,0599	0,095
	96,3	85,2	111	-	1,5	1	56	84	-	121	124	1,5	1	0,0636	0,095
	108	91,1	129	-	2,1	1,1	68	87	-	148	153	2	1	0,171	0,1
	108	91,1	129	-	2,1	1,1	68	87	-	148	153	2	1	0,171	0,1
	108	91,1	129	-	2,1	1,1	68	87	-	148	153	2	1	0,171	0,1
	108	91,1	129	-	2,1	1,1	68	87	-	148	153	2	1	0,171	0,1
	108	91,1	129	-	2,1	1,1	68	87	-	148	153	2	1	0,171	0,1

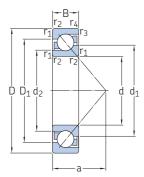
$\begin{array}{ccc} \textbf{3.1 Single row angular contact ball bearings} \\ \textbf{d} & \textbf{80-90} \ \text{mm} \end{array}$




3.1	

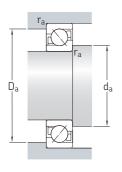
Prin	cipal din	nensions		oad ratings ic static	Fatigue load limit	Speed rate Reference speed		Mass	Designations Universally matchable bearing	Basic design / sealed bearing
d	D	В	С	C_0	P_{u}	Speed	speeu		bearing	sealed bearing
nm			kN		kN	r/min		kg	_	
30	140 140 140	26 26 26	80,6 85 85	69,5 75 75	2,8 3,05 3,05	5 600 5 600 5 600	5 300 5 600 5 600	1,45 1,45 1,45	- ► 7216 BECBP 7216 BECBPH	► 7216 BEP - -
	140 140 140	26 26 26	85 85 85	75 75 75	3,05 3,05 3,05	5 600 5 600 5 600	5 600 5 600 7 000	1,45 1,45 1,45	➤ 7216 BECBY 7216 BEGAPH ➤ 7216 BECBM	- - -
	170 170 170	39 39 39	135 135 143	110 110 118	4,15 4,15 4,5	5 000 5 000 5 000	4 500 4 800 5 000	3,8 3,8 3,8	- - - 7316 BECBP	► 7316 BEP ► 7316 BEM
	170 170 170	39 39 39	143 143 143	118 118 118	4,5 4,5 4,5	5 000 5 000 5 000	5 000 5 000 6 300	3,8 3,8 3,8	7316 BECBPH ► 7316 BECBY ► 7316 BECBM	- - -
35	150 150 150	28 28 28	95,6 102 102	83 90 90	3,25 3,55 3,55	5 300 5 300 5 300	5 000 5 300 5 300	1,85 1,85 1,85	- ➤ 7217 BECBP ➤ 7217 BECBY	► 7217 BEP - -
	150	28	102	90	3,55	5 300	6 700	1,85	► 7217 BECBM	-
	180 180 180	41 41 41	146 146 156	122 122 132	4,5 4,5 4,9	4 500 4 500 4 500	4 300 4 500 4 800	4,45 4,45 4,45	- - > 7317 BECBP	► 7317 BEP 7317 BEM -
	180 180 180	41 41 41	156 156 156	132 132 132	4,9 4,9 4,9	4 500 4 500 4 500	4 800 4 800 6 000	4,45 4,45 4,45	▶ 7317 BECBY 7317 BEGAPH▶ 7317 BECBM	- - -
90	160 160 160	30 30 30	108 116 116	96,5 104 104	3,65 4 4	5 000 5 000 5 000	4 500 5 000 5 000	2,3 2,3 2,3	- ➤ 7218 BECBP ➤ 7218 BECBY	► 7218 BEP - -
	160 190 190	30 43 43	116 156 156	104 134 134	4 4,8 4,8	5 000 4 300 4 300	6 300 4 000 4 300	2,3 5,2 5,2	► 7218 BECBM - -	- ▶ 7318 BEP ▶ 7318 BEM
	190 190	43 43	166 166	146 146	5,3 5,3	4 300 4 300	4 500 4 500	5,2 5,2	7318 BECBP7318 BECBY	<u>-</u>
	190 190	43 43	166 166	146 146	5,3 5,3	4 300 4 300	4 500 5 600	5,2 5,2	7318 BEGAPH ► 7318 BECBM	-

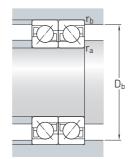
SKF Explorer bearing


Popular item

Dime	mensions							Abutn	nent and	fillet din	nensions	5		Calculatio	n factors
d	d ₁ ≈	d ₂ ≈	D ₁ , D ₂ ≈	D ₅ ≈	r _{1,2} min.	r _{3,4} min.	a	d _a min.	d _a max.	D _a max.	D _b max.	r _a max.	r _b max.	А	k _r
mm								mm						_	
80	103	91,4	118	-	2	1	59	91	-	130	134	2	1	0,0801	0,095
	103	91,4	118	-	2	1	59	91	-	130	134	2	1	0,0801	0,095
	103	91,4	118	-	2	1	59	91	-	130	134	2	1	0,0801	0,095
	103	91,4	118	-	2	1	59	91	-	130	134	2	1	0,0801	0,095
	103	91,4	118	-	2	1	59	91	-	130	134	2	1	0,0801	0,095
	103	91,4	118	-	2	1	59	91	-	130	134	2	1	0,0801	0,095
	115	97	137	-	2,1	1,1	72	92	-	158	163	2	1	0,216	0,1
	115	97	137	-	2,1	1,1	72	92	-	158	163	2	1	0,216	0,1
	115	97	137	-	2,1	1,1	72	92	-	158	163	2	1	0,216	0,1
	115	97	137	-	2,1	1,1	72	92	-	158	163	2	1	0,216	0,1
	115	97	137	-	2,1	1,1	72	92	-	158	163	2	1	0,216	0,1
	115	97	137	-	2,1	1,1	72	92	-	158	163	2	1	0,216	0,1
85	110	97	127	-	2	1	63	96	-	139	144	2	1	0,114	0,095
	110	97	127	-	2	1	63	96	-	139	144	2	1	0,114	0,095
	110	97	127	-	2	1	63	96	-	139	144	2	1	0,114	0,095
	110	97	127	-	2	1	63	96	-	139	144	2	1	0,114	0,095
	122	103	145	-	3	1,1	76	99	-	166	173	2,5	1	0,27	0,1
	122	103	145	-	3	1,1	76	99	-	166	173	2,5	1	0,27	0,1
	122	103	145	-	3	1,1	76	99	-	166	173	2,5	1	0,27	0,1
	122	103	145	-	3	1,1	76	99	-	166	173	2,5	1	0,27	0,1
	122	103	145	-	3	1,1	76	99	-	166	173	2,5	1	0,27	0,1
	122	103	145	-	3	1,1	76	99	-	166	173	2,5	1	0,27	0,1
90	117	103	135	-	2	1	67	101	-	149	154	2	1	0,149	0,095
	117	103	135	-	2	1	67	101	-	149	154	2	1	0,149	0,095
	117	103	135	-	2	1	67	101	-	149	154	2	1	0,149	0,095
	117	103	135	-	2	1	67	101	-	149	154	2	1	0,149	0,095
	129	108	154	-	3	1,1	80	104	-	176	183	2,5	1	0,333	0,1
	129	108	154	-	3	1,1	80	104	-	176	183	2,5	1	0,333	0,1
	129 129	108 108	154 154	_	3 3	1,1 1,1	80 80	104 104		176 176	183 183	2,5 2,5	1	0,333 0,333	0,1 0,1
	129 129	108 108	154 154		3	1,1 1,1	80 80	104 104	<u>-</u>	176 176	183 183	2,5 2,5	1	0,333 0,333	0,1 0,1

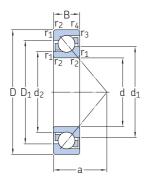
3.1 Single row angular contact ball bearings d 95 – 110 mm



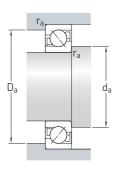

3	.1
	\exists

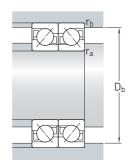
Principal dimensions		nensions		oad ratings ic static	Fatigue load limit				Designations Universally matchable bearing	e Basic design / sealed bearing
d	D	В	С	C_0	P_{u}	speed	speed		bearing	sealeu bearing
nm			kN		kN	r/min		kg	-	
95	170 170 170	32 32 32	124 129 129	108 118 118	4 4,4 4,4	4 500 4 500 4 500	4 300 4 800 4 800	2,7 2,7 2,7	- ► 7219 BECBP ► 7219 BECBY	► 7219 BEP - -
	170 170 200	32 32 45	129 129 168	118 118 150	4,4 4,4 5,2	4 500 4 500 4 000	4 800 6 000 3 800	2,7 2,7 6,05	7219 BEGAPH ► 7219 BECBM	- - ► 7319 BEP
	200 200 200	45 45 45	168 180 180	150 163 163	5,2 5,7 5,7	4 000 4 000 4 000	4 000 4 300 4 300	6,05 6,05 6,05	- ► 7319 BECBP ► 7319 BECBY	► 7319 BEM - -
	200	45	180	163	5,7	4 000	5 300	6,05	► 7319 BECBM	-
100	180 180	34 34	135 143	122 134	4,4 4,75	4 300 4 300	4 000 4 500	3,3 3,3	_ ► 7220 BECBP	► 7220 BEP -
	180 180	34 34	143 143	134 134	4,75 4,75	4 300 4 300	4 500 5 600	3,3 3,3	7220 BECBY7220 BECBM	-
	215 215 215	47 47 47	203 203 216	190 190 208	6,4 6,4 6,95	3 800 3 800 3 800	3 600 3 600 4 000	7,5 7,5 7,5	- - > 7320 BECBP	► 7320 BEM ► 7320 BEP
	215 215	47 47	216 216	208 208	6,95 6,95	3 800 3 800	4 000 5 000	7,5 7,5	▶ 7320 BECBY▶ 7320 BECBM	-
.05	190 190 225	36 36 49	156 156 203	150 150 193	5,2 5,2 6,4	4 000 4 000 3 600	4 300 5 300 3 400	3,95 3,95 8,55	► 7221 BECBP ► 7221 BECBM	- - ► 7321 BEP
	225 225	49 49	216 216	208 208	6,95 6,95	3 600 3 600	3 800 4 800	8,55 8,55	→ 7321 BECBP→ 7321 DECBM	-
.10	200 200	38 38	153 163	143 156	4,9 5,3	4 000 4 000	3 600 4 000	4,6 4,6	- ► 7222 BECBP	► 7222 BEP -
	200 200 240	38 38 50	163 163 225	156 156 224	5,3 5,3 7,2	4 000 4 000 3 400	4 000 5 000 3 200	4,6 4,6 10	► 7222 BECBY ► 7222 BECBM	- - 7322 BEY
	240 240 240	50 50 50	225 240 240	224 245 245	7,2 7,8 7,8	3 400 3 400 3 400	3 400 3 600 3 600	10 10 10	- ➤ 7322 BECBP ➤ 7322 BECBY	► 7322 BEM - -
	240	50	240	245	7,8	3 400	4 500	10	► 7322 BECBM	_

SKF Explorer bearing


Popular item

Dimer	nsions							Abutn	nent and	fillet din	nensions	5		Calculatio	n factors
d	d ₁ ≈	d ₂ ≈	D ₁ , D ₂ ≈	D ₅ ≈	r _{1,2} min.	r _{3,4} min.	a	d _a min.	d _a max.	D _a max.	D _b max.	r _a max.	r _b max.	А	k _r
mm								mm						_	
95	124 124 124	109 109 109	143 143 143	- - -	2,1 2,1 2,1	1,1 1,1 1,1	72 72 72	107 107 107	- - -	158 158 158	163 163 163	2 2 2	1 1 1	0,191 0,191 0,191	0,095 0,095 0,095
	124 124 136	109 109 114	143 143 162	- - -	2,1 2,1 3	1,1 1,1 1,1	72 72 84	107 107 109	- - -	158 158 186	163 163 193	2 2 2,5	1 1 1	0,191 0,191 0,406	0,095 0,095 0,1
	136 136 136	114 114 114	162 162 162	- - -	3 3 3	1,1 1,1 1,1	84 84 84	109 109 109	- - -	186 186 186	193 193 193	2,5 2,5 2,5	1 1 1	0,406 0,406 0,406	0,1 0,1 0,1
	136	114	162	-	3	1,1	84	109	-	186	193	2,5	1	0,406	0,1
100	130 130	115 115	151 151	_	2,1 2,1	1,1 1,1	76 76	112 112	_	168 168	173 173	2 2	1	0,239 0,239	0,095 0,095
	130 130	115 115	151 151	_	2,1 2,1	1,1 1,1	76 76	112 112		168 168	173 173	2 2	1	0,239 0,239	0,095 0,095
	144 144 144	120 120 120	174 174 174	_ _ _	3 3 3	1,1 1,1 1,1	90 90 90	114 114 114	- - -	201 201 201	208 208 208	2,5 2,5 2,5	1 1 1	0,63 0,63 0,63	0,1 0,1 0,1
	144 144	120 120	174 174	_	3	1,1 1,1	90 90	114 114		201 201	208 208	2,5 2,5	1	0,63 0,63	0,1 0,1
105	137 137 151	121 121 127	160 160 182	- - -	2,1 2,1 3	1,1 1,1 1,1	80 80 94	117 117 119	- - -	178 178 211	183 183 218	2 2 2,5	1 1 1	0,302 0,302 0,669	0,095 0,095 0,1
	151 151	127 127	182 182		3	1,1 1,1	94 94	119 119	_ _	211 211	218 218	2,5 2,5	1	0,669 0,669	0,1 0,1
110	144 144	127 127	168 168	_ _	2,1 2,1	1,1 1,1	84 84	122 122	- -	188 188	193 193	2 2	1	0,353 0,353	0,095 0,095
	144 144 160	127 127 134	168 168 194	- - -	2,1 2,1 3	1,1 1,1 1,1	84 84 99	122 122 124	- - -	188 188 226	193 193 233	2 2 2,5	1 1 1	0,353 0,353 0,906	0,095 0,095 0,1
	160 160 160	134 134 134	194 194 194	- - -	3 3 3	1,1 1,1 1,1	99 99 99	124 124 124	- - -	226 226 226	233 233 233	2,5 2,5 2,5	1 1 1	0,906 0,906 0,906	0,1 0,1 0,1
	160	134	194	-	3	1,1	99	124	-	226	233	2,5	1	0,906	0,1

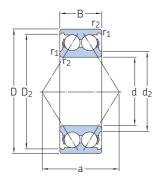

$\begin{array}{ccc} \textbf{3.1 Single row angular contact ball bearings} \\ & \text{d} & \textbf{120} - \textbf{300} \text{ mm} \end{array}$

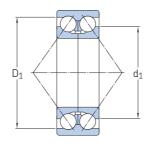


3.1	

Princ	ipal din	nensions		oad ratings ic static	Fatigue load limit	Speed rati Reference speed	ngs Limiting speed	Mass	Designations Universally matchable bearing	Basic design / sealed bearing
d	D	В	С	C_0	P_u	speeu	speeu		Dearing	sealed bearing
mm			kN		kN	r/min		kg	-	
120	180 215 260	28 40 55	87,1 165 238	93 163 250	3,2 5,3 7,65	4 000 3 600 3 000	4 000 4 000 3 600	2,4 5,9 14,5	> 7024 BGM> 7224 BCBM> 7324 BCBM	_ ► 7224 BM _
130	230 280	40 58	186 276	193 305	6,1 9	3 400 2 800	3 800 3 400	6,95 17	7226 BCBM7326 BCBM	► 7226 BM ► 7326 BM
140	210 250 300	33 42 62	114 199 302	129 212 345	4,15 6,4 9,8	3 400 3 000 2 600	3 400 3 600 3 000	3,85 8,85 21,5	7028 BGM7228 BCBM7328 BCBM	_ ▶ 7228 BM –
150	225 270 320	35 45 65	133 216 332	146 240 390	4,55 6,95 10,8	3 200 2 800 2 400	3 200 3 200 2 800	4,7 11,5 26	7030 BGM ► 7230 BCBM ► 7330 BCBM	- - -
160	290	48	255	300	8,5	2 600	3 000	14	► 7232 BCBM	-
170	260 310 360	42 52 72	172 281 390	204 345 490	5,85 9,5 12,7	2 800 2 400 2 200	2 800 2 800 2 600	7,65 17,5 36	7034 BGM ► 7234 BCBM ► 7334 BCBM	-
180	280 320 380	46 52 75	195 291 410	240 375 540	6,7 10 13,7	2 600 2 400 2 000	2 600 2 600 2 400	10 18 42	7036 BGM ► 7236 BCBM ► 7336 BCBM	- - -
190	290 340 400	46 55 78	199 307 442	255 405 600	6,95 10,4 14,6	2 400 2 000 2 000	2 400 2 600 2 200	10,5 22 48,5	7038 BGM ► 7238 BCBM ► 7338 BCBM	- - -
200	310 360 420	51 58 80	225 325 462	290 430 655	7,8 11 15,6	2 200 2 000 1 900	2 200 2 400 2 200	18 25 53	► 7040 BGM ► 7240 BCBM 7340 BCBM	- - -
220	340 400	56 65	255 390	355 560	9 13,4	2 000 1 900	2 000 2 200	18 37	7044 BGM 7244 BCBM	- -
240	360 440	56 72	260 449	375 670	9,15 15,3	1 900 1 600	1 900 2 600	19 49	7048 BGM7248 BCBM	-
260	400	65	332	510	11,8	1 700	1 700	30	7052 BGM	-
280	420 500	65 80	338 507	540 830	12,2 17,6	1 600 1 400	1 600 1 400	30 67,5	7056 BGM -	– 7256 BM
300	540	85	553	930	19,3	1 300	1 300	85	7260 BCBM	_

► Popular item

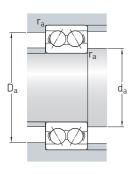


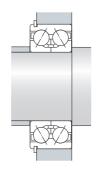


Dime	Dimensions						Abutment and fillet dimensions						Calculation factors		
d	d ₁ ≈	d ₂ ≈	D ₁ , D ₂ ≈	D ₅ ≈	r _{1,2} min.	r _{3,4} min.	a	d _a min.	d _a max.	D _a max.	D _b max.	r _a max.	r _b max.	А	k _r
mm								mm						_	
120	143 157 178	132 138 153	158 180 211	- - -	2 2,1 3	1 1,1 1,5	77 90 107	130 132 134	- - -	170 203 246	174 208 253	2 2 2,5	1 1 1	0,139 0,45 1,11	0,083 0,08 0,09
130	168 189	149 161	193 228	- -	3 4	1,1 1,5	96 115	144 147	_	216 263	222 271	2,5 3	1 1,5	0,605 1,65	0,08 0,09
140	167 183 202	154 163 172	185 210 243	_ _ _	2 3 4	1 1,1 1,5	90 103 123	150 154 158	- - -	200 236 283	204 243 291	2 2,5 3	1 1 1,5	0,263 0,763 2,14	0,083 0,08 0,09
150	179 197 216	166 175 183	198 226 259	- - -	2,1 3 4	1,1 1,1 1,5	96 111 131	162 164 167	- - -	213 256 303	218 263 311	2 2,5 3	1 1 1,5	0,349 1,01 2,74	0,083 0,08 0,09
160	211	187	243	-	3	1,1	118	174	-	276	283	2,5	1	1,48	0,08
170	205 227 243	189 202 207	227 262 292	- - -	2,1 4 4	1,1 1,5 2	111 127 147	182 187 187	- - -	248 293 343	253 301 351	2 3 3	1 1,5 2	0,643 2 4,32	0,083 0,08 0,09
180	219 234 257	201 209 219	244 269 308	- - -	2,1 4 4	1,1 1,5 2	119 131 156	192 197 197	- - -	268 303 363	273 311 370	2 3 3	1 1,5 2	0,912 2,21 5,33	0,083 0,08 0,09
190	229 250 271	211 224 231	254 286 325	- - -	2,1 4 5	1,1 1,5 2	124 139 164	202 207 210	- - -	278 323 380	283 331 390	2 3 4	1 1,5 2	1 2,63 6,5	0,083 0,08 0,09
200	243 263 286	224 235 247	270 301 340	- - -	2,1 4 5	1,1 1,5 2	145 146 170	234 217 220	- - -	285 343 400	333 351 410	2,5 3 4	1,1 1,5 2	1,37 3,2 7,5	0,083 0,08 0,09
220	267 291	245 259	296 334	- -	3 4	1,1 1,5	145 164	234 237	_	326 383	333 391	2,5 3	1,1 1,5	1,97 5,13	0,083 0,08
240	287 322	265 292	316 361	- -	3 4	1,1 1,5	154 180	254 257	_	346 423	353 431	2,5 4	1,1 1,5	2,23 5,12	0,082 0,08
260	314	289	349	-	4	1,5	171	276	-	373	380	3	1,5	3,94	0,083
280	334 367	309 328	369 418	- -	4 5	1,5 2	179 204	298 300	_	402 480	411 489	3 4	1,5 2	4,4 11,3	0,083 0,08
300	395	351	450	_	5	2	219	322	_	518	528	4	2	15,2	0,08

3.2 Double row angular contact ball bearings

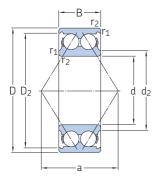
d **10 – 50** mm

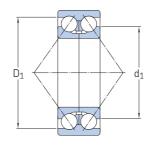

32 A, 33 A 33 D 33 DNRCBM1)

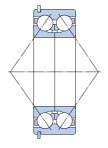

Princ	ipal dime	ensions		oad ratings ic static	Fatigue load limit	Speed rat Reference		Mass	Designations Bearing with metal cage	polyamide cage
d	D	В	С	C_0	P_{u}	speed	speed		metal cage	polyamide cage
mm			kN		kN	r/min		kg	_	
10	30	14	7,61	4,3	0,183	26 000	24 000	0,051	-	► 3200 ATN9
12	32	15,9	10,1	5,6	0,24	24 000	22 000	0,058	-	► 3201 ATN9
15	35 42	15,9 19	11,2 15,1	6,8 9,3	0,285 0,4	22 000 18 000	18 000 16 000	0,066 0,13	<u>-</u>	► 3202 ATN9 ► 3302 ATN9
17	40 47	17,5 22,2	14,3 21,6	8,8 12,7	0,365 0,54	19 000 17 000	16 000 14 000	0,096 0,18	<u>-</u> -	► 3203 ATN9 3303 ATN9
20	47 52	20,6 22,2	20,4 23,6	12,9 14,6	0,55 0,62	16 000 15 000	14 000 13 000	0,16 0,22	► 3204 A ► 3304 A	► 3204 ATN9 ► 3304 ATN9
25	52 62	20,6 25,4	21,6 32	14,3 20,4	0,6 0,865	14 000 12 000	12 000 11 000	0,18 0,35	► 3205 A ► 3305 A	► 3205 ATN9 ► 3305 ATN9
30	62 72	23,8 30,2	30 42,5	20,4 30	0,865 1,27	11 000 10 000	10 000 9 000	0,29 0,52	► 3206 A ► 3306 A	► 3206 ATN9 ► 3306 ATN9
35	72 80 80	27 34,9 34,9	40 52 52,7	28 35,5 41,5	1,18 1,5 1,76	10 000 9 500 9 000	9 000 8 500 8 000	0,44 0,74 0,79	► 3207 A ► 3307 A 3307 DJ1	► 3207 ATN9 ► 3307 ATN9
40	80 90 90	30,2 36,5 36,5	48 49,4 64	36,5 41,5 44	1,56 1,76 1,86	9 000 8 000 8 000	8 000 7 000 7 500	0,57 1,2 0,93	➤ 3208 A 3308 DNRCBM ► 3308 A	➤ 3208 ATN9 ➤ 3308 ATN9
	90 90	36,5 36,5	68,9 68,9	57 57	2,45 2,45	8 000 8 000	7 000 7 000	1,05 1,05	► 3308 DMA 3308 DTN9	- -
45	85 100 100	30,2 39,7 39,7	51 61,8 75	39 52 53	1,63 2,2 2,24	8 500 7 500 7 500	7 500 6 300 6 700	0,63 1,5 1,25	➤ 3209 A 3309 DNRCBM ► 3309 A	► 3209 ATN9 - ► 3309 ATN9
	100	39,7	79,3	69,5	3	7 500	6 300	1,65	3309 DMA	-
50	90 110 110	30,2 44,4 44,4	51 81,9 90	42,5 69,5 64	1,8 3 2,75	8 000 6 700 6 700	7 000 5 600 6 000	0,65 1,95 1,7	► 3210 A 3310 DNRCBM ► 3310 A	➤ 3210 ATN9 — ➤ 3310 ATN9
	110	44,4	93,6	85	3,6	6 700	5 600	2,2	► 3310 DMA	-

SKF Explorer bearing

➤ Popular item

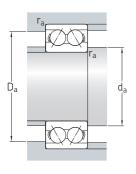

1) For dimensions of snap ring groove and snap ring → table 7, page 395

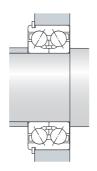




Dimens	sions						Abutme	nt and fillet o	limensions	Calculation factor
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	a	d _a min.	D _a max.	r _a max.	k _r
mm							mm			-
10	-	15,8	-	25	0,6	16	14,4	25,6	0,6	0,06
12	-	17,2	-	27,7	0,6	19	16,4	27,6	0,6	0,06
15	- -	20,2 23,7	- -	30,7 35,7	0,6 1	21 24	19,4 20,6	30,6 36,4	0,6 1	0,06 0,07
17	- -	23,3 25,7	- -	35 40,2	0,6 1	23 28	21,4 22,6	35,6 41,4	0,6 1	0,06 0,07
20	- -	27,7 29,9	- -	40,9 44	1 1,1	28 30	25,6 27	41,4 45	1 1	0,06 0,07
25	-	32,7 35,7	-	45,9 53,4	1 1,1	30 36	31 32	46 55	1 1	0,06 0,07
30	- -	38,7 39,8	- -	55,2 64,1	1 1,1	36 42	36 37	56 65	1 1	0,06 0,07
35	- - 52,8	45,4 44,6 -	- - 69	63,9 70,5 -	1,1 1,5 1,5	42 47 76	42 44 44	65 71 71	1 1,5 1,5	0,06 0,07 0,095
40	- 61,1 -	47,8 - 50,8	- 77,5 -	72,1 - 80,5	1,1 1,5 1,5	46 71 53	47 49 49	73 - 81	1 1,5 1,5	0,06 0,095 0,07
	59,4 59,4	_	77,8 77,8	- -	1,5 1,5	84 84	49 49	81 81	1,5 1,5	0,095 0,095
45	- 67,9 -	52,8 - 55,6	- 86,6 -	77,1 - 90	1,1 1,5 1,5	46 79 58	52 54 54	78 - 91	1 1,5 1,5	0,06 0,095 0,07
	70	-	86,4	-	1,5	93	54	91	1,5	0,095
50	- 74,6 -	57,8 - 62	- 96,4 -	82,1 - 99,5	1,1 2 2	52 102 65	57 61 61	83 - 99	1 2 2	0,06 0,095 0,07
	76,5	_	94,2	_	2	102	61	99	2	0,095

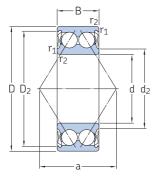
3.2 Double row angular contact ball bearings d 55 – 110 mm

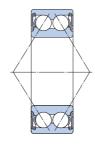

32 A, 33 A 33 D 33 DNRCBM1)


Princi	pal dime	ensions		oad ratings c static	Fatigue load limit	Speed rati Reference speed	i ngs Limiting speed	Mass	Designations Bearing with metal cage	polyamide cage
d	D	В	С	C_0	P_{u}	speed	speed		metat cage	polyamide cage
mm			kN		kN	r/min		kg	-	
55	100 120 120	33,3 49,2 49,2	60 95,6 111	47,5 83 100	2 3,55 4,3	6 300 5 000 4 800	6 300 5 300 5 000	0,91 2,55 2,8	► 3211 A 3311 DNRCBM 3311 DMA	► 3211 ATN9 - -
	120	49,2	112	81,5	3,45	5 300	5 300	2,65	3311 A	3311 ATN9
60	110 130	36,5 54	73,5 127	58,5 95	2,5 4,05	6 300 5 600	5 600 5 000	1,2 2,8	► 3212 A ► 3312 A	► 3212 ATN9 -
65	120 140 140	38,1 58,7 58,7	80,6 138 146	73,5 122 110	3,1 5,1 4,55	5 600 5 300 5 300	4 800 4 500 4 500	1,75 4 4,1	► 3213 A 3313 DNRCBM ► 3313 A	- - -
70	125 150	39,7 63,5	88,4 163	80 125	3,4 5	5 600 5 000	4 500 4 300	1,9 5,05	► 3214 A ► 3314 A	<u>-</u>
' 5	130 160	41,3 68,3	95,6 176	88 140	3,75 5,5	5 300 4 500	4 500 4 000	2,1 5,55	► 3215 A ► 3315 A	- -
30	140 170	44,4 68,3	106 193	95 156	3,9 6	5 000 4 300	4 300 3 800	2,65 6,8	► 3216 A ► 3316 A	<u>-</u>
35	150 180	49,2 73	124 208	110 176	4,4 6,55	4 500 4 000	3 800 3 600	3,4 8,3	► 3217 A ► 3317 A	-
90	160 190	52,4 73	130 208	120 180	4,55 6,4	4 300 3 800	3 600 3 400	4,15 9,25	► 3218 A ► 3318 A	<u>-</u>
95	170 200	55,6 77,8	159 240	146 216	5,4 7,5	4 000 3 600	3 400 3 200	5 11	► 3219 A ► 3319 A	- -
100	180 215	60,3 82,6	178 255	166 255	6 8,65	3 800 3 400	3 200 2 800	6,1 13,5	► 3220 A ► 3320 A	<u>-</u>
.10	200 240	69,8 92,1	212 291	212 305	7,2 9,8	3 400 3 000	2 800 2 600	8,8 19	► 3222 A 3322 A	- -

SKF Explorer bearing

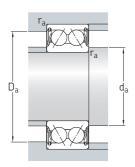
➤ Popular item


1) For dimensions of snap ring groove and snap ring → table 7, page 395



Dimen	sions						Abutme	nt and fillet o	limensions	Calculation factor
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	a	d _a min.	D _a max.	r _a max.	k _r
mm							mm			-
55	- 81,5 81,4	63,2 - -	- 106 105	92,3 - -	1,5 2 2	57 97 114	63 66 66	91 - 109	1,5 2 2	0,06 0,095 0,095
	-	68,4	-	110	2	72	66	109	2	0,07
60	74,4 84,2	- -	96,2 110	- -	1,5 2,1	63 78	69 72	101 118	1,5 2	0,06 0,07
65	84,9 95 89,8	- - -	103 125 116	- - -	1,5 2,1 2,1	71 114 84	74 77 77	111 - 128	1,5 2 2	0,06 0,095 0,07
70	88,5 96,5	-	108 125	-	1,5 2,1	74 89	79 82	116 138	1,5 2	0,06 0,07
75	92 103	-	112 135	-	1,5 2,1	77 97	84 87	121 148	1,5 2	0,06 0,07
80	97,6 109	- -	120 144	- -	2 2,1	82 101	91 92	129 158	2 2	0,06 0,07
35	103 116		136 153	- -	2 3	88 107	96 99	139 166	2 2,5	0,06 0,07
90	111 123	- -	137 160	- -	2 3	94 112	101 104	149 176	2 2,5	0,06 0,07
95	119 127	_	146 176		2,1 3	101 127	107 109	158 186	2 2,5	0,06 0,07
100	126 135		162 180	- -	2,1 3	107 127	112 114	168 201	2 2,5	0,06 0,07
110	139 152	- -	174 201	- -	2,1 3	119 142	122 124	188 226	2 2,5	0,06 0,07

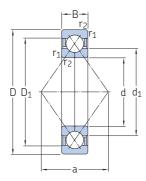
3.3 Capped double row angular contact ball bearings d 10 – 75 mm

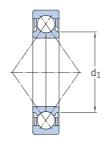

2Z

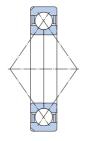
2RS1

Princi	pal dime	ensions		oad ratings c static	Fatigue load limit	Limiting Bearing v shields		Mass	Designations Bearing with shields	seals
d	D	В	С	C_0	P_u	Silletus	Seals		Silielus	Seals
mm			kN		kN	r/min		kg	_	
10	30	14	7,61	4,3	0,183	24 000	17 000	0,051	3200 A-2Z	3200 A-2RS1
12	32	15,9	10,1	5,6	0,24	22 000	15 000	0,058	3201 A-2Z	3201 A-2RS1
15	35	15,9	11,2	6,8	0,285	18 000	14 000	0,066	3202 A-2Z	3202 A-2RS1
	42	19	15,1	9,3	0,4	16 000	12 000	0,13	3302 A-2Z	3302 A-2RS1
17	40	17,5	14,3	8,8	0,365	16 000	12 000	0,1	3203 A-2Z	3203 A-2RS1
	47	22,2	21,6	12,7	0,54	14 000	11 000	0,18	3303 A-2Z	3303 A-2RS1
20	47	20,6	20,4	12,9	0,55	14 000	10 000	0,16	► 3204 A-2Z	► 3204 A-2RS1
	52	22,2	23,6	14,6	0,62	13 000	9 000	0,22	3304 A-2Z	► 3304 A-2RS1
25	52	20,6	21,6	14,3	0,6	12 000	8 500	0,18	► 3205 A-2Z	► 3205 A-2RS1
	62	25,4	32	20,4	0,865	11 000	7 500	0,35	► 3305 A-2Z	3305 A-2RS1
30	62	23,8	30	20,4	0,865	10 000	7 500	0,29	► 3206 A-2Z	► 3206 A-2RS1
	72	30,2	42,5	30	1,27	9 000	6 300	0,52	► 3306 A-2Z	► 3306 A-2RS1
35	72	27	40	28	1,18	9 000	6 300	0,44	► 3207 A-2Z	► 3207 A-2RS1
	80	34,9	52	35,5	1,5	8 500	6 000	0,74	3307 A-2Z	► 3307 A-2RS1
40	80	30,2	48	36,5	1,56	8 000	5 600	0,57	► 3208 A-2Z	► 3208 A-2RS1
	90	36,5	64	44	1,86	7 500	5 000	0,93	► 3308 A-2Z	3308 A-2RS1
45	85	30,2	51	39	1,63	7 500	5 300	0,63	► 3209 A-2Z	► 3209 A-2RS1
	100	39,7	75	53	2,24	6 700	4 800	1,25	3309 A-2Z	► 3309 A-2RS1
50	90	30,2	51	42,5	1,8	7 000	4 800	0,65	► 3210 A-2Z	► 3210 A-2RS1
	110	44,4	90	64	2,75	6 000	4 300	1,7	► 3310 A-2Z	3310 A-2RS1
55	100	33,3	60	47,5	2	6 300	4 500	0,91	3211 A-2Z	► 3211 A-2RS1
	120	49,2	112	81,5	3,45	5 300	3 800	2,65	3311 A-2Z	3311 A-2RS1
60	110 130	36,5 54	73,5 127	58,5 95	2,5 4,05	5 600 5 000	4 000 -	1,2 2,8	3212 A-2Z 3312 A-2Z	► 3212 A-2RS1
65	120	38,1	80,6	73,5	3,1	4 800	3 600	1,75	3213 A-2Z	3213 A-2RS1
	140	58,7	146	110	4,55	4 500	-	4,1	3313 A-2Z	-
70	125	39,7	88,4	80	3,4	4 500	_	1,9	3214 A-2Z	-
	150	63,5	163	125	5	4 300	_	5,05	3314 A-2Z	-
75	130 160	41,3 68,3	95,6 176	88 140	3,75 5,5	4 500 4 000	-	2,1 5,6	► 3215 A-2Z 3315 A-2Z	<u>-</u>

SKF Explorer bearing


Popular item



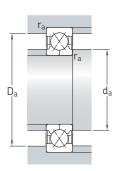

Dimens	sions				Abutme	nt and fille	t dimensior	ns	Calculation factor
d	d ₂ ≈	D ₂ ≈	r _{1,2} min.	a	d _a min.	d _a max.	D _a max.	r _a max.	k _r
mm					mm				_
10	15,8	25	0,6	16	14,4	15,5	25,6	0,6	0,06
12	17,2	27,7	0,6	19	16,4	17	27,6	0,6	0,06
15	20,2	30,7	0,6	21	19,4	20	30,6	0,6	0,06
	23,7	35,7	1	24	20,6	23,5	36,4	1	0,07
17	23,3	35	0,6	23	21,4	23	35,6	0,6	0,06
	25,7	40,2	1	28	22,6	25,5	41,4	1	0,07
20	27,7 29,9	40,9 44	1 1,1	28 30	25,6 27	27,5 29,5	41,4 45	1	0,06 0,07
25	32,7 35,7	45,9 53,4	1 1,1	30 36	30,6 32	32,5 35,5	46,4 55	1	0,06 0,07
30	38,7 39,8	55,2 64,1	1 1,1	36 42	35,6 37	38,5 39,5	56 65	1	0,06 0,07
35	45,4	63,9	1,1	42	42	45	65	1	0,06
	44,6	70,5	1,5	47	44	44,5	71	1,5	0,07
40	47,8	72,1	1,1	46	47	48	73	1	0,06
	50,8	80,5	1,5	53	49	50	81	1,5	0,07
45	52,8	77,1	1,1	46	52	52	78	1	0,06
	55,6	90	1,5	58	54	91	91	1,5	0,07
50	57,8 62	82,1 99,5	1,1 2	52 65	57 61	57 61	83 99	1 2	0,06 0,07
55	63,2	92,3	1,5	57	63	63	91	1,5	0,06
	68,4	110	2	72	66	68	109	2	0,07
60	68,8	101	1,5	63	69	68	101	1,5	0,06
	73,4	118	2,1	78	72	73	118	2	0,07
65	77,5	111	1,5	71	74	76	111	1,5	0,06
	79,2	128	2,1	84	77	78	128	2	0,07
70	82,5	116	1,5	74	79	82	116	1,5	0,06
	86,5	137	2,1	89	82	84	138	2	0,07
75	87,5	121	1,5	77	84	84	121	1,5	0,06
	95,4	147	2,1	97	87	88	148	2	0,07

3.4 Four-point contact ball bearings

d **15 – 65** mm

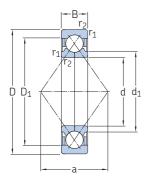
Basic design

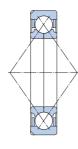
SKF Explorer bearing


Bearing with locating slots

	•	Jusic desig		311	. Explorer bearing	9	Dearing with a	seating stots	
Principal dimensions			Basic load ratings dynamic static		Fatigue load limit	Limiting speed	Mass	Designations Bearing with locating	without
d	D	В	С	C_0	P_u			slots ¹⁾	locating slots
mm			kN		kN	r/min	kg	-	
15	35	11	12,7	8,3	0,355	36 000	0,062	QJ 202 N2MA	-
17	40 47	12 14	17 23,4	11,4 15	0,48 0,64	30 000 28 000	0,082 0,14	QJ 203 N2MA QJ 303 N2MA	-
20	52 52	15 15	32 32	21,6 21,6	0,93 0,93	24 000 24 000	0,18 0,18	QJ 304 N2MA QJ 304 N2PHAS	► QJ 304 MA -
25	52 62	15 17	27 42,5	21,2 30	0,9 1,27	22 000 20 000	0,16 0,29	QJ 205 N2MA QJ 305 N2MA	_ QJ 305 MA
30	62 72 72	16 19 19	37,5 53 53	30,5 41,5 41,5	1,29 1,76 1,76	19 000 17 000 17 000	0,24 0,42 0,42	QJ 206 N2MA QJ 306 N2MA QJ 306 N2PHAS	► QJ 206 MA ► QJ 306 MA
35	72 80 80	17 21 21	49 64 64	41,5 51 51	1,76 2,16 2,16	17 000 15 000 15 000	0,35 0,57 0,57	QJ 207 N2MA QJ 307 N2MA QJ 307 N2PHAS	- QJ 307 MA
•0	80 90 90	18 23 23	56 78 78	49 64 64	2,08 2,7 2,7	15 000 14 000 14 000	0,45 0,78 0,78	_ QJ 308 N2MA QJ 308 N2PHAS	► QJ 208 MA ► QJ 308 MA −
5	85 100 100	19 25 25	63 100 100	56 83 83	2,36 3,55 3,55	14 000 12 000 12 000	0,52 1,05 1,05	_ QJ 309 N2MA QJ 309 N2PHAS	QJ 209 MAQJ 309 MAQJ 309 PHAS
60	90 110 110	20 27 27	65,5 118 118	61 100 100	2,6 4,25 4,25	13 000 11 000 11 000	0,59 1,35 1,35	- - -	QJ 210 MAQJ 310 MAQJ 310 PHAS
55	100 120	21 29	85 137	83 118	3,55 5	11 000 10 000	0,77 1,75	QJ 211 N2MA QJ 311 N2MA	QJ 211 MAQJ 311 MA
0	110 110 130	22 22 31	96,5 96,5 156	93 93 137	4 4 5,85	10 000 10 000 9 000	0,99 0,99 2,15	QJ 212 N2PHAS QJ 212 N2MA QJ 312 N2MA	_ ► QJ 212 MA ► QJ 312 MA
	130	31	156	137	5,85	9 000	2,15	-	► QJ 312 PHAS
65	120 120 140	23 23 33	110 110 176	112 112 156	4,75 4,75 6,55	9 500 9 500 8 500	1,2 1,2 2,7	QJ 213 N2PHAS QJ 213 N2MA QJ 313 N2PHAS	- QJ 213 MA
	140	33	176	156	6,55	8 500	2,7	-	► QJ 313 MA

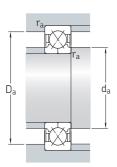
SKF Explorer bearing


► Popular item


¹) For dimensions of locating slots → table 1, page 387

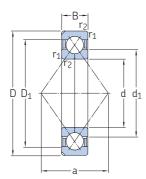
Dimensions					Abutme	nt and fillet o	Calculation factor	
d	d ₁ ≈	D ₁ ≈	r _{1,2} min.	a	d _{a.} min.	D _a max.	r _a max.	А
mm					mm			-
15	22	28,1	0,6	18	19,2	30,8	0,6	0,000 257
17	23,5	32,5	0,6	20	21,2	35,8	0,6	0,000 427
	27,7	36,3	1	22	22,6	41,4	1	0,00087
20	27,5 27,5	40,8 40,8	1,1 1,1	25 25	27 27	45 45	1	0,00143 0,00143
25	31,5	43	1	27	30,6	46,4	1	0,00126
	34	49	1,1	30	32	55	1	0,00278
30	37,5	50,8	1	32	35,6	56	1	0,00256
	40,5	58,2	1,1	36	37	65	1	0,00508
	40,5	58,2	1,1	36	37	65	1	0,00508
35	44	59	1,1	37	42	65	1	0,00473
	46,2	64,3	1,5	40	44	71	1,5	0,00744
	46,2	64,3	1,5	40	44	71	1,5	0,00744
40	49,5	66	1,1	42	47	73	1	0,0066
	52	72,5	1,5	46	49	81	1,5	0,0118
	52	72,5	1,5	46	49	81	1,5	0,0118
45	54,5	72	1,1	46	52	78	1	0,00871
	58	81,2	1,5	51	54	91	1,5	0,0202
	58	81,2	1,5	51	54	91	1,5	0,0202
50	59,5	76,5	1,1	49	57	83	1	0,0103
	65	90	2	56	61	99	2	0,029
	65	90	2	56	61	99	2	0,029
55	66	84,7	1,5	54	64	91	1,5	0,0173
	70,5	97,8	2	61	66	109	2	0,0404
60	72	93	1,5	60	69	101	1,5	0,0242
	72	93	1,5	60	69	101	1,5	0,0242
	77	106	2,1	67	72	118	2	0,0549
	77	106	2,1	67	72	118	2	0,0549
65	78,5	101	1,5	65	74	111	1,5	0,033
	78,5	101	1,5	65	74	111	1,5	0,033
	82,5	115	2,1	72	77	128	2	0,0731
	82,5	115	2,1	72	77	128	2	0,0731

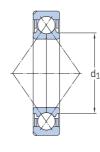
3.4 Four-point contact ball bearings d 70 – 150 mm


Bearing with locating slots

Principal dimensions		al dimensions Basic load rating dynamic static			Fatigue load limit			Designations Bearing	201
d	D	В	С	C_0	P_{u}			with locating slots ¹⁾	without locating slots
mm			kN		kN	r/min	kg	_	
70	125 125 150	24 24 35	120 120 200	122 122 180	5,2 5,2 7,35	9 000 9 000 8 000	1,3 1,3 3,15	 QJ 214 N2MA QJ 214 N2PHAS QJ 314 N2MA 	QJ 214 MA - QJ 314 MA
	150	35	200	180	7,35	8 000	3,15	QJ 314 N2PHAS	-
75	130 130 160	25 25 37	125 125 216	132 132 200	5,6 5,6 7,8	8 500 8 500 7 500	1,45 1,45 3,9	QJ 215 N2MA QJ 215 N2PHAS • QJ 315 N2MA	QJ 215 MA - -
	160	37	216	200	7,8	7 500	3,9	QJ 315 N2PHAS	-
80	140 170 170	26 39 39	146 232 232	156 228 228	6,4 8,65 8,65	8 000 7 000 7 000	1,85 4,6 4,6	 QJ 216 N2MA QJ 316 N2MA QJ 316 N2PHAS 	QJ 216 MA - -
85	150 180	28 41	156 250	173 255	6,7 8,65	7 500 6 700	2,25 5,45	D QJ 217 N2MAD QJ 317 N2MA	QJ 217 MA
90	160 190 190	30 43 43	186 285 285	200 305 305	7,65 11 11	7 000 6 300 6 300	2,75 6,45 6,45	QJ 218 N2MAQJ 318 N2MAQJ 318 N2PHAS	-
95	170 200 200	32 45 45	212 305 305	232 340 340	8,5 11,8 11,8	6 700 6 000 6 000	3,35 7,45 7,45	QJ 219 N2MAQJ 319 N2MAQJ 319 N2PHAS	- - -
100	180 215	34 47	236 345	265 400	9,5 13,7	6 300 5 600	4,05 9,3	QJ 220 N2MAQJ 320 N2MA	-
110	200 240	38 50	280 390	325 480	11,2 15,3	5 600 4 800	5,6 12,5	D QJ 222 N2MAD QJ 322 N2MA	-
120	215 260	40 55	300 415	365 530	12 16,3	5 000 4 500	6,95 16	D QJ 224 N2MAD QJ 324 N2MA	-
130	230 280	40 58	310 455	400 610	12,7 18	4 800 4 000	7,75 19,5	QJ 226 N2MAQJ 326 N2MA	-
140	250 300	42 62	345 500	475 695	14,3 20	4 300 3 800	9,85 24	QJ 228 N2MAQJ 328 N2MA	
150	270 320	45 65	400 530	570 765	16,6 21,2	4 000 3 600	12,5 29	QJ 230 N2MAQJ 330 N2MA	-

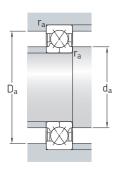
SKF Explorer bearing


► Popular item


1) For dimensions of locating slots → table 1, page 387

Dimens	ions				Abutme	nt and fillet (dimensions	Calculation factor
d	d ₁ ≈	D ₁ ≈	r _{1,2} min.	a	d _a min.	D _a max.	r _a max.	А
mm					mm			-
70	83,5	106	1,5	68	79	116	1,5	0,04
	83,5	106	1,5	68	79	116	1,5	0,04
	89	123	2,1	77	82	138	2	0,0954
	89	123	2,1	77	82	138	2	0,0954
75	88,5	112	1,5	72	84	121	1,5	0,0453
	88,5	112	1,5	72	84	121	1,5	0,0453
	104	131	2,1	82	87	148	2	0,122
	104	131	2,1	82	87	148	2	0,122
80	95,3	120	2	77	91	130	2	0,0629
	111	139	2,1	88	92	158	2	0,155
	111	139	2,1	88	92	158	2	0,155
85	100	128	2	83	96	139	2	0,0768
	117	148	3	93	99	166	2,5	0,193
90	114	136	2	88	101	149	2	0,106
	124	156	3	98	104	176	2,5	0,26
	124	156	3	98	104	176	2,5	0,26
95	120	145	2,1	93	107	158	2	0,138
	131	165	3	103	109	186	2,5	0,317
	131	165	3	103	109	186	2,5	0,317
100	127 139	153 176	2,1 3	98 110	112 114	168 201	2 2	0,176 0,442
110	141	169	2,1	109	122	188	2	0,277
	154	196	3	123	124	226	2,5	0,635
120	152	183	2,1	117	132	203	2	0,354
	169	211	3	133	134	246	2,5	0,785
130	165	195	3	126	144	216	2,5	0,411
	182	227	4	144	147	263	3	1,06
140	179	211	3	137	154	236	2,5	0,556
	196	244	4	154	158	282	3	1,4
150	194	226	3	147	164	256	2,5	0,793
	211	259	4	165	167	303	3	1,65

3.4 Four-point contact ball bearings d 160 – 200 mm

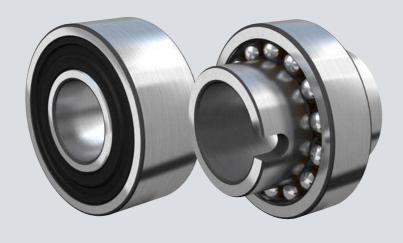

SKF Explorer bearing

Principal dimensions			oad ratings c static	Fatigue Limiting load limit speed	Mass	Designations Bearing			
d	D	В	С	C_0	P_{u}			with locating slots ¹⁾	without locating slots
mm			kN		kN	r/min	kg	_	
160	290 340	48 68	450 570	670 880	19 23,6	3 800 3 400	15,5 34,5	QJ 232 N2MAQJ 332 N2MA	- -
170	310 360	52 72	455 655	720 1 040	20 27	3 400 3 200	19,5 41,5	QJ 234 N2MAQJ 334 N2MA	
180	320 380	52 75	475 680	765 1 100	20,8 28	3 400 3 000	20,5 47,5	 QJ 236 N2MA QJ 336 N2MA 	<u>-</u> -
190	340 400	55 78	510 702	850 1 160	22,4 28,5	3 200 2 800	23,5 49	QJ 238 N2MA QJ 338 N2MA	- -
200	360	58	540	915	23,2	3 000	28,5	QJ 240 N2MA	-

SKF Explorer bearing

► Popular item

1) For dimensions of locating slots → table 1, page 387



Dimensions					Abutment and fillet dimensions			Calculation factor
d	d ₁ ≈	D ₁ ≈	r _{1,2} min.	a	d _a min.	D _a max.	r _a max.	А
mm					mm			-
160	204 224	243 276	3 4	158 175	174 177	276 323	2,5 3	1,1 2,12
170	204 237	243 293	4 4	168 186	187 187	293 343	3 3	1,26 2,92
180	231 252	269 309	4 4	175 196	197 197	303 363	3 3	1,39 3,38
190	244 263	285 326	4 5	185 207	207 210	323 380	3 4	1,77 4,45
200	258	302	4	196	217	363	3	2,33

Self-aligning ball bearings

4 Self-aligning ball bearings

Desi	gns and variants	439		
Seal	ed bearings	439		
Gì	reases for capped bearings	440		
	rease life for capped bearings	440		
Larg	e self-aligning ball bearings	440		
Bear	rings with an extended inner ring	440		
	25	442		
(Dim	ring data nension standards, tolerances, internal clearance, nissible misalignment)	443		
(Min	dsimum load, axial load carrying capacity, equivalent amic bearing load, equivalent static bearing load)	445		
Tem	perature limits	445		
Perr	nissible speed	446		
Desi	gn considerations	446		
Ball	protrusion	446		
Bear	rings on sleeves	446		
Bear	rings with an extended inner ring	446		
Appr	ropriate bearing housings	447		
	nting	447		
Mou	nting bearings with a cylindrical bore	447		
Mou	nting bearings with a tapered bore	447		
Desi	gnation system	449		
Proc	duct tables			
4.1	Self-aligning ball bearings	450		
4.2	Self-aligning ball bearings on an adapter sleeve	458		
4.3	Self-aligning ball bearings with an extended inner		Other self-aligning ball bearings	
	ring	462	Bearings with Solid Oil	1023

5KF. 437

4 Self-aligning ball bearings

More information

General bearing knowledge					
Bearing selection process	59				
Lubrication	109				
Bearing interfaces	139				
Seat tolerances for standard					
conditions	148				
Selecting internal clearance	182				
Sealing, mounting and					
dismounting	193				

Mounting instructions for individual bearings → skf.com/mount

SKF Drive-up Method

→ skf.com/drive-up

SKF bearing maintenance handbook ISBN 978-91-978966-4-1 Self-aligning ball bearings have two rows of balls, a common sphered raceway in the outer ring and two deep uninterrupted raceway grooves in the inner ring. They are available open or sealed. The bearings are insensitive to angular misalignment of the shaft relative to the housing (fig. 1), which can be caused, for example, by shaft deflection.

Bearing features

Accommodate static and dynamic misalignment

The bearings are self-aligning like spherical roller bearings or CARB bearings.

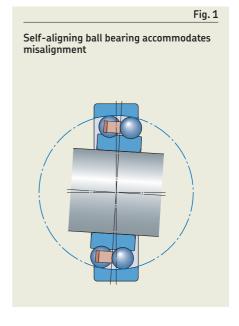
• Excellent high-speed performance

Self-aligning ball bearings generate less friction than any other type of rolling bearing, which enables them to run cooler even at high speeds.

• Minimum maintenance

Because of low heat generation, the bearing temperature is lower, leading to extended bearing life and maintenance intervals.

· Low friction


Very loose conformity between balls and outer ring keeps friction and frictional heat at low levels.

• Excellent light load performance

Self-aligning ball bearings have low minimum load requirements.

Low noise

Self-aligning ball bearings can reduce noise and vibration levels, for example, in fans.

438 **5KF**

Designs and variants

SKF standard assortment

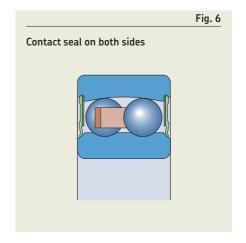
SKF self-aligning ball bearing variants are:

- open (fig. 2)
 - with cylindrical bore
 - with tapered bore, e.g. for use with adapter sleeves (fig. 3)
 - with extended inner ring (fig. 4)
- sealed (fig. 5)
 - with cylindrical bore
 - with tapered bore, e.g. for use with adapter sleeves

Sealed bearings

Sealed bearings equipped with contact seals on both sides (fig. 6) are available:

- in the 22 and 23 series
- with bore diameter $10 \le d \le 70 \text{ mm}$
- with seals made of sheet steel reinforced NBR (oil and wear-resistant, designation suffix -2RS1)


Permissible angular misalignment of sealed bearings is slightly reduced compared to open design bearings.

Greases for capped bearings

Bearings sealed on both sides are lubricated for the life of the bearing and are virtually maintenance-free. They are filled with one of the following standard greases, which have good corrosion-inhibiting properties (table 1):

- D \leq 62 \Rightarrow MT47 grease
- D > 62 → MT33 grease

Grease life for capped bearings

- is presented as L₁₀, i.e. the time period at the end of which 90% of the bearings are still reliably lubricated
- depends on the operating temperature and the nd_m value (diagram 1)

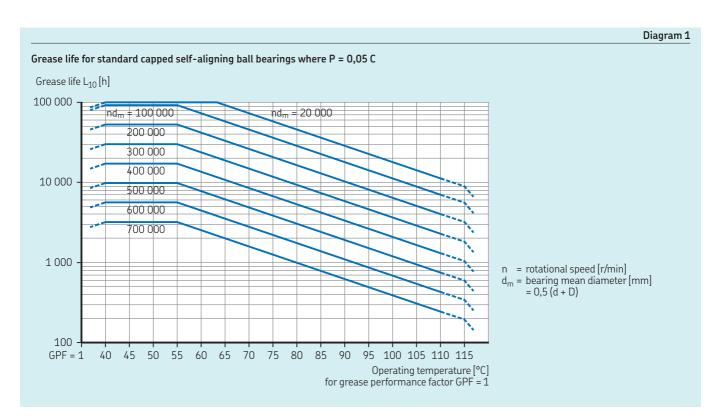
The grease life specified in **diagram 1** is valid for the following combination of operating conditions:

- horizontal shaft
- inner ring rotation
- light load (P ≤ 0,05 C)
- operating temperature within the green temperature zone of the grease (table 1)
- · stationary machine
- low vibration levels

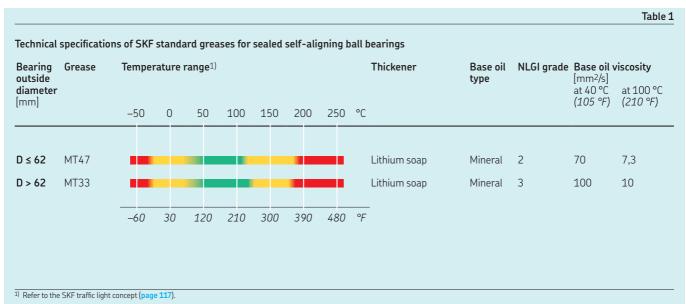
Where the operating conditions differ, the grease life obtained from the diagram should be adjusted:

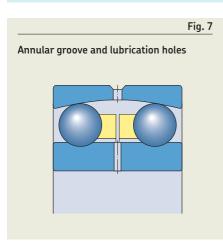
- vertical shafts → 50% of the obtained value
- heavier loads (P > 0,05 C) → apply reduction factor (table 2)

When sealed bearings must operate under certain extreme conditions, such as very high speeds or high temperatures, grease may appear on the capping diameter. For bearing arrangements where this would be detrimental, appropriate actions should be taken. For additional information, contact the SKF application engineering service.

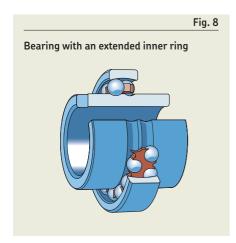

Large self-aligning ball bearings

- are available in the 130 and 139 series
- are equipped with an annular groove in the outer ring and (fig. 7):
 - three equally-spaced lubrication holes in the outer ring
 - six equally-spaced lubrication holes in the inner ring
- can be used in any application where low friction is preferred over high load carrying capacity (e.g. in the paper industry)


Bearings with an extended inner ring


- are (fig. 8) designed for less demanding applications that use commercial grade shafting
- have a special bore tolerance, class JS7 (table 3), that facilitates mounting and dismounting
- are located axially on the shaft by means of a slot at one end of the inner ring that engages a pin or shoulder screw (fig. 9) fitted to the shaft

This also prevents the shaft from spinning in the bearing bore.


440 **SKF**

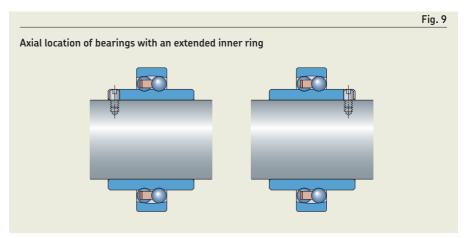


	Table 2				
Reduction factor for the grease life, depending on the load					
Load P	Reduction factor				
≤ 0,05 C 0,1 C	1 0,7				
0,125 C 0,25 C	0,5 0,2				

	tolerance of s		
Bore d	diameter ≤	Toleran Deviatio U	ce class JS7 n L
mm		μm	
18 30 50	30 50 80	+10,5 +12,5 +15	-10,5 -12,5 -15

SKF. 441

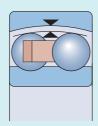
ages for self-a	aligning ball bearings				Table
Cage type	One-piece, ball centred	Two-piece, ball centred	One-piece snap-type, ball centred	One-piece, ball centred	Two-piece, ball centred
Material	Stamped steel	Stamped steel	PA66, glass fibre reinforced	Machined brass	Machined brass
Suffix	-	-	TN9	M (no designation suffix when d ≥ 150 mm)	M (no designation suffix when d ≥ 150 mm)

Cages

Depending on their series and size, SKF self-aligning ball bearings are fitted with one of the cages shown in **table 4**.

When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For additional information about the suitability of cages, refer to *Cages*, page 187.

Permissible angular misali	Table ! ignment
	$=$ $\frac{1}{1}\alpha$
Bearings/series	Misalignment α
-	0
108, 126, 127, 129, 135 12 (E) 13 (E)	3 2,5 3
	2,5
22 (E) 22 E-2RS1 23 (E)	2,5 1,5 3
22 E-2RS1	1,5 3 1,5 2,5 3


442

Bearing data

Boundary dimensions: ISO 15
Except for:
Bearings with an extended inner ring
Normal
Except for:
Bearings with an extended inner ring:
bore to tolerance class JS7 (table 3, page 441) in accordance with ISO 286-2
Values: ISO 492 (table 2, page 38)
Normal, C3
Check availability of C2 (cylindrical bore only)
Except for:
Bearings in the 130 and 139 series: C3
Bearings with an extended inner ring:
ranging from the minimum value of C2 to the maximum value of Normal
Values: ISO 5753-1 (table 6, page 444)
Values are valid for unmounted bearings under zero measuring load.
Guideline values for normal operating condition (table 5). Whether these values can be fully exploited depends on the design of the adjacent components, such as external seals.
_

5KF. 443

Radial internal clearance of self-aligning ball bearings

Bearings with a cylindrical bore

Bore	diameter	Radia	l internal	clearan	ce		
d		C2		Norm		C3	
>	≤	min.	max.	min.	max.	min.	max.
mm		μm					
2,5	6	1	8	5	15	10	20
6	10	2	9	6	17	12	25
10	14	2	10	6	19	13	26
14	18	3	12	8	21	15	28
18	24	4	14	10	23	17	30
24	30	5	16	11	24	19	35
30	40	6	18	13	29	23	40
40	50	6	19	14	31	25	44
50	65	7	21	16	36	30	50
65	80	8	24	18	40	35	60
80	100	9	27	22	48	42	70
100	120	10	31	25	56	50	83
120	140	10	38	30	68	60	100
140	160	-	-	-	-	70	120
160	180	-	-	-	-	82	138
180	200	-	-	-	-	93	157
200	225	-	-	-	-	100	170
225	250	-	-	-	-	115	195

Bearings with a tapered bore

d	diameter	C2	l internal o	Norm	al	C3	
>	≤	min.	max.	min.	max.	min.	max.
mm		μm					
18 24 30	24 30 40	- - -	- - -	13 15 19	26 28 35	30 23 29	33 39 46
40 50 65	50 65 80	- - -	- - -	22 27 35	39 47 57	33 41 50	52 61 75
80 100	100 120	_		42 50	68 81	62 75	90 108

5KF.

Loads

Minimum load	$F_{rm} = k_r \left(\frac{v n}{1.000} \right)^{2/3} \left(\frac{d_m}{100} \right)^2$	Symbols
For additional information → page 106	$\Gamma_{\rm rm} = \kappa_{\rm r} \left(\frac{1000}{1000} \right) \left(\frac{100}{100} \right)$	B bearing width [mm] d bearing bore diameter [mm] d _m bearing mean diameter [mm]
Axial load carrying capacity	Bearings mounted on an adapter sleeve on plain shafts without a fixed abutment: $F_{ap} = 0,003 \ B \ d$ provided the bearings are correctly mounted.	= 0,5 (d + D) e calculation factor (product tables, page 450) F _a axial load [kN] F _{ap} maximum permissible axial load
Equivalent dynamic bearing load For additional information → page 91	$F_a/F_r \le e \rightarrow P = F_r + Y_1 F_a$ $F_a/F_r > e \rightarrow P = 0.65 F_r + Y_2 F_a$	Fr radial load [kN] Frm minimum radial load [kN] kr minimum load factor (product tables) n rotational speed [r/min] P equivalent dynamic bearing load [kN] equivalent static bearing load [kN]
Equivalent static bearing load For additional information → page 105	$P_0 = F_r + Y_0 F_a$	Y ₀ , Y ₁ , Y ₂ calculation factors (product tables) v oil viscosity at operating temperature [mm²/s]

Temperature limits

The permissible operating temperature for self-aligning ball bearings can be limited by:

- the dimensional stability of the bearing rings and balls
- the cage
- the seals
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings and balls

SKF self-aligning ball bearings are heat stabilized up to 120 $^{\circ}$ C (250 $^{\circ}$ F).

Cages

Steel or brass cages can be used at the same operating temperatures as the bearing rings and balls. For temperature limits of polymer cages, refer to *Polymer cages*, page 188.

Seals

The permissible operating temperature for NBR seals is –40 to +100 °C (–40 to +210 °F). Temperatures up to 120 °C (250 °F) can be tolerated for brief periods. Typically, temperature peaks are at the

lypically, temperature peaks are a seal lip.

Lubricants

Temperature limits for the greases used in sealed SKF self-aligning ball bearings are provided in **table 1**, **page 441**. For temperature limits of other SKF greases, refer to Selecting a suitable SKF grease, **page 116**.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Permissible speed

The speed ratings in the **product tables** indicate:

- the reference speed, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the limiting speed, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds

For additional information, refer to *Operating temperature and speed*, **page 130**.

Design considerations

Ball protrusion

The balls of some bearings in the 12 and 13 series protrude from the side faces of the bearing (fig. 10). The values of the protrusion are listed in the product table, page 457, and should be considered when designing components in close proximity to the bearing.

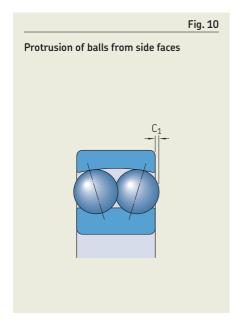
Bearings on sleeves

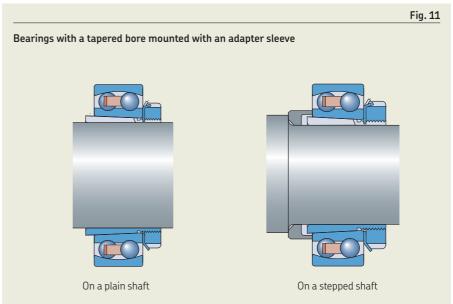
Self-aligning ball bearings with a tapered bore can be mounted with:

- an adapter sleeve on plain or stepped shafts (fig. 11)
- a withdrawal sleeve on stepped shafts (fig. 12)

Adapter sleeves are supplied complete with a locking device.

For appropriate SKF adapter sleeves, refer to the **product table**, page 458.


When using sealed bearings, make sure appropriate SKF adapter sleeve assemblies (e.g. E design sleeve, refer to the **product table**) are used to prevent the locking device from interfering with the seal (fig. 13). Alternatively, use a spacer ring between the bearing and the lock washer.


For additional information

- Adapter sleeves, page 1065
- Withdrawal sleeves, page 1087

Bearings with an extended inner ring

When two of these bearings are used to support a shaft, to locate the shaft axially the inner ring slots must be arranged facing towards or away from each other (fig. 9, page 441).

Appropriate bearing housings

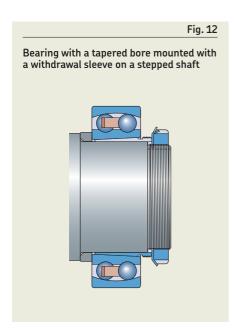
Appropriate SKF bearing housings are available in a variety of designs and sizes for a wide range of applications. The designs include:

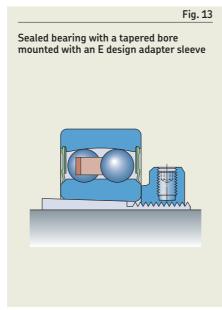
- SNL, SE plummer (pillow) block housings in the 2, 3, 5 and 6 series
- FNL flanged housings
- SAF plummer (pillow) block housings for inch shafts

Additional information about SKF bearing housings is available online at skf.com/housings.

Mounting

Mounting bearings with a cylindrical bore


Refer to Mounting bearings with a cylindrical bore, page 201.


Mounting bearings with a tapered bore

Bearings with a tapered bore are mounted with an interference fit, by using one of the following methods:

- 1 Feeling the clearance reduction by turning and swivelling the outer ring (fig. 14)
 - This method is valid for bearings with Normal radial clearance (not for sealed bearings).
 - The clearance reduction in the bearing is sufficient when the outer ring can be turned easily, but a slight resistance is felt when it is swivelled out.
- 2 Measuring the lock nut tightening angle (table 7, page 448)
- 3 Measuring the axial drive-up (table 7)
- 4 Applying the SKF Drive-up Method
 For bearings with d ≥ 50 mm, SKF recommends using the SKF Drive-up Method.
 This is a fast, reliable and safe method to determine the appropriate interference fit.
 Additional information is available online at skf.com/drive-up.

For additional information about these mounting methods, refer to *Mounting bearings with a tapered bore*, page 203, or the *SKF bearing maintenance handbook*.

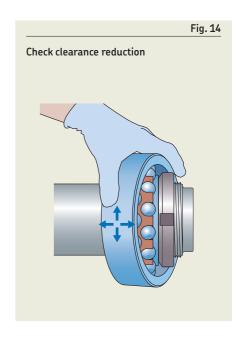
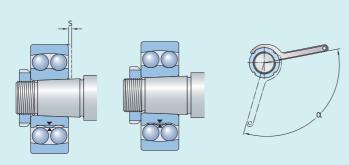



Table 7

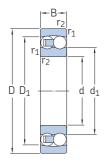
Drive-up data for self-aligning ball bearings with a tapered bore

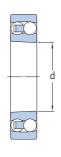
Bore diameter d	Axial drive-up S ¹⁾²⁾	Lock nut tightening angle $\alpha^{2)}$
mm	mm	0
20	0,22	80
25	0,22	55
30	0,22	55
35	0,30	70
40	0,30	70
45	0,35	80
50	0,35	80
55	0,40	75
60	0,40	75
65	0,40	80
70	0,40	80
75	0,45	85
80	0,45	85
85	0,60	110
90	0,60	110
95	0,60	110
100	0,60	110
110	0,70	125
120	0,70	125

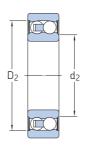
448

Not valid for the SKF Drive-up Method.
 The listed values are valid only for solid steel shafts and general applications. They are to be used as guideline values only, as it is difficult to establish an exact starting position. Also, the axial drive-up, s, differs slightly between the different bearings series.

Designation system Group 1 Group 2 Group 3 Group 4 4.1 | 4.2 | 4.3 | 4.4 | 4.5 | 4.6 Prefixes -Basic designation Listed in table 4, page 30 Suffixes -Group 1: Internal design -Ε Optimized internal design for increased load carrying capacity Group 2: External design (seals, snap ring groove, etc.) -2RS1 Contact seal, NBR, on both sides Tapered bore, taper 1:12 Group 3: Cage design -Machined brass cage, ball centred TN9 Glass fibre reinforced PA66 cage, ball centred Group 4.1: Materials, heat treatment _ Group 4.2: Accuracy, clearance, preload, quiet running C2 C3 Radial internal clearance smaller than Normal Radial internal clearance greater than Normal Group 4.3: Bearing sets, matched bearings -Group 4.4: Stabilization _


Group 4.6: Other variants


Group 4.5: Lubrication -

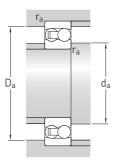

Solid Oil

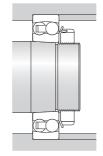
W64

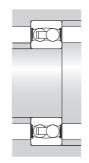
4.1 Self-aligning ball bearings d 5 – 20 mm

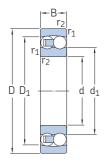
Cylindrical bore Tapered bore Sealed

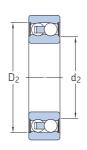
4.1	
$\overline{\mathbb{Q}}$	


Princi dime	ipal nsions			oad ratings c static	Fatique load limit	Speed rati Reference	Limiting	Mass	Designations Bearing with	Anna II
b	D	В	С	C_0	P_{u}	speed	speed		cylindrical bore	tapered bore
nm			kN		kN	r/min		kg		
5	19	6	2,51	0,48	0,025	63 000	45 000	0,009	► 135 TN9	-
•	19	6	2,51	0,48	0,025	70 000	45 000	0,009	▶ 126 TN9	-
7	22	7	2,65	0,56	0,029	63 000	40 000	0,014	► 127 TN9	-
8	22	7	2,65	0,56	0,029	60 000	40 000	0,014	▶ 108 TN9	-
9	26	8	3,9	0,82	0,043	60 000	38 000	0,022	▶ 129 TN9	-
10	30 30 30	9 14 14	5,53 5,53 8,06	1,18 1,18 1,73	0,061 0,06 0,09	56 000 - 50 000	36 000 17 000 34 000	0,034 0,048 0,047	► 1200 ETN9 ► 2200 E-2RS1TN9 ► 2200 ETN9	- - -
12	32 32 32	10 14 14	6,24 6,24 8,52	1,43 1,43 1,9	0,072 0,08 0,098	50 000 - 45 000	32 000 16 000 30 000	0,04 0,053 0,053	▶ 1201 ETN9▶ 2201 E-2RS1TN9▶ 2201 ETN9	- - -
	37 37	12 17	9,36 11,7	2,16 2,7	0,12 0,14	40 000 38 000	28 000 28 000	0,067 0,095	► 1301 ETN9 2301	-
15	35 35 35	11 14 14	7,41 7,41 8,71	1,76 1,76 2,04	0,09 0,09 0,11	45 000 - 38 000	28 000 14 000 26 000	0,049 0,058 0,06	▶ 1202 ETN9▶ 2202 E-2RS1TN9▶ 2202 ETN9	- - -
	42 42 42	13 17 17	10,8 10,8 11,9	2,6 2,6 2,9	0,14 0,14 0,15	34 000 - 32 000	24 000 12 000 24 000	0,094 0,11 0,12	► 1302 ETN9 ► 2302 E-2RS1TN9 ► 2302	- - -
17	40 40 40	12 16 16	8,84 8,84 10,6	2,2 2,2 2,55	0,12 0,12 0,14	38 000 - 34 000	24 000 12 000 24 000	0,073 0,089 0,088	▶ 1203 ETN9▶ 2203 E-2RS1TN9▶ 2203 ETN9	- - -
	47 47 47	14 19 19	12,7 12,7 14,3	3,4 3,4 3,55	0,18 0,18 0,19	28 000 - 30 000	20 000 11 000 22 000	0,12 0,16 0,18	► 1303 ETN9 ► 2303 E-2RS1TN9 2303 M	- - -
20	47 47 47	14 18 18	12,7 12,7 16,8	3,4 3,4 4,15	0,18 0,18 0,22	32 000 - 28 000	20 000 10 000 20 000	0,12 0,14 0,14	▶ 1204 ETN9▶ 2204 E-2RS1TN9▶ 2204 ETN9	1204 EKTN
	52 52 52	15 21 21	14,3 14,3 18,2	4 4 4,75	0,21 0,21 0,24	26 000 - 26 000	18 000 9 000 19 000	0,16 0,21 0,22	► 1304 ETN9 ► 2304 E-2RS1TN9 2304 TN9	- - -


[►] Popular item


SKF. 450

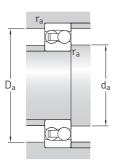


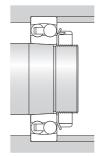


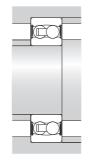
Dimen	sions						Abutm	ent and fi	llet dimer	nsions	Calcula	tion fact	ors		
d	d ₁ , d ₂ ≈	D ₁ , D ₂ ≈	C_1	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	е	Y ₁	Y ₂	Y ₀
nm						,	mm				_				
5	10,3	15,4	_	_	_	0,3	7,4	_	16,6	0,3	0,045	0,33	1,9	3	2
6	10,3	15,4	_	-	-	0,3	8,4	-	16,6	0,3	0,04	0,33	1,9	3	2
7	12,7	17,6	_	_	-	0,3	9,4	-	19,6	0,3	0,04	0,33	1,9	3	2
3	12,7	17,6	_	_	-	0,3	10,4	-	19,6	0,3	0,03	0,33	1,9	3	2
7	14,8	20,4	_	-	-	0,3	11,4	-	23,6	0,3	0,04	0,33	1,9	3	2
10	16,5 14,6 15,3	23,5 24,8 24,3	- - -	- - -	- - -	0,6 0,6 0,6	14,2 14 14,2	_ 14 _	25,8 25,8 25,8	0,6 0,6 0,6	0,04 0,045 0,045	0,33 0,33 0,54	1,9 1,9 1,15	3 3 1,8	2 2 1,3
.2	18,2 15,5 17,4	25,7 27,4 26,4	- - -	- - -	- - -	0,6 0,6 0,6	16,2 15,5 16,2	- 15,5 -	27,8 27,8 27,8	0,6 0,6 0,6	0,04 0,045 0,045	0,33 0,33 0,5	1,9 1,9 1,25	3 3 2	2 2 1,3
	20,2 18,9	29,5 29,1	- -	-	_	1	17,6 17,6	-	31,4 31,4	1	0,04 0,05	0,35 0,6	1,8 1,05	2,8 1,6	1,8 1,8
.5	21,1 19 20,8	28,9 30,4 29,5	- - -	- - -	- - -	0,6 0,6 0,6	19,2 19 19,2	- 19 -	30,8 30,8 30,8	0,6 0,6 0,6	0,04 0,045 0,045	0,33 0,33 0,43	1,9 1,9 1,5	3 3 2,3	2 2 1,6
	23,9 20,3 23,1	34,3 36,3 33,3	_ _ _	- - -	- - -	1 1 1	20,6 20 20,6	- 20 -	36,4 36,4 36,4	1 1 1	0,04 0,05 0,05	0,31 0,31 0,52	2 2 1,2	3,1 3,1 1,9	2,2 2,2 1,3
17	24 21,1 23,8	32,9 35 33,4	_ _ _	- - -	- - -	0,6 0,6 0,6	21,2 21 21,2	- 21 -	35,8 35,8 35,8	0,6 0,6 0,6	0,04 0,045 0,045	0,31 0,31 0,43	2 2 1,5	3,1 3,1 2,3	2,3 2,3 1,0
	28,8 25,5 26,1	40 41,3 37,2	- - -	- - -	- - -	1 1 1	22,6 22 22,6	- 25,5 -	41,4 41,4 41,4	1 1 1	0,04 0,05 0,05	0,3 0,3 0,52	2,1 2,1 1,2	3,3 3,3 1,9	2,7 2,7 1,7
20	28,8 25,9 27,3	40 41,3 40	- - -	- - -	- - -	1 1 1	25,6 25 25,6	- 25,5 -	41,4 41,4 41,4	1 1 1	0,04 0,045 0,045	0,3 0,3 0,4	2,1 2,1 1,6	3,3 3,3 2,4	2, 2, 1,
	33,3 28,6 29,1	44,6 46,3 41,9	- - -	- - -	- - -	1 1,1 1,1	27 26,5 27	- 28,5 -	45 45 45	1 1,1 1,1	0,04 0,05 0,05	0,28 0,28 0,52	2,2 2,2 1,2	3,5 3,5 1,9	2,! 2,! 1,3

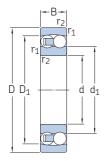
4.1 Self-aligning ball bearings d 25 – 45 mm

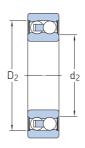
Cylindrical bore


Tapered bore


Sealed


		C	yıınarıcaı bore	1	Tapered bore		Sealed			
Princi dimer	pal nsions		Basic loa dynamic	d ratings static	Fatique load limit	Speed ration Reference	Limiting	Mass	Designations Bearing with cylindrical bore tapered bore	
d	D	В	С	C_0	P_{u}	speed	speed		cylindrical bore tapered bore	
mm			kN		kN	r/min		kg	-	
25	52 52 52	15 18 18	14,3 14,3 16,8	4 4 4,4	0,21 0,21 0,23	28 000 - 26 000	18 000 9 000 18 000	0,14 0,16 0,16	► 1205 ETN9 ► 2205 E-2RS1TN9 ► 2205 ETN9 ► 2205 EKTN9	(TN9
	62 62 62	17 24 24	19 19 27	5,4 5,4 7,1	0,28 0,28 0,37	22 000 - 22 000	15 000 7 500 16 000	0,26 0,34 0,34	 ▶ 1305 ETN9 ▶ 2305 E-2RS1TN9 ▶ 2305 ETN9 ▶ 2305 ETN9 1305 EKTN9 2305 EKTN9 	(TN9
30	62 62 62	16 20 20	15,6 15,6 23,8	4,65 4,65 6,7	0,24 0,24 0,35	24 000 - 22 000	15 000 7 500 15 000	0,22 0,26 0,26	 ▶ 1206 ETN9 ▶ 2206 E-2RS1TN9 ▶ 2206 E-2RS1K ▶ 2206 EKTN9 	(TN9
	72 72 72	19 27 27	22,5 22,5 31,2	6,8 6,8 8,8	0,36 0,36 0,45	19 000 - 18 000	13 000 6 700 13 000	0,39 0,51 0,5	► 1306 ETN9 1306 EKTN9 ► 2306 E-2RS1TN9 2306 E-2RS1K ► 2306 E-2RS1K	(TN9
35	72 72 72	17 23 23	19 19 30,2	6 6 8,8	0,31 0,31 0,455	20 000 - 18 000	13 000 6 300 12 000	0,32 0,41 0,4	 1207 ETN9 2207 E-2RS1TN9 2207 E-2RS1K 2207 ETN9 2207 EKTN9 	(TN9
	80 80 80	21 31 31	26,5 26,5 39,7	8,5 8,5 11,2	0,43 0,43 0,59	16 000 - 16 000	11 000 5 600 12 000	0,51 0,7 0,68	 ▶ 1307 ETN9 ▶ 2307 E-2RS1TN9 ▶ 2307 ETN9 ▶ 2307 EKTN9 ▶ 2307 EKTN9 	(TN9
40	80 80 80	18 23 23	19,9 19,9 31,9	6,95 6,95 10	0,36 0,36 0,51	18 000 - 16 000	11 000 5 600 11 000	0,42 0,5 0,51	 ▶ 1208 ETN9 ▶ 2208 E-2RS1TN9 ▶ 2208 E-2RS1K ▶ 2208 EKTN9 	(TN9
	90 90 90	23 33 33	33,8 33,8 54	11,2 11,2 16	0,57 0,57 0,82	14 000 - 14 000	9 500 5 000 10 000	0,68 0,96 0,93	 ▶ 1308 ETN9 ▶ 2308 E-2RS1TN9 ▶ 2308 ETN9 ▶ 2308 EKTN9 	(TN9
45	85 85 85	19 23 23	22,9 22,9 32,5	7,8 7,8 10,6	0,4 0,4 0,54	17 000 - 15 000	11 000 5 300 10 000	0,47 0,53 0,55	 ▶ 1209 ETN9 ▶ 2209 E-2RS1TN9 ▶ 2209 E-2RS1K ▶ 2209 EKTN9 	(TN9
	100 100 100	25 36 36	39 39 63,7	13,4 13,4 19,3	0,7 0,7 1	12 000 - 13 000	8 500 4 500 9 000	0,96 1,3 1,25	 ▶ 1309 ETN9 ▶ 2309 E-2RS1TN9 ▶ 2309 ETN9 ▶ 2309 EKTN9 	(TN9

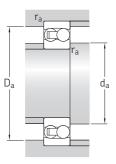


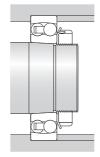


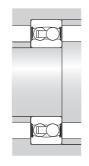
Dimen	sions						Abutm	ent and fi	llet dimer	nsions	Calcula	ition fact	ors		
d	d ₁ , d ₂ ≈	D ₁ , D ₂ ≈	C_1	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	е	Y ₁	Y ₂	Y ₀
mm							mm				-				
25	33,3	44,6	-	-	-	1	30,6	-	46,4	1	0,04	0,28	2,2	3,5	2,5
	31	46,3	-	-	-	1	30,6	31	46,4	1	0,045	0,28	2,2	3,5	2,5
	32,2	45,1	-	-	-	1	30,6	-	46,4	1	0,045	0,35	1,8	2,8	1,8
	38	50,7	-	-	-	1,1	32	-	55	1,1	0,04	0,28	2,2	3,5	2,5
	32,8	52,7	-	-	-	1,1	32	32,5	55	1,1	0,05	0,28	2,2	3,5	2,5
	35,5	52,3	-	-	-	1,1	32	-	55	1,1	0,05	0,44	1,4	2,2	1,4
30	40,3	51,9	-	-	-	1	35,6	-	56,4	1	0,04	0,25	2,5	3,9	2,5
	36,7	54,1	-	-	-	1	35,6	36,5	56,4	1	0,045	0,25	2,5	3,9	2,5
	38,7	54	-	-	-	1	35,6	-	56,4	1	0,045	0,33	1,9	3	2
	45,1	59,1	-	-	-	1,1	37	-	65	1,1	0,04	0,25	2,5	3,9	2,5
	40,4	61,9	-	-	-	1,1	37	40	65	1,1	0,05	0,25	2,5	3,9	2,5
	41,9	59,8	-	-	-	1,1	37	-	65	1,1	0,05	0,44	1,4	2,2	1,4
35	47	60,9	-	-	-	1,1	42	-	65	1,1	0,04	0,23	2,7	4,2	2,8
	42,7	62,7	-	-	-	1,1	42	42,5	65	1,1	0,045	0,23	2,7	4,2	2,8
	45,3	62,9	-	-	-	1,1	42	-	65	1,1	0,045	0,31	2	3,1	2,2
	51,5	67,5	-	-	-	1,5	44	-	71	1,5	0,04	0,25	2,5	3,9	2,5
	43,7	69,2	-	-	-	1,5	43,5	43,5	71	1,5	0,05	0,25	2,5	3,9	2,5
	46,7	67	-	-	-	1,5	44	-	71	1,5	0,05	0,46	1,35	2,1	1,4
0	53,8	67,5	-	-	-	1,1	47	-	73	1,1	0,04	0,22	2,9	4,5	2,8
	49	69,8	-	-	-	1,1	47	49	73	1,1	0,045	0,22	2,9	4,5	2,8
	52,3	70,2	-	-	-	1,1	47	-	73	1,1	0,045	0,28	2,2	3,5	2,5
	61,4	80,2	-	-	-	1,1	49	-	81	1,1	0,04	0,23	2,7	4,2	2,8
	55,4	81,8	-	-	-	1,5	49	55	81	1,5	0,05	0,23	2,7	4,2	2,8
	53,7	77,8	-	-	-	1,5	49	-	81	1,5	0,05	0,4	1,6	2,4	1,6
.5	57,5	72,5	-	-	-	1,1	52	-	78	1,1	0,04	0,21	3	4,6	3,2
	52,9	75,3	-	-	-	1,1	52	53	78	1,1	0,045	0,21	3	4,6	3,2
	55,3	73,2	-	-	-	1,1	52	-	78	1,1	0,045	0,26	2,4	3,7	2,5
	67,7	87,8	-	-	-	1,5	54	-	91	1,5	0,04	0,23	2,7	4,2	2,8
	60,9	90	-	-	-	1,5	54	60,5	91	1,5	0,05	0,23	2,7	4,2	2,8
	60,1	86	-	-	-	1,5	54	-	91	1,5	0,05	0,33	1,9	3	2

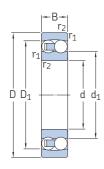
4.1 Self-aligning ball bearings d 50 – 80 mm

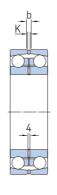
Cylindrical bore Tapered bore Sealed


_	Y	7
	^	1
-		_


		Ų.	yılı lur icai bo		Tapereu Dore		Sealeu			
Princi dimen	sions	5	dynamic	oad ratings c static	Fatique load limit	Speed rati Reference speed	ngs Limiting speed	Mass	Designations Bearing with cylindrical bore	tapered bore
d	D	В	С	C_0	P_u					
nm			kN		kN	r/min		kg	_	
50	90 90 90	20 23 23	26,5 22,9 33,8	9,15 8,15 11,2	0,48 0,42 0,57	16 000 - 14 000	10 000 4 800 9 500	0,53 0,57 0,6	▶ 2210 E-2RS1TN9 ▶	1210 EKTN9 2210 E-2RS1KTN9 2210 EKTN9
	110 110 110	27 40 40	43,6 43,6 63,7	14 14 20	0,72 0,72 1,04	12 000 - 14 000	8 000 4 000 9 500	1,2 1,65 1,65	2310 E-2RS1TN9	1310 EKTN9 2310 E-2RS1KTN9 2310 K
55	100 100 100	21 25 25	27,6 27,6 39	10,6 10,6 13,4	0,54 0,54 0,7	14 000 - 12 000	9 000 4 300 8 500	0,71 0,79 0,81	▶ 2211 E-2RS1TN9 →	1211 EKTN9 2211 E-2RS1KTN9 2211 EKTN9
	120 120	29 43	50,7 76,1	18 24	0,92 1,25	11 000 11 000	7 500 7 500	1,6 2,1		1311 EKTN9 2311 K
60	110 110 110	22 28 28	31,2 31,2 48,8	12,2 12,2 17	0,62 0,62 0,88	12 000 - 11 000	8 500 3 800 8 000	0,9 1,05 1,1	2212 E-2RS1TN9	1212 EKTN9 2212 E-2RS1KTN9 2212 EKTN9
	130 130	31 46	58,5 87,1	22 28,5	1,12 1,46	9 000 9 500	6 300 7 000	1,95 2,6		1312 EKTN9 2312 K
65	120 120 120	23 31 31	35,1 35,1 57,2	14 14 20	0,72 0,72 1,02	11 000 - 10 000	7 000 3 600 7 000	1,15 1,4 1,45	► 2213 E-2RS1TN9 ►	1213 EKTN9 2213 E-2RS1KTN9 2213 EKTN9
	140 140	33 48	65 95,6	25,5 32,5	1,25 1,66	8 500 9 000	6 000 6 300	2,45 3,25		1313 EKTN9 2313 K
70	125 125 125	24 31 31	35,8 35,8 44,2	14,6 14,6 17	0,75 0,75 0,88	11 000 - 10 000	7 000 3 400 6 700	1,25 1,45 1,5	► 2214 E-2RS1TN9	- - -
	150 150	35 51	74,1 111	27,5 37,5	1,34 1,86	8 500 8 000	6 000 6 000	3 3,9		- -
75	130 130	25 31	39 58,5	15,6 22	0,8 1,12	10 000 9 000	6 700 6 300	1,35 1,6		1215 K 2215 EKTN9
	160 160	37 55	79,3 124	30 43	1,43 2,04	8 000 7 500	5 600 5 600	3,55 4,7		1315 K 2315 K
80	140 140	26 33	39,7 65	17 25,5	0,83 1,25	9 500 8 500	6 000 6 000	1,65 2		1216 K 2216 EKTN9
	170 170	39 58	88,4 135	33,5 49	1,5 2,24	7 500 7 000	5 300 5 300	4,2 6,1		1316 K 2316 K


[►] Popular item



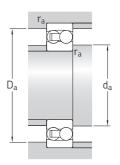


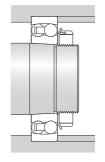
Dimens	sions						Abutm	Abutment and fillet dimensions				Calculation factors				
d	d ₁ , d ₂ ≈	D ₁ , D ₂ ≈	C_1	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	е	Y ₁	Y ₂	Y ₀	
mm							mm				-					
50	61,7 57,7 61,4	78,1 79,4 80,2	- - -	- - -	- - -	1,1 1,1 1,1	57 57 57	- 58 -	83 83 83	1,1 1,1 1,1	0,04 0,045 0,045	0,21 0,2 0,23	3 3,2 2,7	4,6 4,9 4,2	3,2 3,2 2,8	
	70,3 62,9 66	92,6 95,2 92,5	- - -	- - -	- - -	2 2 2	61 61 61	- 62,5 -	99 99 99	2 2 2	0,04 0,05 0,05	0,24 0,24 0,43	2,6 2,6 1,5	4,1 4,1 2,3	2,8 2,8 1,6	
55	70,3 65,9 67,7	86,5 88,5 87,8	- - -	- - -	- - -	1,5 1,5 1,5	64 64 64	- 65,5 -	91 91 91	1,5 1,5 1,5	0,04 0,045 0,045	0,19 0,19 0,23	3,3 3,3 2,7	5,1 5,1 4,2	3,6 3,6 2,8	
	77,9 72	102 101	_	-	-	2 2	66 66	- -	109 109	2 2	0,04 0,05	0,23 0,4	2,7 1,6	4,2 2,4	2,8 1,6	
60	78 73,2 74,4	95,6 97 96,9	- - -	- - -	- - -	1,5 1,5 1,5	69 69 69	- 73 -	101 101 101	1,5 1,5 1,5	0,04 0,045 0,045	0,19 0,19 0,24	3,3 3,3 2,6	5,1 5,1 4,1	3,6 3,6 2,8	
	91,6 77,1	117 110		- -	- -	2,1 2,1	72 72	- -	118 118	2 2	0,04 0,05	0,22 0,33	2,9 1,9	4,5 3	2,8 2	
55	85,1 79,3 80,6	104 106 106	- - -	- - -	- - -	1,5 1,5 1,5	74 74 74	- 79 -	111 111 111	1,5 1,5 1,5	0,04 0,045 0,045	0,18 0,18 0,24	3,5 3,5 2,6	5,4 5,4 4,1	3,6 3,6 2,8	
	99 86	126 120		- -	- -	2 2,1	77 77	- -	128 128	2 2	0,04 0,05	0,22 0,37	2,9 1,7	4,5 2,6	2,8 1,8	
70	87,4 81,4 88	107 109 109	- - -	 - -	- - -	1,5 1,5 1,5	79 79 79	- 81 -	116 116 116	1,5 1,5 1,5	0,04 0,045 0,04	0,18 0,18 0,27	3,5 3,5 2,3	5,4 5,4 3,6	3,6 3,6 2,5	
	97,5 92	127 129	_	- -	-	2,1 2,1	82 82	- -	138 138	2 2	0,045 0,05	0,22 0,37	2,9 1,7	4,5 2,6	2,8 1,8	
75	93 91,6	115 117	- -	_	_ _	1,5 1,5	84 84	- -	121 121	1,5 1,5	0,04 0,045	0,17 0,22	3,7 2,9	5,7 4,5	4 2,8	
	104 97,8	136 137	_	- -	- -	2,1 2,1	87 87	- -	148 148	2 2	0,045 0,05	0,22 0,37	2,9 1,7	4,5 2,6	2,8 1,8	
80	102 99	123 126	- -	_ _	_ _	2 2	91 91	_ _	129 129	2 2	0,04 0,045	0,16 0,22	3,9 2,9	6,1 4,5	4 2,8	
	110 104	145 146		-		2,1 2,1	92 92	-	158 158	2 2	0,045 0,05	0,22 0,37	2,9 1,7	4,5 2,6	2,8 1,8	

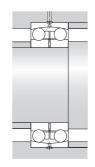
4.1 Self-aligning ball bearings d 85 – 240 mm

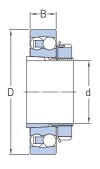
Cylindrical bore

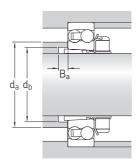
Tapered bore


130.., 139..


		(ylındrıcal bo	re	lapered bore		130, 139				
Princi dimen	pal sions		Basic lo	oad ratings c static	Fatique load limit	Speed ration Reference speed		Mass	Designations Bearing with cylindrical bore	tapered bore	
d	D	В	С	C_0	P_{u}	speeu	speeu		cyllilurical bore	tapered bore	
nm			kN		kN	r/min		kg	_		
5	150 150	28 36	48,8 58,5	20,8 23,6	0,98 1,12	9 000 8 000	5 600 5 600	2,05 2,5	► 1217 ► 2217	► 1217 K ► 2217 K	
	180 180 180	41 60 60	97,5 140 140	38 51 51	1,7 2,28 2,28	7 000 6 700 6 700	4 800 4 800 4 800	5 7,05 7,05	1317 2317 2317 M	► 1317 K - 2317 KM	
0	160 160	30 40	57,2 70,2	23,6 28,5	1,08 1,32	8 500 7 500	5 300 5 300	2,5 3,4	► 1218 ► 2218	► 1218 K ► 2218 K	
	190 190	43 64	117 151	44 57	1,93 2,5	6 700 6 300	4 500 4 500	5,8 8,45	1318 2318	1318 K 2318 K	
5	170 170	32 43	63,7 83,2	27 34,5	1,2 1,53	8 000 7 000	5 000 5 000	3,1 4,1	1219 2219	► 1219 K 2219 K	
	200 200	45 67	133 165	51 64	2,16 2,75	6 300 6 000	4 300 4 500	6,7 9,8	1319 2319 M	1319 K 2319 KM	
00	180 180	34 46	68,9 97,5	30 40,5	1,29 1,76	7 500 6 700	4 800 4 800	3,7 5	► 1220 2220	► 1220 K 2220 K	
	215 215	47 73	143 190	57 80	2,36 3,25	6 000 5 600	4 000 4 000	8,3 12,5	1320 2320	► 1320 K 2320 K	
10	200 200 240	38 53 50	88,4 124 163	39 52 72	1,6 2,12 2,75	6 700 6 000 5 300	4 300 4 300 3 600	5,15 7,1 12	► 1222 2222 1322 M	► 1222 K 2222 K 1322 KM	
20	215	42	119	53	2,12	6 300	4 000	6,75	1224 M	1224 KM	
30	230	46	127	58,5	2,24	5 600	3 600	8,3	▶ 1226 M	1226 KM	
50	225	56	57,2	23,6	0,88	5 600	3 400	7,5	13030	-	
80	280	74	95,6	40	1,34	4 500	2 800	16	13036	-	
00	280	60	60,5	29	0,97	4 300	2 600	10,5	13940	_	
20	300	60	60,5	30,5	0,97	3 800	2 400	11	13944	-	
40	320	60	60,5	32	0,98	3 800	2 200	11,5	13948	-	


SKF. 456




Dimen	sions						Abutm	ent and fi	llet dimer	nsions	Calculation factors				
d	d ₁ , d ₂ ≈	D ₁ , D ₂ ≈	C_1	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	е	Y ₁	Y ₂	Y ₀
nm							mm				_				
85	107 106	131 131		 -	- -	2 2	96 96	_ _	139 139	2 2	0,04 0,04	0,17 0,25	3,7 2,5	5,7 3,9	4 2,5
	117 115 115	153 154 154	- - -	- - -	- - -	3 3 3	99 99 99	- - -	166 166 166	3 3 3	0,045 0,05 0,05	0,22 0,37 0,37	2,9 1,7 1,7	4,5 2,6 2,6	2,8 1,8 1,8
90	112 112	139 140	_ _	- -	_ _	2 2	101 101	- -	149 149	2 2	0,04 0,04	0,17 0,27	3,7 2,3	5,7 3,6	4 2,5
	122 121	163 163	1 -	_ _,	_ _	3	104 104		176 176	3	0,045 0,05	0,22 0,37	2,9 1,7	4,5 2,6	2,8 1,8
95	120 119	149 149	_	- -	- -	2,1 2,1	107 107	- -	158 158	2 2	0,04 0,04	0,17 0,27	3,7 2,3	5,7 3,6	4 2,5
	127 128	171 171	1,5 -	-		3	109 109	-	186 186	3	0,045 0,05	0,23 0,37	2,7 1,7	4,2 2,6	2,8 1,8
100	127 124	156 157	_	- -	- -	2,1 2,1	112 112	-	168 168	2 2	0,04 0,04	0,17 0,27	3,7 2,3	5,7 3,6	4 2,5
	136 135	182 184	2,5 -	- -	- -	3	114 114	- -	201 201	3	0,045 0,05	0,23 0,37	2,7 1,7	4,2 2,6	2,8 1,8
110	140 138 154	174 175 203	- - 2,5	- - -	- - -	2,1 2,1 3	122 122 124	- - -	188 188 226	2 2 3	0,04 0,04 0,045	0,17 0,28 0,22	3,7 2,2 2,9	5,7 3,5 4,5	4 2,5 2,8
120	149	188	1,3	-	-	2,1	132	-	203	2	0,04	0,19	3,3	5,1	3,6
130	163	202	1,3	-	-	3	144	-	216	3	0,04	0,19	3,3	5,1	3,6
150	175	204	-	8,3	4,5	2,1	161	-	214	2	0,02	0,24	2,6	4,1	2,8
180	212	250	-	13,9	7,5	2,1	191	-	269	2	0,02	0,25	2,5	3,9	2,5
200	229	258	-	8,3	4,5	2,1	211	-	269	2	0,015	0,19	3,3	5,1	3,6
220	248	278	-	8,3	4,5	2,1	231	-	289	2	0,015	0,18	3,5	5,4	3,6
240	268	298	-	8,3	4,5	2,1	251	-	309	2	0,015	0,16	3,9	6,1	4

4.2 Self-aligning ball bearings on an adapter sleeve

d **17 – 90** mm

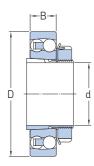
Open bearing on a standard sleeve

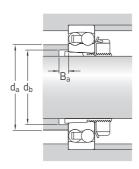
Sealed bearing on an E design sleeve

	a	standard sleeve	di	n E design sie	eeve			
Principa	al dimension	5	Abutme	nt and fillet (dimensions	Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d	D	В	d _a max.	d _b min.	B _a min.			
mm			mm			kg	-	
17	47	14	28,5	23	5	0,16	1204 EKTN9	H 204
20	52	15	33	28	5	0,21	► 1205 EKTN9	H 205
	52	18	31	28	5	0,23	2205 E-2RS1KTN9	H 305 E
	52	18	32	28	5	0,23	2205 EKTN9	H 305
	62	17	37	28	6	0,33	1305 EKTN9	H 305
	62	24	32,5	29	5	0,42	2305 E-2RS1KTN9	H 2305
	62	24	35,5	29	5	0,42	2305 EKTN9	H 2305
.5	62	16	40	33	5	0,32	► 1206 EKTN9	H 206
	62	20	36,5	33	5	0,36	2206 E-2RS1KTN9	H 306 E
	62	20	38	33	5	0,36	2206 EKTN9	H 306
	72	19	44	33	6	0,49	1306 EKTN9	H 306
	72	27	40	35	5	0,62	2306 E-2RS1KTN9	H 2306
	72	27	41	35	5	0,61	2306 K	H 2306
80	72	17	47	38	5	0,44	► 1207 EKTN9	H 207
	72	23	42,5	39	5	0,55	2207 E-2RS1KTN9	H 307 E
	72	23	45	39	5	0,54	2207 EKTN9	H 307
	80	21	51	39	7	0,65	1307 EKTN9	H 307
	80	31	43,5	40	5	0,86	2307 E-2RS1KTN9	H 2307 E
	80	31	46	40	5	0,84	► 2307 EKTN9	H 2307
5	80	18	53	43	6	0,58	► 1208 EKTN9	H 208
	80	23	49	44	6	0,67	2208 E-2RS1KTN9	H 308 E
	80	23	52	44	6	0,58	2208 EKTN9	H 308
	90	23	61	44	6	0,85	1308 EKTN9	H 308
	90	33	53	45	6	1,1	▶ 2308 EKTN9	H 2308
	90	33	55	45	6	1,2	2308 E-2RS1KTN9	H 2308
0	85	19	57	48	6	0,68	► 1209 EKTN9	H 209
	85	23	53	50	8	0,76	2209 E-2RS1KTN9	H 309 E
	85	23	55	50	8	0,78	2209 EKTN9	H 309
	100	25	67	50	6	1,2	1309 EKTN9	H 309
	100	36	60	50	6	1,4	▶ 2309 EKTN9	H 2309
	100	36	60,5	50	6	1,55	2309 E-2RS1KTN9	H 2309

SKF.

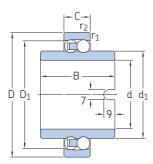
Popular item
 For additional bearing data → product table, page 450
 For additional adapter sleeve data → product table, page 1072


Principal dimensions		Abutme	nt and fillet	dimensions	Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾	
d	D	В	d _a max.	d _b min.	B _a min.	3.0010		
mm			mm			kg	_	
45	90	20	62	53	6	0,77	► 1210 EKTN9	H 210
	90	23	58	55	10	0,84	2210 E-2RS1KTN9	H 310 E
	90	23	61	55	10	0,87	2210 EKTN9	H 310
	110	27	70	55	6	1,45	1310 EKTN9	H 310
	110	40	62,5	56	6	2	2310 E-2RS1KTN9	H 2310
	110	40	65	56	6	1,9	▶ 2310 K	H 2310
50	100	21	70	60	7	0,99	► 1211 EKTN9	H 211
	100	25	65,5	60	11	1,1	2211 E-2RS1KTN9	H 311 E
	100	25	67	60	11	1,15	2211 EKTN9	H 311
	120	29	77	60	7	1,9	1311 EKTN9	H 311
	120	43	72	61	7	2,4	► 2311 K	H 2311
55	110	22	78	64	7	1,2	► 1212 EKTN9	H 212
	110	28	73	65	9	1,4	2212 E-2RS1KTN9	H 312 E
	110	28	74	65	9	1,45	2212 EKTN9	H 312
	130	31	87	65	7	2,15	1312 EKTN9	H 312
	130	46	76	66	7	2,95	► 2312 K	H 2312
60	120	23	85	70	7	1,45	► 1213 EKTN9	H 213
	120	31	79	70	7	1,75	► 2213 E-2RS1KTN9	H 313 E
	120	31	80	70	9	1,8	2213 EKTN9	H 313
	140	33	98	70	7	2,85	1313 EKTN9	H 313
	140	48	85	72	7	3,6	► 2313 K	H 2313
55	130	25	93	80	7	2	► 1215 K	H 215
	130	31	93	80	13	2,3	2215 EKTN9	H 315
	160	37	104	80	7	4,2	1315 K	H 315
	160	55	97	82	7	5,55	► 2315 K	H 2315
70	140	26	101	85	7	2,4	► 1216 K	H 216
	140	33	99	85	13	2,85	2216 EKTN9	H 316
	170	39	109	85	7	5	1316 K	H 316
	170	58	104	88	7	7,1	► 2316 K	H 2316
75	150	28	107	90	8	2,95	► 1217 K	H 217
	150	36	105	91	13	3,3	2217 K	H 317
	180	41	117	91	8	6	1317 K	H 317
30	160	30	112	95	8	3,5	► 1218 K	H 218
	160	40	112	96	11	5,5	2218 K	H 318
	190	43	122	96	8	6,9	1318 K	H 318
	190	64	115	100	8	9,8	2318 K	H 2318
35	170	32	120	100	8	4,25	► 1219 K	H 219
	170	43	118	102	10	5,3	2219 K	H 319
	200	45	127	102	8	7,9	1319 K	H 319
	200	67	128	105	8	11,5	2319 KM	H 2319
00	180	34	127	106	8	5	► 1220 K	H 220
	180	46	124	108	9	6,4	2220 K	H 320
	215 215	47 73	136 130	108 110	8	9,65 14	1320 K 2320 K	H 320 H 2320


459

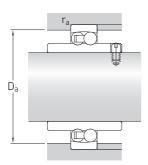
Popular item
1) For additional bearing data → product table, page 450
2) For additional adapter sleeve data → product table, page 1072

4.2 Self-aligning ball bearings on an adapter sleeve

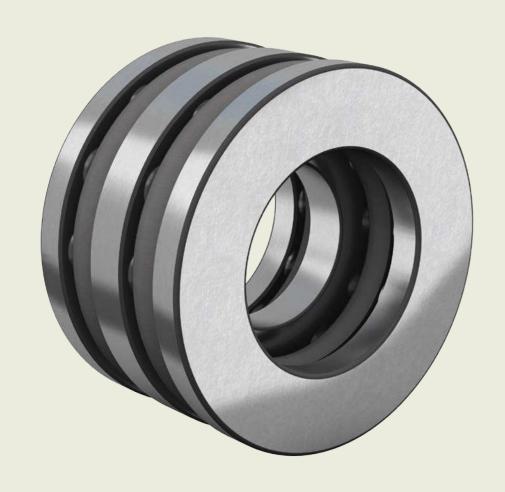

d **100 – 115** mm

Principal dimensions			Abutme	nt and fillet	dimensions	Mass Bearing +	Designations Bearing ¹⁾	Sleeve ²⁾	
d	D	В	d _a max.	d _{b.} min.	sleeve B _a min.		-		
mm			mm			kg	-		
100	200 200 240	38 53 50	140 137 154	116 118 118	8 8 10	6,8 8,85 13,5	► 1222 K 2222 K 1322 KM	H 222 H 322 H 322	
110	215	42	150	127	12	8,3	1224 KM	H 3024	
115	230	46	163	137	15	11	1226 KM	H 3026	

4.3 Self-aligning ball bearings with an extended inner ring d 20 - 60 mm



Principal dimensions		Basic load ratings dynamic static		Fatique load limit	Limiting speed	Mass	Designation	
d	D	С	С	C_0	$P_{\rm u}$			
mm			kN		kN	r/min	kg	-
20	47	14	12,7	3,4	0,18	9 000	0,18	11204 ETN9
25	52	15	14,3	4	0,21	8 000	0,22	11205 ETN9
30	62	16	15,6	4,65	0,24	6 700	0,35	11206 TN9
35	72	17	19	6	0,305	5 600	0,54	11207 TN9
40	80	18	19	6,55	0,335	5 000	0,72	11208 TN9
45	85	19	22,9	7,8	0,4	4 500	0,77	11209 TN9
50	90	20	26,5	9,15	0,475	4 300	0,85	11210 TN9
60	110	22	31,2	12,2	0,62	3 400	1,15	11212 TN9


SKF. 462

Dimensions						Abutment and fillet dimensions		Calculation factors				
d	d ₁ ≈	D ₁ ≈	В	r _{1,2} min.	D _a max.	r _a max.	k	(_r	е	Y ₁	Y ₂	Y ₀
mm					mm		_	-				
20	28,8	40	40	1	41,4	1	C	0,04	0,3	2,1	3,3	2,2
25	33,3	44,6	44	1	46,4	1	C	0,04	0,28	2,2	3,5	2,5
30	40,1	51,9	48	1	56,4	1	C	0,04	0,25	2,5	3,9	2,5
35	47	60,9	52	1,1	65	1,1	C	0,04	0,23	2,7	4,2	2,8
40	54	67,5	56	1,1	73	1,1	C	0,04	0,22	2,9	4,5	2,8
45	57,7	72,5	58	1,1	78	1,1	C	0,04	0,21	3	4,6	3,2
50	61,7	78,1	58	1,1	83	1,1	C	0,04	0,21	3	4,6	3,2
60	78	95,6	62	1,5	101	1,5	C	0,04	0,19	3,3	5,1	3,6

Thrust ball bearings

5

5 Thrust ball bearings

Desi	gns and variants	467		
Singl	e direction thrust ball bearings	467		
Doub	ole direction thrust ball bearings	467		
3ear	ings with sphered housing washers	468		
	S	468		
3ear	ing data	469		
Dim	ension standards, tolerances, permissible misalignment)			
Mini	num load, equivalent dynamic bearing load, valent static bearing load)	469		
Tem	perature limits	470		
Pern	nissible speed	470		
Mou	nting	470		
Desi	gnation system	471		
Prod	uct tables			
5.1	Single direction thrust ball bearings	472		
5.2	Single direction thrust ball bearings with a			
	sphered housing washer	482	Other thrust ball bearings	
5.3	Double direction thrust ball bearings	486	Bearings with Solid Oil	1023
5.4	Double direction thrust ball bearings with sphered		NoWear coated bearings	1059
	housing washers	490	Polymer hall hearings >	skf com/hearings

5KF. 465

5 Thrust ball bearings

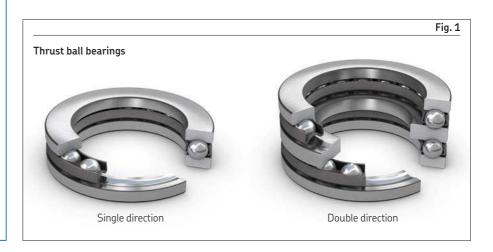
More information

General bearing knowledge						
Bearing selection process	59					
Lubrication	109					
Bearing interfaces	139					
Seat tolerances for standard						
conditions	148					
Sealing, mounting and						
dismounting	193					

SKF thrust ball bearings (fig. 1) are manufactured as single direction or double direction thrust ball bearings. They are designed to accommodate axial loads only and must not be subjected to any radial load.

Bearing features

· Separable and interchangeable


The separable components of SKF thrust ball bearings are interchangeable (fig. 2). This facilitates mounting and dismounting, and maintenance inspections.

• Initial misalignment

Bearings with sphered housing washer(s) (fig. 3) can accommodate initial misalignment.

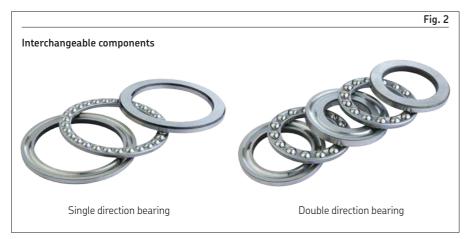
• Interference fit

Shaft washers have a ground bore to enable an interference fit. The bore of the housing washer is turned and always larger than the shaft washer bore.

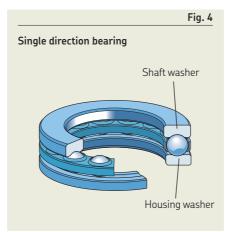
466 **SKF**

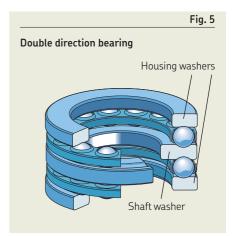
Designs and variants

Single direction thrust ball bearings


- consist of a shaft washer, a housing washer and a ball and cage assembly (fig. 4)
- can accommodate axial loads and locate a shaft axially, in one direction only

Double direction thrust ball bearings

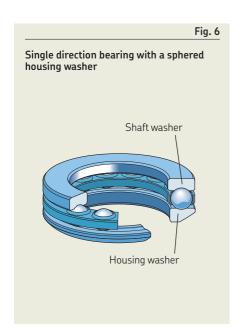

 consist of one shaft washer, two housing washers and two ball and cage assemblies (fig. 5)

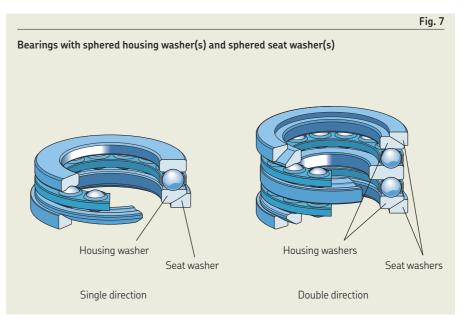

The housing washers and ball and cage assemblies of double direction bearings are identical to those used in single direction bearings.

 can accommodate axial loads and locate a shaft axially, in both directions

Bearings with sphered housing washers

- can accommodate initial misalignment
- are available in both single (fig. 6) and double direction designs
- can be used together with a sphered seat washer adjacent to the housing washer (fig. 7) or adjacent to a machine component manufactured with a sphered surface


Appropriate sphered seat washers must be ordered separately (product tables, page 482, and page 490). Depending on the bearing series, they have the basic designation U 2, U 3 or U 4 followed by a two-digit number, which identifies the size, e.g. sphered seat washer U 320 for bearing 53320.


Cages for thrust	ball bearings		Table 1
Cage description	Stamped steel, ball centred	Machined brass, ball centred	Machined steel, ball centred
Suffix	-	М	F
	1	l	I

Cages

SKF thrust ball bearings are fitted with one of the cages shown in **table 1**.

For additional information about the suitability of cages, refer to *Cages*, page 187.

Bearing data

	Thrust ball bearings with flat housing washers	Thrust ball bearings with sphered housing washers
Dimension standards	ISO 104 Bearings in the BA series are not standardized.	ISO 20516
Tolerances	Normal P5 or P6 on request (single direction bearings only)	Normal
For additional information → page 35	Values: ISO 199 (table 10, page 46) Bearings in the BA series are not standardized.	
Permissible misalignment	Cannot tolerate any misalignment.	Accommodate only initial misalignment.

Loads

Minimum load		Symbols
For additional information → page 106	$F_{am} = A \left(\frac{n}{1000} \right)^2$	A minimum load factor (product tables, page 472) F _a axial load [kN] F _{am} minimum axial load [kN] n rotational speed [r/min] P equivalent dynamic bearing load [kN]
Equivalent dynamic bearing load For additional information → page 91	P = F _a	P ₀ equivalent static bearing load [kN]
Equivalent static bearing load For additional information → page 105	$P_0 = F_a$	

5KF. 469

Temperature limits

The permissible operating temperature for thrust ball bearings can be limited by:

- the dimensional stability of the bearing washers and balls
- the cage
- the seat washer(s)
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing washers and balls

Depending on their size, washers and balls of SKF thrust ball bearings are heat stabilized up to:

- 125 °C (260 °F) where d ≤ 300 mm
- 150 °C (300 °F) where d > 300 mm

Cages

Steel and brass cages can be used at the same operating temperatures as the bearing washers and balls.

Seat washers

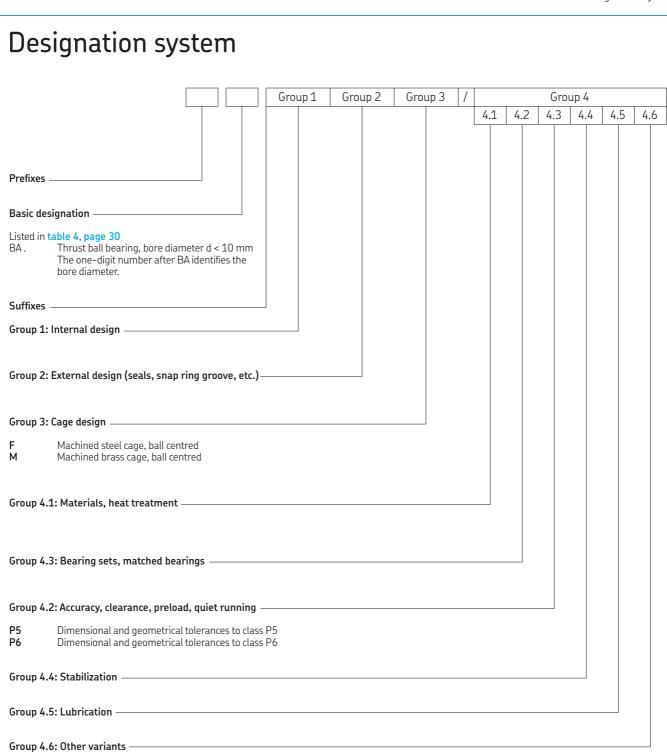
Seat washers are made of steel and can be used at the same operating temperatures as the bearing washers and balls.

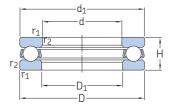
Lubricants

For temperature limits of SKF greases, refer to Selecting a suitable SKF grease, page 116.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

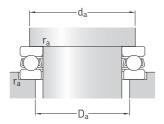
Permissible speed

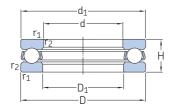

The speed ratings in the **product tables** indicate:


- the reference speed, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the limiting speed, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds

For additional information, refer to *Operating temperature and speed*, **page 130**.

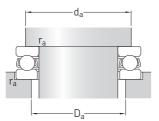
Mounting


Where mounting a single direction thrust ball bearing, it is important to differentiate between the shaft washer and the housing washer. The bore of the shaft washer is ground and always smaller than the bore of the housing washer. The shaft washer should always be placed against a shaft step or fixed shaft component.

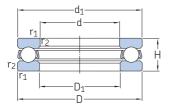


Principal dimensions		sions	Basic load ratings dynamic static		Fatique load limit	Minimum load factor	Speed rati Reference	Limiting	Mass	Designation
d	D	Н	С	C_0	P_{u}	Α	speed	speed		
mm			kN		kN	-	r/min		kg	-
3	8	3,5	0,806	0,72	0,027	0,000 003	26 000	36 000	0,0009	► BA 3
4	10	4	0,761	0,72	0,027	0,000 003	22 000	30 000	0,0015	► BA 4
5	12	4	0,852	0,965	0,036	0,000 005	20 000	28 000	0,0021	► BA 5
6	14	5	1,78	1,92	0,071	0,000 019	17 000	24 000	0,0035	► BA 6
7	17	6	2,51	2,9	0,108	0,000 044	14 000	19 000	0,0065	► BA 7
8	19	7	3,19	3,8	0,143	0,000 075	12 000	17 000	0,0091	► BA 8
9	20	7	3,12	3,8	0,143	0,000 075	12 000	16 000	0,01	► BA 9
10	24	9	9,95	15,3	0,56	0,0012	9 500	13 000	0,02	► 51100
	26	11	12,7	18,6	0,695	0,0018	8 000	11 000	0,03	► 51200
12	26	9	10,4	16,6	0,62	0,0014	9 000	13 000	0,022	► 51101
	28	11	13,3	20,8	0,765	0,0022	8 000	11 000	0,034	► 51201
15	28	9	10,6	18,3	0,67	0,0017	8 500	12 000	0,023	► 51102
	32	12	15,9	25	0,915	0,0038	7 000	10 000	0,046	► 51202
17	30	9	11,4	21,2	0,78	0,0023	8 500	12 000	0,025	► 51103
	35	12	16,3	27	1	0,0047	6 700	9 500	0,053	► 51203
20	35	10	15,1	29	1,08	0,0044	7 500	10 000	0,037	► 51104
	40	14	21,2	37,5	1,4	0,0085	6 000	8 000	0,083	► 51204
25	42	11	18,2	39	1,43	0,0079	6 300	9 000	0,056	► 51105
	47	15	26,5	50	1,86	0,015	5 300	7 500	0,11	► 51205
	52	18	34,5	60	2,24	0,018	4 500	6 300	0,17	► 51305
	60	24	42,3	67	2,45	0,048	3 600	5 000	0,34	► 51405
30	47	11	19	43	1,6	0,0096	6 000	8 500	0,063	► 51106
	52	16	25,1	51	1,86	0,013	4 800	6 700	0,13	► 51206
	60	21	35,8	65,5	2,4	0,026	3 800	5 300	0,26	► 51306
	70	28	70,2	122	4,5	0,097	3 000	4 300	0,52	► 51406
35	52	12	19,9	51	1,86	0,013	5 600	7 500	0,08	► 51107
	62	18	35,1	73,5	2,7	0,028	4 000	5 600	0,22	► 51207
	68	24	49,4	96,5	3,55	0,048	3 400	4 800	0,39	► 51307
	80	32	76,1	137	5,1	0,15	2 600	3 600	0,79	► 51407

[►] Popular item

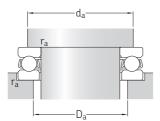


Dimens	sions			Abutme	nt and fille	et dimensions
d	d ₁ ≈	D ₁ ≈	r _{1,2} min.	d _{a.} min.	D _a max.	r _a max.
mm				mm		
3	7,8	3,2	0,15	5,8	5	0,15
4	9,8	4,2	0,15	7,5	6,5	0,15
5	11,8	5,2	0,15	8	9	0,15
6	13,8	6,2	0,2	11	9,5	0,2
7	16,8	7,2	0,2	12,5	11	0,2
8	18,8	8,2	0,3	14,5	12,5	0,3
9	19,8	9,2	0,3	15,5	13,5	0,3
10	24 26	11 12	0,3 0,6	19 20	15 16	0,3 0,6
12	26 28	13 14	0,3 0,6	21 22	17 18	0,3 0,6
15	28 32	16 17	0,3 0,6	23 25	20 22	0,3 0,6
17	30 35	18 19	0,3 0,6	25 28	22 24	0,3 0,6
20	35 40	21 22	0,3 0,6	29 32	26 28	0,3 0,6
25	42 47	26 27	0,6 0,6	35 38	32 34	0,6 0,6
	52 60	27 27	1	41 46	36 39	1
30	47 52	32 32	0,6 0,6	40 43	37 39	0,6 0,6
	60 70	32 32	1 1	48 54	42 46	1 1
35	52 62	37 37	0,6 1	45 51	42 46	0,6 1
	68 80	37 37	1 1,1	55 62	48 53	1 1

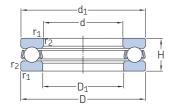


Principal dimensions		Basic load ratings dynamic static		Fatique load limit	Minimum load factor	Speed ration Reference speed			Designation	
d	D	Н	С	C_0	P_{u}	А	speed	speed		
mm	1 		kN		kN	-	r/min		kg	_
40	60	13	25,5	63	2,32	0,02	5 000	7 000	0,12	► 51108
	68	19	44,2	96,5	3,6	0,058	3 800	5 300	0,28	► 51208
	78	26	61,8	122	4,5	0,077	3 000	4 300	0,53	► 51308
	90	36	95,6	183	6,8	0,26	2 400	3 400	1,1	► 51408
5	65	14	26,5	69,5	2,55	0,025	4 500	6 300	0,14	► 51109
	73	20	39	86,5	3,2	0,038	3 600	5 000	0,3	► 51209
	85	28	76,1	153	5,6	0,12	2 800	4 000	0,66	► 51309
	100	39	124	240	9	0,37	2 200	3 000	1,4	► 51409
0	70	14	27	75	2,8	0,029	4 300	6 300	0,16	► 51110
	78	22	49,4	116	4,3	0,069	3 400	4 500	0,37	► 51210
	95	31	81,9	170	6,3	0,19	2 600	3 600	0,94	► 51310
	110	43	159	340	12,5	0,6	2 000	2 800	2	► 51410
5	78	16	30,2	81,5	3	0,039	3 800	5 300	0,23	► 51111
	90	25	58,5	134	4,9	0,11	2 800	4 000	0,59	► 51211
	105	35	101	224	8,3	0,26	2 200	3 200	1,3	► 51311
	120	48	195	400	14,6	0,79	1 800	2 400	2,55	► 51411
0	85	17	41,6	122	4,55	0,077	3 600	5 000	0,27	► 51112
	95	26	59,2	140	5,1	0,12	2 800	3 800	0,65	► 51212
	110	35	101	224	8,3	0,26	2 200	3 000	1,35	► 51312
	130	51	199	430	16	0,96	1 600	2 200	3,1	► 51412 M
55	90	18	37,7	108	4	0,06	3 400	4 800	0,33	► 51113
	100	27	60,5	150	5,5	0,14	2 600	3 600	0,72	► 51213
	115	36	106	240	8,8	0,3	2 000	3 000	1,5	► 51313
	140	56	216	490	18	1,2	1 500	2 200	4	► 51413 M
70	95	18	40,3	120	4,4	0,074	3 400	4 500	0,35	► 51114
	105	27	62,4	160	5,85	0,16	2 600	3 600	0,79	► 51214
	125	40	135	320	11,8	0,53	1 900	2 600	2	► 51314
	150	60	234	550	19,3	1,6	1 400	2 000	5	► 51414 M
75	100	19	44,2	134	4,9	0,11	3 200	4 300	0,4	► 51115
	110	27	63,7	170	6,2	0,17	2 400	3 400	0,83	► 51215
	135	44	163	390	14	0,79	1 700	2 400	2,6	► 51315
	160	65	251	610	20,8	1,9	1 300	1 800	6,75	► 51415 M

[►] Popular item

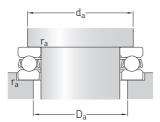


Dimens	sions			Abutme	nt and fille	et dimensions
d	d ₁ ≈	D ₁ ≈	r _{1,2} min.	d _a min.	D _a max.	r _a max.
mm				mm		
40	60	42	0,6	52	48	0,6
	68	42	1	57	51	1
	78	42	1	63	55	1
	90	42	1,1	70	60	1
45	65	47	0,6	57	53	0,6
	73	47	1	62	56	1
	85 100	47 47	1 1,1	69 78	61 67	1
50	70	52	0,6	62	58	0,6
	78	52	1	67	61	1
	95	52	1,1	77	68	1
	110	52	1,5	86	74	1,5
55	78	57	0,6	69	64	0,6
	90	57	1	76	69	1
	105	57	1,1	85	75	1
	120	57	1,5	94	81	1,5
60	85 95	62 62	1 1	75 81	70 74	1
	110	62	1,1	90	80	1
	130	62	1,5	102	88	1,5
65	90 100	67 67	1 1	80 86	75 79	1
	115 140	67 68	1,1 2	95 110	85 95	1 2
70	95	72	1	85	80	1
	105	72	1	91	84	1
	125 150	72 73	1,1 2	103 118	92 102	1 2
75	100	77	1	90	85	1
	110	77	1	96	89	1
	135	77	1,5	111	99	1,5
	160	78	2	126	109	2

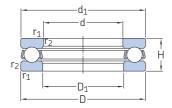


Principal dimensions		sions	Basic loa dynamic	ad ratings static	Fatique load limit	Minimum load factor	Speed rati Reference	Limiting	Mass	Designation
d	D	Н	С	C_0	P_u	Α	speed	speed		
mm			kN		kN	_	r/min	r/min		_
80	105	19	44,9	140	5,1	0,12	3 000	4 300	0,42	► 51116
	115	28	76,1	208	7,65	0,22	2 400	3 400	0,91	► 51216
	140	44	159	390	13,7	0,79	1 700	2 400	2,7	► 51316
	170	68	302	750	25	2,3	1 200	1 700	7,95	► 51416 M
35	110	19	44,9	146	5,4	0,14	3 000	4 300	0,44	► 51117
	125	31	97,5	275	9,8	0,39	2 200	3 000	1,2	► 51217
	150	49	174	405	14	1,1	1 600	2 200	3,55	► 51317
	180	72	286	750	24	2,9	1 200	1 600	9,45	► 51417 M
90	120	22	59,2	208	7,5	0,22	2 600	3 800	0,67	► 51118
	135	35	112	290	10,4	0,55	2 000	2 800	1,7	► 51218
	155	50	182	440	14,6	1,3	1 500	2 200	3,8	► 51318
	190	77	307	815	25,5	3,5	1 100	1 500	11	► 51418 M
100	135	25	80,6	265	9,15	0,44	2 400	3 200	0,97	► 51120
	150	38	119	325	10,8	0,62	1 800	2 400	2,2	► 51220
	170	55	225	570	18,3	1,9	1 400	1 900	4,95	► 51320
	210	85	371	1 060	31,5	5,8	950	1 400	15	► 51420 M
110	145	25	83,2	285	9,5	0,52	2 200	3 200	1,05	► 51122
	160	38	125	365	11,6	0,79	1 700	2 400	2,4	► 51222
	190	63	281	815	24,5	3,2	1 200	1 700	7,85	► 51322 M
	230	95	410	1 220	34,5	7,7	900	1 300	20	51422 M
120	155	25	85,2	305	9,65	0,58	2 200	3 000	1,15	► 51124
	170	39	127	390	11,8	1	1 600	2 200	2,65	► 51224
	210	70	325	980	28,5	5	1 100	1 500	11	► 51324 M
	250	102	432	1 320	36	16	800	1 100	25,5	51424 M
130	170	30	119	440	13,4	0,94	1 900	2 600	1,85	► 51126
	190	45	186	585	17	1,8	1 400	2 000	4	► 51226
	225	75	358	1 140	32	6,8	1 000	1 400	13	► 51326 M
	270	110	520	1 730	45	16	750	1 000	32	51426 M
140	180 200	31 46	111 190	440 620	12,9 17,6	1 2	1 800 1 400	2 600 1 900	2,05 4,35	► 51128 ► 51228
	240	80	377	1 220	32,5	9,1	950	1 300	15,5	► 51328 M
	280	112	520	1 730	44	16	700	1 000	34,5	51428 M

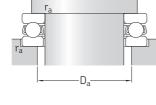
[►] Popular item



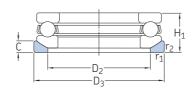
Dimen	sions			Abutme	ent and fille	et dimensions
d	d ₁ ≈	D ₁ ≈	r _{1,2} min.	d _a min.	D _a max.	r _a max.
mm				mm		
80	105 115	82 82	1 1	95 101	90 94	1 1
	140 170	82 83	1,5 2,1	116 133	104 117	1,5 2
85	110 125	87 88	1 1	100 109	95 101	1 1
	150 177	88 88	1,5 2,1	124 141	111 124	1,5 2
90	120 135	92 93	1 1,1	108 117	102 108	1
	155 187	93 93	1,5 2,1	129 149	116 131	1,5 2
100	135 150	102 103	1 1,1	121 130	114 120	1
	170 205	103 103	1,5 3	142 165	128 145	1,5 2,5
110	145 160	112 113	1 1,1	131 140	124 130	1
	187 225	113 113	2	158 181	142 159	2 2,5
120	155 170	122 123	1 1,1	141 150	134 140	1
	205 245	123 123	2,1 4	173 197	157 173	2 3
130	170 187	132 133	1 1,5	154 166	146 154	1 1,5
	220 265	134 134	2,1 4	186 213	169 187	2 3
140	178 197	142 143	1 1,5	164 176	156 164	1 1,5
	235 275	144 144	2,1 4	199 223	181 197	2 3



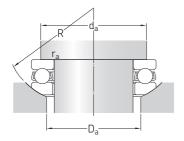
Principal dimensions		nensions Basic load ratings dynamic static		Fatique load limit	Minimum load factor	Speed ration Reference	Limiting	Mass	Designation	
d	D	Н	С	C_0	P_{u}	Α	speed	speed		
mm			kN		kN	-	r/min		kg	_
150	190	31	111	440	12,5	1	1 700	2 400	2,2	► 51130 M
	215	50	238	800	22	3,3	1 300	1 800	6,1	► 51230 M
	250	80	390	1 290	34	10	900	1 300	16,5	► 51330 M
	300	120	559	1 960	48	20	670	950	42,5	51430 M
160	200	31	112	465	12,9	1,1	1 700	2 400	2,35	► 51132 M
	225	51	238	830	22,4	3,8	1 200	1 700	6,55	► 51232 M
	270	87	449	1 660	41,5	14	850	1 200	21	► 51332 M
170	215	34	133	540	14,3	1,5	1 600	2 200	3,3	► 51134 M
	240	55	270	930	24	5,4	1 200	1 700	8,15	► 51234 M
	280	87	468	1 760	43	16	800	1 100	22	► 51334 M
180	225 250 300	34 56 95	135 302 520	570 1120 2000	15 28,5 47,5	1,7 6,1 21	1 500 1 200 750	2 200 1 600 1 100	3,5 8,6 28,5	 51136 M 51236 M 51336 M
190	240	37	172	710	18	2,6	1 400	2 000	4,05	► 51138 M
	270	62	332	1 270	31	8,4	1 100	1 600	12	► 51238 M
	320	105	559	2 200	51	30	700	950	36,5	51338 M
200	250	37	168	710	17,6	2,6	1 400	1 900	4,25	► 51140 M
	280	62	338	1 320	31,5	9,1	1 100	1 500	12	► 51240 M
	340	110	624	2 600	58,5	35	630	900	44,5	51340 M
220	270	37	178	800	19	3,3	1 300	1 900	4,6	► 51144 M
	300	63	358	1 460	33,5	11	950	1 300	13	► 51244 M
240	300	45	234	1 040	23,6	5,6	1 100	1 600	7,55	► 51148 M
	340	78	449	1 960	42,5	21	800	1 100	23	► 51248 M
260	320	45	238	1 100	24	6,3	1 100	1 500	8,1	► 51152 M
	360	79	488	2 240	46,5	24	750	1 100	25	► 51252 M
280	350	53	319	1 460	30,5	11	950	1 300	12	► 51156 M
	380	80	488	2 320	47,5	28	750	1 000	26,5	► 51256 M
300	380	62	364	1 760	35,5	16	850	1 200	17,5	► 51160 M
	420	95	585	3 000	57	47	630	850	42	► 51260 M
320	400	63	371	1 860	36,5	18	800	1 100	19	► 51164 M
	440	95	572	3 000	56	47	600	800	45,5	51264 F
	440	95	572	3 000	56	47	600	800	45	51264 M
340	420	64	377	1 960	37,5	20	800	1 100	20,5	► 51168 M
	460	96	605	3 200	25,5	53	600	800	48,5	51268 F

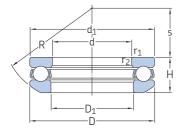

[►] Popular item

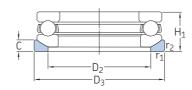
Dimens	sions			Abutme	nt and fille	let dimensions
d	d ₁ ≈	D ₁ ≈	r _{1,2} min.	d _a min.	D _a max.	r _a max.
mm				mm		
150	188	152	1	174	166	1
	212	153	1,5	189	176	1,5
	245	154	2,1	209	191	2
	295	154	4	239	211	3
160	198	162	1	184	176	1
	222	163	1,5	199	186	1,5
	265	164	3	225	205	2,5
170	213	172	1,1	197	188	1
	237	173	1,5	212	198	1,5
	275	174	3	235	215	2,5
180	222	183	1,1	207	198	1
	245	183	1,5	222	208	1,5
	295	184	3	251	229	2,5
190	237	193	1,1	220	210	1
	265	194	2	238	222	2
	315	195	4	267	243	3
200	247	203	1,1	230	220	1
	275	204	2	248	232	2
	335	205	4	283	257	3
220	267	223	1,1	250	240	1
	295	224	2	268	252	2
240	297	243	1,5	276	264	1,5
	335	244	2,1	299	281	2
260	317	263	1,5	296	284	1,5
	355	264	2,1	319	301	2
280	347	283	1,5	322	308	1,5
	375	284	2,1	339	321	2
300	376 415	304 304	2 3	348 371	332 349	2 2,5
320	396	324	2	368	352	2
	435	325	3	391	369	2,5
	435	325	3	391	369	2,5
340	416 455	344 345	2	388 411	372 389	2 2,5

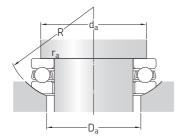


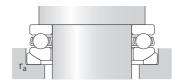
5 80 4 5 00 4 20 5 40 5 60 5	440 500 460 520 480	65 110 65 112 65	C kN 390 741 397 728	2 080 4 150 2 200 4 150	P _u kN 38 73,5 40	A – 22 90	r/min	speed	kg 22	-
60 4 580 4 500 4 20 5 40 5 60 5	500 460 520 480	110 65 112	390 741 397 728	4 150 2 200	38 73,5	22	750			
5 80 4 5 00 4 20 5 40 5 60 5	500 460 520 480	110 65 112	741 397 728	4 150 2 200	73,5				22	
5 00 4 20 5 40 5 60 5 80 5	520 480	112	728		40		500	700	70	51172 F 51272 F
20 5 40 5 60 5		65	/ 00		72	25 90	750 500	1 000 700	23 73	51176 F 51276 F
40 5 60 5 80 5			403	2 280	40,5	27	700	1 000	24	51180 F
60 5 80 5	500	65	410	2 400	41,5	30	700	1 000	25,5	51184 F
80 5	540	80	527	3 250	55	55	600	850	42	51188 F
	560	80	527	3 250	54	55	600	800	43,5	51192 F
00 /	580	80	540	3 550	56	66	560	800	45,5	51196 F
00 6	600	80	553	3 600	57	67	560	800	47	511/500 F
30 6	640	85	650	4 400	68	100	530	750	58,5	511/530 F
60 6	670	85	650	4 650	68	110	500	700	61	511/560 F
00 7	710	85	663	4 800	69,5	120	500	700	65	511/600 F
30 7	750	95	728	5 400	76,5	150	450	630	84	511/630 F
70 8	000	105 105	852 852	6 700 6 700	91,5 91,5	230 230	400 400	560 560	105 105	511/670 F 511/670 M

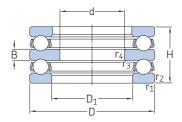

Dimens	sions			Abutme	nt and fille	et dimensions
d	d ₁ ≈	D ₁ ≈	r _{1,2} min.	d _a min.	D _a max.	r _a max.
mm				mm		
360	436 495	364 365	2 4	408 443	392 417	2 3
380	456 515	384 385	2 4	428 463	412 437	2 3
400	476	404	2	448	432	2
420	496	424	2	468	452	2
440	536	444	2,1	499	481	2
460	556	464	2,1	519	501	2
480	576	484	2,1	539	521	2
500	596	504	2,1	559	541	2
530	636	534	3	595	575	2,5
560	666	564	3	625	606	2,5
600	706	604	3	665	645	2,5
630	746	634	3	701	679	2,5
670	795 795	675 675	4 4	747 747	723 723	3 3


Princi	pal dimer	nsions	Basic lo	ad ratings static	Fatique load limit	Minimum load factor	Speed rat Reference	Limiting	Mass Bearing +		Designations Bearing	Seat
d	D	H ₁	С	C_0	P_u	Α	speed	speed	washer			washer
mm			kN		kN	-	r/min		kg		-	
12	28	13	13,3	20,8	0,765	0,0022	8 000	11 000	0,045	•	53201	U 201
15	32	15	15,9	25	0,915	0,0038	7 000	10 000	0,063	٠	53202	U 202
17	35	15	16,3	27	1	0,0047	6 700	9 500	0,071	٠	53203	U 203
20	40	17	21,2	37,5	1,4	0,0085	5 600	8 000	0,1	٠	53204	U 204
25	47	19	26,5	50	1,86	0,015	5 000	7 000	0,15	٠	53205	U 205
30	52 60	20 25	25,1 35,8	51 65,5	1,86 2,4	0,013 0,026	4 500 3 800	6 300 5 300	0,18 0,33		53206 53306	U 206 U 306
35	62 68	22 28	35,1 49,4	73,5 96,5	2,7 3,55	0,028 0,048	4 000 3 200	5 600 4 500	0,28 0,46		53207 53307	U 207 U 307
40	68 78 90	23 31 42	44,2 61,8 95,6	96,5 122 183	3,6 4,5 6,8	0,058 0,077 0,26	3 600 2 800 2 400	5 300 4 000 3 200	0,35 0,67 1,35		53208 53308 53408	U 208 U 308 U 408
45	73 85	24 33	39 76,1	86,5 153	3,2 5,6	0,038 0,12	3 400 2 600	4 800 3 800	0,39 0,83	>	53209 53309	U 209 U 309
50	78 95 110	26 37 50	49,4 81,9 159	116 170 340	4,3 6,3 12,5	0,069 0,19 0,6	3 200 2 400 1 900	4 500 3 400 2 600	0,47 1,2 2,3		53210 53310 53410	U 210 U 310 U 410
55	90 105 120	30 42 55	58,5 101 195	134 224 400	4,9 8,3 14,6	0,11 0,26 0,79	2 800 2 200 1 700	3 800 3 000 2 400	0,75 1,7 3,1		53211 53311 53411	U 211 U 311 U 411
60	95 110 130	31 42 58	59,2 101 199	140 224 430	5,1 8,3 16	0,12 0,26 0,96	2 600 2 000 1 600	3 600 3 000 2 200	0,82 1,7 3,8	>	53212 53312 53412 M	U 212 U 312 U 412
65	100 115	32 43	60,5 106	150 240	5,5 8,8	0,14 0,3	2 600 2 000	3 600 2 800	0,91 1,9	>	53213 53313	U 213 U 313
70	105 125 150	32 48 69	62,4 135 234	160 320 550	5,85 11,8 19,3	0,16 0,53 1,6	2 600 1 800 1 400	3 600 2 600 2 000	0,97 2,5 6,5	>	53214 53314 53414 M	U 214 U 314 U 414
75	110 135 160	32 52 75	63,7 163 251	170 390 610	6,2 14 20,8	0,17 0,79 1,9	2 400 1 700 1 300	3 400 2 400 1 800	1 3,2 8,1		53215 53315 53415 M	U 215 U 315 U 415

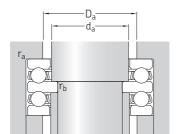

[►] Popular item


												
Dimen	sions									Abutm	ent and fill	et dimensions
d	d ₁ ≈	D ₁ ≈	D ₂	D_3	Н	С	R	S	r _{1,2} min.	d _a min.	D _a max.	r _a max.
mm										mm		
12	28	14	20	30	11,4	3,5	25	11,5	0,6	22	20	0,6
15	32	17	24	35	13,3	4	28	12	0,6	25	24	0,6
17	35	19	26	38	13,2	4	32	16	0,6	28	26	0,6
20	40	22	30	42	14,7	5	36	18	0,6	32	30	0,6
25	47	27	36	50	16,7	5,5	40	19	0,6	38	36	0,6
30	52 60	32 32	42 45	55 62	17,8 22,6	5,5 7	45 50	22 22	0,6 1	43 48	42 45	0,6 1
35	62 68	37 37	48 52	65 72	19,9 25,6	7 7,5	50 56	24 24	1	51 55	48 52	1 1
40	68 78 90	42 42 42	55 60 65	72 82 95	20,3 28,5 38,2	7 8,5 12	56 64 72	28,5 28 26	1 1 1,1	57 63 70	55 60 65	1 1 1
45	73 85	47 47	60 65	78 90	21,3 30,1	7,5 10	56 64	26 25	1 1	62 69	60 65	1 1
50	78 95 110	52 52 52	62 72 80	82 100 115	23,5 34,3 45,6	7,5 11 14	64 72 90	32,5 28 35	1 1,1 1,5	67 77 86	62 72 80	1 1 1,5
55	90 105 120	57 57 57	72 80 88	95 110 125	27,3 39,3 50,5	9 11,5 15,5	72 80 90	35 30 28	1 1,1 1,5	76 85 94	72 80 88	1 1 1,5
60	95 110 130	62 62 62	78 85 95	100 115 135	28 38,3 54	9 11,5 16	72 90 100	32,5 41 34	1 1,1 1,5	81 90 102	78 85 95	1 1 1
65	100 115	67 67	82 90	105 120	28,7 39,4	9 12,5	80 90	40 38,5	1 1,1	86 95	82 90	1 1
70	105 125 150	72 72 73	88 98 110	110 130 155	27 44,2 63,6	9 13 19,5	80 100 112	38 43 34	1 1,1 2	91 103 118	88 98 110	1 1 2
75	110 135 160	77 77 78	92 105 115	115 140 165	28,3 48,1 69	9,5 15 21	90 100 125	49 37 42	1 1,5 2	96 111 126	92 105 115	1 1 2

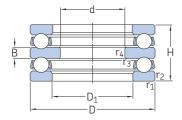



Princi	pal dime	nsions	Basic loa dynamic	d ratings static	Fatique load limit	Minimum load factor	Speed ra Reference speed		Mass Bearing + washer	Designation Bearing	s Seat washer
d	D	H ₁	С	C_0	P_u	А	speeu	speed	wasilei		wasilei
mm			kN		kN	_	r/min		kg	_	
80	115	33	76,1	208	7,65	0,22	2 400	3 200	1,1	► 53216	U 216
	140	52	159	390	13,7	0,79	1 600	2 200	3,2	► 53316	U 316
85	125	37	97,5	275	9	0,39	2 000	3 000	1,5	► 53217	U 217
	150	58	174	405	14	1,1	1 500	2 000	4,35	► 53317	U 317
90	135	42	112	290	10,4	0,55	1 900	2 600	2,1	► 53218	U 218
	155	59	182	440	14,6	1,3	1 400	2 000	4,7	► 53318	U 318
	190	88	307	815	25,5	3,5	1 100	1 500	13	53418 M	U 418
100	150	45	119	325	10,8	0,62	1 700	2 400	2,7	► 53220	U 220
	170	64	225	570	18,3	1,9	1 300	1 800	5,95	► 53320	U 320
	210	98	371	1 060	31,5	5,8	950	1 300	18	► 53420 M	U 420
110	160	45	125	365	11,6	0,79	1 700	2 400	2,9	► 53222	U 222
	190	72	281	815	24,5	3,2	1 100	1 600	9,1	► 53322 M	U 322
120	170	46	127	390	11,8	1	1 500	2 200	3,2	► 53224	U 224
	210	80	325	980	28,5	5	1 000	1 400	12,5	► 53324 M	U 324
130	190	53	186	585	17	1,8	1 300	1 800	4,85	▶ 53226	U 226
140	200	55	190	620	17,6	2	1 300	1 800	5,45	▶ 53228	U 228

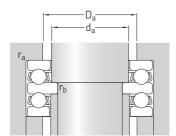
[►] Popular item



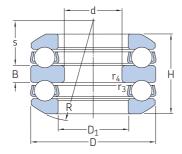
Dimens	sions		Abutme	ent and fill	et dimensions							
d	d ₁ ≈	D ₁ ≈	D ₂	D_3	Н	С	R	S	r _{1,2} min.	d _a min.	D _a max.	r _a max.
mm										mm		
80	115 140	82 82	98 110	120 145	29,5 47,6	10 15	90 112	46 50	1 1,5	101 116	98 110	1
85	125 150	88 88	105 115	130 155	33,1 53,1	11 17,5	100 112	52 43	1 1,5	109 124	105 115	1 1
90	135 155 187	93 93 93	110 120 140	140 160 195	38,5 54,6 81,2	13,5 18 25,5	100 112 140	45 40 40	1,1 1,5 2,1	117 129 133	110 120 140	1 1 2
100	150 170 205	103 103 103	125 135 155	155 175 220	40,9 59,2 90	14 18 27	112 125 160	52 46 50	1,1 1,5 3	130 142 165	125 135 155	1 1 2
110	160 187	113 113	135 150	165 195	40,2 67,2	14 20	125 140	65 51	1,1 2	140 140	135 150	1 1
120	170 205	123 123	145 165	175 220	40,8 74,1	15 22	125 160	61 63	1,1 2,1	150 173	145 165	1
130	187	133	160	195	47,9	17	140	67	1,5	166	160	1
140	197	143	170	210	48,6	17	160	87	1,5	176	170	1



Princi	pal dime	nsions	Basic lo dynamic	ad ratings static	Fatique load limit	Minimum load factor	Speed ra Reference speed	tings e Limiting speed	Mass	Designation
d	D	Н	С	C_0	P_{u}	Α	эреси	Specu		
mm			kN		kN	-	r/min		kg	-
10	32	22	15,9	25	0,915	0,0038	5 300	7 500	0,081	► 52202
15	40	26	21,2	37,5	1,4	0,0085	4 300	6 000	0,15	► 52204
20	47	28	26,5	50	1,86	0,015	3 800	5 300	0,22	► 52205
	52	34	34,5	60	2,24	0,018	3 200	4 500	0,33	► 52305
	70	52	70,2	122	4,5	0,097	2 200	3 200	1	52406
25	52	29	25,1	51	1,86	0,013	3 600	5 000	0,25	► 52206
	60	38	35,8	65,5	2,4	0,026	2 800	4 000	0,47	► 52306
	80	59	76,1	137	5,1	0,15	2 000	2 800	1,45	52407
30	62	34	35,1	73,5	2,7	0,028	3 000	4 300	0,41	► 52207
	68	36	44,2	96,5	3,6	0,058	2 800	3 800	0,55	► 52208
	68	44	49,4	96,5	3,55	0,048	2 400	3 400	0,68	► 52307
	78	49	61,8	122	4,5	0,077	2 200	3 000	1,05	► 52308
	90	65	95,6	183	6,8	0,26	1 800	2 400	2,05	52408
35	73	37	39	86,5	3,2	0,038	2 600	3 600	0,6	► 52209
	85	52	76,1	153	5,6	0,12	2 000	2 800	1,25	► 52309
	100	72	124	240	9	0,37	1 600	2 200	2,7	52409
40	78	39	49,4	116	4,3	0,069	2 400	3 400	0,71	► 52210
	95	58	81,9	170	6,3	0,19	1 800	2 600	1,75	► 52310
45	90	45	58,5	134	4,9	0,11	2 200	3 000	1,1	► 52211
	105	64	101	224	8,3	0,26	1 600	2 200	2,4	► 52311
	120	87	195	400	14,6	0,79	1 300	1 800	4,7	52411
50	95	46	59,2	140	5,1	0,12	2 000	2 800	1,2	► 52212
	110	64	101	224	8,3	0,26	1 600	2 200	2,55	► 52312
	130	93	199	430	16	0,96	1 200	1 700	6,35	52412 M
55	100	47	60,5	150	5,5	0,14	2 000	2 800	1,35	► 52213
	105	47	62,4	160	5,85	0,16	1 900	2 600	1,5	► 52214
	115	64	106	240	8,8	0,3	1 600	2 200	2,75	52313
	125	72	135	320	11,8	0,53	1 400	2 000	3,65	52314
	250	107	234	550	19,3	1,6	800	1 100	9,7	52414 M
60	110	47	63,7	170	6,2	0,17	1 900	2 600	1,55	► 52215
	135	79	163	390	14	0,79	1 300	1 800	4,8	52315
65	115	48	76,1	208	7,65	0,22	2 400	3 400	1,7	► 52216
	140	79	159	390	13,7	0,79	1 300	1 800	4,95	52316

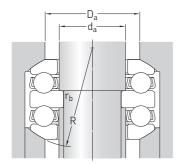

► Popular item

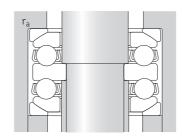
Dimen	sions				Abutm	ent and fille	et dimensio	ons
d	D ₁ ≈	В	r _{1,2} min.	r _{3,4} min.	d _a	D _a max.	r _a max.	r _b max.
mm					mm			
10	17	5	0,6	0,3	15	22	0,6	0,3
15	22	6	0,6	0,3	20	28	0,6	0,3
20	27 27 32	7 8 12	0,6 1 1	0,3 0,3 0,6	25 25 30	34 36 46	0,6 1 1	0,3 0,3 0,6
25	30 32 42	7 9 14	0,6 1 1,1	0,3 0,3 0,6	30 30 35	39 42 53	0,6 1 1	0,3 0,3 0,6
30	37 42 35	8 9 10	1 1 1	0,3 0,6 0,3	35 40 35	46 51 48	1 1 1	0,3 0,6 0,3
	40 42	12 15	1 1,1	0,6 0,6	40 40	55 60	1	0,6 0,6
35	47 47 47	9 12 17	1 1 1,1	0,6 0,6 0,6	45 46 45	56 61 67	1 1 1	0,6 0,6 0,6
40	52 52	9 14	1 1,1	0,6 0,6	50 50	61 68	1 1	0,6 0,6
45	57 57 57	10 15 20	1 1,1 1,5	0,6 0,6 0,6	55 55 55	69 75 81	1 1 1,5	0,6 0,6 0,6
50	62 62 62	10 15 21	1 1,1 1,5	0,6 0,6 0,6	60 60 60	74 80 88	1 1 1,5	0,6 0,6 0,6
55	67 72 67	10 10 15	1 1 1,1	0,6 1 0,6	65 70 65	79 84 85	1 1 1	0,6 1 0,6
	72 123	16 24	1,1 2	1 1	70 70	92 120	1 1,5	1
60	77 77	10 18	1 1,5	1 1	75 75	89 99	1 1,5	1
65	82 82	10 18	1 1,5	0,6 1	80 80	94 104	1	1 1



Princi	pal dimer	nsions	Basic loa dynamic	d ratings static	Fatique load limit	Minimum load factor	Speed ra Reference	e Limiting	Mass	Designation
d	D	Н	С	C_0	P_{u}	А	speed	speed		
mm			kN		kN	_	r/min		kg	-
70	125	55	97,5	275	9,8	0,39	1 600	2 200	2,4	► 522 1 7
75	135	62	112	290	116	0,55	1 500	2 000	3,2	► 52218
85	150 170	67 97	119 225	325 570	10,8 18,3	0,62 1,9	1 300 1 000	1 800 1 400	4,2 8,95	► 52220 ► 52320
95	160	67	125	365	11,6	0,79	1 300	1 800	4,65	52222
100	170	68	127	390	11,8	1	1 200	1 700	5,25	52224
110	190	80	182	585	16,6	1,8	1 100	1 500	8	▶ 52226
120	200	81	190	620	17,6	2	1 000	1 400	8,65	52228
130	215	89	238	800	22	3,3	950	1 300	11,5	52230 M
140	225	90	238	830	22,4	3,8	900	1 300	12	► 52232 M
150	240 250	97 98	270 302	930 1 120	24 28,5	5,4 6,1	850 800	1 200 1 100	15 16	► 52234 M 52236 M

Dimen	88 12 1 1 93 14 1,1 1 103 15 1,1 1 103 21 1,5 1 113 15 1,1 1 0 123 15 1,1 1,1			Abutme	nt and fille	et dimensi	ons	
d		В	r _{1,2} min.	r _{3,4} min.	d _a	D _a max.	r _a max.	r _b max.
mm					mm			
70	88	12	1	1	85	101	1	1
75	93	14	1,1	1	90	108	1	1
85		15 21	1,1 1,5	1 1	100 100	120 128	1 1	1 1
95	113	15	1,1	1	110	130	1	1
100	123	15	1,1	1,1	120	140	1	1
110	133	18	1,5	1,1	130	154	1,5	1
120	143	18	1,5	1,1	140	164	1,5	1
130	153	20	1,5	1,1	150	176	1,5	1
140	163	20	1,5	1,1	160	186	1,5	1
150	173 183	21 21	1,5 1,5	1,1 2	170 180	198 208	1,5 1,5	1 2

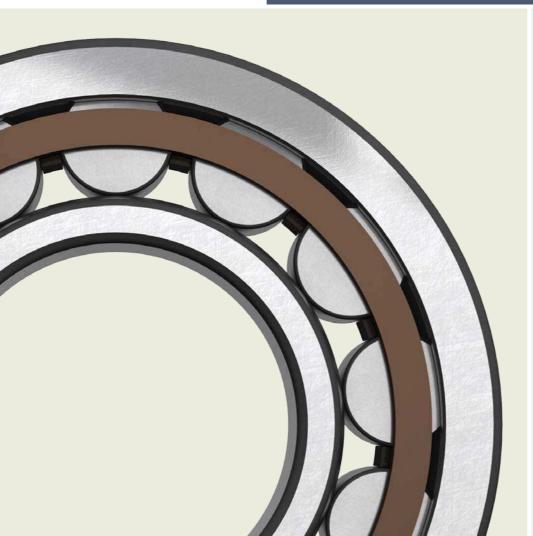

d **25 – 80** mm



Princi	pal dimei	nsions	Basic lo dynamic	ad ratings static	Fatique load limit	Minimum load factor	Speed ra Reference speed		Mass Bearing washer	+	Designations Bearing	Seat washer
d	D	H ₁	С	C_0	P_u	Α	эрсси	Specu	washer			Washer
mm			kN		kN	-	r/min		kg	-		
25	60	46	35,8	65,5	2,4	0,026	2 800	3 800	0,58	•	54306	U 306
30	62 68 68	42 44 52	35,1 44,2 49,4	73,5 96,5 96,5	2,7 3,6 3,55	0,028 0,058 0,048	2 800 2 800 2 400	4 000 3 800 3 400	0,53 0,63 0,85	•	54208	U 207 U 208 U 307
	78	59	61,8	122	4,5	0,077	2 200	3 000	1,15		54308	U 308
35	73 85 100	45 62 86	39 76,1 124	86,5 153 240	3,2 5,6 9	0,038 0,12 0,37	2 600 1 900 1 500	3 600 2 800 2 000	0,78 1,6 3	٠	54209 54309 54409	U 209 U 309 U 409
40	95 110	70 92	81,9 148	170 305	6,3 11,4	0,19 0,6	1 700 1 400	2 400 1 900	2,3 4,45		54310 54410	U 310 U 410
45	90	55	58,5	134	4,9	0,11	2 200	3 000	1,3		54211	U 211
50	110	78	101	224	8,3	0,26	1 500	2 200	2,9		54312	U 312
65	140 170	95 140	159 307	390 750	13,7 25	0,79 2,3	1 300 850	1 800 1 200	5,55 17,5		54316 54416 M	U 316 U 416
70	150	105	174	405	14	1,1	1 100	1 500	7,95	٠	54317	U 317
80	210	176	371	1 060	31,5	5,8	700	950	29		54420 M	U 420

[►] Popular item

Dimer	nsions						Abutm	nent and	fillet dim	ensions				
d	D ₁ ≈	D ₂	D_3	Н	В	С	R	S	r _{1,2} min.	r _{3,4} min.	d _a	D _a max.	r _a max.	r _b max.
mm											mm			
25	32	45	62	41,3	9	7	50	19,5	1	0,3	30	45	1	0,3
30	37 42 37	48 55 52	65 72 72	37,8 38,6 47,2	8 9 10	7 7 7,5	50 56 56	21 25 21	1 1 1	0,3 0,6 0,3	35 40 35	48 55 52	1 1 1	0,3 0,6 0,3
	42	60	82	54,1	12	8,5	64	23,5	1	0,6	40	60	1	0,6
35	47 47 47	60 65 72	78 90 105	39,6 56,2 78,9	9 12 17	7,5 10 12,5	56 64 80	23 21 23,5	1 1 1,1	0,6 0,6 0,6	45 45 45	60 65 72	1 1 1	0,6 0,6 0,6
40	52 52	72 80	100 115	64,7 83,2	14 18	11 14	72 90	23 30	1,1 1,5	0,6 0,6	50 50	72 80	1 1,5	0,6 0,6
45	57	72	95	49,6	10	9	72	32,5	1	0,6	55	72	1	0,6
50	62	85	115	70,7	15	11,5	90	36,5	1,1	0,6	60	85	1	0,6
65	82 83	110 125	145 175	86,1 128,5	18 27	15 22	112 125	45,5 30,5	1,5 2,1	1	80 80	110 125	1,5 2	1
70	88	115	155	95,2	19	17,5	112	39	1,5	1	85	115	1,5	1
80	103	155	220	159,9	33	27	160	43,5	3	1,1	100	155	2,5	1



Cylindrical roller bearings

6 Cylindrical roller bearings

Designs and variants	496	Mounting	512
Single row cylindrical roller bearings	496		
Common designs	496	Designation system	514
Other designs	497		
Other variants	497	Product tables	
High-capacity cylindrical roller bearings	498	6.1 Single row cylindrical roller bearings	516
Bearings with an inner ring centred cage	499	6.2 High-capacity cylindrical roller bearings	550
Bearings with an outer ring centred cage	499	6.3 Single row full complement cylindrical roller	
Separable bearings with an inner ring raceway centred		bearings	554
cage	499	6.4 Double row full complement cylindrical roller	
Double row bearings	499	bearings	564
Single row full complement cylindrical roller bearings	500	6.5 Sealed double row full complement cylindrical	
NCF design bearings	500	roller bearings	576
NJG design bearings	500	, and the second	
Double row full complement cylindrical roller bearings	500		
NNCL design bearings	501		
NNCF design bearings	501		
NNC design bearings	501		
NNF design sealed bearings	501		
SKF Explorer bearings	502		
Matched bearings	502		
Cages	502		
0.000	002		
Bearing data	504		
(Dimension standards, tolerances, radial internal			
clearance, axial clearance, permissible misalignment,			
permissible axial displacement)			
Loads	509	Other cylindrical roller bearings	
(Minimum load, equivalent dynamic bearing load,		Bearings with Solid Oil	1023
equivalent static bearing load)		INSOCOAT bearings	1029
Dynamic axial load carrying capacity	510	Hybrid bearings	1043
Permissible axial loads	510	NoWear coated bearings	1059
Terrinosible anactodas	310	Super-precision bearings → skf.com/super-	
Temperature limits	511	Double and four-row cylindrical roller bearings → skf.com/	
	711	Split cylindrical roller bearings > skf.com/	
Permissible speed	511	Backing bearings \rightarrow skf.com/	
· companie speed · · · · · · · · · · · · · · · · · ·	711	Indexing roller units \Rightarrow skf.com/	
Design considerations	512	Cylindrical roller bearings and bearing units	ocui iiiga
Flange sunnort	512		tact SKF

5KF 493

6 Cylindrical roller bearings

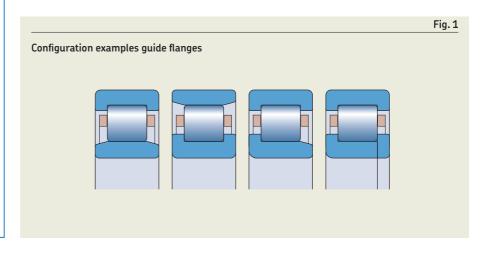
More information

General bearing knowledge	1/
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Seat tolerances for standard	
conditions	148
Selecting internal clearance	182
Sealing, mounting and	
dismounting	193

Mounting instructions for individual bearings → skf.com/mount

SKF bearing maintenance handbook ISBN 978-91-978966-4-1 SKF cylindrical roller bearings are available in many designs, series and sizes. The major design differences between the cylindrical roller bearings presented in this catalogue are in:

- the number of roller rows (one or two)
- the type of cage (with, without or special designs)
 - Bearings with a cage can accommodate heavy radial loads and peak loads, rapid accelerations and high speeds.
 - Full complement bearings (without cage) incorporate a maximum number of rollers and are therefore suitable for very heavy radial loads at moderate speeds.
 - SKF high-capacity cylindrical roller bearings combine the high load carrying capacity of a full complement bearing with the high speed capability of a bearing with cage.
- the configuration of the inner and outer ring flanges (position and number of guide flanges, fig. 1)


Bearing features

- · High load carrying capacity
- · High stiffness
- Accommodate axial displacement (fig. 2)
 Except for bearings with flanges on both the inner and outer rings.
- Low friction

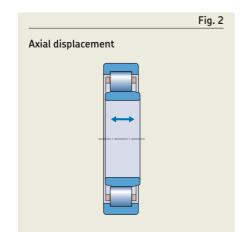
The open flange design (fig. 3), together with the roller end design and surface finish, promote lubricant film formation resulting in lower friction and higher axial load carrying capacity.

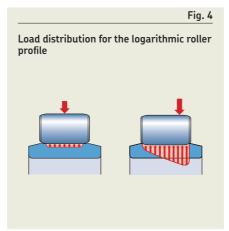
• Long service life

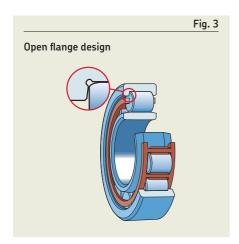
The logarithmic roller profile reduces edge stresses at the roller/raceway contact (fig. 4) and sensitivity to misalignment and shaft deflection.

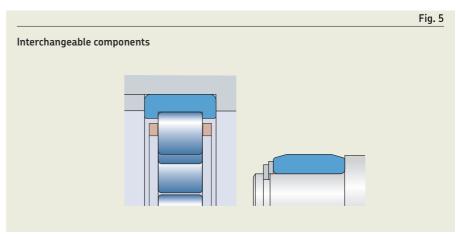
494 **SKF**

· Enhanced operational reliability


The surface finish on the contact surfaces of the rollers and raceways supports the formation of a hydrodynamic lubricant film.


· Separable and interchangeable


The separable components of SKF cylindrical roller bearings are interchangeable (fig. 5). This facilitates mounting and dismounting, as well as maintenance inspections.


In addition to the cylindrical roller bearings presented in this catalogue, SKF supplies cylindrical roller bearings for special application requirements. This assortment includes:

- Double row cylindrical roller bearings
 - → skf.com/bearings
- Four-row cylindrical roller bearings
 - → skf.com/bearings
- Split cylindrical roller bearings
 - → skf.com/bearings
- Super-precision bearings
 - → skf.com/super-precision
- Backing bearings → skf.com/bearings
- Indexing roller units → skf.com/bearings
- Cylindrical roller bearings and bearing units for railway applications → contact SKF

SKF 495

Designs and variants

Single row cylindrical roller bearings

The major design differences between the single row cylindrical roller bearings presented in this catalogue are in:

- the cage design and material
- the configuration of the inner and outer ring flanges

SKF inch bearings (CRL and CRM series, skf.com/go/17000-6-1), which are not presented in this catalogue, conform to the metric N design (fig. 6). They are mainly used in the aftermarket and, therefore, SKF recommends not to use these bearings for new bearing arrangement designs.

Common designs

The most common designs of single row cylindrical roller bearings are shown in fig. 6.

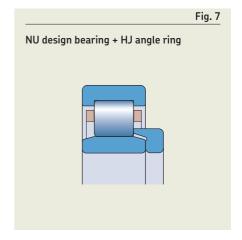
NU design bearings

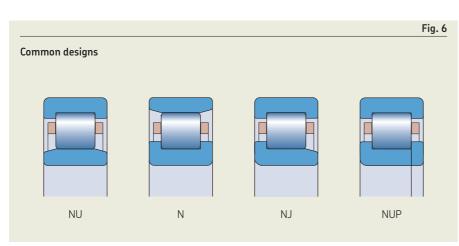
- have two integral flanges on the outer ring and no flanges on the inner ring
- can accommodate axial displacement of the shaft relative to the housing in both directions
- can be used together with an appropriate angle ring to stabilize the bearing in the axial direction (fig. 7, Appropriate angle rings)

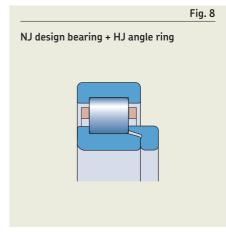
N design bearings

- have two integral flanges on the inner ring and no flanges on the outer ring
- can accommodate axial displacement of the shaft relative to the housing in both directions

NJ design bearings


- have two integral flanges on the outer ring and one on the inner ring
- can accommodate axial displacement of the shaft relative to the housing in one direction only
- are used to locate the shaft axially in one direction
- can be used together with an appropriate angle ring to stabilize the bearing in the other axial direction (fig. 8, Appropriate angle rings)


NUP design bearings


- have two integral flanges on the outer ring and one integral flange and one non-integral flange, i.e. a loose flange ring, on the inner ring
- are used to locate the shaft axially in both directions

Appropriate angle rings (thrust collars)

- are used with NU design bearings to locate the shaft axially in one direction (fig. 7)
 Angle rings should not be used on both sides of NU design bearings as this can lead to axial clamping of the rollers.
- are used with NJ design bearings to locate the shaft axially in both directions (fig. 8)
- are made of carbon chromium steel
- · are hardened and ground
- have a maximum axial run-out that is in accordance with the Normal tolerance class for the appropriate bearing
- are identified by the series designation HJ followed by the appropriate bearing dimension series and size
- are available as listed in the product table, page 517
- must be ordered separately

496 **SKF**

Reasons to design angle rings into a bearing arrangement include:

- no NJ or NUP design locating bearings in the product range
- to provide an extend inner ring seat for heavily loaded bearings in the locating position:
 - full width inner ring seat of NJ design bearings with an HJ angle ring compared to NUP design bearings having a shorter inner ring and a loose flange
- to simplify design or mounting procedures

Other designs

For the assortment of other design bearings (fig. 9), visit skf.com/go/17000-6-1.

NUB design bearings

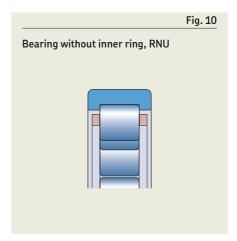
- have two integral flanges on the outer ring and no flanges on the inner ring that is extended on both sides
- can accommodate axial displacement of the shaft relative to the housing in both directions

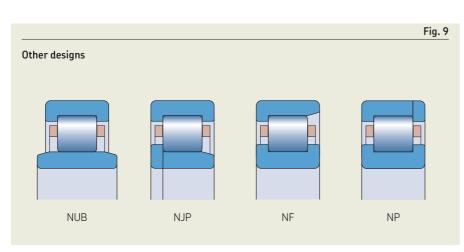
NJP design bearings

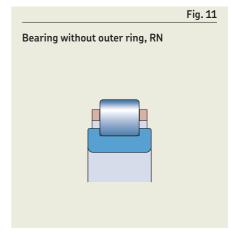
- have two integral flanges on the outer ring and one non-integral flange, i.e. a loose flange ring, on the inner ring
- are used to locate the shaft axially in one direction

NF design bearings

- have two integral flanges on the inner ring and one integral flange on the outer ring
- are used to locate the shaft axially in one direction


NP design bearings


- have two integral flanges on the inner ring and one integral flange and one nonintegral flange, i.e. a loose flange ring, on the outer ring
- are used to locate the shaft axially in both directions


Other variants

Bearings without an inner or outer ring

- are available based on:
 - NU design bearings without an inner ring (RNU series, fig. 10)
 - enable the shaft diameter to be larger to provide a stronger, stiffer shaft
 - provide inside diameter F_w tolerance limits to be within F6 (E) when the rollers are in contact with the outer ring raceway
 - are listed online for certain sizes (skf.com/go/17000-6-6)
 - N design bearings without an outer ring (RN series, fig. 11)
- can accommodate axial displacement of the shaft relative to the housing, limited by the width of the raceway:
 - on the shaft for RNU bearings
 - in the housing for RN bearings
- are typically used in applications where hardened and ground raceways can be machined on the shaft or in the housing (Raceways on shafts and in housings, page 179)

5KF

Bearings with a tapered bore

- are available with a 1:12 tapered bore (designation suffix K, fig. 12)
- have radial internal clearance greater than corresponding bearings with a cylindrical bore

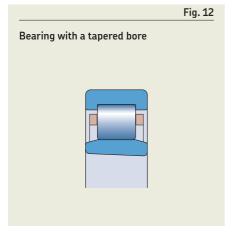
Bearings with a snap ring groove in the outer ring

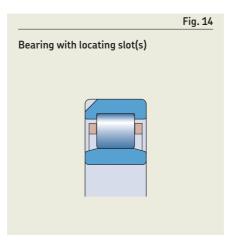
- are identified by the designation suffix N (fig. 13)
- can be axially located in the housing by a snap ring:
 - to save space
 - to reduce mounting time

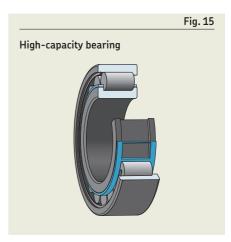
Bearings with locating slots in the outer ring

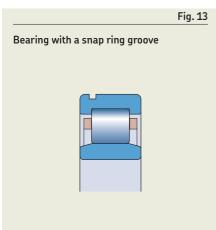
- are available with one or two locating slots (designation suffix N1 or N2, fig. 14)
 The two locating slots are positioned 180° apart.
- can be used to prevent the outer ring from turning where it must be mounted with a loose fit

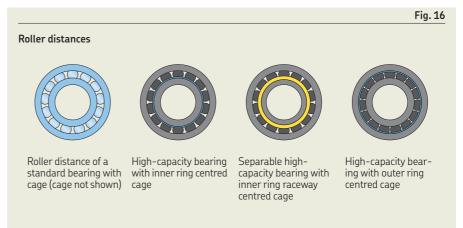
High-capacity cylindrical roller bearings


SKF high-capacity cylindrical roller bearings (fig. 15) are designed for applications such as industrial gearboxes, wind turbine gearboxes and mining equipment.


The cage bars are displaced relative to the roller pitch diameter to enable the rollers to be placed closer to each other, creating room for additional rollers (fig. 16) and thereby increasing load carrying capacity and radial stiffness.


The black oxide coating of rings and rollers (designation suffix L4B) contributes to extended service life by improving:

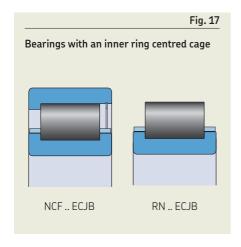

- smearing damage resistance
- running-in properties and reducing friction
- performance under poor lubrication conditions
- chemical resistance (from agressive oil additives)
- corrosion resistance

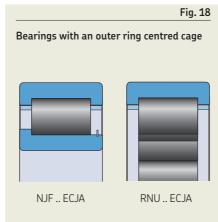

SKF high-capacity cylindrical roller bearings are available in three different main designs and some variants.

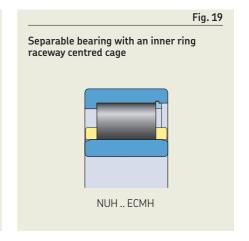
Bearings with an inner ring centred cage

- are identified by the series designation NCF .. ECJB (fig. 17)
- are used to locate the shaft axially in one direction and eventually to accommodate axial displacement of the shaft relative to the housing in the opposite direction
- can be supplied without an outer ring (RN .. ECJB series, fig. 17), where the outer raceway is integrated into the application (*Raceways on shafts and in housings*, page 179)

Bearings with an outer ring centred cage


- are identified by the series designation NJF .. ECJA (fig. 18)
- for some sizes, contain more rollers than same-sized bearings with an inner ring centred cage
- are used to locate the shaft axially in one direction and eventually to accommodate axial displacement of the shaft relative to the housing in the opposite direction
- can be supplied without an inner ring (RNU .. ECJA series, fig. 18), where the inner raceway is integrated into the application (Raceways on shafts and in housings, page 179)


Separable bearings with an inner ring raceway centred cage


- are identified by the series designation NUH .. ECMH (fig. 19)
- can accommodate axial displacement of the shaft relative to the housing in both directions
- can be separated (outer ring with the roller and cage assembly from the inner ring), which simplifies mounting and dismounting, particularly where load conditions require both rings to have an interference fit

Double row bearings

• are available on request

5KF 499

Single row full complement cylindrical roller bearings

SKF single row full complement cylindrical roller bearings are suitable for very heavy radial loads and provide increased radial stiffness.

The basic SKF assortment of single row full complement cylindrical roller bearings provided in this catalogue includes NCF and NJG design bearings (fig. 20). They are used to locate the shaft axially in one direction and eventually to accommodate axial displacement of the shaft relative to the housing in the opposite direction.

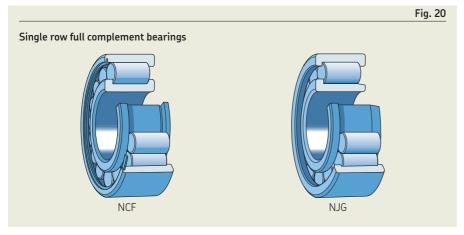
NCF design bearings

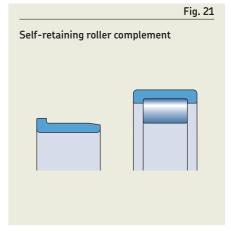
- have two integral flanges on the inner ring and one on the outer ring
- have a retaining ring in the outer ring, on the side opposite the integral flange, to hold the bearing together

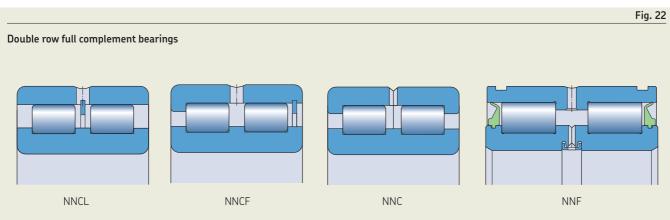
The retaining ring should not be loaded axially during operation.

NJG design bearings

- comprise the heavy 23 dimension series
- are intended for very heavily loaded, lowspeed applications
- have two integral flanges on the outer ring and one on the inner ring
- have a self-retaining roller complement
 Therefore, the outer ring with the roller
 complement can be separated from the
 inner ring without having to take special
 precautions to prevent the rollers from
 falling out (fig. 21). This simplifies mount ing and dismounting.


Double row full complement cylindrical roller bearings


SKF double row full complement cylindrical roller bearings are, because of their second row of rollers, suitable for very heavy radial loads and provide increased radial stiffness.


The basic SKF assortment provided in this catalogue includes (fig. 22):

- three different designs of open bearings:
 - NNCL design
 - NNCF design
 - NNC design
- NNF design sealed bearings

SKF double row full complement cylindrical roller bearings are non-separable and have an annular groove and lubrication holes in the outer ring to facilitate lubrication. NNF design bearings have additional lubrication holes in the inner ring.

NNCL design bearings

- have three integral flanges on the inner ring and no flanges on the outer ring
- have a retaining ring in the outer ring between the roller rows to hold the bearing together

The retaining ring should not be loaded axially during operation.

 can accommodate axial displacement of the shaft relative to the housing in both directions

NNCF design bearings

- have three integral flanges on the inner ring and one on the outer ring
- have a retaining ring in the outer ring, on the side opposite the integral flange, to hold the bearing together

The retaining ring should not be loaded axially during operation.

 are used to locate the shaft axially in one direction and eventually to accommodate axial displacement of the shaft relative to the housing in the opposite direction

NNC design bearings

- have the same inner ring as NNCL and NNCF design bearings
- have a two-piece outer ring:
 - held together by retaining elements, which should never be loaded axially
 - consisting of two identical outer ring parts with one integral flange on each
- are used to locate the shaft axially in both directions

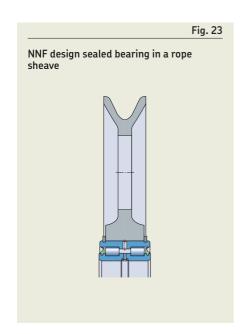
Alternative NNC design bearings may consist of a one-piece outer ring with one integral flange and a flange ring.

NNF design sealed bearings

- comprise the 50 and 3194.. series
- have a two-piece inner ring:
- held together by a retaining ring
- with three integral flanges
- have one integral central flange on the outer ring
- are used to locate the shaft axially in both directions
- can accommodate tilting moments because of the distance between the two rows of rollers
- have an outer ring that is 1 mm narrower than the inner ring
- do not require spacer rings between the inner ring and adjacent components, in applications with a rotating outer ring
- have two snap ring grooves in the outer ring:
 - to simplify mounting
 - to save space axially
 This is especially valuable where the bearing is mounted in/on an adjacent component, e.g. in rope sheaves (fig. 23).
- have a PUR contact seal on both sides, fitted in a recess on the inner ring shoulder (fig. 22)

The seal lip exerts slight pressure against the outer ring raceway.

 are filled with a high-quality grease with good rust-inhibiting properties (table 1, page 503)


For additional information about greases, refer to *Lubrication*, page 109.

 can be supplied open and without grease, for applications where oil lubrication is to be used

If a small quantity of bearings without seals is required, the seals can be removed and the bearings can be washed prior to mounting.

Relubrication

For many application conditions, NNF design sealed bearings do not require relubrication and can be considered relubrication-free. However, if they operate in a moist or contaminated environment, or if speeds are moderate to high, relubrication may be necessary (*Estimating the relubrication interval for grease*, page 111). The bearings can be relubricated via lubrication holes in both the inner and outer rings.

Single row and high-capacity bearings are also available as SKF Explorer bearings (page 7).

Matched bearings

 are combined so that any difference in cross-sectional height of the bearings used in a matched set lies within a very small tolerance range

This tighter tolerance is a precondition for equal load sharing between the bearings.

- can be supplied as:
 - sets of two bearings (designation suffix DR)
 - sets of three bearings (designation suffix TR)
 - sets of four bearings (designation suffix QR)

Cages

SKF single row and high-capacity cylindrical roller bearings are fitted with one of the cages shown in table 2.

When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For additional information about the suitability of cages, refer to *Cages*, page 187.

	Single row bearings						
age type	Window-type • roller centred • outer ring centred	Window-type, roller centred	Window-type, inner or outer ring cen- tred (depending on bearing design)	Riveted roller centred outer ring centred inner ring centred	Window-type, inner or outer ring cen- tred (depending on bearing design)	Riveted • roller centred • outer ring centred • inner ring centre	
/laterial	PA66, glass fibre reinforced PEEK, glass fibre reinforced	Stamped steel	Machined brass	Machined brass	Machined light alloy	Machined light allo	
uffix	P or PH PA or PHA	• - • J	• ML	• M • MA • MB	• LL	• L • LA • LB	

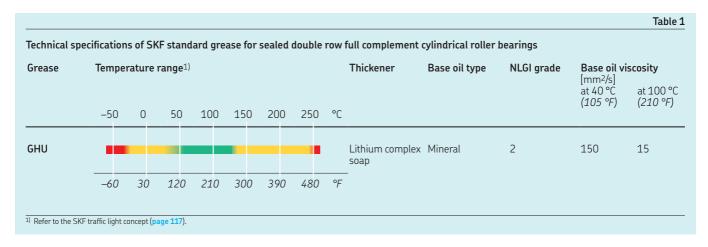
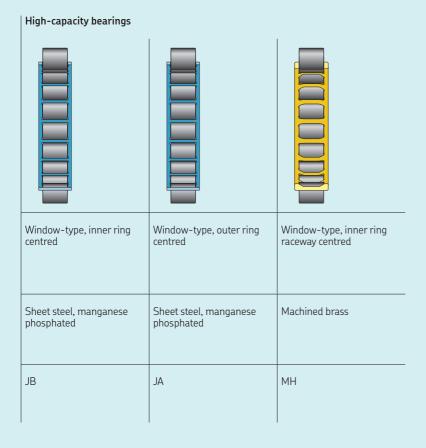



Table 2

Bearing data

	Single row bearings	High-capacity bearings
Dimension standards	Boundary dimensions: ISO 15 Except for: HJ angle rings: ISO 246 Snap rings and grooves: ISO 464 Locating slots: ISO 20515	Boundary dimensions: ISO 15
Tolerances	Normal dimensional tolerance P6 geometrical tolerance Check availability of P5 or P6 tolerance class for bearings in the 10 series	Normal dimensional tolerance P6 geometrical tolerance
For additional information → page 35	Values: ISO 492 (table 2, page 38, to table 4, page 40)	
Radial internal clearance For additional information → page 182	Normal, C3 Check availability of other clearance classes Values: ISO 5753-1 (table 3, page 506) Values are valid for unmounted bearings under zero me	asuring load.
Axial internal clearance	Guideline values: • NUP design (table 4, page 507) • NJ design with an HJ angle ring (table 5, page 508) When measuring the axial internal clearance, the rollers may tilt, causing an enlargement of the measured axial clearance: • 10, 18, 19, 2, 3 and 4 series: ≈ the radial internal clearance • 22, 23, 29 and 39 series: ≈ 2/3 the radial internal clearance	
Permissible misalignment	 10, 12, 18, 19, 2, 3 and 4 series: ≈ 4 minutes of arc 20, 22, 23, 29 and 39 series: ≈ 3 minutes of arc The values are not valid for bearings of the NUP design or the NJ design with an HJ angle ring. Misalignment increases bearing noise and reduces bear 	≈ 3 minutes of arc ing service life, and
Permissible axial displacement (fig. 2,	$s_{max} \rightarrow product tables,$	
page 495)	page 516	page 550
	Bearings having no flange, or only one integral flange or outer ring, can accommodate axial displacement. Displa	

504 **SKF**.

Single row full complement bearings	Double row full complement bearings
Boundary dimensions: ISO 15	Boundary dimensions: ISO 15
	 Except for: outer ring width of NNF 50 series bearings: C = 1 mm smaller than ISO standard bearings in the 3194 series: dimensions not standardized
Normal	

• 18 series: ≈ 4 minutes of arc

• 22, 23, 28, 29 and 30 series:

≈ 3 minutes of arc

For information, contact the SKF application engineering service.

... when it exceeds the guideline values these effects become particularly noticeable.

page 554

page 564

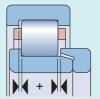
 \dots relative to the housing occurs within these bearings. As a result, there is virtually no increase in friction.

	X	
F		

Bore dia	ameter	Radial i C2	nternal clear	ance Normal		C3		C4		C5	
>	≤	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
mm		μm									
-	24	0	25	20	45	35	60	50	75	65	90
24	30	0	25	20	45	35	60	50	75	70	95
30	40	5	30	25	50	45	70	60	85	80	105
40	50	5	35	30	60	50	80	70	100	95	125
50	65	10	40	40	70	60	90	80	110	110	140
65	80	10	45	40	75	65	100	90	125	130	165
80	100	15	50	50	85	75	110	105	140	155	190
100	120	15	55	50	90	85	125	125	165	180	220
120	140	15	60	60	105	100	145	145	190	200	245
140	160	20	70	70	120	115	165	165	215	225	275
160	180	25	75	75	125	120	170	170	220	250	300
180	200	35	90	90	145	140	195	195	250	275	330
200	225	45	105	105	165	160	220	220	280	305	365
225	250	45	110	110	175	170	235	235	300	330	395
250	280	55	125	125	195	190	260	260	330	370	440
280	315	55	130	130	205	200	275	275	350	410	485
315	355	65	145	145	225	225	305	305	385	455	535
355	400	100	190	190	280	280	370	370	460	510	600
400	450	110	210	210	310	310	410	410	510	565	665
450	500	110	220	220	330	330	440	440	550	625	735
500	560	120	240	240	360	360	480	480	600	690	810
560	630	140	260	260	380	380	500	500	620	780	900
630	710	145	285	285	425	425	565	565	705	865	1 005
710	800	150	310	310	470	470	630	630	790	975	1 135
800	900	180	350	350	520	520	690	690	860	1 095	1 265
900	1 000	200	390	390	580	580	770	770	960	1 215	1 405
1 000	1 120	220	430	430	640	640	850	850	1 060	1 355	1 565
1 120	1 250	230	470	470	710	710	950	950	1 190	1 510	1 750
1 250	1 400	270	530	530	790	790	1 050	1 050	1 310	1 680	1 940
1 400	1 600	330	610	610	890	890	1 170	1 170	1 450	1 920	2 200
1 600	1 800	380	700	700	1 020	1 020	1340	1340	1 660	2 160	2 480
1 800	2 000	400	760	760	1 120	1 120	1480	1480	1 840	2 390	2 760

506 SKF.

6


Axial internal clearance of NUP cylindrical roller bearings

Bearing Bore diameter	Size code	NUP 2	nternal clearan	NUP 3	in the series	NUP 22	2	NUP 23	3
uiaiiietel		min.	max.	min.	max.	min.	max.	min.	max.
nm	_	μm							
17	03	37	140	37	140	37	140	47	155
20	04	37	140	37	140	47	155	47	155
25	05	37	140	47	155	47	155	47	155
30	06	37	140	47	155	47	155	47	155
35	07	47	155	47	155	47	155	62	180
40	08	47	155	47	155	47	155	62	180
45	09	47	155	47	155	47	155	62	180
50	10	47	155	47	155	47	155	62	180
55	11	47	155	62	180	47	155	62	180
60	12	47	155	62	180	62	180	87	230
65	13	47	155	62	180	62	180	87	230
70	14	47	155	62	180	62	180	87	230
75	15	47	155	62	180	62	180	87	230
80	16	47	155	62	180	62	180	87	230
85	17	62	180	62	180	62	180	87	230
90	18	62	180	62	180	62	180	87	230
95	19	62	180	62	180	62	180	87	230
100	20	62	180	87	230	87	230	120	315
105	21	62	180	-	-	-	_	-	-
110	22	62	180	87	230	87	230	120	315
120	24	62	180	87	230	87	230	120	315
130	26	62	180	87	230	87	230	120	315
140	28	62	180	87	230	87	230	120	315
150	30	62	180	-	-	87	230	120	315
160	32	87	230	-	-	-	-	-	-
170	34	87	230	-	-	-	-	-	-
180	36	87	230	-	-	-	-	-	-
190	38	87	230	-	-	-	-	-	-
200	40	87	230	-	-	-	-	-	-
220	44	95	230	-	-	-	-	-	-
240 260	48 52	95 95	250 250	-	-	-	-	-	-

5KF. 507

Axial internal clearance of NJ + HJ cylindrical roller bearings

Bearing Bore diameter	Size code	Axial in NJ 2 + I		e of beari NJ 3 + I	ngs in the serie HJ 3	s NJ 4 + F	1 J 4	NJ 22 +	HJ 22	NJ 23 +	НЈ 23
ulameter		min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
mm	-	μm									
20	04	42	165	42	165	-	-	52	185	52	183
25	05	42	165	52	185	-	-	52	185	52	183
30	06	42	165	52	185	60	200	52	185	52	183
35	07	52	185	52	185	60	200	52	185	72	215
40	08	52	185	52	185	60	200	52	185	72	215
45	09	52	185	52	185	60	200	52	185	72	215
50	10	52	185	52	185	80	235	52	185	72	215
55	11	52	185	72	215	80	235	52	185	72	215
60	12	52	185	72	215	80	235	72	215	102	275
65	13	52	185	72	215	80	235	72	215	102	275
70	14	52	185	72	215	80	235	72	215	102	275
75	15	52	185	72	215	80	235	72	215	102	275
80	16	52	185	72	215	80	235	72	215	102	275
85	17	72	215	72	215	110	290	72	215	102	275
90	18	72	215	72	215	110	290	72	215	102	275
95	19	72	215	72	215	110	290	72	215	102	275
100	20	72	215	102	275	110	290	102	275	140	375
105	21	72	215	102	275	110	290	102	275	140	375
110	22	72	215	102	275	110	290	102	275	140	375
120	24	72	215	102	275	110	310	102	275	140	375
130	26	72	215	102	275	110	310	102	275	140	375
140	28	72	215	102	275	140	385	102	275	140	375
150	30	72	215	102	275	140	385	102	275	140	375
160	32	102	275	102	275	-	-	140	375	140	375
170	34	102	275	-	-	-	-	140	375	-	-
180	36	102	275	-	-	-	-	140	375	-	-
190	38	102	275	-	-	-	-	-	-	-	-
200	40	102	275	-	-	-	-	-	-	-	-
220	44	110	290	-	-	-	-	-	-	-	-
240	48	110	310	-	-	-	-	-	-	-	-
260 280	52 56	110 110	310 310		-	- -		- -	_	- -	- -

508 **SKF**.

Loads

	Single row, high-capacity and single row full comple- ment bearings	Double row full complement bearings	
Minimum load For additional information → page 106	$F_{rm} = k_r \left(6 + \frac{4 \text{ n}}{n_r} \right) \left(\frac{d_m}{100} \right)^2$		Symbols d _m bearing mean diameter [mm] = 0,5 (d + D) e limiting value = 0,2 for bearings in the 10, 18, 19, 2, 3
Equivalent dynamic bear- ing load	Non-locating bearings $P = F_r$ Locating bearings $F_a/F_r \le e \rightarrow P = F_r$	$ F_3/F_r \le 0.15 \Rightarrow P = F_r$	and 4 series = 0,3 for bearings in the 12, 20, 22, 23, 28, 29, 30 and 39 series F _a axial load [kN] F _r radial load [kN]
For additional information → page 91	$F_a/F_r > e \rightarrow P = 0.92 F_r + Y F_a$ $F_a \text{ must not exceed } 0.5 F_r.$	$F_a/F_r \le 0.15 \rightarrow P = F_r$ $F_a/F_r > 0.15 \rightarrow P = 0.92 F_r + 0.4 F_a$ $F_a \text{ must not exceed } 0.25 F_r.$	F _{rm} minimum radial load [kN] k _r minimum load factor (product tables, page 516) n rotational speed [r/min]
 ⇒ page 91 Equivalent static bearing load For additional information ⇒ page 105 	$P_0 = F_r$		n _r reference speed [r/min] (product tables For sealed double row full complement bearings with seals removed and oil lubrication → 1,3 times the limiting spee Pequivalent dynamic bearing load [kN] Poequivalent static bearing load [kN] Yaxial load factor = 0,6 for bearings in the 10, 18, 19, 2, 3 and 4 series = 0,4 for bearings in the 12, 20, 22, 23, 28, 29, 30 and 39 series

5KF. 509

Dynamic axial load carrying capacity

Cylindrical roller bearings with flanges on both the inner and outer rings can support, in addition to radial loads, axial loads up to:

- $F_a \le 0.25 F_r$ for double row full complement bearings
- $F_a \le 0.5 F_r$ for other design bearings

The axial load carrying capacity is determined by the lubrication condition, operating temperature and heat dissipation at the roller end / flange contact.

The formulae below are valid for normal operating conditions:

- ∆T ≈ 60 °C between the bearing operating and ambient temperature
- specific heat loss ≈ 0,5 mW/mm²
- viscosity ratio κ ≥ 2
- misalignment ≤ 1 minute of arc
 For misalignment > 1 minute of arc, contact the SKF application engineering service.

Permissible axial loads

Conditions	Mechanical limitations	Thermal limitations	
Continuous	Bearings in the 2 series $F_{ap max} \leq 0,0045 D^{1,5}$ Bearings in other series $F_{ap max} \leq 0,0023 D^{1,7}$ High-capacity bearings $F_{ap max} \leq 0,0035 D^{1,7}$	Circulating oil lubrication $F_{ap \ oil} = F_{ap} + \frac{15 \times 10^4 \text{ k}_1 \Delta T_s \text{ V}_s}{\text{n} (\text{d} + \text{D})}$ Other lubrication • Reference surface $A \le 50\ 000\ \text{mm}^2$ $F_{ap} = \frac{\text{k}_1\ \text{C}_0\ 10^4}{\text{n} (\text{d} + \text{D})} - \text{k}_2\ \text{F}_r$ • Reference surface $A > 50\ 000\ \text{mm}^2$ $F_{ap} = \frac{7.5\ \text{k}_1\ \text{C}_0^{2/3}\ 10^4}{\text{n} (\text{d} + \text{D})} - \text{k}_2\ \text{F}_r$	Symbols A reference surface [mm²] = π B (D + d) B bearing width [mm] C₀ basic static load rating [kN] (product tables, page 516) d bearing bore diameter [mm] D bearing outside diameter [mm] ΔT _S temperature difference between incoming and outgoing oil flow [°C] Fa axial load [kN] Fap brief maximal axial load for brief periods [kN] Fap max maximal constantly acting axial load [kN] Fap oil maximum permissible axial load in
Brief periods	> 5 °C temporarily • "brief period" is the approxir place	e the bearing operating temperature nate time for 1 000 revolutions to take	circulating oil applications [kN] Fap peak maximal occasional axial peak load [kN] Fr radial load [kN] k1, k2 lubrication factors (table 6) n rotational speed [r/min] VS amount of oil flow [l/min]
Occasional peak loads	$\begin{aligned} & \textbf{High-capacity bearings} \\ & F_{ap\ peak} \leq 0,0085\ D^{1,7} \\ & \textbf{Other bearings} \\ & F_{ap\ peak} \leq 3 \left(F_{ap}, F_{ap\ oil}, F_{ap\ max}\right) \end{aligned}$		

510 **SKF**

Temperature limits

The permissible operating temperature for cylindrical roller bearings can be limited by:

- the dimensional stability of the bearing rings and rollers
- the cage
- the seals
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings and rollers

SKF cylindrical roller bearings are heat stabilized up to 150 °C (300 °F).

Cages

Steel, brass, light alloy or PEEK cages can be used at the same operating temperatures as the bearing rings and rollers. For temperature limits of cages made of other polymer materials, refer to *Polymer cages*, page 188.

Seals

The permissible operating temperature for PUR seals is -20 to +80 °C (-5 to +175 °F). Typically, temperature peaks are at the seal lip.

Lubricants

Temperature limits for greases used in sealed double row full complement cylindrical roller bearings are provided in **table 1**, **page 503**. For temperature limits of other SKF greases, refer to *Selecting a suitable SKF grease*, **page 116**.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Permissible speed

The speed ratings in the **product tables** indicate:

- the reference speed, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the limiting speed, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds

For additional information, refer to *Operating temperature and speed*, **page 130**.

SKF recommends oil lubrication for bearings with a ring centred cage. When these bearings are grease lubricated, the nd_m value is limited:

- for bearings with an LA, LB, LL, MA, MB, ML, MP, JA, JB or MH cage
 → nd_m ≤ 250 000 mm/min
- for bearings with a PA or PHA cage
 → nd_m ≤ 450 000 mm/min

wher

For single row bearings with a standard cage, the values for the limiting speed are listed in the product tables. Conversion factors to estimate the limiting speed for bearings with an alternative standard cage are listed in table 7.

Table 7 Conversion factors for limiting speeds of single row cylindrical roller bearings							
Bearing with standard cage	cage P, PH, J,	i ve standa PA, PHA, MA. MB					
P, PH, J, M, MR	1	1,3	1,5				
PA, PHA, MA, MB	0,75	1	1,2				
ML	0,65	0,85	1				

Lubrication factors for cylindrical roller bearings				Table
Bearing types	Lubrication fact Oil lubrication		tors Greas	
	k ₁	k ₂	k ₁	k ₂
Single row and high-capacity bearings	1,5	0,15	1	0,1
Single row full complement bearings	1	0,3	0,5	0,15
Double row full complement bearings	0,35	0,1	0,2	0,06

5KF. 511

Design considerations

Flange support

Where cylindrical roller bearings are subjected to axial loads, total axial run-out (*Tolerances for bearing seats and abutments*, page 144) and the size of the abutment surfaces of adjacent components are particularly important for an even load distribution on the flange.

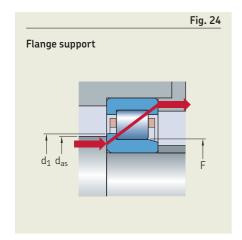
The inner ring flange should only be supported up to half of its height (fig. 24) so that it is not subjected to damaging alternating stresses that can result, for example, from shaft deflection.

For single row bearings and high-capacity bearings the recommended shaft abutment diameter can be obtained using

$$d_{as} = 0.5 (d_1 + F)$$

where

d_{as} = shaft abutment diameter for axially loaded bearings [mm]

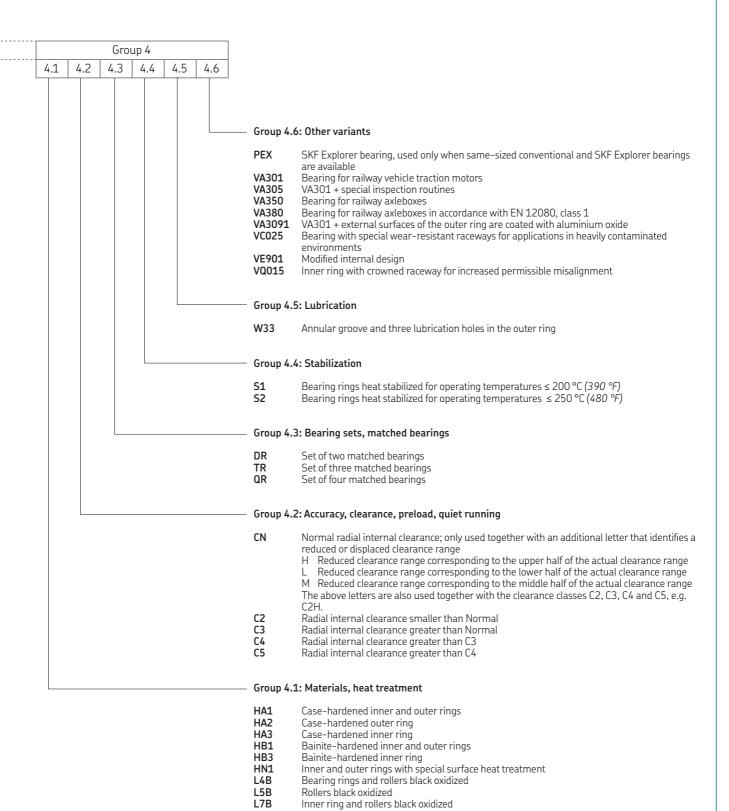

F = inner ring raceway diameter [mm] (product tables)

For full complement bearings, the recommended shaft abutment diameter d_{as} is listed in the **product tables**.

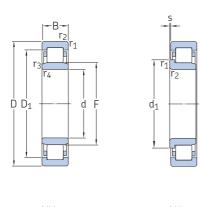
Mounting

Because of the design and position of the cage of high-capacity cylindrical roller bearings in the NCF.. ECJB and NJF.. ECJA series, the cage cannot prevent the rollers from falling out when the inner and outer rings of the bearing are separated. SKF recommends mounting these high-capacity cylindrical roller bearings as a complete bearing, like full complement cylindrical roller bearings.

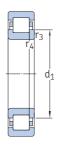
Where it is necessary to mount the inner and outer rings separately, use a mounting sleeve (fig. 25) or a retaining strap (fig. 26) to keep the rollers in place.



Designation system

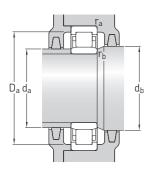

	Г	— —		1	C**** 2	C=== 2	
	L		Gro	oup 1	Group 2	Group 3	/
Prefixes	3						
L R	Separate inner or outer ring of a separable bearing Inner or outer ring with roller and cage assembly of a separable bearing						
Basic de	esignation						
	n table 4, page 30						
CRL CRM	Inch bearing						
HJ	Inch bearing Angle ring						
Suffixes	i						
Group 1	l: Internal design ————————————————————————————————————						
Α	Deviating or modified internal design						
CV EC	Modified internal design, full complement roller set Optimized internal design incorporating more and/or larger rollers and with mo	ndified roller	end / flange	contact			
	optimized internal design meorporating more ana/or larger rollers and with me	Jamea Folier	cha / hange	contact			
Group 2	2: External design (seals, snap ring groove, etc.)						
ADB	Modified internal design and seal (for NNF 50 series)						
B DA	Improved seal and grease Modified internal design and seal (for 3194 series)						
K	Tapered bore, taper 1:12						
N NR	Snap ring groove in the outer ring Snap ring groove in the outer ring, with associated snap ring						
N1 N2	One locating slot (notch) in one outer ring side face Two locating slots (notches) in one outer ring side face, 180° apart						
-2LS	Contact seal, PUR, on both sides						
C	3: Cage design —						
FR J	Pin-type steel cage, pierced rollers Stamped steel cage, roller centred						
JA	Sheet steel cage, outer ring centred						
JB L	Sheet steel cage, inner ring centred Machined light alloy cage, roller centred						
LA LB	Machined light alloy cage, outer ring centred						
LL	Machined light alloy cage, inner ring centred Machined light alloy cage, window-type, inner or outer ring centred (depending	g on bearing	design)				
M MA(S)	Machined brass cage, roller centred Machined brass cage, outer ring centred. The S indicates a lubrication groove in	o the quiding	n curfaco				
MB	Machined brass cage, inner ring centred	r trie galairig	g surface.				
MH ML	Machined brass cage, inner ring raceway centred Machined brass cage, window-type, inner or outer ring centred (depending on	bearing des	ian)				
MP	Machined brass cage, window-type, inner or outer ring centred (depending on						
MR P	Machined brass cage, window-type, roller centred Glass fibre reinforced PA66 cage, roller centred						
PA	Glass fibre reinforced PA66 cage, outer ring centred						
PH PHA	Glass fibre reinforced PEEK cage, roller centred Glass fibre reinforced PEEK cage, outer ring centred						
V VH	Full complement of rollers (no cage)						
۷Н	Full complement of rollers (no cage), self-retaining						

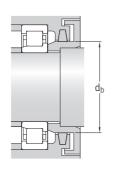
514 **SKF**.

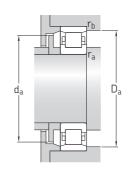


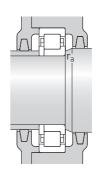
5KF. 515

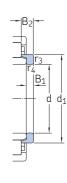
d **15 – 25** mm

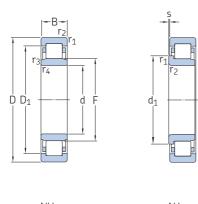

NU	NJ	N	NUP

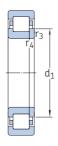

Princip	oal dimens	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Speed rati Reference speed	ngs Limiting speed	Mass	Designations Bearing with standard cage	Alternative standard cage ¹⁾
d	D	В	С	C_0	P_u				0.5	
mm			kN		kN	r/min		kg	-	
15	35 35	11 11	12,5 12,5	10,2 10,2	1,22 1,22	22 000 22 000	26 000 26 000	0,047 0,048	NU 202 ECPNJ 202 ECP	РНА РНА
17	40 40 40	12 12 12	20 20 20	14,3 14,3 14,3	1,73 1,73 1,73	20 000 20 000 20 000	22 000 22 000 22 000	0,066 0,068 0,069	N 203 ECPNU 203 ECPNJ 203 ECP	PH PHA PHA
	40 40 40	12 16 16	20 27,5 27,5	14,3 21,6 21,6	1,73 2,65 2,65	20 000 20 000 20 000	22 000 22 000 22 000	0,072 0,087 0,093	NUP 203 ECPNU 2203 ECPNJ 2203 ECP	PHA - -
	40 47 47	16 14 14	27,5 28,5 28,5	21,6 20,4 20,4	2,65 2,55 2,55	20 000 17 000 17 000	22 000 20 000 20 000	0,097 0,12 0,12	 NUP 2203 ECP N 303 ECP NJ 303 ECP 	-
	47	14	28,5	20,4	2,55	17 000	20 000	0,12	► NU 303 ECP	-
20	47 47 47	14 14 14	28,5 28,5 28,5	22 22 22	2,75 2,75 2,75	17 000 17 000 17 000	19 000 19 000 19 000	0,11 0,11 0,11	N 204 ECPNJ 204 ECPNU 204 ECP	_ ML, PHA ML, PHA
	47 47 47	14 18 18	28,5 34,5 34,5	22 27,5 27,5	2,75 3,45 3,45	17 000 17 000 17 000	19 000 19 000 19 000	0,12 0,14 0,14	NUP 204 ECPNJ 2204 ECPNU 2204 ECP	ML, PHA - -
	52 52 52	15 15 15	35,5 35,5 35,5	26 26 26	3,25 3,25 3,25	15 000 15 000 15 000	18 000 18 000 18 000	0,14 0,15 0,15	NU 304 ECPN 304 ECPNJ 304 ECP	=
	52 52 52	15 21 21	35,5 47,5 47,5	26 38 38	3,25 4,8 4,8	15 000 15 000 15 000	18 000 18 000 18 000	0,16 0,21 0,22	NUP 304 ECPNU 2304 ECPNJ 2304 ECP	-
	52	21	47,5	38	4,8	15 000	18 000	0,22	► NUP 2304 ECP	-
25	47 52 52	12 15 15	14,2 32,5 32,5	13,2 27 27	1,4 3,35 3,35	18 000 15 000 15 000	18 000 16 000 16 000	0,082 0,13 0,13	NU 1005N 205 ECPNU 205 ECP	– – J, ML, PH, PHA
	52 52 52	15 15 18	32,5 32,5 39	27 27 34	3,35 3,35 4,25	15 000 15 000 15 000	16 000 16 000 16 000	0,14 0,14 0,16	NJ 205 ECPNUP 205 ECPNU 2205 ECP	J, ML, PH, PHA J, ML, PH, PHA ML, PH
	52 52 62	18 18 17	39 39 46,5	34 34 36,5	4,25 4,25 4,55	15 000 15 000 12 000	16 000 16 000 15 000	0,17 0,17 0,23	NJ 2205 ECPNUP 2205 ECPN 305 ECP	ML, PH ML, PH -


SKF Explorer bearing


► Popular item

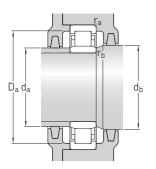

1) When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage. For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).

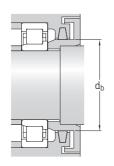


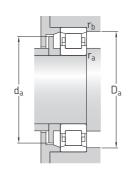

Angle ring

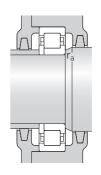
Dime	nsions						Abutn	nent and	l fillet di	mensior	ıs		Calcu- lation factor	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	k _r			B ₁	B ₂
mm							mm						-	-	kg	mm	
15	- 21,9	27,7 27,7	19,3 19,3	0,6 0,6	0,3 0,3	1	17,4 18,2	18,4 18,4	21 23	31,3 31,3	0,6 0,6	0,3	0,15 0,15	-	- -	_ _	_ _
17	25	-	35,1	0,6	0,3	1	20,7	33	37	37,1	0,6	0,3	0,12	-	-	-	-
	-	32,35	22,1	0,6	0,3	1	19,9	21,1	24	36	0,6	0,3	0,15	-	-	-	-
	25	32,35	22,1	0,6	0,6	1	20,7	21,1	27	36	0,6	-	0,15	-	-	-	-
	25	32,35	22,1	0,6	0,3	-	20,7	-	27	36	0,6	-	0,15	-	-	-	-
	-	32,35	22,1	0,6	0,3	1,5	19,9	21,1	24	36	0,6	0,3	0,2	-	-	-	-
	25	32,35	22,1	0,6	0,3	1,5	20,7	21,1	27	36	0,6	-	0,2	-	-	-	-
	25	32,35	22,1	0,6	0,3	-	20,7	-	27	36	0,6	-	0,2	-	-	-	-
	27,7	-	40,2	1	0,6	1	22,1	38	42	42,7	1	0,6	0,12	-	-	-	-
	27,7	36,75	24,2	1	0,6	1	22,1	23,1	29	41,7	1	-	0,15	-	-	-	-
	-	36,75	24,2	1	0,6	1	21,1	23,1	26	41,7	1	0,6	0,15	-	_	-	_
20	29,7	-	41,5	1	0,6	1	25	40	43	43,5	1	0,6	0,12	-	-	-	-
	29,7	38,44	26,5	1	0,6	1	25	25,4	31	41,7	1	-	0,15	-	-	-	-
	-	38,44	26,5	1	0,6	1	24	25,4	28	41,7	1	0,6	0,15	-	-	-	-
	29,7	38,44	26,5	1	0,6	-	25	-	31	41,7	1	-	0,15	-	-	-	-
	29,7	38,3	26,5	1	0,6	2	25	25,4	31	41,7	1	-	0,2	-	-	-	-
	-	38,3	26,5	1	0,6	2	24	25,4	28	41,7	1	0,6	0,2	-	-	-	-
	-	41,85	27,5	1,1	0,6	0,9	24,1	26,2	29	45,4	1	0,6	0,15	HJ 304 EC	0,017	4	6,5
	31,2	-	45,5	1,1	0,6	0,9	26,1	44	47	48	1	0,6	0,12	-	-	-	-
	31,2	41,85	27,5	1,1	0,6	0,9	26,1	26,2	33	45,4	1	-	0,15	HJ 304 EC	0,017	4	6,5
	31,2	41,85	27,5	1,1	0,6	-	26,1	-	33	45,4	1	-	0,15	-	-	-	-
	-	41,85	27,5	1,1	0,6	1,9	24,1	26,2	29	45,4	1	0,6	0,25	-	-	-	-
	31,2	41,85	27,5	1,1	0,6	1,9	26,1	26,2	33	45,4	1	-	0,25	-	-	-	-
	31,2	41,85	27,5	1,1	0,6	_	26,1	_	33	45,4	1	_	0,25	-	_	-	_
25	-	38,8	30,5	0,6	0,3	1,5	27,1	29,5	32	43,1	0,6	0,3	0,1	–	-	-	-
	34,7	-	46,5	1	0,6	1,3	29,9	45	48	48,5	1	0,6	0,12	–	-	-	-
	-	43,3	31,5	1	0,6	1,3	28,9	30,4	33	46,4	1	0,6	0,15	HJ 205 EC	0,015	3	6
	34,7	43,3	31,5	1	0,6	1,3	29,9	30,4	36	46,4	1	-	0,15	–	-	-	-
	34,7	43,3	31,5	1	0,6	-	29,9	-	36	46,4	1	-	0,15	–	-	-	-
	-	43,3	31,5	1	0,6	1,8	28,9	30,4	33	46,4	1	0,6	0,2	HJ 2205 EC	0,014	3	6,5
	34,7 34,7 38,1	43,3 43,3	31,5 31,5 54	1 1 1,1	0,6 0,6 1,1	1,8 - 1,3	29,9 29,9 31	30,4 - 52	36 36 56	46,4 46,4 56,4	1 1 1	- - 1	0,2 0,2 0,12	HJ 2205 EC - -	0,014 - -	3 -	6,5 - -

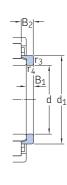
d **25 – 35** mm

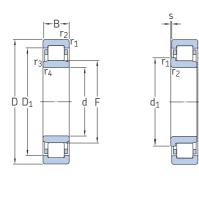

NU	NJ	N	NUP

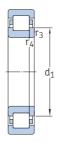

Princip	pal dimen	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed	Mass	Designations Bearing with standard cage	Alternative
d	D	В	С	C_0	P_u	speed	speeu		Standard cage	standard cage ¹⁾
mm			kN		kN	r/min		kg	_	
25 cont.	62 62 62	17 17 17	46,5 46,5 46,5	36,5 36,5 36,5	4,55 4,55 4,55	12 000 12 000 12 000	15 000 15 000 15 000	0,23 0,24 0,25	NU 305 ECPNJ 305 ECPNUP 305 ECP	J, ML J, ML J, ML
	62 62 62	24 24 24	64 64 64	55 55 55	6,95 6,95 6,95	12 000 12 000 12 000	15 000 15 000 15 000	0,34 0,35 0,36	NU 2305 ECPNJ 2305 ECPNUP 2305 ECP	J, ML J, ML J, ML
30	55 62 62	13 16 16	17,9 44 44	17,3 36,5 36,5	1,86 4,5 4,5	15 000 13 000 13 000	15 000 14 000 14 000	0,11 0,2 0,2	NU 1006N 206 ECPNU 206 ECP	– – J, ML, PH
	62 62 62	16 16 20	44 44 55	36,5 36,5 49	4,55 4,55 6,1	13 000 13 000 13 000	14 000 14 000 14 000	0,21 0,21 0,26	NJ 206 ECPNUP 206 ECPNJ 2206 ECP	J, ML, PH J, ML, PH J, ML, PH
	62 62 72	20 20 19	55 55 58,5	49 49 48	6,1 6,1 6,2	13 000 13 000 11 000	14 000 14 000 12 000	0,26 0,27 0,36	NU 2206 ECPNUP 2206 ECPN 306 ECP	J, ML, PH J, ML, PH -
	72 72 72	19 19 19	58,5 58,5 58,5	48 48 48	6,2 6,2 6,2	11 000 11 000 11 000	12 000 12 000 12 000	0,36 0,37 0,38	NU 306 ECPNJ 306 ECPNUP 306 ECP	J, M, ML J, M, ML J, M, ML
	72 72 72	27 27 27	83 83 83	75 75 75	9,65 9,65 9,65	11 000 11 000 11 000	12 000 12 000 12 000	0,53 0,54 0,54	NU 2306 ECPNJ 2306 ECPNUP 2306 ECP	ML, PH ML, PH ML, PH
	90 90	23 23	60,5 60,5	53 53	6,8 6,8	9 000 9 000	11 000 11 000	0,75 0,78	► NU 406 ► NJ 406	MA MA
35	62 72 72	14 17 17	35,8 56 56	38 48 48	4,55 6,1 6,1	13 000 11 000 11 000	13 000 12 000 12 000	0,16 0,29 0,3	NU 1007 ECPNU 207 ECPN 207 ECP	PH J, M, ML, PH, PHA –
	72 72 72	17 17 23	56 56 69,5	48 48 63	6,1 6,1 8,15	11 000 11 000 11 000	12 000 12 000 12 000	0,3 0,31 0,4	NJ 207 ECPNUP 207 ECPNU 2207 ECP	J, M, ML, PH, PHA J, M, ML, PH, PHA J, ML, PH
	72 72 80	23 23 21	69,5 69,5 75	63 63 63	8,15 8,15 8,15	11 000 11 000 9 500	12 000 12 000 11 000	0,41 0,42 0,47	NJ 2207 ECPNUP 2207 ECPNU 307 ECP	J, ML, PH J, ML, PH J, M, ML, PH
	80 80 80	21 21 21	75 75 75	63 63 63	8,15 8,15 8,15	9 500 9 500 9 500	11 000 11 000 11 000	0,48 0,49 0,49	N 307 ECP ► NJ 307 ECP ► NUP 307 ECP	– J, M, ML, PH J, M, ML, PH


SKF Explorer bearing


► Popular item

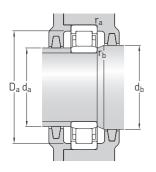

1) When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage. For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).

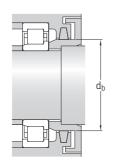


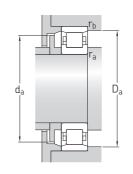

Angle ring

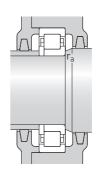
Dimer	nsions						Abutn	nent and	l fillet di	mensior	ıs		Calcu- lation factor	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	k _r			B ₁	B ₂
mm			,			,	mm						_	-	kg	mm	
25 cont.	- 38,1 38,1	50,15 50,15 50,15	34 34 34	1,1 1,1 1,1	1,1 1,1 1,1	1,3 1,3 -	31 31 31	32,5 32,5 -	36 40 40	54,9 54,9 54,9	1 1 1	1 - -	0,15 0,15 0,15	HJ 305 EC HJ 305 EC -	0,025 0,025 -	4 4 -	7 7 –
	- 38,1 38,1	50,15 50,15 50,15	34 34 34	1,1 1,1 1,1	1,1 1,1 1,1	2,3 2,3 -	31 31 31	32,5 32,5 -	36 40 40	54,9 54,9 54,9	1 1 1	1 -	0,25 0,25 0,25	HJ 2305 EC HJ 2305 EC -	0,023 0,023 -	4 4 -	8 8 -
30	- 41,2 -	45,56 - 51,95	36,5 55,5 37,5	1 1 1	0,6 0,6 0,6	1,6 1,3 1,3	32,9 35,3 34,3	35,6 54 36,1	38 57 39	49,8 58,1 55,9	1 1 1	0,6 0,6 0,6	0,1 0,12 0,15	– – HJ 206 EC	- - 0,025	_ _ 4	- - 7
	41,2 41,2 41,2	51,95 51,95 51,95	37,5 37,5 37,5	1 1 1	0,6 0,6 0,6	1,3 - 1,8	35,3 35,3 35,3	36,1 - 36,1	43 43 43	55,9 55,9 55,9	1 1 1	- - -	0,15 0,15 0,2	HJ 206 EC - -	0,025 - -	4 - -	7 - -
	- 41,2 45	51,95 51,95 -	37,5 37,5 62,5	1 1 1,1	0,6 0,6 1,1	1,8 - 1,4	34,3 35,3 37	36,1 - 61	39 43 64	55,9 55,9 65,5	1 1 1	0,6 _ 1	0,2 0,2 0,12	- - -	- - -	- - -	- - -
	- 45 45	58,35 58,35 58,35	40,5 40,5 40,5	1,1 1,1 1,1	1,1 1,1 1,1	1,4 1,4 -	37 37 37	39 39 -	43 47 47	65,1 65,1 65,1	1 1 1	1 -	0,15 0,15 0,15	HJ 306 EC -	0,042 0,042 -	5 5 -	8,5 8,5 –
	- 45 45	58,35 58,35 58,35	40,5 40,5 40,5	1,1 1,1 1,1	1,1 1,1 1,1	2,4 2,4 -	37 37 37	39 39 -	43 47 47	65,1 65,1 65,1	1 1 1	1 -	0,25 0,25 0,25	- -	- - -	- - -	- - -
	- 50,5	66,1 66,1	45 45	1,5 1,5	1,5 1,5	1,6 1,6	41 41	43 43	47 53	81 81	1,5 1,5	1,5 -	0,15 0,15	HJ 406 HJ 406	0,08 0,08	7 7	11,5 11,5
35	- - 48,1	53,95 60,2 -	42 44 64	1 1,1 1,1	0,6 0,6 0,6	1 1,3 1,3	38 39,8 41,8	41 42,2 62	44 46 66	56,5 65,1 67,2	1 1 1	0,6 0,6 0,6	0,1 0,15 0,12	– HJ 207 EC –	- 0,033 -	_ 4 _	- 7 -
	48,1 48,1 -	60,2 60,2 60,2	44 44 44	1,1 1,1 1,1	0,6 0,6 0,6	1,3 - 2,8	41,8 41,8 39,8	42,2 - 42,2	50 50 46	65,1 65,1 65,1	1 1 1	- - 0,6	0,15 0,15 0,2	HJ 207 EC - -	0,033 - -	4 - -	7 - -
	48,1 48,1 -	60,2 60,2 65,8	44 44 46,2	1,1 1,1 1,5	0,6 0,6 1,1	2,8 - 1,2	41,8 42 42	42,2 - 44	50 50 48	65,1 65,1 72,2	1 1 1,5	- 1	0,2 0,2 0,15	– – HJ 307 EC	- - 0,058	- - 6	- - 9,5
	51 51 51	- 65,8 65,8	70,2 46,2 46,2	1,5 1,5 1,5	1,1 1,1 1,1	1,2 1,2 -	43 43 44	68 44 -	72 53 53	73,4 72,2 72,2	1,5 1,5 1,5	1 - -	0,12 0,15 0,15	– НЈ 307 EC –	- 0,058 -	- 6 -	- 9,5 -

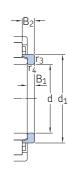
d **35 – 45** mm

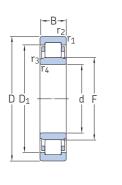

NU	NJ	N	NUP

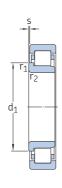

Princip	oal dimens	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed ration Reference	Limiting	Mass	Designations Bearing with	Alternative
d	D	В	С	C_0	P_{u}	speed	speed		standard cage	standard cage ¹⁾
mm			kN		kN	r/min		kg	_	
35 cont.	80 80 80	31 31 31	106 106 106	98 98 98	12,7 12,7 12,7	9 500 9 500 9 500	11 000 11 000 11 000	0,72 0,73 0,76	NU 2307 ECPNJ 2307 ECPNUP 2307 ECP	PH PH PH
	100 100	25 25	76,5 76,5	69,5 69,5	9 9	8 000 8 000	9 500 9 500	1 1	► NJ 407 ► NU 407	- -
40	68 80 80	15 18 18	25,1 62 62	26 53 53	3 6,7 6,7	12 000 9 500 9 500	18 000 11 000 11 000	0,23 0,37 0,37	 NU 1008 ML N 208 ECP NU 208 ECP 	– PH J, M, ML, PH
	80 80 80	18 18 23	62 62 81,5	53 53 75	6,7 6,7 9,65	9 500 9 500 9 500	11 000 11 000 11 000	0,38 0,39 0,49	NJ 208 ECPNUP 208 ECPNU 2208 ECP	J, M, ML, PH J, M, ML, PH J, ML, PH
	80 80 90	23 23 23	81,5 81,5 93	75 75 78	9,65 9,65 10,2	9 500 9 500 8 000	11 000 11 000 9 500	0,5 0,51 0,65	NJ 2208 ECPNUP 2208 ECPN 308 ECP	J, ML, PH J, ML, PH M
	90 90 90	23 23 23	93 93 93	78 78 78	10,2 10,2 10,2	8 000 8 000 8 000	9 500 9 500 9 500	0,65 0,67 0,68	NU 308 ECPNJ 308 ECPNUP 308 ECP	J, M, ML, PH J, M, ML, PH J, M, ML, PH
	90 90 90	33 33 33	129 129 129	120 120 120	15,3 15,3 15,3	8 000 8 000 8 000	9 500 9 500 9 500	0,93 0,95 0,98	NU 2308 ECPNJ 2308 ECPNUP 2308 ECP	J, M, ML, PH J, M, ML, PH J, M, ML, PH
	110 110	27 27	96,8 96,8	90 90	11,6 11,6	7 000 7 000	8 500 8 500	1,3 1,3	► NJ 408 ► NU 408	M, MA M, MA
45	75 75 85	16 16 19	44,6 44,6 69,5	52 52 64	6,3 6,3 8,15	11 000 11 000 9 000	11 000 11 000 9 500	0,25 0,26 0,42	NU 1009 ECPNJ 1009 ECPNU 209 ECP	_ PH J, M, ML
	85 85 85	19 19 19	69,5 69,5 69,5	64 64 64	8,15 8,15 8,15	9 000 9 000 9 000	9 500 9 500 9 500	0,43 0,44 0,44	N 209 ECPNJ 209 ECPNUP 209 ECP	M J, M, ML J, M, ML
	85 85 85	23 23 23	85 85 85	81,5 81,5 81,5	10,6 10,6 10,6	9 000 9 000 9 000	9 500 9 500 9 500	0,52 0,54 0,55	NU 2209 ECPNJ 2209 ECPNUP 2209 ECP	J, PH J, PH J, PH
	100 100 100	25 25 25	112 112 112	100 100 100	12,9 12,9 12,9	7 500 7 500 7 500	8 500 8 500 8 500	0,88 0,89 0,9	N 309 ECPNJ 309 ECPNU 309 ECP	– J, M, ML, PH J, M, ML, PH


SKF Explorer bearing

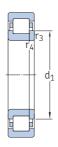

► Popular item


1) When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage. For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).





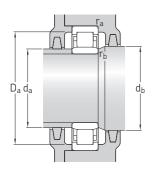
Angle ring

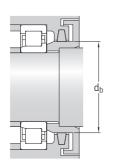

Dimer	nsions						Abutn	nent and	l fillet di	mensior	ıs		Calcu- lation factor	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	k _r			В ₁	B ₂
nm							mm						-	-	kg	mm	
35 cont.	- 51 51	65,8 65,8 65,8	46,2 46,2 46,2	1,5 1,5 1,5	1,1 1,1 1,1	2,7 2,7 -	42 43 43	44 44 –	48 53 53	72,2 72,2 72,2	1,5 1,5 1,5	1 -	0,25 0,25 0,25	- - -	_ _ _	- - -	- - -
	59 -	77,15 77,15	53 53	1,5 1,5	1,5 1,5	1,7 1,7	48 48	51 51	61 55	90 90	1,5 1,5	_ 1,5	0,15 0,15	-	_ _	_	_
40	- 54 -	57,6 - 67,4	47 71,5 49,5	1 1,1 1,1	0,6 1,1 1,1	2,4 1,4 1,4	43 47 47	46 69 48	49 73 51	62,3 74,1 72,8	1 1 1	0,6 1 1	0,15 0,12 0,15	– – HJ 208 EC	- - 0,047	- - 5	- - 8,5
	54 54 -	67,4 67,4 67,4	49,5 49,5 49,5	1,1 1,1 1,1	1,1 1,1 1,1	1,4 - 1,9	47 47 47	48 - 48	56 56 51	72,8 72,8 72,8	1 1 1	- - 1	0,15 0,15 0,2	HJ 208 EC - HJ 2208 EC	0,047 - 0,048	5 - 5	8,5 - 9
	54 54 57,5	67,4 67,4 -	49,5 49,5 80	1,1 1,1 1,5	1,1 1,1 1,5	1,9 - 1,4	47 47 48	48 - 78	56 56 82	72,8 72,8 83,2	1 1 1,5	- - 1,5	0,2 0,2 0,12	HJ 2208 EC - -	0,048 - -	5 - -	9 - -
	- 57,5 57,5	75 75 75	52 52 52	1,5 1,5 1,5	1,5 1,5 1,5	1,4 1,4 -	48 48 48	50 50 -	54 60 60	81,8 81,8 81,8	1,5 1,5 1,5	1,5 - -	0,15 0,15 0,15	HJ 308 EC HJ 308 EC	0,084 0,084 -	7 7 -	11 11 -
	- 57,5 57,5	75 75 75	52 52 52	1,5 1,5 1,5	1,5 1,5 1,5	2,9 2,9 -	48 48 48	50 50 -	54 60 60	81,8 81,8 81,8	1,5 1,5 1,5	1,5 - -	0,25 0,25 0,25	- - -	- - -	- - -	- - -
	64,8 -	85,3 85,3	58 58	2	2	2,5 2,5	52 52	56 56	67 60	99 99	2 2	_ 2	0,15 0,15	-	_ _	_	_
45	- 56 -	65,3 65,3 72,4	52,5 52,5 54,5	1 1 1,1	0,6 0,6 1,1	0,9 0,9 1,2	48,4 48,4 52	51 51 53	54 57,5 56	69,8 69,8 77,6	1 1 1	0,6 - 1	0,1 0,1 0,15	– – HJ 209 EC	- - 0,052	- - 5	- - 8,5
	59 59 59	- 72,4 72,4	76,5 54,5 54,5	1,1 1,1 1,1	1,1 1,1 1,1	1,2 1,2 -	52 52 52	74 53 -	78 61 61	79,1 77,6 77,6	1 1 1	1 - -	0,12 0,15 0,15	– HJ 209 EC –	- 0,052 -	- 5 -	- 8,5 -
	- 59 59	72,4 72,4 72,4	54,5 54,5 54,5	1,1 1,1 1,1	1,1 1,1 1,1	1,7 1,7 -	52 52 52	53 53 -	56 61 61	77,6 77,6 77,6	1 1 1	1 - -	0,2 0,2 0,2	- -	- - -	- - -	- - -
	64,4 64,4 -	- 83,2 83,2	88,5 58,5 58,5	1,5 1,5 1,5	1,5 1,5 1,5	1,7 1,7 1,7	54 54 54	86 56 56	91 67 60	92,3 91,4 91,4	1,5 1,5 1,5	1,5 - 1,5	0,12 0,15 0,15	– НЈ 309 ЕС НЈ 309 ЕС	- 0,11 0,11	- 7 7	- 11, 11,

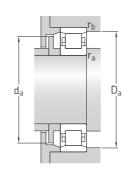
521

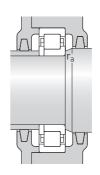
NU

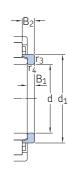
NJ

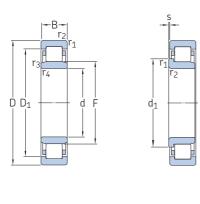

Ν

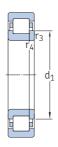

Princip	al dimens	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed	Mass	Designations Bearing with standard cage	Alternative standard cage ¹⁾
d	D	В	С	C_0	P_{u}	Speeu	speeu		Stanuaru caye	Standard Cage±/
mm			kN		kN	r/min		kg	_	
45 cont.	100 100 100	25 36 36	112 160 160	100 153 153	12,9 20 20	7 500 7 500 7 500	8 500 8 500 8 500	0,93 1,3 1,35	NUP 309 ECPNU 2309 ECPNJ 2309 ECP	J, M, ML, PH ML ML
	100 120 120	36 29 29	160 106 106	153 102 102	20 13,4 13,4	7 500 6 700 6 700	8 500 7 500 7 500	1,35 1,65 1,65	NUP 2309 ECPNJ 409NU 409	ML - -
50	80 90 90	16 20 20	46,8 73,5 73,5	56 69,5 69,5	6,7 8,8 8,8	9 500 8 500 8 500	9 500 9 000 9 000	0,27 0,47 0,48	► NU 1010 ECP ► NU 210 ECP N 210 ECP	– J, M, ML, PH M
	90 90 90	20 20 23	73,5 73,5 90	69,5 69,5 88	8,8 8,8 11,4	8 500 8 500 8 500	9 000 9 000 9 000	0,49 0,5 0,56	NJ 210 ECPNUP 210 ECPNU 2210 ECP	J, M, ML, PH J, M, ML, PH J, M, ML, PH
	90 90 110	23 23 27	90 90 127	88 88 112	11,4 11,4 15	8 500 8 500 6 700	9 000 9 000 8 000	0,57 0,59 1,1	NJ 2210 ECPNUP 2210 ECPN 310 ECP	J, M, ML, PH J, M, ML, PH –
	110 110 110	27 27 27	127 127 127	112 112 112	15 15 15	6 700 6 700 6 700	8 000 8 000 8 000	1,1 1,15 1,15	NU 310 ECPNJ 310 ECPNUP 310 ECP	J, M, ML, PH J, M, ML, PH J, M, ML, PH
	110 110 110	40 40 40	186 186 186	186 186 186	24,5 24,5 24,5	6 700 6 700 6 700	8 000 8 000 8 000	1,75 1,75 1,75	NJ 2310 ECPNU 2310 ECPNUP 2310 ECP	ML, PH ML, PH ML, PH
	130 130	31 31	130 130	127 127	16,6 16,6	6 000 6 000	7 000 7 000	2 2,05	► NU 410 ► NJ 410	- -
55	90 90 100	18 18 21	57,2 57,2 96,5	69,5 69,5 95	8,3 8,3 12,2	8 500 8 500 7 500	8 500 8 500 8 000	0,39 0,42 0,65	 NU 1011 ECP NJ 1011 ECP N 211 ECP 	ML ML -
	100 100 100	21 21 21	96,5 96,5 96,5	95 95 95	12,2 12,2 12,2	7 500 7 500 7 500	8 000 8 000 8 000	0,66 0,67 0,68	NU 211 ECPNJ 211 ECPNUP 211 ECP	J, M, ML J, M, ML J, M, ML
	100 100 100	25 25 25	114 114 114	118 118 118	15,3 15,3 15,3	7 500 7 500 7 500	8 000 8 000 8 000	0,79 0,81 0,82	NU 2211 ECPNJ 2211 ECPNUP 2211 ECP	J, M, ML, PH J, M, ML, PH J, M, ML, PH
	120 120 120	29 29 29	156 156 156	143 143 143	18,6 18,6 18,6	6 000 6 000 6 000	7 000 7 000 7 000	1,45 1,45 1,5	N 311 ECPNU 311 ECPNJ 311 ECP	M J, M, ML J, M, ML


SKF Explorer bearing


► Popular item

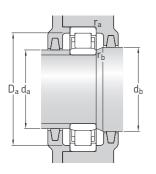

1) When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage. For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).

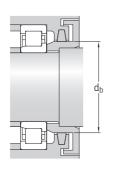


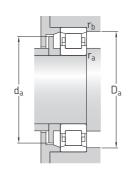

Angle ring

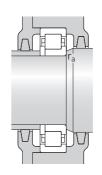
Dimer	nsions						Abutn	nent and	l fillet di	mension	S		Calcu- lation factor	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	k _r			B ₁	B ₂
mm							mm						-	-	kg	mm	
45 cont.	64,4 - 64,4	83,2 83,2 83,2	58,5 58,5 58,5	1,5 1,5 1,5	1,5 1,5 1,5	- 3,2 3,2	54 54 54	- 56 56	67 60 67	91,4 91,4 91,4	1,5 1,5 1,5	_ 1,5 _	0,15 0,25 0,25	- - -	- - -	- - -	- - -
	64,4	83,2	58,5	1,5	1,5	-	54	-	67	91,4	1,5	-	0,25	–	-	-	-
	71,8	93,4	64,5	2	2	2,5	58	62	75	108	2	-	0,15	HJ 409	0,18	8	13,5
	-	93,4	64,5	2	2	2,5	58	62	66	108	2	2	0,15	HJ 409	0,18	8	13,5
50	-	70,5	57,5	1	0,6	1	57	56	59	74,6	1	0,6	0,1	–	-	-	-
	-	77,4	59,5	1,1	1,1	1,5	57	57,5	61	82,4	1	1	0,15	HJ 210 EC	0,058	5	9
	64	-	81,5	1,1	1,1	1,5	57	79	83	84	1	1	0,12	–	-	-	-
	64 64 -	77,4 77,4 77,4	59,5 59,5 59,5	1,1 1,1 1,1	1,1 1,1 1,1	1,5 - 1,5	57 57 57	57,5 - 57,5	66 66 61	82,4 82,4 82,4	1 1 1	- - 1	0,15 0,15 0,2	- - -	- - -	- - -	-, -
	64	77,4	59,5	1,1	1,1	1,5	57	57,5	66	82,4	1	-	0,2	-	-	-	-
	64	77,4	59,5	1,1	1,1	-	57	-	66	82,4	1	-	0,2	-	-	-	-
	71,2	-	97	2	2	1,9	60	95	99	101	2	2	0,12	-	-	-	-
	-	91,4	65	2	2	1,9	60	63	67	99,6	2	2	0,15	HJ 310 EC	0,15	8	13
	71,2	91,4	65	2	2	1,9	60	63	73	99,6	2	-	0,15	HJ 310 EC	0,15	8	13
	71,2	91,4	65	2	2	-	60	-	73	99,6	2	-	0,15	-	-	-	-
	71,2	91,4	65	2	2	3,4	60	63	73	99,6	2	_	0,25	-	-	-	-
	-	91,4	65	2	2	3,4	60	63	67	99,6	2	2	0,25	-	-	-	-
	71,2	91,4	65	2	2	-	60	-	73	99,6	2	_	0,25	-	-	-	-
	- 78,8	101,6 101,6	70,8 70,8	2,1 2,1	2,1 2,1	2,6 2,6	64 64	68 68	73 81	116 116	2 2	2	0,15 0,15	HJ 410 HJ 410	0,15 0,15	9	14,5 14,5
55	-	79	64,5	1,1	1	0,5	59,7	63	66	83	1	1	0,1	-	-	-	-
	68	79	64,5	1,1	1	0,5	60	63	70	83	2	-	0,1	-	-	-	-
	70,8	–	90	1,5	1,1	1	63	88	92	93	1,5	1	0,12	-	-	-	-
	-	85,6	66	1,5	1,1	1	62	64	68	91,4	1,5	1	0,15	HJ 211 EC	0,083	6	9,5
	70,8	85,6	66	1,5	1,1	1	63	64	73	91,4	1,5	-	0,15	HJ 211 EC	0,083	6	9,5
	70,8	85,6	66	1,5	1,1	-	63	-	73	91,4	1,5	-	0,15	-	-	-	-
	-	85,6	66	1,5	1,1	1,5	62	64	68	91,4	1,5	1	0,2	HJ 2211 EC	0,085	6	10
	70,8	85,6	66	1,5	1,1	1,5	63	64	73	91,4	1	-	0,2	HJ 2211 EC	0,085	6	10
	70,8	85,6	66	1,5	1,1	-	63	-	73	91,4	1,5	-	0,2	-	-	-	-
	77,5 - 77,5	- 100,3 100,3	106,5 70,5 70,5	2 2 2	2 2 2	2 2 2	65 65 65	104 68 68	109 73 80	111 109,2 109,2	2 2 2	2 2 -	0,12 0,15 0,15	– HJ 311 EC HJ 311 EC	- 0,19 0,19	- 9 9	- 14 14

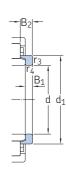
d **55 – 65** mm

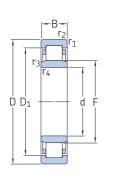

NU	NJ	N	NUP

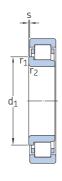

Princip	al dimens	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designations Bearing with	Alternative
d	D	В	С	C_0	P_{u}	speed	speed		standard cage	standard cage ¹⁾
mm			kN		kN	r/min		kg	_	
55 cont.	120 120 120	29 43 43	156 232 232	143 232 232	18,6 30,5 30,5	6 000 6 000 6 000	7 000 7 000 7 000	1,5 2,25 2,25	NUP 311 ECPNJ 2311 ECPNU 2311 ECP	J, M, ML ML, PH ML, PH
	120 140 140	43 33 33	232 142 142	232 140 140	30,5 18,6 18,6	6 000 5 600 5 600	7 000 6 300 6 300	2,3 2,5 2,55	NUP 2311 ECPNU 411NJ 411	ML, PH - -
60	95 110 110	18 22 22	37,4 108 108	44 102 102	5,3 13,4 13,4	8 000 6 700 6 700	13 000 7 500 7 500	0,5 0,79 0,8	 NU 1012 ML N 212 ECP NU 212 ECP 	– M J, M, ML
	110 110 110	22 22 28	108 108 146	102 102 153	13,4 13,4 20	6 700 6 700 6 700	7 500 7 500 7 500	0,82 0,86 1,05	NJ 212 ECPNUP 212 ECPNU 2212 ECP	J, M, ML J, M, ML J, M, ML, PH
	110 110 130	28 28 31	146 146 173	153 153 160	20 20 21,2	6 700 6 700 5 600	7 500 7 500 6 700	1,1 1,1 1,75	NJ 2212 ECPNUP 2212 ECPN 312 ECP	J, M, ML, PH J, M, ML, PH J, M
	130 130 130	31 31 31	173 173 173	160 160 160	21,2 21,2 21,2	5 600 5 600 5 600	6 700 6 700 6 700	1,75 1,85 1,9	NU 312 ECPNJ 312 ECPNUP 312 ECP	J, M, ML, PH J, M, ML, PH J, M, ML, PH
	130 130 130	46 46 46	260 260 260	265 265 265	34,5 34,5 34,5	5 600 5 600 5 600	6 700 6 700 6 700	2,75 2,8 2,85	NU 2312 ECPNJ 2312 ECPNUP 2312 ECP	M, ML, PH M, ML, PH M, ML, PH
	150 150	35 35	168 168	173 173	22 22	5 000 5 000	6 000 6 000	3 3,05	► NU 412 ► NJ 412	- -
65	100 100 120	18 18 23	38 62,7 122	46,5 81,5 118	5,5 9,8 15,6	7 500 7 500 6 300	12 000 7 500 6 700	0,51 0,45 1	NU 1013 MLNU 1013 ECPNU 213 ECP	– PH J, M, ML, PH
	120 120 120	23 23 23	122 122 122	118 118 118	15,6 15,6 15,6	6 300 6 300 6 300	6 700 6 700 6 700	1,05 1,05 1,05	N 213 ECPNJ 213 ECPNUP 213 ECP	– J, M, ML, PH J, M, ML, PH
	120 120 120	31 31 31	170 170 170	180 180 180	24 24 24	6 300 6 300 6 300	6 700 6 700 6 700	1,4 1,45 1,45	NU 2213 ECPNJ 2213 ECPNUP 2213 ECP	J, ML, PH J, ML, PH J, ML, PH
	140 140 140	33 33 33	212 212 212	196 196 196	25,5 25,5 25,5	5 300 5 300 5 300	6 000 6 000 6 000	2,2 2,2 2,3	N 313 ECPNU 313 ECPNJ 313 ECP	M J, M, ML, PH J, M, ML, PH


SKF Explorer bearing


► Popular item


1) When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage. For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).





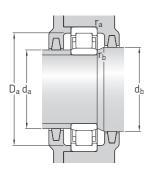
Angle ring

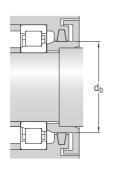
Dimer	nsions						Abutn	nent and	l fillet di	mension	S		Calcu- lation factor	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	k _r			В1	B ₂
mm			1				mm						_	-	kg	mm	
55 cont.	77,5 77,5 –	100,3 100,3 100,3	70,5 70,5 70,5	2 2 2	2 2 2	- 3,5 3,5	65 65 65	- 68 68	80 80 73	109,2 109,2 109,2	2	- - 2	0,15 0,25 0,25	– HJ 2311 EC HJ 2311 EC	- 0,19 0,19	- 9 9	- 15,5 15,5
	77,5 - 85,2	100,3 109,45 109,45	70,5 77,2 77,2	2 2,1 2,1	2 2,1 2,1	- 2,6 2,6	65 69 69	- 74 74	80 79 88	109,2 126 126	2 2 2	_ 2 _	0,25 0,15 0,15	- -	- - -	- - -	- - -
60	- 77,5 -	81,8 - 95	69,5 100 72	1,1 1,5 1,5	1 1,5 1,5	2,9 1,4 1,4	64,6 68 68	68 98 70	71 102 74	88 103 101	1 1,5 1,5	1 1,5 1,5	0,15 0,12 0,15	– – HJ 212 EC	- - 0,1	- 6	- - 10
	77,5 77,5 -	95 95 95	72 72 72	1,5 1,5 1,5	1,5 1,5 1,5	1,4 - 1,4	68 68 68	70 - 70	80 80 74	101 101 101	1,5 1,5 1,5	- 1,5	0,15 0,15 0,2	HJ 212 EC - HJ 212 EC	0,1 - 0,1	6 - 6	10 - 10
	77,5 77,5 84,3	95 95 -	72 72 115	1,5 1,5 2,1	1,5 1,5 2,1	1,4 - 2,1	68 68 72	70 - 113	80 80 118	101 101 119	1,5 1,5 2	- - 2	0,2 0,2 0,12	HJ 212 EC - -	0,1 - -	6 - -	10 - -
	- 84,3 84,3	108,5 108,5 108,5	77 77 77	2,1 2,1 2,1	2,1 2,1 2,1	2,1 2,1 -	72 72 72	74 74 –	79 87 87	118,1 118,1 118,1	2 2 2	2 -	0,15 0,15 0,15	HJ 312 EC HJ 312 EC -	0,23 0,23 -	9 9 -	14,5 14,5 -
	- 84,3 84,3	108,5 108,5 108,5	77 77 77	2,1 2,1 2,1	2,1 2,1 2,1	3,6 3,6 -	72 72 72	74 74 –	79 87 87	118,1 118,1 118,1	2 2 2	2 - -	0,25 0,25 0,25	HJ 2312 EC HJ 2312 EC -	0,24 0,24 -	9 9 -	16 16 -
	- 91,8	118,5 118,5	83 83	2,1 2,1	2,1 2,1	2,5 2,5	74 74	80 80	85 94	136 136	2 2	2	0,15 0,15	- -	_ _	- -	- -
65	- - -	86,6 88,5 103,2	74,5 74 78,5	1,1 1,1 1,5	1 1 1,5	2,9 1 1,4	69,6 69,6 74	72 72 76	76 76 81	94 94 110,6	1 1 1,5	1 1 1,5	0,15 0,1 0,15	- - HJ 213 EC	- - 0,12	- - 6	- - 10
	84,4 84,4 84,4	- 103,2 103,2	108,5 78,5 78,5	1,5 1,5 1,5	1,5 1,5 1,5	1,4 1,4 -	74 74 76	106 76 -	111 87 87	112 110,6 110,6	1,5 1,5 1,5	1,5 - -	0,12 0,15 0,15	– HJ 213 EC –	- 0,12 -	- 6 -	_ 10 _
	- 84,4 84,4	103,2 103,2 103,2	78,5 78,5 78,5	1,5 1,5 1,5	1,5 1,5 1,5	1,9 1,9 -	74 74 74	76 76 –	81 87 87	110,6 110,6 110,6	1,5 1,5 1,5	1,5 - -	0,2 0,2 0,2	HJ 2213 EC HJ 2213 EC -	0,12 0,12 -	6 6 -	10,5 10,5 -
	90,5 - 90,5	- 117,4 117,4	124,5 82,5 82,5	2,1 2,1 2,1	2,1 2,1 2,1	2,2 2,2 2,2	77 77 77	122 80 80	127 85 93	129 127,8 127,8	2 2 2	2 2 -	0,12 0,15 0,15	– HJ 313 EC HJ 313 EC	- 0,27 0,27	- 10 10	- 15,5 15,5

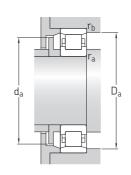
d **65 – 75** mm

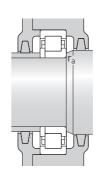
NU

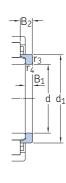
NJ

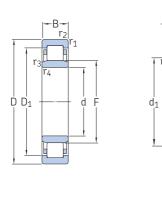

Ν

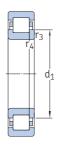

Princip	oal dimens	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Speed rati Reference speed	ngs Limiting speed	Mass	Designations Bearing with standard cage	Alternative standard cage ¹⁾
d	D	В	С	C_0	P_u	эрсси	Speed		Staridard edge	Startaara cage /
mm			kN		kN	r/min		kg	_	
65 cont.	140 140 140	33 48 48	212 285 285	196 290 290	25,5 38 38	5 300 5 300 5 300	6 000 6 000 6 000	2,35 3,2 3,35	NUP 313 ECPNU 2313 ECPNJ 2313 ECP	J, M, ML, PH ML, PH ML, PH
	140 160 160	48 37 37	285 183 183	290 190 190	38 24 24	5 300 4 800 4 800	6 000 5 600 5 600	3,45 3,55 3,65	NUP 2313 ECPNU 413NJ 413	ML, PH - -
70	110 110 125	20 20 24	56,1 76,5 137	67 93 137	8 12 18	7 000 7 000 6 000	11 000 7 000 6 300	0,7 0,61 1,1	 NU 1014 ML NU 1014 ECP N 214 ECP 	– – M
	125 125 125	24 24 24	137 137 137	137 137 137	18 18 18	6 000 6 000 6 000	6 300 6 300 6 300	1,15 1,2 1,2	NU 214 ECPNJ 214 ECPNUP 214 ECP	J, M, ML, PH J, M, ML, PH J, M, ML, PH
	125 125 125	31 31 31	180 180 180	193 193 193	25,5 25,5 25,5	6 000 6 000 6 000	6 300 6 300 6 300	1,5 1,5 1,55	NJ 2214 ECPNU 2214 ECPNUP 2214 ECP	J, M, ML, PH J, M, ML, PH J, M, ML, PH
	150 150 150	35 35 35	236 236 236	228 228 228	29 29 29	4 800 4 800 4 800	5 600 5 600 5 600	2,65 2,7 2,75	N 314 ECPNU 314 ECPNJ 314 ECP	M J, M, ML, PH J, M, ML, PH
	150 150 150	35 51 51	236 315 315	228 325 325	29 41,5 41,5	4 800 4 800 4 800	5 600 5 600 5 600	2,85 3,95 4	NUP 314 ECPNU 2314 ECPNJ 2314 ECP	J, M, ML, PH ML, PH ML, PH
	150 180 180	51 42 42	315 229 229	325 240 240	41,5 30 30	4 800 4 300 4 300	5 600 5 000 5 000	4,15 5,25 5,45	NUP 2314 ECPNU 414NJ 414	ML, PH MA MA
75	115 130 130	20 25 25	58,3 150 150	71 156 156	8,5 20,4 20,4	6 700 5 600 5 600	10 000 6 000 6 000	0,75 1,2 1,25	 NU 1015 ML N 215 ECP NU 215 ECP 	M - J, M, ML, PH
	130 130 130	25 25 31	150 150 186	156 156 208	20,4 20,4 27	5 600 5 600 5 600	6 000 6 000 6 000	1,3 1,3 1,6	NJ 215 ECPNUP 215 ECPNJ 2215 ECP	J, M, ML, PH J, M, ML, PH J, ML, PH
	130 130 160	31 31 37	186 186 280	208 208 265	27 27 33,5	5 600 5 600 4 500	6 000 6 000 5 300	1,6 1,6 3,3	NU 2215 ECPNUP 2215 ECPN 315 ECP	J, ML, PH J, ML, PH M


SKF Explorer bearing


► Popular item

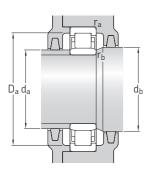

1) When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage. For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).

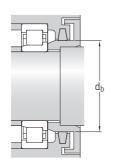


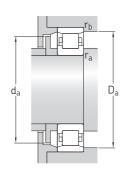

Angle ring

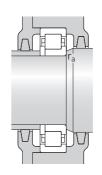
Dimeı	nsions						Abutn	nent and	l fillet dir	mension	S		Calcu- lation	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	factor k _r			B ₁	B ₂
mm							mm						_	_	kg	mm	
65 cont.	90,5 - 90,5	117,4 117,4 117,4	82,5 82,5 82,5	2,1 2,1 2,1	2,1 2,1 2,1	- 4,7 4,7	77 77 77	- 80 80	93 85 93	127,8 127,8 127,8	2 2 2	- 2 -	0,15 0,25 0,25	– HJ 2313 EC HJ 2313 EC	- 0,3 0,3	- 10 10	- 18 18
	90,5	117,4	82,5	2,1	2,1	-	77	-	93	127,8	2	_	0,25	–	-	-	-
	-	126,85	89,3	2,1	2,1	2,6	78	86	91	146	2	2	0,15	HJ 413	0,42	11	18
	98,5	126,85	89,3	2,1	2,1	2,6	78	86	101	146	2	_	0,15	HJ 413	0,42	11	18
70	-	95,7	80	1,1	1	3	74,6	78	82	104	1	1	0,15	–	-	-	_
	-	97,55	79,5	1,1	1	1,3	74,6	78	82	104	1	1	0,1	HJ 1014 EC	0,082	5	10
	89,4	-	113,5	1,5	1,5	1,2	79	111	116	117	1,5	1,5	0,12	–	-	-	_
	-	108,3	83,5	1,5	1,5	1,2	79	81	86	115,4	1,5	1,5	0,15	HJ 214 EC	0,15	7	11
	89,4	108,3	83,5	1,5	1,5	1,2	79	81	92	115,4	1,5	-	0,15	HJ 214 EC	0,15	7	11
	89,4	108,3	83,5	1,5	1,5	-	79	-	92	115,4	1,5	-	0,15	-	-	–	-
	89,4	108,2	83,5	1,5	1,5	1,7	79	81	92	115,4	1,5	-	0,2	HJ 2214 EC	0,15	7	11,5
	-	108,2	83,5	1,5	1,5	1,7	79	81	86	115,4	1,5	1,5	0,2	HJ 2214 EC	0,15	7	11,5
	89,4	108,2	83,5	1,5	1,5	-	79	-	92	115,4	1,5	-	0,2	-	-	–	-
	97,3	-	133	2,1	2,1	1,8	82	130	136	138	2	2	0,12	–	-	-	-
	-	125,6	89	2,1	2,1	1,8	82	86	92	137,5	2	2	0,15	HJ 314 EC	0,32	10	15,5
	97,3	125,6	89	2,1	2,1	1,8	82	86	100	137,5	2	-	0,15	HJ 314 EC	0,32	10	15,5
	97,3	125,6	89	2,1	2,1	-	82	-	100	137,5	2	_	0,15	–	-	-	-
	-	125,6	89	2,1	2,1	4,8	82	86	92	137,5	2	2	0,25	HJ 2314 EC	0,35	10	18,5
	97,3	125,6	89	2,1	2,1	4,8	82	86	100	137,5	2	_	0,25	HJ 2314 EC	0,35	10	18,5
	97,3	125,6	89	2,1	2,1	-	82	-	100	137,5	2	_	0,25	–	-	-	-
	-	141	100	3	3	3,5	87	97	102	164	2,5	2,5	0,15	HJ 414	0,61	12	20
	110	141	100	3	3	3,5	87	97	113	164	2,5	_	0,15	HJ 414	0,61	12	20
75	-	100,4	85	1,1	1	3	80	83	87	109	1	1	0,15	-	-	-	-
	94,3	-	118,5	1,5	1,5	1,2	84	116	121	122	1,5	1,5	0,12	-	-	-	-
	-	113,3	88,5	1,5	1,5	1,2	84	86	91	121,5	1,5	1,5	0,15	HJ 215 EC	0,16	7	11
	94,3 94,3 94,3	113,3 113,3 113,2	88,5 88,5 88,5	1,5 1,5 1,5	1,5 1,5 1,5	1,2 - 1,7	84 84 84	86 - 86	97 97 97	121,5 121,5 121,5	1,5 1,5 1,5	_ _ _	0,15 0,15 0,2	HJ 215 EC - -	0,16 - -	7 	11 - -
	-	113,2	88,5	1,5	1,5	1,7	84	86	91	121,5	1,5	1,5	0,2	-	-	-	-
	94,3	113,2	88,5	1,5	1,5	-	84	-	97	121,5	1,5	-	0,2	-	-	-	-
	104	-	143	2,1	2,1	1,8	87	140	146	148	2	2	0,12	-	-	-	-

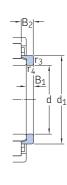
d **75 – 85** mm

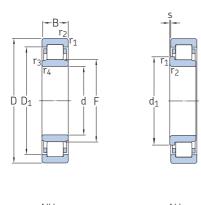

NU NJ Ν NUP

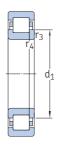

Princip	al dimens	sions	Basic loa dynamic	id ratings static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed	Mass	Designations Bearing with standard cage	Alternative standard cage ¹⁾
d	D	В	С	C_0	P_u	speeu	эреец		standard cage	Standard Cage-/
mm			kN		kN	r/min		kg	-	
75 cont.	160 160 160	37 37 37	280 280 280	265 265 265	33,5 33,5 33,5	4 500 4 500 4 500	5 300 5 300 5 300	3,3 3,35 3,45	 NU 315 ECP NJ 315 ECP NUP 315 ECP 	J, M, ML, PH J, M, ML, PH J, M, ML, PH
	160 160 160	55 55 55	380 380 380	400 400 400	50 50 50	4 500 4 500 4 500	5 300 5 300 5 300	4,8 5 5,1	NU 2315 ECPNJ 2315 ECPNUP 2315 ECP	J, ML J, ML J, ML
	190 190	45 45	264 264	280 280	34 34	4 000 4 000	4 800 4 800	6,2 6,4	NU 415 NJ 415	- -
80	125 125 140	22 22 26	64,4 99 160	78 127 166	9,8 16,3 21,2	6 300 6 000 5 300	6 300 9 500 5 600	0,88 1,05 1,55	► NU 1016 NJ 1016 ECML ► N 216 ECP	_ M _
	140 140 140	26 26 26	160 160 160	166 166 166	21,2 21,2 21,2	5 300 5 300 5 300	5 600 5 600 5 600	1,55 1,55 1,55	NJ 216 ECPNU 216 ECPNUP 216 ECP	J, M, ML, PH J, M, ML, PH J, M, ML, PH
	140 140 140	33 33 33	212 212 212	245 245 245	31 31 31	5 300 5 300 5 300	5 600 5 600 5 600	1,95 2 2,05	NU 2216 ECPNUP 2216 ECPNJ 2216 ECP	J, M, ML, PH J, M, ML, PH J, M, ML, PH
	170 170 170	39 39 39	300 300 300	290 290 290	36 36 36	4 300 4 300 4 300	5 000 5 000 5 000	3,85 3,9 4	NU 316 ECPN 316 ECPNJ 316 ECP	J, M, ML, PH M J, M, ML, PH
	170 170 170	39 58 58	300 415 415	290 440 440	36 55 55	4 300 4 300 4 300	5 000 5 000 5 000	4,1 5,75 5,95	NUP 316 ECPNU 2316 ECPNJ 2316 ECP	J, M, ML, PH M, ML M, ML
	170 200 200	58 48 48	415 303 303	440 320 320	55 39 39	4 300 3 800 3 800	5 000 4 500 4 500	6 7,25 7,55	NUP 2316 ECP NU 416 NJ 416	M, ML - -
85	130 130 130	22 22 22	68,2 68,2 68,2	86,5 86,5 86,5	10,8 10,8 10,8	6 000 6 000 6 000	9 000 9 000 9 000	1,05 1,1 1,1	► NU 1017 ML NJ 1017 ML NUP 1017 ML	- - -
	150 150 150	28 28 28	190 190 190	200 200 200	25 25 25	4 800 4 800 4 800	5 300 5 300 5 300	1,9 1,9 1,9	N 217 ECPNJ 217 ECPNU 217 ECP	M J, M, ML J, M, ML
	150 150 150	28 36 36	190 250 250	200 280 280	25 34,5 34,5	4 800 4 800 4 800	5 300 5 300 5 300	1,9 2,5 2,55	NUP 217 ECPNU 2217 ECPNJ 2217 ECP	J, M, ML J, M, ML, PH J, M, ML, PH


SKF Explorer bearing


► Popular item

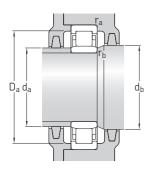

1) When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage. For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).

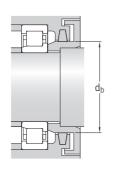


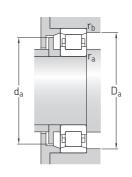

Angle ring

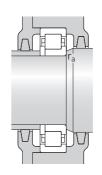
Dimer	nsions						Abutn	nent and	l fillet di	mension	S		Calcu- lation factor	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	k _r			B ₁	B ₂
mm							mm						-	-	kg	mm	
75 cont.	- 104 104	135 135 135	95 95 95	2,1 2,1 2,1	2,1 2,1 2,1	1,8 1,8 -	87 87 87	92 92 –	97 107 107	148 148 148	2 2 2	2 -	0,15 0,15 0,15	HJ 315 EC HJ 315 EC	0,39 0,39 -	11 11 -	16,5 16,5 -
	- 104 104	135 135 135	95 95 95	2,1 2,1 2,1	2,1 2,1 2,1	4,8 4,8 -	87 87 87	92 92 -	97 107 107	148 148 148	2 2 2	2 -	0,25 0,25 0,25	HJ 2315 EC HJ 2315 EC -	0,42 0,42 -	11 11 -	19,5 19,5 -
	- 116	149,1 149,1	104,5 104,5	3	3	3,8 3,8	91 91	101 101	107 119	174 174	2,5 2,5	2,5 -	0,15 0,15	HJ 415 HJ 415	0,71 0,71	13 13	21,5 21,5
80	-	108,55	91,5	1,1	1	3,3	86	90	94	119	1	1	0,1	-	-	-	-
	96,2	111,6	91,5	1,1	1	1,5	86	90	99	119	1	-	0,15	-	-	-	-
	101	-	127,3	2	2	1,4	90	125	130	131	2	2	0,12	-	-	-	-
	101	121,7	95,3	2	2	1,4	90	93	104	129,8	2	_	0,15	HJ 216 EC	0,21	8	12,5
	-	121,7	95,3	2	2	1,4	90	93	98	129,8	2	2	0,15	HJ 216 EC	0,21	8	12,5
	101	121,7	95,3	2	2	-	90	-	104	129,8	2	_	0,15	-	-	-	-
	-	121,7	95,3	2	2	1,4	90	93	98	129,8	2	2	0,2	HJ 216 EC	0,21	8	12,5
	101	121,7	95,3	2	2	-	90	-	104	129,8	2	-	0,2	-	-	-	-
	101	121,7	95,3	2	2	1,4	90	93	104	129,8	2	-	0,2	HJ 216 EC	0,21	8	12,5
	-	142,7	101	2,1	2,1	2,1	92	98	104	157,8	2	2	0,15	HJ 316 EC	0,44	11	17
	110	-	151	2,1	2,1	2,1	92	148	154	157	2	2	0,12	-	-	-	-
	110	142,7	101	2,1	2,1	2,1	92	98	113	157,8	2	-	0,15	HJ 316 EC	0,44	11	17
	110	142,7	101	2,1	2,1	-	92	-	113	157,8	2	_	0,15	–	-	-	-
	-	142,7	101	2,1	2,1	5,1	92	98	104	157,8	2	2	0,25	HJ 2316 EC	0,48	11	20
	110	142,7	101	2,1	2,1	5,1	92	98	113	157,8	2	_	0,25	HJ 2316 EC	0,48	11	20
	110	142,7	101	2,1	2,1	-	92	-	113	157,8	2	_	0,25	–	-	-	-
	-	158,1	110	3	3	3,7	96	107	112	184	2,5	2,5	0,15	HJ 416	0,8	13	22
	122	158,1	110	3	3	3,7	96	107	125	184	2,5	_	0,15	HJ 416	0,8	13	22
85	- 101 101	114 114 114	96,5 96,5 96,5	1,1 1,1 1,1	1 1 1	3,3 3,3 -	91 91 91	94 94 -	99 104 104	123 123 123	1 1 1	1 -	0,15 0,15 0,15	- - -	- - -	- - -	- - -
	107	-	136,5	2	2	1,5	96	134	139	140	2	2	0,12	–	-	-	-
	107	130,3	100,5	2	2	1,5	96	98	110	138,5	2	-	0,15	HJ 217 EC	0,24	8	12,5
	-	130,3	100,5	2	2	1,5	96	98	103	138,5	2	2	0,15	HJ 217 EC	0,24	8	12,5
	107	130,3	100,5	2	2	-	96	-	110	138,5	2	_	0,15	-	_	-	-
	-	130,3	100,5	2	2	2	96	98	103	138,5	2	2	0,2	-	_	-	-
	107	130,3	100,5	2	2	2	96	98	110	138,5	2	_	0,2	-	_	-	-

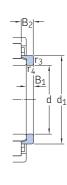
d **85 – 95** mm

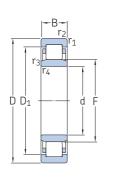

Νl	J	NJ	N r	VU	Ρ

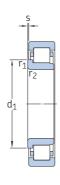

Princip	al dimens	ions	Basic loa dynamic	d ratings static	Fatigue load limit		Limiting	Mass	Designations Bearing with	Alternative
d	D	В	С	C_0	P_{u}	speed	speed		standard cage	standard cage ¹⁾
mm			kN		kN	r/min		kg	_	
85 cont.	150 180 180	36 41 41	250 340 340	280 335 335	34,5 41,5 41,5	4 800 4 000 4 000	5 300 4 800 4 800	2,6 4,55 4,65	 NUP 2217 ECP N 317 ECP NU 317 ECP 	J, M, ML, PH M J, M, ML, PH
	180 180 180	41 41 60	340 340 455	335 335 490	41,5 41,5 60	4 000 4 000 4 000	4 800 4 800 4 800	4,8 4,9 6,85	NJ 317 ECPNUP 317 ECPNU 2317 ECP	J, M, ML, PH J, M, ML, PH J, M, ML
	180 180	60 60	455 455	490 490	60 60	4 000 4 000	4 800 4 800	7 7	► NJ 2317 ECP NUP 2317 ECP	J, M, ML J, M, ML
90	140 140 160	24 24 30	80,9 80,9 208	104 104 220	12,7 12,7 27	5 600 5 600 4 500	8 500 8 500 5 000	1,35 1,4 2,3	 NU 1018 ML NJ 1018 ML N 218 ECP 	М М М
	160 160 160	30 30 30	208 208 208	220 220 220	27 27 27	4 500 4 500 4 500	5 000 5 000 5 000	2,3 2,3 2,45	NJ 218 ECPNU 218 ECPNUP 218 ECP	J, M, ML J, M, ML J, M, ML
	160 160 160	40 40 40	280 280 280	315 315 315	39 39 39	4 500 4 500 4 500	5 000 5 000 5 000	3,15 3,25 3,3	NU 2218 ECPNJ 2218 ECPNUP 2218 ECP	J, M, ML J, M, ML J, M, ML
	190 190 190	43 43 43	365 365 365	360 360 360	43 43 43	3 800 3 800 3 800	4 500 4 500 4 500	5,25 5,3 5,45	NU 318 ECPN 318 ECPNJ 318 ECP	J, M, ML M J, M, ML
	190 190 190	43 64 64	365 500 500	360 540 540	43 65,5 65,5	3 800 3 800 3 800	4 500 4 500 4 500	5,55 8 8,15	NUP 318 ECJNU 2318 ECPNJ 2318 ECP	M, ML, P J, M, ML J, M, ML
	190 225	64 54	500 380	540 415	65,5 48	3 800 3 400	4 500 4 000	8,25 10	NUP 2318 ECP NU 418	J, M, ML M
95	145 170 170	24 32 32	84,2 255 255	110 265 265	13,2 32,5 32,5	5 300 4 300 4 300	8 000 4 800 4 800	1,45 2,85 2,85	 NU 1019 ML N 219 ECP NU 219 ECP 	– – J, M, ML
	170 170 170	32 32 43	255 255 325	265 265 375	32,5 32,5 45,5	4 300 4 300 4 300	4 800 4 800 4 800	2,9 2,9 3,8	NJ 219 ECPNUP 219 ECPNU 2219 ECP	J, M, ML J, M, ML J, ML
	170 170 200	43 43 45	325 325 390	375 375 390	45,5 45,5 46,5	4 300 4 300 3 600	4 800 4 800 4 300	3,95 4 6,2	NJ 2219 ECP NUP 2219 ECPN 319 ECP	J, ML J, ML M


SKF Explorer bearing

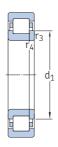

► Popular item


1) When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage. For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).





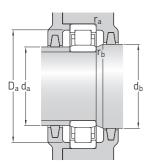
Angle ring

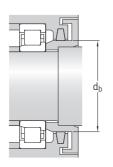

Dime	nsions						Abutn	nent and	l fillet di	mension	S		Calcu- lation	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	factor k _r			B ₁	B ₂
mm							mm						-	-	kg	mm	
85 cont.	107 117 -	130,3 - 151,4	100,5 160 108	2 3 3	2 3 3	- 2,3 2,3	96 99 99	- 157 105	110 163 111	138,5 166 165,5	2 2,5 2,5	- 2,5 2,5	0,2 0,12 0,15	- - HJ 317 EC	- - 0,55	- - 12	- - 18,5
	117 117 -	151,4 151,4 151,4	108 108 108	3 3 3	3 3 3	2,3 - 5,8	99 99 99	105 - 105	120 120 111	165,5 165,5 165,5	2,5 2,5 2,5	- - 2,5	0,15 0,15 0,25	HJ 317 EC - HJ 2317 EC	0,55 - 0,59	12 - 12	18,5 - 22
	117 117	151,4 151,4	108 108	3	3	5,8 -	99 99	105 -	120 120	165,5 165,5	2,5 2,5		0,25 0,25	HJ 2317 EC -	0,59 -	12 -	22 -
90	- 108 114	122,1 122,1 -	103 103 145	1,5 1,5 2	1,1 1,1 2	3,5 3,5 1,8	96 96 101	101 101 142	106 111 148	133 133 149	1,5 1,5 2	1 - 2	0,15 0,15 0,12	- - -	- - -	- - -	- - -
	114 - 114	138,45 138,45 138,45	107	2 2 2	2 2 2	1,8 1,8 -	101 101 101	104 104 -	117 110 117	149 149 149	2 2 2	_ 2 _	0,15 0,15 0,15	HJ 218 EC HJ 218 EC -	0,31 0,31 -	9 9 -	14 14 -
	- 114 114	138,5 138,5 138,5	107 107 107	2 2 2	2 2 2	2,6 2,6	101 101 101	104 104 -	110 117 117	149 149 149	2 2 2	2 -	0,2 0,2 0,2	HJ 2218 EC HJ 2218 EC -	0,31 0,31 -	9 9 -	15 15 -
	- 124 124	160,3 - 160,3	113,5 169,5 113,5	3 3 3	3 3 3	2,5 2,5 2,5	104 104 104	110 166 110	116 173 127	175,3 175 175,3	2,5 2,5 2,5	2,5 2,5 –	0,15 0,12 0,15	HJ 318 EC - HJ 318 EC	0,62 - 0,62	12 - 12	18,5 - 18,5
	124 - 124	160,3 160,3 160,3	113,5 113,5 113,5	3 3 3	3 3 3	- 6 6	104 104 104	- 110 110	127 116 127	175,3 175,3 175,3	2,5 2,5 2,5	_ 2,5 _	0,15 0,25 0,25	– HJ 2318 EC HJ 2318 EC	- 0,66 0,66	- 12 12	- 22 22
	124 -	160,3 179,5	113,5 123,5	3 4	3 4	- 4,9	104 108	- 120	127 126	175,3 205	2,5 3	- 3	0,25 0,15	-		-	
95	- 120 -	127,1 - 147,4	108 154,5 112,5	1,5 2,1 2,1	1,1 2,1 2,1	3,5 1,7 1,7	101 107 107	106 152 110	111 157 115	138 159 157,8	1,5 2 2	1 2 2	0,15 0,12 0,15	- - HJ 219 EC	- - 0,33	- - 9	- - 14
	120 120 -	147,4 147,4 147,4	112,5 112,5 112,5	2,1 2,1 2,1	2,1 2,1 2,1	1,7 - 3	107 107 107	110 - 110	123 123 115	157,8 157,8 157,8	2 2 2	- - 2	0,15 0,15 0,2	HJ 219 EC - -	0,33 - -	9 - -	14 - -
	120 120 132	147,4 147,4 -	112,5 112,5 177,5	2,1 2,1 3	2,1 2,1 3	3 - 2,9	107 107 110	110 - 174	123 123 181	157,8 157,8 185	2 2 2,5	- - 2,5	0,2 0,2 0,12	- - -	- - -	- - -	— — —

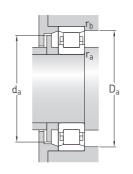
d **95 – 105** mm

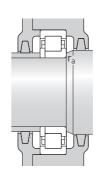
NU

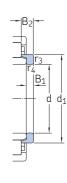
NJ

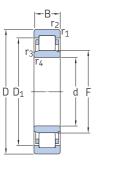

Ν

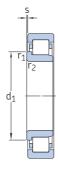

Princip	al dimens	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed	Mass	Designations Bearing with standard cage	Alternative standard cage ¹⁾
d	D	В	С	C_0	P_u	эрсси	эрсси		standard cage	standard cage-/
mm			kN		kN	r/min		kg	_	
95 cont.	200 200 200	45 45 45	390 390 390	390 390 390	46,5 46,5 46,5	3 600 3 600 3 600	4 300 4 300 4 300	6,2 6,3 6,3	 NU 319 ECP NJ 319 ECP NUP 319 ECP 	J, M, ML J, M, ML J, M, ML
	200 200 200	67 67 67	530 530 530	585 585 585	69,5 69,5 69,5	3 600 3 600 3 600	4 300 4 300 4 300	9,35 9,55 9,7	NU 2319 ECPNJ 2319 ECJNUP 2319 ECJ	J, ML ML, P ML, P
	240	55	413	455	52	3 200	3 600	13,5	NU 419 M	-
100	150 180 180	24 34 34	85,8 285 285	114 305 305	13,7 36,5 36,5	5 000 4 000 4 000	7 500 4 500 4 500	1,45 3,35 3,45	NU 1020 MLNU 220 ECPN 220 ECP	M J, M, ML -
	180 180 180	34 34 46	285 285 380	305 305 450	36,5 36,5 54	4 000 4 000 4 000	4 500 4 500 4 500	3,45 3,6 4,75	NJ 220 ECPNUP 220 ECPNU 2220 ECP	J, M, ML J, M, ML J, M, ML, PH
	180 180 215	46 46 47	380 380 450	450 450 440	54 54 51	4 000 4 000 3 200	4 500 4 500 3 800	4,8 4,8 7,35	NJ 2220 ECPNUP 2220 ECPN 320 ECP	J, M, ML, PH J, M, ML, PH M
	215 215 215	47 47 47	450 450 450	440 440 440	51 51 51	3 200 3 200 3 200	3 800 3 800 3 800	7,45 7,65 7,7	NU 320 ECPNJ 320 ECJNUP 320 ECJ	J, M, ML M, ML, P M, ML, P
	215 215 215	73 73 73	670 670 670	735 735 735	85 85 85	3 200 3 200 3 200	3 800 3 800 3 800	12 12 12,5	NJ 2320 ECJNU 2320 ECPNUP 2320 ECJ	M, ML, P J, M, ML M, ML, P
	250	58	457	520	58,5	3 000	3 600	15,5	NU 420 M	-
105	160 190 190	26 36 36	101 300 300	137 315 315	16 36,5 36,5	4 800 3 800 3 800	7 500 4 300 4 300	1,9 3,9 3,95	 NU 1021 ML N 221 ECP NU 221 ECP 	– – J, ML
	190 190 225	36 36 49	300 300 500	315 315 500	36,5 36,5 57	3 800 3 800 3 200	4 300 4 300 3 800	4 4,2 8,5	NJ 221 ECP NUP 221 ECPNU 321 ECP	J, ML J, ML J, ML
	225 225 260	49 49 60	500 500 501	500 500 570	57 57 64	3 200 3 200 2 800	3 800 3 800 3 400	8,6 9,05 17,5	► N 321 ECP NJ 321 ECP NU 421 M	_ J, ML _


SKF Explorer bearing


► Popular item


1) When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage. For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).





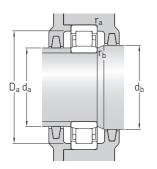
Angle ring

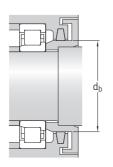
Dimer	nsions						Abutm	ent and	fillet dir	nension	S		Calcu- lation factor	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	k _r			B ₁	B ₂
mm							mm						-	_	kg	mm	
95 cont.	- 132 132	168,3 168,3 168,3	121,5 121,5 121,5	3 3 3	3 3 3	2,9 2,9 -	110 110 110	118 118 -	125 135 135	185 185 185	2,5 2,5 2,5	2,5 - -	0,15 0,15 0,15	HJ 319 EC HJ 319 EC	0,78 0,78 -	13 13 -	20,5 20,5 -
	-	168,3	121,5	3	3	6,9	110	118	125	185	2,5	2,5	0,25	HJ 2319 EC	0,76	13	24,5
	132	168,3	121,5	3	3	6,9	110	118	135	185	2,5	-	0,25	HJ 2319 EC	0,76	13	24,5
	132	168,3	121,5	3	3	-	110	-	135	185	2,5	-	0,25	-	-	-	-
	-	188	133,5	4	4	5	114	130	136	220	3	3	0,15	-	-	-	-
100	-	132,1	113	1,5	1,1	3,5	106	111	116	143	1,5	1	0,15	–	-	_	_
	-	155,6	119	2,1	2,1	1,7	113	116	122	167,5	2	2	0,15	HJ 220 EC	0,43	10	15
	127	-	163	2,1	2,1	1,7	113	160	166	168	2	2	0,12	–	-	-	_
	127	155,6	119	2,1	2,1	1,7	113	116	130	167,5	2	-	0,15	HJ 220 EC	0,43	10	15
	127	155,6	119	2,1	2,1	-	113	-	130	167,5	2	-	0,15	-	-	-	-
	-	155,6	119	2,1	2,1	2,5	113	116	122	167,5	2	2	0,2	HJ 2220 EC	0,43	10	16
	127	155,6	119	2,1	2,1	2,5	113	116	130	167,5	2	-	0,2	HJ 2220 EC	0,43	10	16
	127	155,6	119	2,1	2,1	-	113	-	130	167,5	2	-	0,2	-	-	-	-
	139	-	191,5	3	3	2,9	114	188	195	200	2,5	2,5	0,12	-	-	-	-
	-	181,1	127,5	3	3	2,9	114	124	131	199,6	2,5	2,5	0,15	HJ 320 EC	0,87	13	20,5
	139	181,1	127,5	3	3	2,9	114	124	142	199,6	2,5	-	0,15	HJ 320 EC	0,87	13	20,5
	139	181,1	127,5	3	3	-	114	-	142	199,6	2,5	-	0,15	-	-	-	-
	139	181,1	127,5	3	3	5,9	114	124	142	199,6	2,5	-	0,25	HJ 2320 EC	0,91	13	23,5
	-	181,1	127,5	3	3	5,9	114	124	131	199,6	2,5	2,5	0,25	HJ 2320 EC	0,91	13	23,5
	139	181,1	127,5	3	3	-	114	-	142	199,6	2,5	-	0,25	-	-	-	-
	_	197,45	139	4	4	4,9	119	135	142	230	3	3	0,15	HJ 420	1,5	16	27
105	-	140,8	119,5	2	1,1	3,8	111	117	122	151	2	1	0,15	-	-	-	-
	134	-	173	2,1	2,1	2	117	170	176	178	2	2	0,12	-	-	-	-
	-	164	125	2,1	2,1	2	117	122	128	177,3	2	2	0,15	HJ 221 EC	0,5	10	16
	134	164	125	2,1	2,1	2	117	122	137	177,3	2	-	0,15	HJ 221 EC	0,5	10	16
	134	164	125	2,1	2,1	-	117	-	137	177,3	2	-	0,15	-	-	-	-
	-	189	133	3	3	3,4	119	129	136	209,4	2,5	2,5	0,15	-	-	-	-
	145	-	201	3	3	3,4	119	198	205	210	2,5	2,5	0,12	-	-	-	_
	145	189	133	3	3	3,4	119	129	148	209,4	2,5	-	0,15	-	-	-	_
	-	206,3	144,5	4	4	4,9	124	140	147	241	3	3	0,15	-	-	-	_

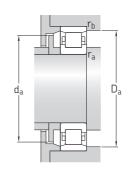
d **110 – 120** mm

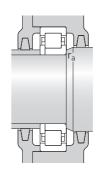
NU

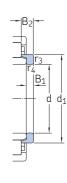
NJ

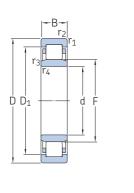

Ν

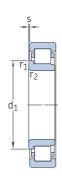

Princip	al dimens	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed ration Reference	Limiting	Mass	Designations Bearing with	Alternative
t	D	В	С	C_0	P_{u}	speed	speed		standard cage	standard cage ¹⁾
mm			kN		kN	r/min		kg	-	
110	170 200 200	28 38 38	128 335 335	166 365 365	19,3 42,5 42,5	4 500 3 600 3 600	7 000 4 000 4 000	2,3 4,7 4,8	 NU 1022 ML NU 222 ECP N 222 ECP 	M J, M, ML M
	200 200 200	38 38 53	335 335 440	365 365 520	42,5 42,5 61	3 600 3 600 3 600	4 000 4 000 4 000	4,8 5 6,7	NJ 222 ECPNUP 222 ECPNJ 2222 ECP	J, M, ML J, M, ML J, ML
	200 200 240	53 53 50	440 440 530	520 520 540	61 61 61	3 600 3 600 3 000	4 000 4 000 3 400	6,7 7 10	NU 2222 ECPNUP 2222 ECPN 322 ECP	J, ML J, ML M
	240 240 240	50 50 50	530 530 530	540 540 540	61 61 61	3 000 3 000 3 000	3 400 3 400 3 400	10,5 10,5 10,5	NJ 322 ECJNU 322 ECPNUP 322 ECP	M, ML, P J, M, ML J, M, ML
	240 240 240	80 80 80	780 780 780	900 900 900	102 102 102	3 000 3 000 3 000	3 400 3 400 3 400	17 17 17,5	NJ 2322 ECP ► NU 2322 ECP NUP 2322 ECP	ML ML ML
	280	65	550	630	69,5	2 600	3 200	22,5	NJ 422 M	-
120	180 215 215	28 40 40	134 390 390	183 430 430	20,8 49 49	4 000 3 400 3 400	6 300 3 600 3 600	2,55 5,75 5,75	 NU 1024 ML N 224 ECP NU 224 ECP 	M M J, M, ML
	215 215 215	40 40 58	390 390 520	430 430 630	49 49 72	3 400 3 400 3 400	3 600 3 600 3 600	5,85 5,95 8,2	NJ 224 ECPNUP 224 ECJNU 2224 ECP	J, M, ML M, ML, P J, M, ML
	215 215 260	58 58 55	520 520 610	630 630 620	72 72 69,5	3 400 3 400 2 800	3 600 3 600 3 200	8,65 8,65 13	► NJ 2224 ECJ NUP 2224 ECP ► N 324 ECP	M, ML, P J, M, ML M
	260 260 260	55 55 55	610 610 610	620 620 620	69,5 69,5 69,5	2 800 2 800 2 800	3 200 3 200 3 200	13 13,5 14	NU 324 ECPNJ 324 ECJNUP 324 ECP	J, M, ML M, ML, P J, M, ML
	260 260 260	86 86 86	915 915 915	1 040 1 040 1 040	116 116 116	2 800 2 800 2 800	5 000 5 000 5 000	22,5 23 23,5	 NU 2324 ECML NJ 2324 ECML NUP 2324 ECML 	M M M
	310	72	644	735	78	2 400	2 800	27,5	NU 424	М


SKF Explorer bearing

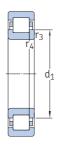

► Popular item


1) When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage. For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).





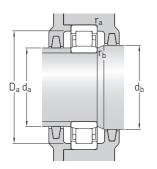
Angle ring

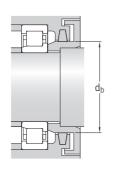

Dimer	nsions						Abutn	nent and	l fillet dii	mension	S		Calcu- lation factor	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	k _r			B ₁	B ₂
mm							mm						-	-	kg	mm	
110	-	149,7	125	2	1,1	3,8	116	122	128	160	2	1	0,15	–	-	-	-
	-	172,5	132,5	2,1	2,1	2,1	122	129	135	187	2	2	0,15	HJ 222 EC	0,62	11	17
	141	-	180,5	2,1	2,1	2,1	122	177	184	188	2	2	0,12	–	-	-	-
	141	172,5	132,5	2,1	2,1	2,1	122	129	144	187	2	_	0,15	HJ 222 EC	0,62	11	17
	141	172,5	132,5	2,1	2,1	-	122	-	144	187	2	_	0,15	-	-	-	-
	141	172,5	132,5	2,1	2,1	3,7	122	129	144	187	2	_	0,2	-	-	-	-
	-	172,5	132,5	2,1	2,1	3,7	122	129	135	187	2	2	0,2	-	-	-	-
	141	172,5	132,5	2,1	2,1	-	122	-	144	187	2	-	0,2	-	-	-	-
	155	-	211	3	3	3	124	208	215	225	2,5	2,5	0,12	-	-	-	-
	155	200	143	3	3	3	124	139	159	225,2	2,5	-	0,15	HJ 322 EC	1,2	14	22
	-	200	143	3	3	3	124	139	146	225,2	2,5	2,5	0,15	HJ 322 EC	1,2	14	22
	155	200	143	3	3	-	124	-	159	225,2	2,5	-	0,15	-	-	-	-
	155	200	143	3	3	7,5	124	139	159	225,2	2,5	-	0,25	HJ 2322 EC	1,25	14	26,5
	-	200	143	3	3	7,5	124	139	146	225,2	2,5	2,5	0,25	HJ 2322 EC	1,25	14	26,5
	155	200	143	3	3	–	124	-	159	225,2	2,5	-	0,25	-	-	-	-
	171	219,65	155	4	4	4,8	131	151	175	260	3	_	0,15	HJ 422	2,1	17	29,5
120	-	159,7	135	2	1,1	3,8	126	133	138	171	2	1	0,15	–	-	-	-
	153	-	195,5	2,1	2,1	1,9	132	192	199	203	2	2	0,12	–	-	-	-
	-	186,55	143,5	2,1	2,1	1,9	132	140	146	201,6	2	2	0,15	HJ 224 EC	0,71	11	17
	153 153 -	186,55 186,55 186,9		2,1 2,1 2,1	2,1 2,1 2,1	1,9 - 3,8	132 132 132	140 - 140	156 156 146	201,6 201,6 201,6	2 2 2	- - 2	0,15 0,15 0,2	HJ 224 EC - HJ 2224 EC	0,71 - 0,73	11 - 11	17 - 20
	153	186,9	143,5	2,1	2,1	3,8	132	140	156	201,6	2	-	0,2	HJ 2224 EC	0,73	11	20
	153	186,9	143,5	2,1	2,1	-	132	-	156	201,6	2	-	0,2	-	-	-	-
	168	-	230	3	3	3,7	134	226	235	245	2,5	2,5	0,12	-	-	-	-
	-	217,8	154	3	3	3,7	134	150	157	244,8	2,5	2,5	0,15	HJ 324 EC	1,4	14	22,5
	168	217,8	154	3	3	3,7	134	150	171	244,8	2,5	-	0,15	HJ 324 EC	1,4	14	22,5
	168	217,8	154	3	3	-	134	-	171	244,8	2,5	-	0,15	–	-	-	–
	-	218,7	154	3	3	7,2	134	150	157	244,8	2,5	2,5	0,38	HJ 2324 EC	1,45	14	26
	168	218,7	154	3	3	7,2	134	150	171	244,8	2,5	-	0,38	HJ 2324 EC	1,45	14	26
	168	218,7	154	3	3	-	134	-	171	244,8	2,5	-	0,38	-	-	-	-
	-	238,5	170	5	5	6,3	144	165	173	286	4	4	0,15	HJ 424	2,6	17	30,5

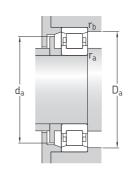
d **130 – 150** mm

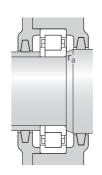
NU

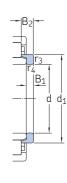
NJ

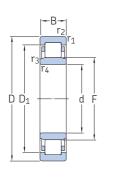

Ν

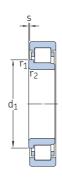

Principal dimensions			Basic load ratings dynamic static		Fatigue load limit	Speed ratings Reference Limiting speed speed		Mass	Designations Bearing with standard cage	Alternative standard cage ¹⁾
d	D	В	С	C_0	P_u	эрсси	Speed		Standard edge	standard cage /
mm			kN		kN	r/min		kg	_	
130	200 200 230	33 33 40	165 165 415	224 224 455	25 25 51	3 800 3 800 3 200	5 600 5 600 3 400	3,85 3,9 6,45	 NU 1026 ML NJ 1026 ML N 226 ECP 	M M -
	230 230 230	40 40 40	415 415 415	455 455 455	51 51 51	3 200 3 200 3 200	3 400 3 400 3 400	6,45 6,5 6,6	NU 226 ECPNUP 226 ECJNJ 226 ECP	J, M, ML M, ML, P J, M, ML
	230 230 230	64 64 64	610 610 610	735 735 735	83 83 83	3 200 3 200 3 200	3 400 3 400 5 300	10 10,5 12	NU 2226 ECP NUP 2226 ECPNJ 2226 ECML	ML - P
	280 280 280	58 58 58	720 720 720	750 750 750	81,5 81,5 81,5	2 400 2 400 2 400	3 000 3 000 3 000	16 16,5 18	NU 326 ECPNJ 326 ECJN 326 ECM	J, M, ML M, ML, P P
	280 280 280	58 93 93	720 1 060 1 060	750 1 250 1 250	81,5 137 137	2 400 2 400 2 400	3 000 4 500 4 500	19,5 28,5 29,5	NUP 326 ECP ► NU 2326 ECML ► NJ 2326 ECML	J, M, ML PA PA
	280	93	1 060	1 250	137	2 400	4 500	29,5	NUP 2326 ECML	_
140	210 250 250	33 42 42	179 450 450	255 510 510	28 57 57	3 600 2 800 2 800	5 300 3 200 3 200	4,05 8,45 8,6	NU 1028 MLNUP 228 ECJNJ 228 ECJ	M M, ML M, ML
	250 250 250	42 68 68	450 655 655	510 830 830	57 93 93	2 800 2 800 2 800	3 200 4 800 4 800	9,4 15 15,5	NU 228 ECMNU 2228 ECMLNJ 2228 ECML	J, ML PA PA
	250 300 300	68 62 62	655 780 780	830 830 830	93 88 88	2 800 2 400 2 400	4 800 2 800 2 800	15,5 20 22,5	NUP 2228 ECML ► NJ 328 ECJ ► NU 328 ECM	– M, ML J, ML
	300 300 300	62 102 102	780 1 200 1 200	830 1 430 1 430	88 150 150	2 400 2 400 2 400	2 800 4 300 4 300	23,5 36 36,5	NUP 328 ECM ► NU 2328 ECML ► NJ 2328 ECML	- - -
	300	102	1 200	1 430	150	2 400	4 300	37	NUP 2328 ECML	-
150	225 270 270	35 45 45	198 510 510	290 600 600	31,5 64 64	3 200 2 600 2 600	5 000 2 800 2 800	4,9 10,5 11,5	NU 1030 MLNUP 230 ECJNU 230 ECM	M M, ML J, ML


SKF Explorer bearing

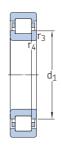

► Popular item


1) When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage. For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).



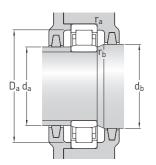


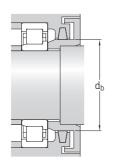
Angle ring

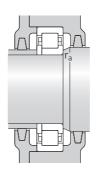

Dimensions						Abutn	Abutment and fillet dimensions						Angle ring Designation	Mass	Dimensions		
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	factor k _r			В ₁	B ₂
mm							mm						-	-	kg	mm	
130	- 154 164	175,2 175,2	148 148 209,5	2 2 3	1,1 1,1 3	4,7 4,7 2,1	137 137 144	145 145 206	151 158 213	191 191 217	2 2 2,5	1 - 2,5	0,15 0,15 0,12	- - -	- - -	- - -	- - -
	- 164 164	200,3 200,3 200,3	153,5 153,5 153,5	3 3 3	3 3 3	2,1 - 2,1	144 144 144	150 - 150	157 167 167	215,4 215,4 215,4	2,5 2,5 2,5	2,5 - -	0,15 0,15 0,15	HJ 226 EC - HJ 226 EC	0,75 - 0,75	11 - 11	17 - 17
	- 164 164	200,3 200,3 201,2	153,5 153,5 153,5	3 3 3	3 3 3	4,3 - 4,3	144 144 144	150 - 150	157 167 167	215,4 215,4 215,4	2,5 2,5 2,5	2,5 - -	0,2 0,2 0,3	HJ 2226 EC - HJ 2226 EC	0,83 - 0,83	11 - 11	21 - 21
	- 181 181	234,2 234,2 -	167 167 247	4 4 4	4 4 4	3,7 3,7 3,7	147 147 147	163 163 243	170 184 251	261,4 261,4 262	3 3 3	3 - 3	0,15 0,15 0,12	HJ 326 EC HJ 326 EC -	1,65 1,65 -	14 14 -	23 23 -
	181 - 181	234,2 235,2 235,2	167 167 167	4 4 4	4 4 4	- 8,7 8,7	147 147 147	- 163 163	184 170 184	261,4 261,4 261,4	3 3 3	- 3 -	0,15 0,38 0,38	– HJ 2326 EC HJ 2326 EC	- 1,6 1,6	- 14 14	- 28 28
	181	235,2	167	4	4	-	147	_	184	261,4	3	-	0,38	-	-	-	-
140	- 179 179	184,2 215,78 215,78	158 169 169	2 3 3	1,1 3 3	4,4 - 2,5	147 154 154	155 - 165	161 182 182	201 235 235	2 2,5 2,5	1 -	0,15 0,15 0,15	– – HJ 228 EC	- - 0,97	- - 11	- - 18
	- - 179	215,78 216,7 216,7	169 169 169	3 3 3	3 3 3	2,5 4,4 4,4	154 154 154	165 165 165	172 172 182	235 235 235	2,5 2,5 2,5	2,5 2,5 –	0,15 0,3 0,3	HJ 228 EC HJ 2228 EC HJ 2228 EC	0,97 1,05 1,05	11 11 11	18 23 23
	179 195 -	216,7 250,6 250,6	169 180 180	3 4 4	3 4 4	- 3,7 3,7	154 157 157	- 175 175	182 199 183	235 282,5 282,5	2,5 3 3	- - 3	0,3 0,15 0,15	– HJ 328 EC HJ 328 EC	- 2,05 2,05	- 15 15	- 25 25
	195 - 195	250,6 251,7 251,7	180 180 180	4 4 4	4 4 4	- 9,7 9,7	157 157 157	- 175 175	199 183 199	282,5 282,5 282,5	3 3 3	- 3 -	0,15 0,38 0,38	– HJ 2328 EC HJ 2328 EC	- 2,15 2,15	- 15 15	- 31 31
	195	251,7	180	4	4	-	157	-	199	282,5	3	-	0,38	-	-	-	-
150	- 193 -	199,05 232,2 232,2	169,5 182 182	2,1 3 3	1,5 3 3	4,9 - 2,5	158 164 164	167 - 178	173 196 186	215 254,6 254,6	2 2,5 2,5	1,5 - 2,5	0,15 0,15 0,15	– HJ 230 EC	- - 1,25	- - 12	- - 19,5

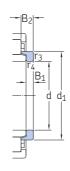
d **150 – 180** mm

NJ

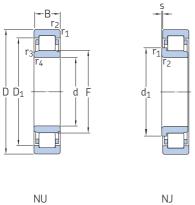

NU

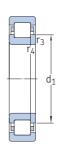

Principal dimensions		Basic load ratings dynamic static		Fatigue load limit			Mass	Designations Bearing with	Alternative	
d	D	В	С	C_0	P_u	speed	speed		standard cage	standard cage ¹⁾
mm			kN		kN	r/min		kg	_	
150 cont.	270 270 270	45 73 73	510 735 735	600 930 930	64 100 100	2 600 2 600 2 600	2 800 2 800 2 800	12 18,5 19	NJ 230 ECMNU 2230 ECMNJ 2230 ECM	J, ML ML ML
	320 320 320	65 65 108	900 900 1 370	965 965 1 630	100 100 170	2 200 2 200 2 200	2 600 4 000 4 000	26,5 26,5 42,5	NU 330 ECMNJ 330 ECMLNU 2330 ECML	ML M -
	320	108	1 370	1 630	170	2 200	4 000	43	► NJ 2330 ECML	-
160	240 290 290	38 48 48	229 585 585	325 680 680	35,5 72 72	3 000 2 400 2 400	4 800 2 600 2 600	6 14 15,5	 NU 1032 ML NU 232 ECM NUP 232 ECM 	M ML -
	290 290 290	48 80 80	585 930 930	680 1 200 1 200	72 129 129	2 400 2 400 2 400	4 000 4 000 4 000	14,5 23 23,5	 NJ 232 ECML NU 2232 ECML NJ 2232 ECML 	M M M
	340 340 340	68 68 114	1 000 1 000 1 250	1 080 1 080 1 730	112 112 173	2 000 2 000 1 800	3 600 3 600 3 600	31 31 50	NJ 332 ECMLNU 332 ECMLNU 2332 ECML	M M -
	340	114	1 250	1 730	173	1 800	3 600	50,5	► NJ 2332 ECML	-
170	260 260 310	42 42 52	275 275 695	400 400 815	41,5 41,5 85	2 800 2 800 2 200	4 300 4 300 3 800	8 8,2 17,5	 NU 1034 ML NJ 1034 ML NJ 234 ECML 	M M M
	310 310 310	52 86 86	695 1 060 1 060	815 1 340 1 340	85 140 140	2 200 2 200 2 200	3 800 3 800 3 800	17,5 28 29	NU 234 ECMLNU 2234 ECMLNJ 2234 ECML	M - -
	360 360 360	72 120 120	952 1 450 1 450	1 180 2 040 2 040	116 204 204	1 700 1 700 1 700	2 200 3 400 3 400	33 60,5 60,5	NU 334 ECMNJ 2334 ECMLNU 2334 ECML	- - -
180	280 280 320	46 46 52	336 336 720	475 475 850	51 51 88	2 600 2 600 2 200	4 000 4 000 3 600	10,5 10,5 18,5	NJ 1036 ML NU 1036 ML NJ 236 ECML	M M M
	320 320 320	52 86 86	720 1 100 1 100	850 1 430 1 430	88 146 146	2 200 2 200 2 200	3 600 3 600 3 600	18,5 30 30	 NU 236 ECML NJ 2236 ECML NU 2236 ECML 	M M M


SKF Explorer bearing


► Popular item

1) When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage. For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).

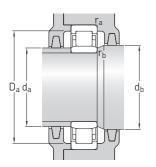


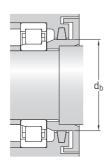

Angle ring

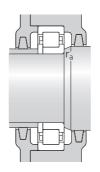
Dimer	nsions						Abutn	nent and	l fillet dii	mension	S		Calcu- lation factor	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	k _r			В ₁	B ₂
mm							mm						_	-	kg	mm	
150 cont.	193 - 194	232,2 232,2 232,2	182 182 182	3 3 3	3 3 3	2,5 4,9 4,9	164 164 164	178 178 178	196 186 197	254,6 254,6 254,6	2,5 2,5 2,5	- 2,5 -	0,15 0,2 0,2	HJ 230 EC HJ 2230 EC HJ 2230 EC	1,25 1,35 1,35	12 12 12	19,5 24,5 24,5
	_ 209 _	268,7 269,8 269,8	193 193 193	4 4 4	4 4 4	4 4 10,5	167 167 167	188 188 188	196 213 196	302,2 302,2 302,2	3 3 3	3 - 3	0,15 0,23 0,38	HJ 330 EC	2,3 2,3 -	15 15 -	25 25 –
	209	269,8	193	4	4	10,5	167	188	213	302,2	3	-	0,38	-	-	-	-
160	- - 206	210,8 248,6 248,6	180 195 195	2,1 3 3	1,5 3 3	5,2 2,7 -	167 175 175	177 191 -	183 198 210	230 274,2 274,2	2 2,5 2,5	1,5 2,5 -	0,15 0,15 0,15	HJ 1032 HJ 232 EC -	0,72 1,5 -	10 12 -	19 20 -
	206 - 205	249,6 251,1 251,1	195 193 193	3 3 3	3 3 3	2,7 4,5 4,5	175 174 174	191 189 189	210 196 209	274,2 274,2 274,2	2,5	- 2,5 -	0,23 0,3 0,3	HJ 232 EC HJ 2232 EC HJ 2232 EC	1,5 1,55 1,55	12 12 12	20 24,5 24,5
	221 - -	286 286 286	204 204 204	4 4 4	4 4 4	4 4 11	177 177 177	199 199 199	225 207 207	321,9 321,9 321,9	3 3 3	- 3 3	0,23 0,23 0,38	HJ 332 EC HJ 332 EC -	2,6 2,6 -	15 15 -	25 25 -
	221	286	204	4	4	11	177	199	225	321,9	3	-	0,38	-	-	-	_
170	- 201 220	226,9 226,9 268,5	193 193 207	2,1 2,1 4	2,1 2,1 4	5,8 5,8 2,9	180 180 188	189 189 203	197 206 224	250 250 292,4	2 2 3	2 -	0,15 0,15 0,23	HJ 1034 HJ 1034 HJ 234 EC	0,93 0,93 1,65	11 11 12	21 21 20
	- - 220	268,5 269,9 269,9	207 205 205	4 4 4	4 4 4	2,9 4,2 4,2	188 187 187	203 201 201	210 208 226	292,4 292,4 292	3 3 3	3 3 -	0,23 0,3 0,3	HJ 234 EC HJ 2234 EC HJ 2234 EC	1,65 1,8 1,8	12 12 12	20 24 24
	- 234 -	300,45 300,2 300,2	218 216 216	4 4 4	4 4 4	4,6 10 10	187 186 186	213 211 211	221 238 219	341,6 341,6 341,6	3 3 3	3 - 3	0,15 0,38 0,38	- - -	- - -	- - -	_ _ _
180	215 - 230	246,1 246,1 278,6	205 205 217	2,1 2,1 4	2,1 2,1 4	6,1 6,1 2,9	190 190 198	202 202 213	218 208 234	270 270 302,2	2 2 3	_ 2 _	0,15 0,15 0,23	– HJ 1036 HJ 236 EC	- 1,25 1,7	- 12 12	- 22,5 20
	- 229 -	278,6 280 280	217 215 215	4 4 4	4 4 4	2,9 4,2 4,2	198 197 197	213 211 211	220 233 218	302,2 302,2 302,2	3 3 3	3 - 3	0,23 0,3 0,3	HJ 236 EC HJ 2236 EC HJ 2236 EC	1,7 1,9 1,9	12 12 12	20 24 24

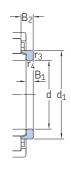
6.1 Single row cylindrical roller bearings

d **180 – 220** mm

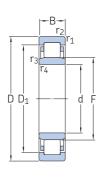

NJ NUP

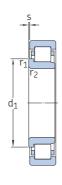

Princip	al dimens	sions	Basic loa dynamic	d ratings static	Fatigue load limit		Limiting	Mass	Designations Bearing with	Alternative
d	D	В	С	C_0	P_u	speed	speed		standard cage	standard cage ¹
mm			kN		kN	r/min		kg	_	
180 ont.	380 380 380	75 75 126	1 020 1 020 1 610	1 290 1 290 2 240	125 125 216	1 600 1 600 1 600	2 200 2 200 3 200	42,5 44 69,5	NU 336 ECM NJ 336 ECM NU 2336 ECML	- -
	380	126	1 610	2 240	216	1 600	3 200	70,5	NJ 2336 ECML	_
190	290 290 340	46 46 55	347 347 800	500 500 965	53 53 98	2 600 2 600 2 000	3 800 3 800 3 400	11 11 22	NJ 1038 ML NU 1038 ML NJ 238 ECML	M M M
	340 340 340	55 55 92	800 800 1 220	965 965 1 600	98 98 160	2 000 2 000 2 000	3 400 3 400 3 400	22,5 22,5 35,5	 NU 238 ECML NUP 238 ECML NU 2238 ECML 	М М М
	340 400 400	92 78 132	1 220 1 140 1 830	1 600 1 500 2 550	160 143 236	2 000 1 500 1 500	3 400 2 000 3 000	37 50 80,5	NJ 2238 ECML ► NU 338 ECM NU 2338 ECML	M - -
	400	132	1 830	2 550	236	1 500	3 000	82	NJ 2338 ECML	_
200	310 360 360	51 58 58	380 880 880	570 1 060 1 060	58,5 106 106	2 400 1 900 1 900	3 600 3 200 3 200	14 26,5 27	 NU 1040 ML NU 240 ECML NJ 240 ECML 	М М М
	360 360 420	98 98 80	1 370 1 370 1 230	1 800 1 800 1 630	180 180 150	1 900 1 900 1 400	3 200 3 200 2 800	44 44 56,5	NJ 2240 ECML NJ 2240 ECML NJ 340 ECML	- -
	420 420 420	80 138 138	1 230 1 980 1 980	1 630 2 800 2 800	150 255 255	1 400 1 400 1 400	2 800 2 800 2 800	57 92,5 94	NU 340 ECML NU 2340 ECML NJ 2340 ECML	- - -
220	340 340 400	56 56 65	495 495 1 060	735 735 1 290	73,5 73,5 125	2 200 2 200 1 700	3 200 3 200 3 000	18,5 18,5 37	NJ 1044 ML ► NU 1044 ML ► NJ 244 ECML	M - M
	400 400 400	65 65 108	1 060 1 060 1 570	1 290 1 290 2 280	125 125 212	1 700 1 700 1 600	3 000 3 000 3 000	37 37,5 58	► NU 244 ECML NUP 244 ECML ► NU 2244 ECML	M M -
	400 460 460	108 88 88	1 570 1 210 1 210	2 280 1 630 1 630	212 150 150	1 600 1 500 1 500	3 000 1 700 1 700	60 73,5 75	NJ 2244 ECML NJ 344 M ► NU 344 M	- - -
	460	145	2 380	3 450	310	1 300	2 600	118	► NU 2344 ECML	_

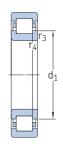

SKF Explorer bearing


► Popular item

1) When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage. For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).

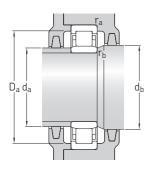


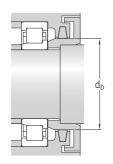


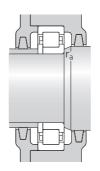

Angle ring

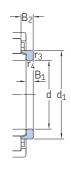
Dimer	nsions						Abutn	nent and	l fillet dir	mension	s		Calcu- lation factor	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	k _r			B ₁	B ₂
mm							mm						_	-	kg	mm	
180 cont.	- 250 -	318,6 318,6 321,4	231 231 227	4 4 4	4 4 4	4,2 4,2 10,5	197 197 196	226 226 222	234 254,5 230	361,3 361 361,3	3 3 3	3 - 3	0,15 0,15 0,38	- - -	- - -	- - -	- - -
	248	321,4	227	4	4	10,5	196	222	252	361	3	_	0,38	-	_	_	-
190	225 - 244	256,1 256,1 295	215 215 230	2,1 2,1 4	2,1 2,1 4	6,1 6,1 3	200 200 207	212 212 226	231 219 248	280 280 321,9	2 2 3	_ 2 _	0,15 0,15 0,23	HJ 1038 HJ 1038 HJ 238 EC	1,35 1,35 2,2	12 12 13	22,5 22,5 21,5
	- 244 -	295 295 296,4	230 230 228	4 4 4	4 4 4	3 - 5	207 207 207	226 - 224	233 248 231	321,9 321,9 321,9	3 3 3	3 - 3	0,23 0,23 0,3	HJ 238 EC - -	2,2 - -	13 - -	21,5 - -
	243 - -	296,4 336,3 342,75	228 245 240	4 5 5	4 5 5	5 4,3 9,5	207 210 209	224 240 234	247 249 244	322 380 380	3 4 4	_ 4 4	0,3 0,15 0,38	– HJ 338 EC –	- 4,3 -	- 18 -	- 29 -
	262	342,75	240	5	5	9,5	209	234	266	378	4	_	0,38	-	_	_	_
200	- - 258	269 311,5 311,5	229 243 243	2,1 4 4	2,1 4 4	7 2,6 2,6	211 217 217	225 238 238	234 247 262	300 341,6 341,6	2 3 3	2 3 -	0,15 0,23 0,23	HJ 1040 HJ 240 EC HJ 240 EC	1,65 2,55 2,55	13 14 14	25,5 23 23
	256 - 278	312,9 312,9 352,4	241 241 258	4 4 5	4 4 5	5,1 5,1 6	217 217 220	236 236 253	260 245 282	342 341,6 400	3 3 4	- 3 -	0,3 0,3 0,23	- -	- - -	- - -	- - -
	- - 278	352,4 357,6 357,6	258 253 253	5 5 5	5 5 5	6 9,4 9,4	220 220 220	253 247 247	262 257 282	399,8 399,8 399,8	4 4 4	4 4 -	0,23 0,38 0,38	- - -	- - -	- - -	- - -
220	262 - 284	296,2 296,2 343,7	250 250 268	3 3 4	3 3 4	7,5 7,5 2,3	233 233 238	246 246 263	266 254 288	328 328 383	2,5 2,5 3	_ 2,5 _	0,15 0,15 0,23	HJ 1044 HJ 1044 HJ 244 EC	2,15 2,15 3,25	14 14 15	27 27 25
	_ 284 _	343,7 343,7 350	268 268 259	4 4 4	4 4 4	2,3 - 7,9	238 238 237	263 - 254	272 288 263	383 383 383	3 3 3	3 - 3	0,23 0,23 0,3	HJ 244 EC - -	3,25 - -	15 - -	25 - -
	278 307 -	350 371 371	259 284 284	4 5 5	4 5 5	7,9 5,2 5,2	237 240 240	254 277 277	282 311 288	383 440 440	3 4 4	- - 4	0,3 0,15 0,15	<u>-</u> -	- - -	- - -	- - -
	_	391	277	5	5	10,4	238	272	272	442	4	4	0,1	_	_	_	_

541

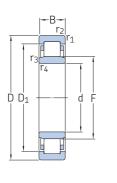

NU

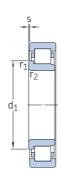

NJ


NUP


Princip	al dimens	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designations Bearing with	Alternative
d	D	В	С	C_0	P_{u}	speed	speed		standard cage	standard cage ¹⁾
mm			kN		kN	r/min		kg	-	
240	360 440 440	56 72 72	523 952 952	800 1 370 1 370	78 129 129	2 000 1 600 1 600	3 000 2 200 2 200	19,5 51,5 53	NU 1048 MLNU 248 MANJ 248 MA	M - -
	440 440 440	72 120 120	952 1 450 1 450	1 370 2 360 2 360	129 216 224	1 600 1 500 1 500	2 200 2 200 2 200	53 84 86	NUP 248 MA ► NU 2248 MA ► NJ 2248 MA	- - -
	500 500 500	95 95 155	1 450 1 450 2 750	2 000 2 000 4 000	180 180 345	1 300 1 300 1 200	2 000 2 000 2 400	94,5 98,5 137	NU 348 MA NJ 348 MA ► NU 2348 ECML	- - -
260	400 400 480	65 65 80	627 627 1 170	965 965 1 700	96,5 96,5 150	1 800 1 800 1 400	2 800 2 800 2 000	29,5 30 68,5	 NU 1052 ML NJ 1052 ML NU 252 MA 	M M -
	480 480 480	80 80 130	1 170 1 170 1 790	1 700 1 700 3 000	150 150 265	1 400 1 400 1 300	2 000 2 000 2 000	69 72 112	 NJ 252 MA NUP 252 MA NJ 2252 MA 	- - -
	480 540 540	130 102 165	1 790 1 940 3 140	3 000 2 700 4 550	265 236 400	1 400 1 100 1 100	2 000 1 800 1 900	110 121 196	► NU 2252 MA NU 352 ECMA NJ 2352 ECMA	- - -
	540	165	3 190	4 550	400	1 100	1 800	193	NU 2352 ECMA	-
280	420 460 500	65 146 80	660 2 290 1 140	1 060 3 900 1 800	102 335 156	1 700 1 200 1 400	2 600 2 000 1 900	31 101 73	► NU 1056 ML NU 3156 ECMA NJ 256 MA	M - -
	500 500 580	80 130 175	1 190 2 330 2 700	1 800 3 750 4 300	156 320 365	1 400 1 200 1 000	1 900 2 200 1 700	71,5 115 230	 NU 256 MA NU 2256 ECML NU 2356 MA 	- - -
300	460 460 460	74 74 95	858 858 1 510	1370 1370 2600	129 129 245	1 500 1 500 1 300	2 000 2 000 2 000	46 46 62	NJ 1060 MA NU 1060 MA NU 2060 ECMA	- - -
	540 540 620	85 140 109	1 420 2 090 2 330	2 120 3 450 3 350	183 300 280	1 300 1 200 950	1 400 1 800 1 200	89,5 145 174	 NU 260 M NU 2260 MA NU 360 ECM 	- -
	620	185	4 020	5 850	480	950	1 600	270	NU 2360 ECMA	-

Popular item
 When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage.
 For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).



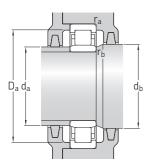


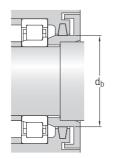


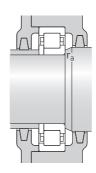
Angle ring

Dime	nsions						Abutr	nent and	d fillet di	mensior	ns		Calcu- lation factor	Angle ring Designation	Mass	Dime	ensions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	k _r			B ₁	B ₂
nm							mm						-	-	kg	mm	
240	-	316,2	270	3	3	7,5	252	266	274	348	2,5	2,5	0,15	HJ 1048	2,25	14	27
	-	365	295	4	4	3,4	257	288	299	423	3	3	0,15	-	-	-	-
	313	365	295	4	4	3,4	257	288	317	423	3	-	0,15	-	-	-	-
	313	365	295	4	4	-	257	-	316	423	3	-	0,15	-	_	-	-
	-	365	295	4	4	4,3	257	284	299	423	3	3	0,2	-	_	-	-
	313	365	295	4	4	4,3	257	284	317	423	3	-	0,2	-	_	-	-
	- 322 -	410 403 425	310 310 299	5 5 5	5 5 5	5 5,6 1,5	258 260 258	305 302 294	314 339 314	482 480 482	4 4 4	4 - 4	0,1 0,15 0,38	- -	- - -	- - -	- - -
260	-	353,1	296	4	4	8	275	292	300	385	3	3	0,15	HJ 1052	3,4	16	31,
	309	353,1	296	4	4	8	275	292	313	385	3	-	0,15	HJ 1052	3,4	16	31,
	-	397	320	5	5	3,4	280	313	324	460	4	4	0,15	-	-	-	-
	340	397	320	5	5	3,4	280	313	344	460	4	-	0,15	-	-	-	-
	340	397	320	5	5	-	280	-	344	460	4	-	0,23	-	-	-	-
	340	397	320	5	5	4,3	280	309	344	460	4	-	0,3	-	-	-	-
	-	397	320	5	5	4,3	280	309	324	460	4	4	0,2	-	-	-	-
	-	455	337	6	6	4,2	286	330	341	514	5	5	0,15	-	-	-	-
	350	458	324	6	6	5	284	320	355	516	5	-	0,4	-	-	-	-
	-	463	324	6	6	1,8	286	310	323	514	5	5	0,25	-	-	-	-
280	-	373,1	316	4	4	8	295	312	321	405	3	3	0,15	HJ 1056	3,6	16	31,
	-	406	321	5	5	0,4	300	316	325	440	4	4	0,21	-	-	-	-
	360	417	340	5	5	3,8	300	333	364	480	4	-	0,15	-	-	-	-
	-	417	340	5	5	3,8	300	333	344	480	4	4	0,15	-	-	-	-
	-	433	333	5	5	4,5	298	328	331	482	4	4	0,3	-	-	-	-
	-	467	362	6	6	6,6	306	347	366	554	5	5	0,25	-	-	-	-
00	356	402	340	4	4	9,7	317	335	360	443	3	-	0,1	-	-	-	-
	-	402	340	4	4	9,7	317	335	344	443	3	3	0,15	-	-	-	-
	-	410	341	4	4	4,1	317	336	345	443	3	3	0,14	-	-	-	-
	-	451	364	5	5	4,8	320	358	368	520	4	4	0,15	-	-	-	-
	-	451	364	5	5	5,6	320	352	368	520	4	4	0,2	-	-	-	-
	-	505	385	7,5	7,5	4	328	380	368	592	6	6	0,1	-	-	-	-
	-	535	371	7,5	7,5	11	332	365	375	588	6	6	0,27	-	-	-	-

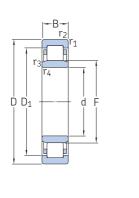
NU

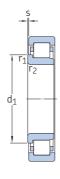

NJ

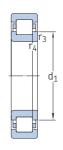

NUP


Princip	oal dimens	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed	Mass	Designations Bearing with standard cage	Alternative standard cage ¹
b	D	В	С	C_0	P_u	speeu	speeu		stanuaru cage	Standard Cage-
mm			kN		kN	r/min	,	kg	_	
320	440 480 480	56 74 74	693 880 880	1 200 1 430 1 430	110 132 132	1 500 1 400 1 400	2 000 1 400 1 400	26 48 48,5	NU 1964 ECMA ► NJ 1064 MA ► NU 1064 MA	- - -
	580 580 670	92 150 200	1 830 3 190 4 730	2 750 5 000 7 500	232 415 600	1 000 1 000 850	1 200 1 900 1 500	115 176 370	NU 264 ECM NU 2264 ECML NU 2364 ECMA	- - -
340	460 460 520	56 72 133	682 1 020 2 200	1 200 2 040 4 150	108 186 365	1 400 1 400 1 100	1 900 1 900 1 700	27,5 37 109	NU 1968 ECMA NJ 2968 ECMA NU 3068 MA	- - -
	580 620 710	190 165 212	3 470 2 640 5 610	5 850 4 500 8 650	490 365 680	950 1 000 800	1 600 1 500 1 400	217 226 439	NU 3168 ECMA NU 2268 MA NU 2368 ECMA	- - -
360	480 540 600	56 82 192	781 1 100 3 410	1 460 1 830 6 100	129 163 490	1 400 1 300 900	2 000 1 600 1 500	29 67,5 226	NU 1972 ECMP NU 1072 MA NU 3172 ECMA	- - -
	650 750	170 224	2 920 5 010	4 900 8 150	400 630	950 850	1 400 1 300	257 510	NU 2272 MA NU 2372 ECMA	
380	480 480 560	46 46 82	561 561 1 140	1 120 1 120 1 930	98 98 170	1 300 1 300 1 200	2 000 2 000 1 600	20 21 70	NU 1876 ECMP NJ 1876 ECMP ► NU 1076 MA	- - -
	560 560 680	82 135 175	1 140 2 380 3 960	1 930 4 750 6 400	170 400 510	1 200 1 000 850	1 600 1 800 1 300	71 109 288	 NJ 1076 MA NU 3076 ECMP NU 2276 ECMA 	- - -
400	500 500 500	46 46 46	572 572 572	1 180 1 180 1 180	100 96,5 96,5	1 300 1 300 1 300	1 900 1 900 1 900	21,5 22 22,5	NU 1880 MP NJ 1880 MP NUP 1880 MP	- - -
	540 540 600	82 106 90	1 380 1 760 1 380	2 800 3 750 2 320	245 320 196	1 200 1 000 1 100	1 600 1 500 1 500	57 74,5 90	NJ 2980 ECMA NU 3980 ECMA ► NU 1080 MA	- - -
	600	90	1 380	2 320	196	1 100	1 500	93	NJ 1080 MA	-

Popular item
 When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage.
 For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).



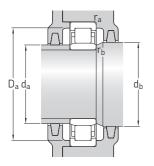

Dime	nsions						Abutn	nent and	l fillet di	mension	ns		Calcu- lation	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	factor k _r			В ₁	B ₂
mm							mm						_	_	kg	mm	
320	-	404	348	3	3	1,5	333	347	355	427	2,5	2,5	0,11	-	-	-	-
	376	422	360	4	4	9,7	335	355	380	465	3	-	0,1	-	-	-	-
	-	422	360	4	4	9,7	335	355	364	465	3	3	0,15	-	-	-	-
	-	494	392	5	5	4,8	338	386	394	562	4	4	0,13	-	-	-	-
	-	506	380	5	5	5	338	376	394	562	4	4	0,1	-	-	-	-
	-	565	405	7,5	7,5	11	348	400	394	642	6	6	0,15	-	-	-	-
340	-	421	370	3	3	1,8	353	365	374	447	2,5	2,5	0,07	-	-	-	-
	377	421	367	3	3	3,8	353	363	381	447	2,5	-	0,07	-	-	-	-
	-	465	385	5	5	7	360	380	389	502	4	4	0,15	-	-	-	-
	-	507	390,5	5	5	14	360	388	403	560	4	4	0,27	-	-	-	-
	-	515	416	6	6	8	366	401	421	594	5	5	0,3	-	-	-	-
	-	602	425	7,5	7,5	11	368	420	389	682	6	6	0,15	-	-	-	-
360	-	438	387,5	3	3	2	375	382	392	465	2,5	2,5	0,1	-	-	-	-
	-	475	405	5	5	6,5	378	400	410	522	4	4	0,15	-	-	-	-
	-	475	420	5	5	9,4	380	407	425	580	4	4	0,21	-	-	-	-
		542 617	437 465	6 7,5	6 7,5	16,7 10	386 392	428 453	442 470	624 718	5 6	5 6	0,2 0,25	-		_	_
380	-	449	406	2,1	2,1	2,5	390	400	410	470	1	1	0,1	-	_	-	-
	415	449	406	2,1	2,1	1,5	392	400	421	469	2	-	0,1	-	_	-	-
	-	495	425	5	5	10,8	398	420	430	542	4	4	0,15	-	_	-	-
	443	495	425	5	5	10,8	398	420	448	542	4	-	0,1	-	-	-	-
	-	506	425	5	5	8,5	398	417	430	542	4	4	0,17	-	-	-	-
	-	595	451	6	6	8,3	406	445	457	654	5	5	0,2	-	-	-	-
400	-	465	423	2,1	2,1	3,3	410	419	428	490	2	2	0,05	-	-	-	_
	433	465	423	2,1	2,1	3,3	410	419	436	490	2	-	0,05	-	-	-	_
	432	464	423	2,1	2,1	-	410	-	438	488	2	-	0,1	-	-	-	_
	448	495	435	4	4	0,9	415	430	454	525	3	-	0,15	-	-	-	-
	-	500	434,5	4	4	4	415	429	439	524	3	3	0,1	-	-	-	-
	-	527	450	5	5	14	418	446	455	582	4	4	0,15	-	-	-	-
	472	526	450	5	5	5	418	445	478	582	4	_	0,15	-	-	_	-

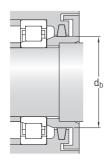

545

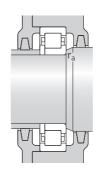
6.1 Single row cylindrical roller bearings

d **420 – 530** mm

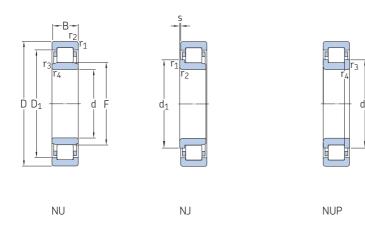
NU


NJ

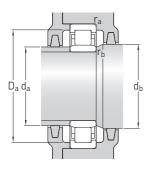

NUP

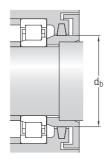

Princip	al dimens	sions	Basic load dynamic	l ratings static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed	Mass	Designations Bearing with standard cage	Alternative standard cage ¹⁾
d	D	В	С	C_0	P_{u}	эрсси	эреси		standard cage	standard cage-/
mm			kN		kN	r/min		kg	_	
420	520	46	572	1 200	102	1 200	1 800	22	NU 1884 MP	-
	560	82	1 400	2 850	255	1 100	1 500	60	NU 2984 ECMA	-
	560	106	1 680	3 650	310	950	1 500	79,5	NUP 3984 ECMA	-
	620 700	90 224	1 420 4 950	2 450 9 000	200 695	1 100 750	1 400 1 300	94 365	NU 1084 MA NU 3184 ECMA	
440	600	74	1 060	2 000	170	1 100	1 400	53	NU 1988 MA	-
	600	95	1 870	3 900	340	1 100	1 600	81	► NU 2988 ECML	-
	600	95	1 870	3 900	340	1 100	1 600	83	NJ 2988 ECML	-
	650 720	122 226	2 550 5 120	4 900 10 000	390 765	8 500 700	1 300 1 200	145 388	NU 2088 ECMA NU 3188 ECMA/HB1	
460	580	72	1 080	2 400	193	1 100	1 400	48	NJ 2892 ECMA	-
	620	95	1 720	3 600	310	1 000	1 300	89	NJ 2992 ECMA	-
	620	118	2 050	4 550	375	850	1 300	112	NUP 3992 ECMA	-
	680	100	1 650	2 850	224	950	1 200	115	NU 1092 MA	-
	760	240	5 280	9 650	735	670	1 100	450	NU 3192 ECMA/HB1	-
	830	165	4 180	6 800	510	750	1 100	415	NU 1292 MA	-
	830	212	5 120	8 650	655	700	1 100	527	► NU 2292 MA	-
480	650	78	1 170	2 240	183	950	1 300	76	NU 1996 MA	-
	700	100	1 680	3 000	232	900	1 200	130	NU 1096 MA	-
	700	128	2 860	5 600	430	750	1 200	179	NU 2096 ECMA	-
	790	248	5 940	10 800	800	630	1 100	507	NU 3196 ECMA/HB1	-
500	670	100	2 050	4 250	355	900	1 200	107	NU 29/500 ECMA	-
	720	100	1 720	3 100	236	900	1 100	135	► NU 10/500 MA	-
	720	128	2 920	5 850	440	750	1 100	180	NU 20/500 ECMA	-
	720	167	3 800	7 350	560	750	1 100	233	NU 30/500 ECMA	-
	830	264	6 440	12 000	880	600	1 000	595	NU 31/500 ECMA/HB:	1 -
	920	185	5 280	8 500	620	670	950	575	NU 12/500 MA	-
530	710	106	2 380	5 000	390	850	1 100	130	NUP 29/530 ECMA	-
	780	112	2 290	4 050	305	800	1 000	190	NU 10/530 MA	-
	780	145	3 740	7 350	550	670	1 000	253	NU 20/530 ECMA	-
	870	272	7 480	14 600	1 040	560	950	660	NU 31/530 ECMA/HB:	1 -

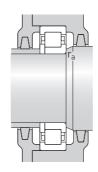
Popular item
 When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage.
 For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).



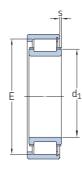
Dime	nsions						Abutn	nent and	l fillet di	mensior	ıs		Calcu- lation	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	factor k _r			B ₁	B ₂
mm							mm						-	_	kg	mm	
420	- - 468	488 512 518	447 449 455	2,1 4 4	2,1 4 4	3,3 2,4 -	431 435 436	442 444 -	452 463 472	508 545 544	2 3 3	2 3 -	0,1 0,07 0,15	- - -	_ _ _	- - -	_ _ _
		547 613	470 485	5 6	5 6	14 14,2	438 446	466 478	475 490	602 694	4 5	4 5	0,15 0,21	<u>-</u>		_	
440	- - 496	544 552 551	482 481,5 481,5	4 4 4	4 4 4	5,5 2,4 1,5	455 455 455	477 476 475	487 487 502	585 584 585	3 3 3	3 3 -	0,07 0,07 0,15	-	- - -	- - -	- - -
		577 637	487 509	6 6	6 6	11,9 12,5	463 466	483 500	492 514	627 694	5 5	5 5	0,14 0,21	<u>-</u>		_	
460	499 508 515	543 566 571	489 495 501	3 4 4	3 4 4	1,1 4 -	473 475 476	485 490 -	505 515 520	567 605 604	2,5 3 3	- - -	0,07 0,07 0,15	-	- - -	- - -	- - -
	- - -	600 662 715	516 529,3 554	6 7,5 7,5	6 7,5 7,5	15,9 13 6,4	483 492 492	511 519 542	521 534 559	657 728 798	5 6 6	5 6 6	0,15 0,27 0,13	- - -	- - -	- - -	- - -
	_	706	554	7,5	7,5	16,5	492	542	559	798	6	6	0,2	-	_	-	_
480	- - -	592 620 629	525 536 533	5 6 6	5 6 6	6,5 15,9 12,7	498 503 503	517 531 529	530 541 538	632 677 677	4 5 5	4 5 5	0,07 0,15 0,14	- - -	- - -	- - -	- - -
	_	699	547	7,5	7,5	16	512	536	552	758	6	6	0,21	-	_	-	-
500	- - -	619 640 649	539,5 556 553	5 6 6	5 6 6	3 11,2 12,7	518 523 523	534 550 549	549 561 558	652 697 697	4 5 5	4 5 5	0,1 0,15 0,14	-	- - -	- - -	- - -
	- - -	650 728 780	540,8 576 603,1	6 7,5 7,5	6 7,5 7,5	8,6 14,5 13,9	523 532 532	532 564 593	546 581 610	697 798 888	5 6 6	5 6 6	0,21 0,21 0,17	- - -	- - -	- - -	- - -
530	590 - -	656 692 704	573 593 591	5 6 6	5 6 6	- 10,4 6,8	548 553 553	- 585 587	595 598 596	692 757 757	4 5 5	- 5 5	0,15 0,15 0,2	- - -	- - -	- - -	- - -
	_	764	612	7,5	7,5	3	562	605	617	838	6	6	0,21	_	_	_	_


6.1 Single row cylindrical roller bearings d 560 – 1 000 mm

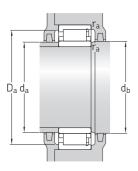


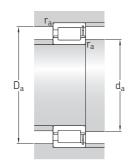

Principa	al dimensi	ions	Basic load dynamic	l ratings static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed	Mass	Designations Bearing with standard cage	Alternative
d	D	В	С	C_0	P_u	Speeu	speeu		Standard Caye	standard cage ¹⁾
mm			kN		kN	r/min		kg	-	
560	750 820 820	112 115 150	2 460 2 330 3 800	5 700 4 250 7 650	450 310 560	800 750 630	1 000 1 000 1 000	145 210 290	NU 29/560 ECMA NU 10/560 MA NU 20/560 ECMA	- - -
	1 030 1 030	206 272	7 210 9 900	11 200 16 600	780 1 160	560 530	800 800	805 1 090	NU 12/560 MA NU 22/560 ECMA	
600	730 870 870	60 118 155	897 2 750 4 180	2 080 5 100 8 000	108 365 570	800 700 600	1 000 900 900	54 240 325	NU 18/600 ECMA/HB1 NU 10/600 MA NU 20/600 ECMA	- - -
630	780 850 850	69 100 128	1 100 2 240 3 300	2 500 4 400 7 200	183 315 510	750 700 700	950 900 900	75 168 224	NJ 18/630 ECMA/HB1 NU 19/630 ECMA/HB1 NU 29/630 ECMA/HB1	-
	850 920	128 170	3 300 4 730	7 200 9 500	510 670	700 560	900 850	230 400	NJ 29/630 ECMA/HB1 NU 20/630 ECMA	_
710	870 950 1 030	95 140 140	1 940 3 740 4 680	5 000 8 300 8 500	375 570 570	630 600 560	850 800 750	130 297 415	NJ 28/710 ECMA NU 29/710 ECMA NU 10/710 ECMA	- - -
	1 030	185	5 940	12 000	815	480	700	540	NU 20/710 ECMA/HB1	-
750	1 090 1 090	150 195	4 730 7 040	8 800 14 600	585 980	430 430	670 670	487 635	NU 10/750 ECMA/HB1 NU 20/750 ECMA	_
800	980 1 150	82 200	1 720 7 040	4 150 14 600	190 950	530 400	700 630	137 715	NU 18/800 ECMA NU 20/800 ECMA	
850	1 030 1 220	106 212	2 120 8 420	6 000 18 600	240 1 200	500 360	670 560	193 880	NU 28/850 MA NU 20/850 ECMA	- -
900	1 090 1 180	85 165	1 980 5 280	4 900 12 500	240 800	450 430	600 560	169 514	NU 18/900 ECMA NU 29/900 ECMA/HB1	-
1 000	1 220 1 220	100 100	2 640 2 640	6 550 6 550	400 400	400 400	530 530	265 269	NU 18/1000 MA/HB1 NUP 18/1000 MA/HB1	

¹⁾ When ordering bearings with an alternative standard cage the suffix of the standard cage has to be replaced by the suffix of the alternative cage. For example NU .. ECP becomes NU .. ECML (for permissible speed → page 511).

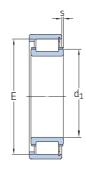


Dimen	sions						Abutm	ent and	fillet dir	nension	s		Calcu- lation	Angle ring Designation	Mass	Dime	nsions
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b , D _a min.	D _a max.	r _a max.	r _b max.	factor k _r			B ₁	B ₂
mm							mm						-	_	kg	mm	
560	- - -	693 726 741	608 625 626	5 6 6	5 6 6	4,5 12,3 6,7	578 583 583	600 617 616	613 630 631	732 797 797	4 5 5	4 5 5	0,07 0,15 0,14	- - -	- - -	- - -	_ _ _
		892 900	668 664	9,5 9,5	9,5 9,5	10,3 3	600 594	657 658	674 674	990 990	8	8	0,13 0,1	-	_	- -	_
600	- - -	681 779 793	632 667 661	3 6 6	3 6 6	0,7 14 6,1	613 623 623	625 658 652	637 672 667	717 847 847	2,5 5 5	2,5 5 5	0,05 0,15 0,14	- - -	- - -	- - -	- - -
630	682 - -	724 785 782	667 683 683	4 6 6	4 6 6	1,5 4,5 7,1	645 653 653	662 678 678	685 688 688	765 827 827	3 5 5	- 5 5	0,1 0,07 0,07	- - -	- - -	- - -	- - -
	703 -	782 832	683 699	6 7,5	6 7,5	7,1 8,7	653 658	678 690	709 705	827 892	5 6	- 6	0,07 0,14	-	_ _	_	_
710	766 - -	817 875 939	751 766 778	4 6 7,5	4 6 7,5	1,5 8,7 17	728 734 738	745 760 769	771 772 783	853 648 1 002	3 5 6	- 5 6	0,15 0,1 0,15	- - -	- - -	- - -	- - -
	-	939	787	7,5	7,5	10	738	780	793	1 002	6	6	0,14	-	-	-	-
750	_	993 993	830 832	7,5 7,5	7,5 7,5	12,8 12,8	778 778	823 823	838 838	1 062 1 062	6 6	6	0,15 0,14	-	- -	- -	_
800		920 1 051	846 882	5 7,5	5 7,5	1 2	818 828	840 868	861 888	962 1 122	4 6	4 6	0,15 0,14	-		_ _	_
850	_ _	961 1 110	902 942	5 7,5	5 7,5	7 2	868 878	891 936	908 956	1 012 1 190	4 6	4 6	0,07 0,17	-	_ _	_	- -
900	_ _	1 026 1 096	948 969	5 6	5 6	4,7 5,9	918 923	942 958	956 975	1 072 1 157	4 5	4 5	0,05 0,07	-	_ _	- -	_ _
1 000	- 1 072	1 143 1 146	1 053 1 053	6	6	12,1	1 023 1 025	1 040	1 060 1 080	1 197 1 196	5 5	5 -	0,05 0,2	-	_	_	_

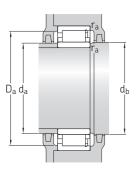


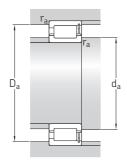


NUH .. ECMH


NCF .. ECJB

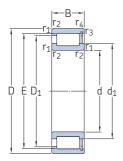
Princip	al dimens	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Speed rati	Limiting	Mass	Designation
d	D	В	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min	,	kg	-
100	180	46	400	475	57	4 000	4 500	5,1	NUH 2220 ECMH
	215	73	710	800	91,5	3 200	3 800	13	NUH 2320 ECMH
110	200	53	465	550	64	3 600	4 000	7,3	NUH 2222 ECMH
	240	80	830	965	110	3 000	3 400	18	NUH 2322 ECMH
120	215	58	550	670	76,5	3 400	3 600	9	NUH 2224 ECMH
	260	86	965	1 120	125	2 800	3 200	22,5	NUH 2324 ECMH
130	230	64	630	780	88	3 200	3 400	11	NUH 2226 ECMH
	280	93	1 120	1 340	146	2 400	3 000	28	NUH 2326 ECMH
	280	93	1 120	1 340	146	2 400	3 400	29	NCF 2326 ECJB
140	250	68	680	880	96,5	2 800	3 200	14,5	NUH 2228 ECMH
	250	68	680	880	96,5	2 800	3 600	14,5	NCF 2228 ECJB
	300	102	1 250	1 530	163	2 400	2 800	35	NUH 2328 ECMH
	300	102	1 250	1 530	163	2 400	3 200	35,5	NCF 2328 ECJB
150	270	73	780	1 040	112	2 600	2 800	18	NUH 2230 ECMH
	270	73	780	1 040	112	2 600	3 400	18	NCF 2230 ECJB
	320	108	1 430	1 760	183	2 200	2 600	42	NUH 2330 ECMH
	320	108	1 430	1 760	183	2 200	3 000	43,5	NCF 2330 ECJB
160	290	80	980	1 270	134	2 400	2 600	23	NUH 2232 ECMH
	290	80	980	1 270	134	2 400	3 000	23,5	NCF 2232 ECJB
	340	114	1 400	2 000	196	1 800	2 400	50,5	NUH 2332 ECMH
	340	114	1 400	2 000	196	1 800	2 800	50,5	NCF 2332 ECJB
	340	114	1 600	2 000	196	2 000	2 800	50,5	NCF 2332 ECJB/PEX
	340	114	1 600	2 000	196	2 000	2 400	50,5	NUH 2332 ECMH/PEX
170	310	86	1 600	1 530	156	2 200	2 400	28,5	NUH 2234 ECMH
	310	86	1 160	1 530	156	2 200	2 800	28	NCF 2234 ECJB
	360	120	1 540	2 200	216	1 700	2 200	59,5	NUH 2334 ECMH
	360	120	1 540	2 200	216	1 700	2 600	58,5	NCF 2334 ECJB
	360	120	1 760	2 200	216	1 900	2 600	58,5	NCF 2334 ECJB/PEX
	360	120	1 760	2 200	216	1 900	2 200	59,5	NUH 2334 ECMH/PEX

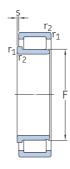

Dimen	sions					Abutm	ent and fi	llet dimen	sions			Calculation factor
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	s max.	d _a min.	d _a max.	d _b min.	D _a min.	D _a max.	r _a max.	k _r
mm						mm	,				,	-
100	_	156	119	2,1	1	113	116	122	159	167	2	0,16
	_	182	127,5	3	2,2	114	124	131	186	199	2,5	0,2
110	-	173	132,5	2,1	2,2	122	129	135	177	187	2	0,16
	-	200	143	3	2,3	124	139	146	206	225	2,5	0,2
120	-	187	143,5	2,1	2,2	132	140	146	191	201	2	0,16
	-	218	154	3	2,4	134	150	157	224	244	2,5	0,2
130	-	201	153,5	3	2,6	144	150	157	205	215	2,5	0,16
	-	235	167	4	3,1	147	163	170	241	261	3	0,2
	181	235	247	4	8,7	147	174	-	241	261	3	0,2
140	-	216	169	3	3,2	154	165	172	220	235	2,5	0,16
	179	216	225	3	4,4	154	174	-	220	235	2,5	0,16
	-	251	180	4	3,9	157	175	183	257	282	3	0,2
	195	251	264	4	9,7	157	188	-	257	282	3	0,2
150	-	233	182	3	3,3	164	178	186	237	254	2,5	0,16
	193	233	242	3	4,9	164	188	-	237	254	2,5	0,16
	-	285	193	4	4,1	167	188	196	284	302	3	0,2
	209	269	283	4	10,5	167	201	-	276	302	3	0,2
160	-	250	193	3	3	174	189	196	256	274	2,5	0,16
	205	250	261	3	4,5	174	199	-	256	274	2,5	0,16
	-	285	204	4	2,5	177	199	207	292	321	3	0,2
	221	281	300	4	11	177	213	-	290	321	3	0,2
	221	281	300	4	11	177	213	-	290	321	3	0,2
	-	285	204	4	2,5	177	199	207	292	321	3	0,2
170	-	269	205	4	2,4	187	201	208	275	292	3	0,16
	219	270	281	4	4,2	187	212	-	275	292	3	0,16
	-	301	216	4	3,8	186	211	219	308	341	3	0,2
	234	301	316	4	10	186	225	-	308	341	3	0,2
	234	301	316	4	10	186	225	-	308	341	3	0,2
	-	301	216	4	3,8	186	211	219	308	341	3	0,2



NUH .. ECMH

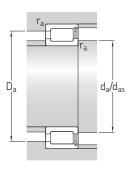
NCF .. ECJB

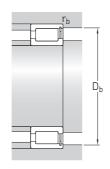

Princip	al dimens	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designation
d	D	В	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min		kg	-
180	320	86	1 200	1 600	166	2 200	2 400	29,5	NUH 2236 ECMH
	320	86	1 200	1 600	166	2 200	2 800	30	NCF 2236 ECJB
	380	126	1 720	2 400	232	1 600	2 200	68	NUH 2336 ECMH
	380	126	1 720	2 400	232	1 600	2 400	67,5	NCF 2336 ECJB
	380	126	1 960	2 400	232	1 800	2 400	67,5	NCF 2336 ECJB/PEX
	380	126	1 960	2 400	232	1 800	2 200	68	NUH 2336 ECMH/PEX
190	340	92	1 320	1 760	180	2 000	2 200	36	NUH 2238 ECMH
	340	92	1 320	1 760	180	2 000	2 600	36,5	NCF 2238 ECJB
	400	132	1 940	2 750	255	1 500	2 000	78,5	NUH 2338 ECMH
	400	132	1 940	2 750	255	1 500	2 200	78	NCF 2338 ECJB
	400	132	2 240	2 750	255	1 700	2 200	78	NCF 2338 ECJB/PEX
	400	132	2 240	2 750	255	1 700	2 000	78,5	NUH 2338 ECMH/PEX
200	360	98	1 460	2 000	200	1 900	2 200	43,5	NUH 2240 ECMH
	360	98	1 460	2 000	200	1 900	2 400	43	NCF 2240 ECJB
	420	138	2 200	3 200	300	1 400	1 900	92,5	NUH 2340 ECMH
	420	138	2 200	3 200	300	1 400	2 200	91,5	NCF 2340 ECJB
	420	138	2 550	3 200	300	1 600	2 200	91,5	NCF 2340 ECJB/PEX
	420	138	2 550	3 200	300	1 600	1 900	92,5	NUH 2340 ECMH/PEX
220	400	108	1 760	2 600	240	1 600	1 900	59	NUH 2244 ECMH
	400	108	1 760	2 600	240	1 600	2 200	58,5	NCF 2244 ECJB
	400	108	2 000	2 600	240	1 700	1 900	59	NUH 2244 ECMH/PEX
	400	108	2 000	2 600	240	1 700	2 200	58,5	NCF 2244 ECJB/PEX
	460	145	2 510	3 650	335	1 300	1 700	116	NUH 2344 ECMH
	460	145	2 510	3 650	335	1 300	2 000	116	NCF 2344 ECJB
	460	145	2 900	3 650	335	1 400	1 700	116	NUH 2344 ECMH/PEX
240	440	120	1 980	3 050	275	1 400	1 700	80	NUH 2248 ECMH
	440	120	2 279	3 050	275	1 600	1 700	80	NUH 2248 ECMH/PEX
	500	155	2 750	4 000	345	1 200	1 500	143	NUH 2348 ECMH
	500	155	3 150	4 000	345	1 300	1 500	143	NUH 2348 ECMH/PEX

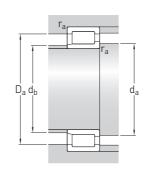


Dimen	sions					Abutm	ent and fi	llet dimen	nsions			Calculation factor
d	d ₁ ≈	D ₁ ≈	F, E	r _{1,2} min.	s max.	d _a min.	d _a max.	d _b min.	D _a min.	D _a max.	r _a max.	k _r
mm						mm						_
180	-	279	215	4	2,4	197	211	218	285	302	3	0,16
	229	279	291	4	4,2	197	222	-	285	302	3	0,16
	-	322	227	4	3,7	196	222	230	330	361	3	0,2
	247	320	339	4	10,5	196	237	-	329	361	3	0,2
	247	320	339	4	10,5	196	237	-	329	361	3	0,2
	-	322	227	4	3,7	196	222	230	311	361	3	0,2
190	-	296	228	4	3,1	207	224	231	302	321	3	0,16
	242	293	308	4	5	207	235	-	300	321	3	0,16
	-	342	240	5	4,1	209	234	244	351	380	4	0,2
	262	342	360	5	9,5	209	251	-	351	380	4	0,2
	262	342	360	5	9,5	209	251	-	351	380	4	0,2
	-	342	240	5	4,1	209	234	244	351	380	4	0,2
200	-	312	241	4	3,4	217	236	245	318	341	3	0,16
	256	312	325	4	5,1	217	249	-	318	341	3	0,16
	-	358	253	5	4,3	220	247	257	367	399	4	0,2
	275	356	377	5	9,4	220	264	-	367	399	4	0,2
	275	356	377	5	9,4	220	264	-	367	399	4	0,2
	-	358	253	5	4,3	220	247	257	367	399	4	0,2
220	-	350	259	4	2,5	237	254	263	359	383	3	0,16
	279	349	367	4	7,9	237	269	-	358	383	3	0,16
	-	350	259	4	2,5	237	254	263	359	383	3	0,16
	279	349	367	4	7,9	237	269	-	358	383	3	0,16
	-	392	277	5	3	240	270	281	334	439	4	0,2
	302	392	413	5	10,4	240	290	-	386	440	4	0,2
	_	392	277	5	3	240	270	281	334	439	4	0,2
240	-	312	287	4	3,5	258	294	299	299	422	3	0,16
	-	312	287	4	3,5	258	294	299	299	422	3	0,16
	-	426	299	5	3,1	260	298	303	362	479	4	0,2
	_	426	299	5	3,1	260	298	303	362	479	4	0,2

6.3 Single row full complement cylindrical roller bearings d 20 – 85 mm

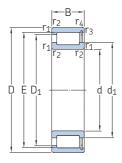


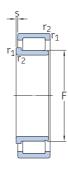



NCF

NJG

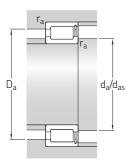
Princi	pal dimens	sions		oad ratings static	Fatigue load limit	Speed rat Reference speed		Mass	Designation
d	D	В	С	C_0	P_{u}	эрсси	specu		
mm			kN		kN	r/min		kg	-
20	42	16	28,1	28,5	3,1	8 500	10 000	0,11	► NCF 3004 CV
25	47	16	31,9	35,5	3,8	7 000	9 000	0,12	NCF 3005 CV
	62	24	68,2	68	8,5	4 500	5 600	0,38	NJG 2305 VH
30	55	19	39,6	44	5,3	13 000	15 000	0,2	► NCF 3006 CV
	72	27	84,2	86,5	11	4 000	4 800	0,56	NJG 2306 VH
35	62	20	48,4	56	6,55	5 300	6 700	0,26	NCF 3007 CV
	80	31	108	114	14,3	3 400	4 300	0,75	NJG 2307 VH
40	68 90	21 33	57,2 145	69,5 156	8,15 20	4 800 3 000	6 000 3 600	0,31 1	NCF 3008 CVNJG 2308 VH
45	75	23	60,5	78	9,15	4 300	5 300	0,4	NCF 3009 CV
	100	25	110	112	14	7 500	9 000	0,94	NJG 309 VH
	100	36	172	196	25,5	2 800	3 400	1,4	NJG 2309 VH
50	80	23	76,5	98	11,8	4 000	5 000	0,43	► NCF 3010 CV
55	90	26	105	140	17,3	3 400	4 300	0,64	NCF 3011 CV
	120	43	233	260	33,5	2 200	2 800	2,3	NJG 2311 VH
60	85	16	55	80	9,15	3 600	4 500	0,27	NCF 2912 CV
	95	26	106	146	18,3	3 400	4 000	0,69	NCF 3012 CV
65	90	16	58,3	88	10,2	3 200	4 000	0,31	NCF 2913 CV
	100	26	112	163	20	3 000	3 800	0,73	NCF 3013 CV
	140	48	303	360	46,5	1 900	2 400	3,55	NJG 2313 VH
70	100	19	76,5	116	13,7	3 000	3 800	0,49	► NCF 2914 CV
	110	30	128	173	22,4	6 000	7 000	1	NCF 3014 CV
	150	51	336	400	50	1 800	2 200	4,4	NJG 2314 VH
75	105	19	79,2	125	14,6	2 800	3 600	0,52	NCF 2915 CV
	115	30	134	190	24,5	2 600	3 200	1,05	NCF 3015 CV
	160	55	396	480	60	1 600	2 000	5,35	NJG 2315 VH
80	110	19	80,9	132	15,6	2 600	3 400	0,55	► NCF 2916 CV
	125	34	165	228	29	2 400	3 000	1,45	NCF 3016 CV
	170	58	457	570	71	1 500	1 900	6,4	NJG 2316 VH
85	120	22	102	166	20,4	6 300	6 300	0,81	NCF 2917 CV
	130	34	172	236	30	2 400	3 000	1,5	NCF 3017 CV
	180	60	484	620	76,5	1 400	1 800	7,4	NJG 2317 VH

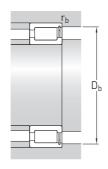


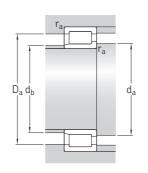


Dimer	nensions							ent and f	illet dime	nsions				Calculation factor
d	d ₁ ≈	D ₁ ≈	E, F	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _{as} 1)	d _b max.	D _a max.	D _b max.	r _a max.	r _b max.	k _r
mm							mm							_
20	29	33	36,81	0,6	0,32)	1,5	24	26,9	-	38	39	0,6	0,3	0,3
25	34 36,1	39 48,2	42,51 31,74	0,6 1,1	0,3	1,5 1,7	29 31	32,3 33,9	- 30	43 55	44 -	0,6 1	0,3	0,3 0,35
30	40 43,2	45 56,4	49,6 38,36	1 1,1	0,32)	2 1,8	35 37	37,8 40,8	- 36,5	50 64	52 -	1	0,3	0,3 0,35
35	45 50,4	51 65,8	55,52 44,75	1 1,5	0,3 -	2 2	40 43	42,8 47,6	- 42	57 71	58 -	1 1,5	0,3	0,3 0,35
40	50 57,6	58 75,2	61,74 51,15	1 1,5	0,32)	2 2,4	45 49	47,9 54,4	- 49	63 81	65 -	1 1,5	0,3	0,3 0,35
45	55 62,5 62,5	62 80,1 80,1	66,85 56,14 56,14	1 1,5 1,5	0,3 - -	2 1,7 2,4	50 54 54	53 59,3 59,3	- 54 54	70 91 91	71 - -	1 1,5 1,5	0,3 - -	0,3 0,35 0,35
50	59	68	72,33	1	0,32)	2	54	56,7	-	75	76	1	0,3	0,3
55	68 75,5	79 98,6	83,54 67,14	1,1 2	0,6 ²⁾	2 2,6	62 65	65,8 71,3	- 64	84 109	86 -	1 2	0,6 -	0,3 0,35
60	69 71	74,5 82	78,65 86,74	1 1,1	0,6 0,6	1 2	64 66	66,8 68,9	- -	80 89	80 91	1	0,5 0,5	0,2 0,3
65	75,5 78 89,9	81 88 116	85,24 93,09 80,7	1 1,1 2,1	0,6 0,6 -	1 2 3	70 71 77	73,4 75,6 85,3	- - 78	85 94 128	86 95 -	1 1 2	0,5 0,5 -	0,2 0,3 0,35
70	80,5 81 93,8	88,5 95 121	92,5 100,28 84,2	1 1,1 2,1	0,6 ²⁾ 0,6 ²⁾	1 3 3	75 75 81	78,5 78,6 89	- - 81	95 104 138	96 105 -	1 1 2	0,5 0,5 -	0,2 0,3 0,35
75	86 89 101	93 103 131	97,5 107,9 91,2	1 1,1 2,1	0,6 0,6 -	1 3 3	80 81 87	83,8 86,5 96,1	- - 88	100 109 147	101 110 -	1 1 2	0,5 0,5 -	0,2 0,3 0,35
80	90,5 95 109	99 111 141	102,7 116,99 98,3	1 1,1 2,1	0,6 ²⁾ 0,6 -	1 4 4	85 86 92	88,6 92 104	- - 95	105 119 157	106 120 -	1 1 2	0,5 0,5 -	0,2 0,3 0,35
85	96 99 118	105 116 149	109,5 121,44 107	1,1 1,1 3	1 0,6 -	1 4 4	90 91 100	93,8 96,2 113	- - 104	114 123 165	114 125 -	1 1 2,5	1 0,5 -	0,2 0,3 0,35

¹⁾ Recommended shaft abutment diameter for axially loaded bearings \rightarrow Flange support, page 512 2) Parameter $r_{3,4}$ has either the value specified here or the same value as $r_{1,2}$.

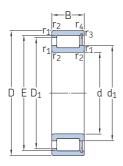


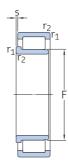



NCF

NJG

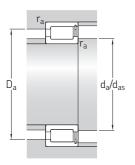
Princip	al dimens	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Speed ration Reference	Limiting	Mass	Designation
d	D	В	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	-
90	125	22	105	176	20,8	2 400	3 000	0,84	NCF 2918 CV
	140	37	198	280	35,5	2 200	2 800	1,95	NCF 3018 CV
	190	64	550	680	83	1 400	1 700	8,75	NJG 2318 VH
100	140	24	128	200	24,5	2 000	2 600	1,1	► NCF 2920 CV
	150	37	209	310	37,5	2 000	2 600	2,15	NCF 3020 CV
	215	73	704	900	106	1 200	1 500	13	NJG 2320 VH
110	150	24	134	220	26	1 900	2 400	1,2	NCF 2922 CV
	170	45	275	400	48	3 800	4 500	3,5	NCF 3022 CV
	240	80	858	1 060	122	1 100	1 300	17,5	NJG 2322 VH
120	165	27	172	290	34,5	4 300	4 300	1,75	NCF 2924 CV
	180	46	292	440	52	1 700	2 000	3,8	NCF 3024 CV
	215	58	512	735	85	1 400	1 700	9,05	NCF 2224 V
	260	86	952	1 250	140	1 000	1 200	22,5	NJG 2324 VH
130	180	30	205	360	40,5	1 600	2 000	2,35	 NCF 2926 CV
	200	52	413	620	72	1 500	1 900	5,8	NCF 3026 CV
	280	93	1 080	1 430	156	950	1 200	28	NJG 2326 VH
140	190	30	220	390	43	1 500	1 900	2,4	► NCF 2928 CV
	210	53	440	680	78	1 400	1 800	6,1	NCF 3028 CV
	250	68	693	1 020	114	1 200	1 500	14,5	NCF 2228 V
	300	102	1 230	1 660	180	850	1 100	35,5	NJG 2328 VH
150	210	36	292	490	55	1 400	1 700	3,75	NCF 2930 CV
	225	56	457	710	80	1 300	1 700	7,5	NCF 3030 CV
	270	73	781	1 220	132	950	1 200	18,5	NCF 2230 V
	320	108	1 450	1 930	196	800	1 000	42,5	NJG 2330 VH
160	220	36	303	530	58,5	1 300	1 600	4	NCF 2932 CV
	240	60	512	800	90	1 200	1 500	9,1	NCF 3032 CV
	290	80	990	1 500	160	950	1 200	23	NCF 2232 V
170	230	36	314	560	60	1 200	1 500	4,3	► NCF 2934 CV
	260	67	671	1 060	118	1 100	1 400	12,5	NCF 3034 CV
	310	86	1 100	1 700	176	900	1 100	28,5	NCF 2234 V
	360	120	1 760	2 450	236	700	900	59,5	NJG 2334 VH
180	250	42	391	695	75	1 100	1 400	6,2	► NCF 2936 CV
	280	74	781	1 250	134	1 100	1 300	16,5	NCF 3036 CV
	380	126	1 870	2 650	255	670	800	69,5	NJG 2336 VH

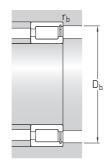


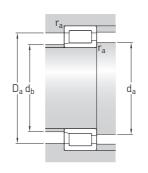


Dimen	mensions							ent and f	illet dime	nsions				Calculation factor
d	d ₁ ≈	D ₁ ≈	E, F	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _{as} 1)	d _b max.	D _a max.	D _b max.	r _a max.	r _b max.	k _r
mm							mm							-
90	102	111	115,6	1,1	1	1	96	99,8	-	119	119	1	1	0,2
	106	124	130,11	1,5	1	4	97	103	-	133	133	1,5	1	0,3
	117	152	108,8	3	-	4	102	111	102	176	-	2,5	-	0,35
100	114	126	130,6	1,1	1	1,3	106	111	-	134	134	1	1	0,2
	115	134	139,65	1,5	1	4	107	112	-	142	143	1,5	1	0,3
	133	173	122,8	3	-	4	114	128	119	201	-	2,5	-	0,35
110	124	136	141,1	1,1	1	1,3	116	122	-	144	144	1	1	0,2
	127	149	156,13	2	1	5,5	119	124	-	160	163	2	1	0,3
	151	198	134,3	3	-	5	124	143	130	225	-	2,5	-	0,35
120	136	149	154,3	1,1	1	1,3	126	133	-	159	159	1	1	0,2
	139	160	167,58	2	1	5,5	129	135	-	170	174	2	1	0,3
	150	184	192,32	2,1	2,1	4	131	145	-	204	204	2	2	0,3
	164	213	147,39	3	-	5	134	156	143	245	-	2,5	-	0,35
130	147	161	167,1	1,5	1,1	2	138	144	-	172	173	1,5	1	0,2
	149	175	183,81	2	1	5,5	138	144	-	190	193	2	1	0,3
	175	226	157,9	4	-	6	147	166	153	263	-	3	-	0,35
140	158	173	180	1,5	1,1	2	148	155	-	182	183	1,5	1	0,2
	163	189	197,82	2	1	5,5	150	158	-	200	203	2	1	0,3
	173	212	221,92	3	3	5	153	167	-	236	236	2,5	2,5	0,3
	187	241	168,5	4	-	6,5	157	178	163	283	-	3	-	0,35
150	169	189	196,4	2	1,1	2	159	166	-	201	203	2	1	0,2
	170	198	206,8	2,1	1,1	7	159	165	-	214	217	2	1	0,3
	184	227	236,71	3	3	6	163	178	-	256	256	2,5	2,5	0,3
	202	261	182,5	4	-	6,5	168	192	178	302	-	3	-	0,35
160	180	200	207,2	2	1,1	2,5	169	177	-	211	211	2	1	0,2
	185	215	224,86	2,1	1,1	7	171	180	-	230	233	2	1	0,3
	208	255	266,36	3	3	6	176	201	-	276	276	2,5	2,5	0,3
170	191	211	218	2	1,1	2,5	179	188	-	221	223	2	1	0,2
	198	232	242,85	2,1	1,1	7	181	192	-	249	252	2	1	0,3
	219	269	281,09	4	4	7	189	212	-	295	294	3	3	0,3
	227	291	203,55	4	-	7	187	215	198	342	-	3	-	0,35
180	203	223	232	2	1,1	2,5	189	199	-	241	243	2	1	0,2
	212	248	260,22	2,1	2,1	7	192	206	-	269	269	2	2	0,3
	245	309	221,75	4	-	8	199	233	215	361	-	3	-	0,35

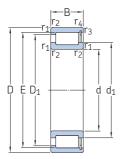
¹⁾ Recommended shaft abutment diameter for axially loaded bearings -> Flange support, page 512



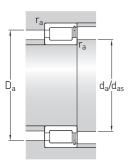

NCF

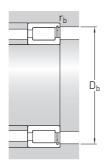

NJG

Princip	oal dimens	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designation
d	D	В	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min		kg	-
190	260	42	440	780	81,5	1 100	1 400	6,5	► NCF 2938 CV
	290	75	792	1 290	140	1 000	1 300	17	NCF 3038 CV
	340	92	1 250	1 900	196	800	1 000	35,5	NCF 2238 V
	400	132	2 160	3 000	280	630	800	80	NJG 2338 VH
200	250	24	176	335	32,5	1 100	1 400	2,6	NCF 1840 V
	280	48	528	965	100	1 000	1 300	9,1	► NCF 2940 CV
	310	82	913	1 530	160	950	1 200	22,5	NCF 3040 CV
	420	138	2 290	3 200	290	600	750	92	NJG 2340 VH
220	270	24	183	365	34,5	1 000	1 200	2,85	NCF 1844 V
	300	48	550	1 060	106	900	1 200	9,9	► NCF 2944 CV
	340	90	1 080	1 800	186	850	1 100	29,5	NCF 3044 CV
	400	108	1 830	2 750	255	700	850	58	NCF 2244 V
	460	145	2 700	3 750	335	530	670	111	NJG 2344 VH
240	300	28	260	510	47,5	900	1 100	4,4	NCF 1848 V
	320	48	583	1 140	114	850	1 100	10,5	➤ NCF 2948 CV
	360	92	1 140	1 960	200	800	1 000	32	NCF 3048 CV
	500	155	3 140	4 400	390	480	600	147	NJG 2348 VH
260	320	28	270	550	50	800	1 000	4,55	NCF 1852 V
	360	60	737	1 430	143	750	950	18	► NCF 2952 CV
	400	104	1 540	2 550	250	700	900	46,5	NCF 3052 CV
	540	165	3 580	5 000	430	430	530	177	NJG 2352 VH
280	350	33	341	695	64	750	950	7,1	NCF 1856 V
	380	60	880	1 730	166	700	900	19,5	► NCF 2956 CV
	420	106	1 570	2 650	260	670	850	50	NCF 3056 CV
300	380	38	418	850	75	670	850	10	NCF 1860 V
	420	72	1 120	2 200	208	630	800	31	► NCF 2960 CV
	460	118	1 900	3 250	300	600	750	65,5	NCF 3060 CV
320	400	38	440	900	80	630	800	10,5	NCF 1864 V
	440	72	1140	2 360	220	600	750	33	► NCF 2964 V
	480	121	1980	3 450	310	560	700	71	NCF 3064 CV
340	420	38	446	950	83	600	750	11	NCF 1868 V
	460	72	1190	2 500	228	560	700	35	NCF 2968 V
	520	133	2380	4 150	355	530	670	95	NCF 3068 CV



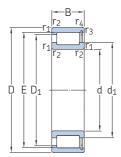
Dimen	sions						Abutm	ent and f	illet dime	nsions				Calculation factor
d	d ₁ ≈	D ₁ ≈	E, F	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _{as} 1)	d _b max.	D _a max.	D _b max.	r _a max.	r _b max.	k _r
mm							mm							_
190	212	236	244	2	1,1	2	199	208	-	250	252	2	1	0,2
	222	258	269,76	2,1	2,1	8	202	216	-	279	279	2	2	0,3
	243	296	310,68	4	4	7	209	235	-	325	324	3	3	0,3
	250	320	224,544	5	-	8	210	239	222	378	-	4	_	0,35
200	218	231	237,5	1,5	1,1	1,8	207	215	-	243	244	1,5	1	0,1
	226	253	262	2,1	1,5	3	211	222	-	269	271	2	1,5	0,2
	237	275	287,75	2,1	2,1	9	213	230	-	299	299	2	2	0,3
	266	342	238,65	5	-	9	221	252	232	398	-	4	-	0,35
220	238	252	258	1,5	1,1	1,8	227	235	-	263	264	1,5	1	0,1
	247	274	283	2,1	1,5	3	231	243	-	289	291	2	1,5	0,2
	255	298	312,2	3	3	9	233	248	-	327	327	2,5	2,5	0,3
	277 295	349 383	366 266,7	4 5	4 -	8 10	239 240	268 281	- 259	385 440	383 -	3 4	3 –	0,3 0,35
240	263	279	287	2	1,1	1,8	249	259	-	291	294	2	1	0,1
	267	294	303	2,1	1,5	3	251	263	-	309	311	2	1,5	0,2
	278	321	335,1	3	3	11	254	271	-	347	347	2,5	2,5	0,3
	310	403	287,75	5	-	10	260	295	282	480	-	4	-	0,35
260	283	299	307,2	2	1,1	1,8	269	279	-	311	313	2	1	0,1
	291	323	333,7	2,1	1,5	3,5	271	287	-	348	350	2	1,5	0,2
	304	358	375,97	4	4	11	277	295	-	384	384	3	3	0,3
	349	456	315,9	6	-	11	286	332	308	514	-	5	-	0,35
280	307	325	334	2	1,1	2,5	290	303	-	341	343	2	1	0,1
	314	348	359,1	2,1	1,5	3	291	309	-	368	370	2	1,5	0,2
	319	373	390,3	4	4	11	295	310	-	404	404	3	3	0,3
300	331	353	363	2,1	1,5	3	311	326	-	369	372	2	1,5	0,1
	341	375	390,5	3	3	5	314	334	-	405	405	2,5	2,5	0,2
	355	413	433	4	4	14	315	344	-	445	445	3	3	0,3
320	351	373	383	2,1	1,5	3	331	346	-	389	392	2	1,5	0,1
	359	401	411	3	3	5	333	353	-	427	427	2,5	2,5	0,2
	368	434	449,5	4	4	14	335	359	-	465	465	3	3	0,3
340	371	393	403	2,1	1,5	3	351	366	-	409	412	2	1,5	0,1
	378	421	431	3	3	5	353	373	-	447	447	2,5	2,5	0,2
	395	468	485,65	5	5	14	358	384	-	502	502	4	4	0,3


¹⁾ Recommended shaft abutment diameter for axially loaded bearings -> Flange support, page 512

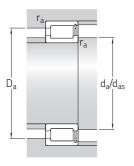


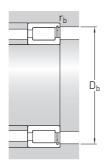
Princip	al dimens	ions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation
d	D	В	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min		kg	-
360	440 480 540	38 72 134	402 1 230 2 420	900 2 600 4 300	76,5 240 365	560 530 500	700 670 630	11,5 36,5 105	NCF 1872 VNCF 2972 CVNCF 3072 CV
380	480 520 560	46 82 135	627 1 570 2 700	1 290 3 250 5 100	114 300 425	530 500 480	670 630 600	19,5 52 110	 NCF 1876 V NCF 2976 V NCF 3076 V
400	500 540 600	46 82 148	627 1 650 2 970	1 340 3 450 5 500	118 310 450	500 480 450	630 600 560	20,5 54,5 145	NCF 1880 VNCF 2980 CVNCF 3080 CV
420	520 560 620	46 82 150	660 1 650 3 030	1 430 3 600 5 700	122 315 455	480 450 430	600 560 530	20,5 57 150	 NCF 1884 V NCF 2984 V NCF 3084 CV
440	540 540 600	46 60 95	671 1 060 2 010	1 460 2 700 4 400	125 232 380	450 450 430	560 560 530	22 30 80	► NCF 1888 V NCF 2888 V ► NCF 2988 V
460	580 620 680	72 95 163	1 300 2 050 3 690	3 050 4 500 6 950	260 390 540	430 400 380	530 500 480	44 83 195	NCF 2892 V/HB1 NCF 2992 V NCF 3092 CV
480	600 600 650	56 72 100	935 1 320 2 290	2 040 3 150 4 900	170 265 405	400 400 380	500 500 480	35,5 46 93	NCF 1896 V NCF 2896 V ► NCF 2996 V
	700	165	3 740	7 200	550	360	450	205	NCF 3096 CV
500	620 620 670	56 72 100	952 1 340 2 380	2 120 3 350 5 300	173 275 430	380 380 360	480 480 450	35,5 47 100	► NCF 18/500 V NCF 28/500 V NCF 29/500 V
	720	167	3 800	7 500	570	360	450	215	NCF 30/500 CV
530	650 650 710	56 72 106	990 1 400 2 700	2 240 3 450 6 000	180 285 465	360 360 340	450 450 430	38,5 49,5 120	► NCF 18/530 V NCF 28/530 V NCF 29/530 V
	780	185	5 230	10 600	780	320	400	300	NCF 30/530 V
560	680 680 750	56 72 112	1 020 1 420 3 030	2 360 3 650 6 700	186 300 490	340 340 320	430 430 400	39 54 140	 NCF 18/560 V/HB1 NCF 28/560 V NCF 29/560 V/HB1
	820	195	5 830	11 800	865	300	380	345	NCF 30/560 V

► Popular item

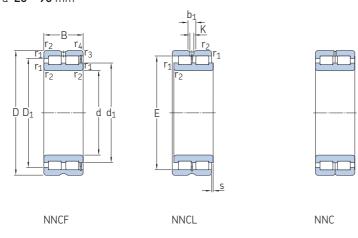


Dimer	nensions						Abutm	ent and f	illet dime	nsions				Calculation factor
d	d ₁ ≈	D ₁ ≈	E, F	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _{as} 1)	d _b max.	D _a max.	D _b max.	r _a max.	r _b max.	k _r
mm							mm							_
360	388	413	418,9	2,1	2,1	3	371	384	-	429	433	2	2	0,1
	404	437	451,5	3	3	5	373	396	-	467	467	2,5	2,5	0,2
	412	486	503,45	5	5	14	378	402	-	522	522	4	4	0,3
380	416	448	458	2,1	2,1	3,5	391	411	-	469	473	2	2	0,1
	427	474	488	4	4	5	395	420	-	505	505	3	3	0,2
	431	504	520,5	5	5	14	398	420	-	542	542	4	4	0,3
400	433	465	475	2,1	2,1	3,5	411	428	-	489	493	2	2	0,1
	449	499	511	4	4	5	415	442	-	525	525	3	3	0,2
	460	540	558	5	5	14	418	449	-	582	582	4	4	0,3
420	457	489	499	2,1	2,1	3,5	431	452	-	509	513	2	2	0,1
	462	512	524	4	4	5	435	455	-	545	545	3	3	0,2
	480	559	577,6	5	5	15	438	469	-	602	602	4	4	0,3
440	474	506	516	2,1	2,1	3,5	451	469	-	529	533	2	2	0,1
	474	508	516	2,1	2,1	3,5	451	469	-	529	533	2	2	0,11
	502	545	565,5	4	4	6	455	492	-	585	585	3	3	0,2
460	501	543	553	3	3	5	473	495	-	567	567	2,5	2,5	0,11
	516	558	579	4	4	6	475	506	-	605	605	3	3	0,2
	522	611	632,97	6	6	16	483	511	-	657	657	5	5	0,3
480	522	561	573,5	3	3	5	493	516	-	587	587	2,5	2,5	0,1
	520	562	573,5	3	3	5	493	515	-	587	587	2,5	2,5	0,11
	538	584	615	5	5	7	498	527	-	632	632	4	4	0,2
	546	628	654	6	6	16	503	532	-	677	677	5	5	0,3
500	542	582	594	3	3	5	513	536	-	607	607	2,5	2,5	0,1
	541	582	594	3	3	2,4	513	536	-	607	607	2,5	2,5	0,11
	553	611	634,5	5	5	7	518	544	-	652	652	4	4	0,2
	565	650	676	6	6	16	523	553	-	697	697	5	5	0,3
530	573	612	624,5	3	3	5	543	567	-	637	637	2,5	2,5	0,1
	572	614	624,5	3	3	5	543	566	-	637	637	2,5	2,5	0,11
	598	648	673	5	5	7	548	587	-	692	692	4	4	0,2
	610	702	732	6	6	16	553	595	-	757	757	5	5	0,3
560	603	643	655	3	3	5	573	597	-	667	667	2,5	2,5	0,1
	606	637	655	3	3	4,3	573	599	-	667	667	2,5	2,5	0,11
	628	682	709	5	5	7	578	615	-	732	732	4	4	0,2
	642	738	770	6	6	16	583	626	_	797	797	5	5	0,3


¹⁾ Recommended shaft abutment diameter for axially loaded bearings > Flange support, page 512

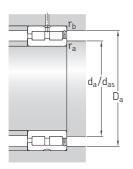

6.3 Single row full complement cylindrical roller bearings d **600 – 1120** mm

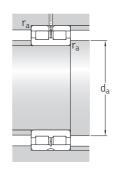
Princip	al dimensi	ions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation
d	D	В	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	
600	730	60	1 050	2 550	196	320	400	51,5	► NCF 18/600 V
	730	78	1 570	4 300	340	320	400	67,5	NCF 28/600 V/HB1
	800	118	3 360	7 500	550	300	380	170	NCF 29/600 V
630	780	69	1 250	2 900	232	300	360	72,5	➤ NCF 18/630 V
	780	88	1 940	5 000	390	300	360	92	NCF 28/630 V
	850	128	3 740	8 650	610	280	340	205	NCF 29/630 V
670	820 820 900	69 88 136	1 300 1 940 3 910	3 150 5 300 9 000	245 415 630	280 280 260	340 340 320	74 98 245	 NCF 18/670 V NCF 28/670 V NCF 29/670 V
710	870	74	1 540	3 750	285	260	320	92,5	NCF 18/710 V
	870	95	2 330	6 300	480	260	320	115	NCF 28/710 V
	950	140	4 290	10 000	695	240	300	275	NCF 29/710 V
750	920	78	1 760	4 300	315	240	300	105	► NCF 18/750 V
	920	100	2 640	6 950	520	240	300	139	NCF 28/750 V
	1 000	145	4 460	10 600	710	220	280	313	NCF 29/750 V
800	980	82	1 940	4 800	345	220	280	126	NCF 18/800 V
	980	106	2 750	7 500	550	220	280	169	► NCF 28/800 V
	1 060	150	4 950	12 000	800	200	260	359	NCF 29/800 V
850	1 030	82	2 050	5 200	375	200	260	131	NCF 18/850 V
	1 030	106	2 860	8 000	570	200	260	175	NCF 28/850 V
	1 120	155	5 230	12 700	830	190	240	406	NCF 29/850 V
900	1 090	85	2 240	5 700	405	190	240	154	NCF 18/900 V/HB1
	1 090	112	3 190	9 150	655	190	240	210	NCF 28/900 V
	1 180	165	5 940	14 600	950	170	220	472	NCF 29/900 V
950	1 150	90	2 420	6 300	425	170	220	185	NCF 18/950 V
	1 150	118	3 410	9 800	655	170	220	240	NCF 28/950 V
	1 250	175	6 600	16 300	1 020	160	200	565	NCF 29/950 V
1 000	1 220	100	2 920	7 500	455	160	200	230	NCF 18/1000 V
	1 220	128	4 130	11 600	720	160	200	309	NCF 28/1000 V
	1 320	185	7 480	18 600	1 160	150	180	680	NCF 29/1000 V
1 120	1 360	106	3 740	9 650	585	130	170	298	NCF 18/1120 V

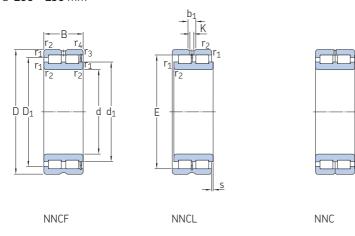


Dimens	ions						Abutm	ent and fi	llet dime	nsions				Calculation factor
d	d ₁ ≈	D ₁ ≈	E, F	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _{as} 1)	d _b max.	D _a max.	D _b max.	r _a max.	r _b max.	k _r
mm							mm							_
600	644	684	696	3	3	7	613	638	-	717	717	2,5	2,5	0,1
	642	685	696	3	3	5,4	613	637	-	717	717	2,5	2,5	0,11
	662	726	754	5	5	7	618	652	-	782	782	4	4	0,2
630	681	725	739	4	4	8	645	674	-	765	765	3	3	0,1
	680	728	741,4	4	4	8	645	674	-	765	765	3	3	0,11
	709	788	807	6	6	8	653	698	-	827	827	5	5	0,2
670	725	769	783	4	4	8	685	718	-	805	805	3	3	0,1
	724	772	783	4	4	8	685	718	-	805	805	3	3	0,11
	748	827	846	6	6	10	693	737	-	877	877	5	5	0,2
710	767	815	831	4	4	8	725	759	-	855	855	3	3	0,1
	766	818	831	4	4	8	725	759	-	855	855	3	3	0,11
	790	876	896	6	6	10	733	761	-	927	927	5	5	0,2
750	811	863	880	5	5	8	768	802	-	902	902	4	4	0,1
	810	867	878	5	5	8	768	799	-	902	902	4	4	0,11
	832	918	938	6	6	11	773	820	-	977	977	5	5	0,2
800	863	922	936	5	5	9	818	855	-	962	962	4	4	0,1
	863	922	936	5	5	10	818	855	-	962	962	4	4	0,11
	891	981	1 002	6	6	11	823	860	-	1 037	1 037	5	5	0,2
850	911	972	986	5	5	9	868	903	-	1 012	1 012	4	4	0,1
	911	972	986	5	5	10	868	903	-	1 012	1 012	4	4	0,11
	943	1 039	1 061	6	6	13	873	914	-	1 097	1 097	5	5	0,2
900	966	1 029	1 044	5	5	9	918	957	-	1 072	1 072	4	4	0,1
	966	1 029	1 044	5	5	10	918	957	-	1 072	1 072	4	4	0,11
	996	1 096	1 120	6	6	13	923	982	-	1 127	1 127	5	5	0,2
950	1 021	1 087	1 103	5	5	10	968	1 012	-	1 132	1 132	4	4	0,1
	1 021	1 087	1 103	5	5	12	968	1 012	-	1 132	1 132	4	4	0,11
	1 048	1 154	1 179	7,5	7,5	14	978	1 033	-	1 222	1 222	6	6	0,2
1 000	1 073	1 148	1 165	6	6	12	1 023	1 063	-	1 197	1 197	5	5	0,1
	1 073	1 148	1 165	6	6	12	1 023	1 063	-	1 197	1 197	5	5	0,11
	1 113	1 226	1 252	7,5	7,5	14	1 028	1 091	-	1 292	1 292	6	6	0,2
120	1 206	1 290	1 310	6	6	12	1143	1 194	_	1 337	1 337	5	5	0,1

¹⁾ Recommended shaft abutment diameter for axially loaded bearings > Flange support, page 512


d **20 – 90** mm

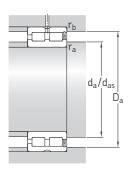

Principa	al dimensi	ons	Basic load	I ratings static	Fatigue load limit	Speed ratin Reference	gs Limiting	Mass	Designation
d	D	В	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min		kg	-
20	42	30	52,3	57	6,2	8 500	10 000	0,2	NNCF 5004 CV
25	47	30	59,4	71	7,65	7 000	9 000	0,23	NNCF 5005 CV
30	55	34	73,7	88	10	6 000	7 500	0,35	NNCF 5006 CV
35	62	36	89,7	112	12,9	5 300	6 700	0,46	NNCF 5007 CV
40	68	38	106	140	17	4 800	6 000	0,56	NNCF 5008 CV
45	75	40	112	156	18,3	4 300	5 300	0,71	NNCF 5009 CV
50	80	40	142	196	23,6	4 000	5 000	0,76	NNCF 5010 CV
55	90	46	190	280	34,5	3 400	4 300	1,15	NNCF 5011 CV
60	85 85 85	25 25 25	78,1 78,1 78,1	137 137 137	14,3 14,3 14,3	3 600 3 600 3 600	4 500 4 500 4 500	0,48 0,47 0,49	NNCF 4912 CV NNCL 4912 CV NNC 4912 CV
	95	46	198	300	36,5	3 400	4 000	1,25	NNCF 5012 CV
65	100	46	209	325	40	3 000	3 800	1,3	NNCF 5013 CV
70	100 100 100	30 30 30	114 114 114	193 193 193	22,4 22,4 22,4	3 000 3 000 3 000	3 800 3 800 3 800	0,77 0,75 0,78	NNCF 4914 CV NNCL 4914 CV NNC 4914 CV
	110	54	238	345	45	2 800	3 600	1,85	NNCF 5014 CV
75	115	54	251	380	49	2 600	3 200	1,95	NNCF 5015 CV
80	110 110 110	30 30 30	121 121 121	216 216 216	25 25 25	2 600 2 600 2 600	3 400 3 400 3 400	0,87 0,85 0,88	NNCF 4916 CV NNCL 4916 CV NNC 4916 CV
	125	60	308	455	58,5	2 400	3 000	2,6	NNCF 5016 CV
85	130	60	314	475	60	2 400	3 000	2,7	NNCF 5017 CV
90	125 125 125	35 35 35	161 161 161	300 300 300	35,5 35,5 35,5	2 400 2 400 2 400	3 000 3 000 3 000	1,35 1,3 1,35	NNCF 4918 CV NNCL 4918 CV NNC 4918 CV
	140	67	369	560	69,5	2 200	2 800	3,6	NNCF 5018 CV

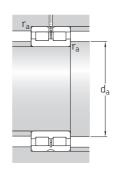


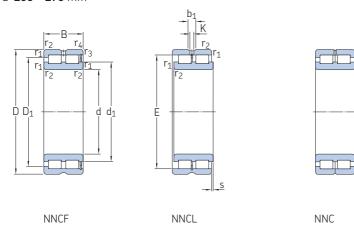
Dimer	nsions								Abutmo	ent and fil	let dimen	sions		Calculation factor
d	d ₁ ≈	D ₁ ≈	Е	b_1	K	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _{as} 1)	D _a max.	r _a max.	r _b max.	k _r
mm									mm					
20	28,4	33,2	-	4,5	3	0,6	0,32)	1	23,2	25,6	38,7	0,5	0,3	0,5
25	34,5	38,5	-	4,5	3	0,6	0,32)	1	28,7	31,5	43,5	0,5	0,3	0,5
30	40	45,5	-	4,5	3	1	0,32)	1,5	34,7	37,8	50	1	0,3	0,5
35	45	51,5	-	4,5	3	1	0,32)	1,5	40,2	42,6	57	1	0,3	0,5
40	50,5	57,2	-	4,5	3	1	0,32)	1,5	44,8	47,7	63	1	0,3	0,5
45	55,3	62,5	-	4,5	3	1	0,32)	1,5	51	52,8	70	1	0,3	0,5
50	59	67,5	-	4,5	3	1	0,32)	1,5	56	56,7	74	1	0,3	0,5
55	68,5	78,7	-	4,5	3,5	1,1	0,62)	1,5	61	64,8	84	1	0,5	0,5
60	70,5 70,5 70,5	73,5 - 73,5	- 77,51 -	4,5 4,5 4,5	3,5 3,5 3,5	1 1 1	1 -	1 1 -	65 65 65	67,6 - 67,6	80 80 80	1 1 1	1 - -	0,25 0,25 0,25
	71,5	82	-	4,5	3,5	1,1	0,62)	1,5	66	68,9	89	1	0,5	0,5
65	78	88,3	-	4,5	3,5	1,1	0,62)	1,5	72	75	94	1	0,5	0,5
70	83 83 83	87 - 87	- 91,87 -	4,5 4,5 4,5	3,5 3,5 3,5	1 1 1	1 -	1 1 -	76 76 76	79 - 79	95 95 95	1 1 1	1 - -	0,25 0,25 0,25
	81,5	95	-	5	3,5	1,1	0,62)	3	76	79	105	1	0,5	0,5
75	89	103	-	5	3,5	1,1	0,62)	3	81	85	109	1	0,5	0,5
80	92 92 92	96 - 96	- 100,78 -	5 5 5	3,5 3,5 3,5	1 1 1	1 - -	1 1 -	85 85 85	88 - 88	105 105 105	1 1 1	1 - -	0,25 0,25 0,25
	95	111	-	5	3,5	1,1	0,62)	3,5	86	91	119	1	0,5	0,5
85	99,5	116	-	5	3,5	1,1	0,62)	3,5	91	95	124	1	0,5	0,5
90	103 103 103	110 - 110	- 115,2 -	5 5 5	3,5 3,5 3,5	1,1 1,1 1,1	1,1 - -	1,5 1,5 -	96 96 96	99 - 99	119 119 119	1 1 1	1 - -	0,25 0,25 0,25
	106	124	-	5	3,5	1,5	12)	4	98	102	133	1,5	1	0,5

¹⁾ Recommended shaft abutment diameter for axially loaded bearings \rightarrow Flange support, page 512 2) Parameter $r_{3,4}$ has either the value specified here or the same value as $r_{1,2}$.

${\bf 6.4\ \ Double\ row\ full\ complement\ cylindrical\ roller\ bearings}$

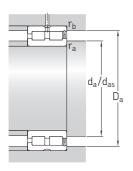

d **100 – 150** mm


Princip	al dimens	sions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed ration Reference	ngs Limiting speed	Mass	Designation
d	D	В	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min		kg	-
100	140 140 140	40 40 40	209 209 209	400 400 400	46,5 46,5 46,5	2 000 2 000 2 000	2 600 2 600 2 600	1,95 1,9 1,95	NNCF 4920 CV NNCL 4920 CV NNC 4920 CV
	150	67	391	620	75	2 000	2 600	3,95	NNCF 5020 CV
110	150 150 150	40 40 40	220 220 220	430 430 430	49 49 49	1 900 1 900 1 900	2 400 2 400 2 400	2,1 2,1 2,15	NNCF 4922 CV NNCL 4922 CV NNC 4922 CV
	170	80	512	800	95	1 800	2 200	6,3	NNCF 5022 CV
120	165 165 165	45 45 45	242 242 242	480 480 480	53 53 53	1 700 1 700 1 700	2 200 2 200 2 200	2,9 2,85 2,95	NNCF 4924 CV NNCL 4924 CV NNC 4924 CV
	180	80	539	880	104	1 700	2 000	6,75	NNCF 5024 CV
130	180 180 180	50 50 50	297 297 297	530 530 530	60 60 60	1 600 1 600 1 600	2 000 2 000 2 000	3,9 3,8 3,95	NNCF 4926 CV NNCL 4926 CV NNC 4926 CV
	200	95	765	1 250	143	1 500	1 900	10	NNCF 5026 CV
140	190 190 190	50 50 50	308 308 308	570 570 570	63 63 63	1 500 1 500 1 500	1 900 1 900 1 900	4,15 4,1 4,2	NNCF 4928 CV NNCL 4928 CV NNC 4928 CV
	210	95	809	1 370	153	1 400	1 800	11	NNCF 5028 CV
150	190 190 190	40 40 40	255 255 255	585 585 585	60 60 60	1 500 1 500 1 500	1 800 1 800 1 800	2,8 2,7 2,9	NNCF 4830 CV NNCL 4830 CV NNC 4830 CV
	210 210 210	60 60	429 429 429	830 830 830	91,5 91,5 91,5	1 400 1 400 1 400	1 700 1 700 1 700	6,55 6,45 6,65	NNCF 4930 CV NNCL 4930 CV NNC 4930 CV
	225	100	842	1 430	160	1 300	1 700	13,5	NNCF 5030 CV

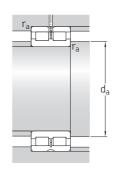


Dimer	nsions								Abutm	ent and fi	llet dimen	sions		Calculation factor
d	d ₁ ≈	D ₁ ≈	Е	b_1	K	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _{as} 1)	D _a max.	r _a max.	r _b max.	k _r
mm									mm					
100	116 116 116	125 - 125	- 129,6 -	5 5 5	3,5 3,5 3,5	1,1 1,1 1,1	1,1 - -	2 2 -	106 106 106	111 - 111	134 134 134	1 1 1	1 - -	0,25 0,25 0,25
	116	134	-	6	3,5	1,5	12)	4	108	113	143	1,5	1	0,5
110	125 125 125	134 - 134	- 138,2 -	6 6 6	3,5 3,5 3,5	1,1 1,1 1,1	1,1 - -	2 2 -	116 116 116	121 - 121	144 144 144	1 1 1	1 - -	0,25 0,25 0,25
	127	149	-	6	3,5	2	12)	5	120	124	161	2	1	0,5
120	139 139 139	148 - 148	- 153,55 -	6 6 6	3,5 3,5 3,5	1,1 1,1 1,1	1,1 - -	3 3 -	126 126 126	136 - 133	159 159 159	1 1 1	1 - -	0,25 0,25 0,25
	139	160	-	6	3,5	2	12)	5	130	130	171	2	1	0,5
130	149 149 149	160 - 160	- 165,4 -	6 6 6	3,5 3,5 3,5	1,5 1,5 1,5	1,5 - -	4 4 -	138 138 138	144 - 144	173 173 173	1,5 1,5 1,5	1,5 - -	0,25 0,25 0,25
	149	175	-	7	4	2	12)	5	141	145	190	2	1	0,5
140	160 160 160	170 - 170	- 175,9 -	6 6 6	3,5 3,5 3,5	1,5 1,5 1,5	1,5 - -	4 4 -	148 148 148	154 - 154	182 182 182	1,5 1,5 1,5	1,5 - -	0,25 0,25 0,25
	163	189	-	7	4	2	12)	5	151	157	200	2	1	0,5
150	166 166 166	173 - 173	- 178,3 -	7 7 7	4 4 4	1,1 1,1 1,1	1,1 - -	2 2 -	156 156 156	161 - 161	184 184 184	1 1 1	1 - -	0,2 0,2 0,2
	171 171 171	187 - 187	- 192,77 -	7 7 7	4 4 4	2 2 2	2 - -	4 4 -	159 159 159	165 - 165	201 201 201	2 2 2	2 –	0,25 0,25 0,25
	170	198	-	7	4	2	1,12)	6	160	166	217	2	1	0,5

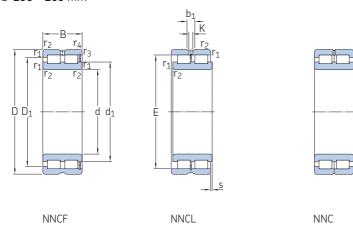
¹⁾ Recommended shaft abutment diameter for axially loaded bearings \rightarrow Flange support, page 512 2) Parameter $r_{3,4}$ has either the value specified here or the same value as $r_{1,2}$.


$\pmb{6.4} \ \ \textbf{Double row full complement cylindrical roller bearings}$

d **160 – 190** mm



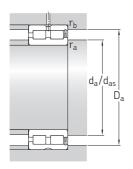
Princip	al dimens	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed	Mass	Designation
d	D	В	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	-
160	200	40	260	610	62	1 400	1 700	3	NNCF 4832 CV
	200	40	260	610	62	1 400	1 700	2,9	NNCL 4832 CV
	200	40	260	610	62	1 400	1 700	3,1	NNC 4832 CV
	220	60	446	915	96,5	1 300	1 600	6,9	NNCF 4932 CV
	220	60	446	915	96,5	1 300	1 600	6,8	NNCL 4932 CV
	220	60	446	915	96,5	1 300	1 600	7	NNC 4932 CV
	240	109	952	1 600	180	1 200	1 500	16	NNCF 5032 CV
170	215	45	286	655	65,5	1 300	1 600	4	NNCF 4834 CV
	215	45	286	655	65,5	1 300	1 600	3,9	NNCL 4834 CV
	215	45	286	655	65,5	1 300	1 600	4	NNC 4834 CV
	230	60	457	950	100	1 200	1 500	7,2	NNCF 4934 CV
	230	60	457	950	100	1 200	1 500	7,1	NNCL 4934 CV
	230	60	457	950	100	1 200	1 500	7,35	NNC 4934 CV
	260	122	1 230	2 120	236	1 100	1 400	23	NNCF 5034 CV
180	225	45	297	695	69,5	1 200	1 500	4,2	NNCF 4836 CV
	225	45	297	695	69,5	1 200	1 500	4,1	NNCL 4836 CV
	225	45	297	695	69,5	1 200	1 500	4,3	NNC 4836 CV
	250	69	594	1 220	127	1 100	1 400	10,5	NNCF 4936 CV
	250	69	594	1 220	127	1 100	1 400	10,5	NNCL 4936 CV
	250	69	594	1 220	127	1 100	1 400	11	NNC 4936 CV
	280	136	1 420	2 500	270	1 100	1 300	30,5	NNCF 5036 CV
190	240	50	358	750	76,5	1 100	1 400	5,5	NNCF 4838 CV
	240	50	358	750	76,5	1 100	1 400	5,3	NNCL 4838 CV
	240	50	358	750	76,5	1 100	1 400	5,65	NNC 4838 CV
	260	69	605	1 290	132	1 100	1 400	11	NNCF 4938 CV
	260	69	605	1 290	132	1 100	1 400	11	NNCL 4938 CV
	260	69	605	1 290	132	1 100	1 400	11	NNC 4938 CV
	290	136	1 470	2 600	280	1 000	1 300	31,5	NNCF 5038 CV

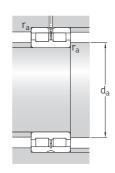


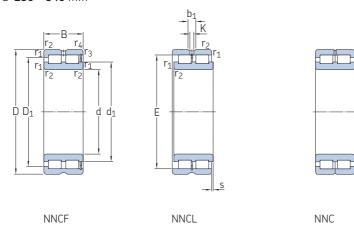
Dime	nsions								Abutm	ent and fi	llet dimen	sions		Calculation factor
d	d ₁ ≈	D ₁ ≈	Е	b ₁	K	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _{as} 1)	D _a max.	r _a max.	r _b max.	k _r
nm									mm					
160	174 174 174	182 - 182	- 186,9 -	7 7 7	4 4 4	1,1 1,1 1,1	1,1 - -	2 2 -	166 166 166	170 - 170	194 194 194	1 1 1	1 - -	0,2 0,2 0,2
	185 185 185	200 - 200	- 206,16 -	7 7 7	4 4 4	2 2 2	2 - -	4 4 -	170 170 170	177 - 177	211 211 211	2 2 2	2 - -	0,25 0,25 0,25
	185	216	-	7	4	2,1	1,12)	6	171	178	231	2	1	0,5
170	187 187 187	196 - 196	_ 201,3 _	7 7 7	4 4 4	1,1 1,1 1,1	1,1 - -	3 3 -	176 176 176	182 - 182	209 209 209	1 1 1	1 - -	0,2 0,2 0,2
	194 194 194	209 - 209	- 215,08 -	7 7 7	4 4 4	2 2 2	2 - -	4 4 -	180 180 180	187 - 187	220 220 220	2 2 2	2 - -	0,25 0,25 0,25
	198	232	-	7	4	2,1	1,1	6	181	193	251	2	1	0,5
180	200 200 200	209 - 209	- 214,1 -	7 7 7	4 4 4	1,1 1,1 1,1	1,1 - -	3 3 -	186 186 186	193 - 193	219 219 219	1 1 1	1	0,2 0,2 0,2
	206 206 206	224 - 224	- 230,5 -	7 7 7	4 4 4	2 2 2	2 - -	4 4 -	190 190 190	198 - 198	240 240 240	2 2 2	2 - -	0,25 0,25 0,25
	212	248	-	8	4	2,1	2,1	8	191	206	270	2	2	0,5
190	209 209 209	219 - 219	- 225 -	7 7 7	4 4 4	1,5 1,5 1,5	1,5 - -	4 4 -	197 197 197	203 - 203	233 233 233	1,5 1,5 1,5	1,5 - -	0,2 0,2 0,2
	216 216 216	233 - 233	_ 240,7 _	7 7 7	4 4 4	2 2 2	2 - -	4 4 -	201 201 201	208 - 208	250 250 250	2 2 2	2 - -	0,25 0,25 0,25
	222	258	_	8	4	2,1	2,1	8	202	216	280	2	2	0,5

¹⁾ Recommended shaft abutment diameter for axially loaded bearings \Rightarrow Flange support, page 512 2) Parameter $r_{3,6}$ has either the value specified here or the same value as $r_{1,2}$.

$\pmb{6.4} \ \ \textbf{Double row full complement cylindrical roller bearings}$


d **200 – 260** mm

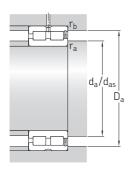

Princip	al dimens	sions	Basic loa dynamic	n d ratings static	Fatigue load limit	Speed ration Reference	ngs Limiting speed	Mass	Designation
d	D	В	С	C_0	P_u	speed	speeu		
mm			kN		kN	r/min		kg	-
200	250	50	369	800	80	1 100	1 400	5,8	NNCF 4840 CV
	250	50	369	800	80	1 100	1 400	5,7	NNCL 4840 CV
	250	50	369	800	80	1 100	1 400	5,9	NNC 4840 CV
	280	80	704	1 500	153	1 000	1 300	15,5	NNCF 4940 CV
	280	80	704	1 500	153	1 000	1 300	15,5	NNCL 4940 CV
	280	80	704	1 500	153	1 000	1 300	16	NNC 4940 CV
	310	150	1 680	3 050	320	950	1 200	41	NNCF 5040 CV
220	270	50	380	865	85	1 000	1 200	6,3	NNCF 4844 CV
	270	50	380	865	85	1 000	1 200	6,2	NNCL 4844 CV
	270	50	380	865	85	1 000	1 200	6,4	NNC 4844 CV
	300	80	737	1 600	160	950	1 200	17	NNCF 4944 CV
	300	80	737	1 600	160	950	1 200	17	NNCL 4944 CV
	300	80	737	1 600	160	950	1 200	17	NNC 4944 CV
	340	160	2 010	3 600	375	850	1 100	52,5	NNCF 5044 CV
240	300	60	539	1 290	125	900	1 100	9,9	NNCF 4848 CV
	300	60	539	1 290	125	900	1 100	9,8	NNCL 4848 CV
	300	60	539	1 290	125	900	1 100	10	NNC 4848 CV
	320	80	781	1 760	173	850	1 100	18,5	NNCF 4948 CV
	320	80	781	1 760	173	850	1 100	18	NNCL 4948 CV
	320	80	781	1 760	173	850	1 100	18,5	NNC 4948 CV
	360	160	2 120	3 900	400	800	1 000	56	NNCF 5048 CV
260	320	60	561	1 400	132	800	1 000	11	NNCF 4852 CV
	320	60	561	1 400	132	800	1 000	10,5	NNCL 4852 CV
	320	60	561	1 400	132	800	1 000	11	NNC 4852 CV
	360	100	1 170	2 550	245	750	950	31,5	NNCF 4952 CV
	360	100	1 170	2 550	245	750	950	31	NNCL 4952 CV
	360	100	1 170	2 550	245	750	950	32	NNC 4952 CV
	400	190	2 860	5 100	500	700	900	85,5	NNCF 5052 CV

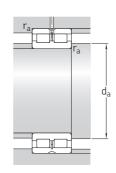


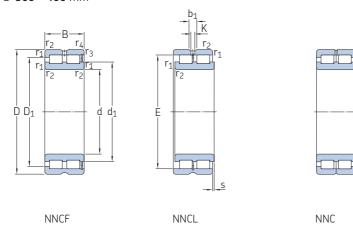
Dime	nsions								Abutm	ent and fi	llet dimen	sions		Calculation factor
d	d ₁ ≈	D ₁ ≈	Е	b ₁	K	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _{as} 1)	D _a max.	r _a max.	r _b max.	k _r
nm									mm					
200	220 220 220	230 - 230	- 235,5 -	7 7 7	4 4 4	1,5 1,5 1,5	1,5 - -	4 4 -	207 207 207	213 - 213	243 243 243	1,5 1,5 1,5	1,5 - -	0,2 0,2 0,2
	233 233 233	252 - 252	_ 259,34 _	8 8 8	4 4 4	2,1 2,1 2,1	2,1 - -	5 5 -	211 211 211	219 - 221	269 269 269	2 2 2	2 - -	0,25 0,25 0,25
	237	275	-	8	4	2,1	2,1	9	212	224	300	2	2	0,5
220	241 241 241	251 - 251	_ 256,5 _	7 7 7	4 4 4	1,5 1,5 1,5	1,5 - -	4 4 -	227 227 227	233 - 233	263 263 263	1,5 1,5 1,5	1,5 - -	0,2 0,2 0,2
	248 248 248	269 - 269	- 276,52 -	8 8 8	4 4 4	2,1 2,1 2,1	2,1 - -	5 5 -	232 232 232	240 - 240	288 288 288	2 2 2	2 - -	0,25 0,25 0,25
	255	302	-	8	6	3	3	9	235	245	327	2,5	2,5	0,5
240	261 261 261	275 - 275	- 281,9 -	8 8 8	4 4 4	2 2 2	2 - -	4 4 -	249 249 249	254 - 254	292 292 292	2 2 2	2 - -	0,2 0,2 0,2
	271 271 271	291 - 291	- 299,46 -	8 8 8	4 4 4	2,1 2,1 2,1	2,1 - -	5 5 -	251 251 251	261 - 261	308 308 308	2 2 2	2 -	0,25 0,25 0,25
	276	324	-	9,4	5	3	3	9	256	267	347	2,5	2,5	0,5
260	283 283 283	297 - 297	_ 304,2 _	8 8 8	4 4 4	2 2 2	2 - -	4 4 -	269 269 269	276 - 276	311 311 311	2 2 2	2 - -	0,2 0,2 0,2
	295 295 295	321 - 321	- 331,33 -	9,4 9,4 9,4	5 5 5	2,1 2,1 2,1	2,1 - -	6 6 -	272 272 272	283 - 283	349 349 349	2 2 2	2 - -	0,25 0,25 0,25
	302	362	_	9,4	5	4	4	10	278	291	384	3	3	0,5

¹⁾ Recommended shaft abutment diameter for axially loaded bearings \rightarrow Flange support, page 512

$\pmb{6.4} \ \ \textbf{Double row full complement cylindrical roller bearings}$


d **280 – 340** mm


Princip	al dimens	sions	Basic loa dynamic	n d ratings static	Fatigue load limit	Speed ration Reference	Limiting	Mass	Designation
d	D	В	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min		kg	-
280	350	69	737	1 860	173	750	950	16	NNCF 4856 CV
	350	69	737	1 860	173	750	950	15,5	NNCL 4856 CV
	350	69	737	1 860	173	750	950	16	NNC 4856 CV
	380	100	1 210	2 700	255	700	900	33,5	NNCF 4956 CV
	380	100	1 210	2 700	255	700	900	33	NNCL 4956 CV
	380	100	1 210	2 700	255	700	900	34	NNC 4956 CV
	420	190	2 920	5 300	520	670	850	90,5	NNCF 5056 CV
300	380	80	858	2 120	196	700	850	22,5	NNCF 4860 CV
	380	80	858	2 120	196	700	850	22	NNCL 4860 CV
	380	80	858	2 120	196	700	850	23	NNC 4860 CV
	420	118	1 680	3 750	355	670	800	52,5	NNCF 4960 CV
	420	118	1 680	3 750	355	670	800	52	NNCL 4960 CV
	420	118	1 680	3 750	355	670	800	53	NNC 4960 CV
	460	218	3 520	6 550	600	600	750	130	NNCF 5060 CV
320	400	80	897	2 280	208	630	800	23,5	NNCF 4864 CV
	400	80	897	2 280	208	630	800	23	NNCL 4864 CV
	400	80	897	2 280	208	630	800	24	NNC 4864 CV
	440	118	1 760	4 050	375	600	750	55,5	NNCF 4964 CV
	440	118	1 760	4 050	375	600	750	55	NNCL 4964 CV
	440	118	1 760	4 050	375	600	750	56	NNC 4964 CV
	480	218	3 690	6 950	620	560	700	135	NNCF 5064 CV
340	420	80	913	2 400	216	600	750	25	NNCF 4868 CV
	420	80	913	2 400	216	600	750	25,5	NNCL 4868 CV
	420	80	913	2 400	216	600	750	25,5	NNC 4868 CV
	460	118	1 790	4 250	390	560	700	58,5	NNCF 4968 CV
	460	118	1 790	4 250	390	560	700	58	NNCL 4968 CV
	460	118	1 790	4 250	390	560	700	59	NNC 4968 CV
	520	243	4 400	8 300	710	530	670	185	NNCF 5068 CV

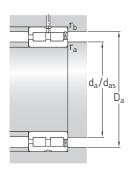


Dime	nsions								Abutm	ent and fi	llet dimen	sions		Calculation factor
d	d ₁ ≈	D ₁ ≈	Е	b ₁	K	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _{as} 1)	D _a max.	r _a max.	r _b max.	k _r
mm									mm					
280	308 308 308	326 - 326	- 332,4 -	8 8 8	4 4 4	2 2 2	2 -	4 4 -	290 290 290	299 - 299	341 341 341	2 2 2	2 -	0,2 0,2 0,2
	317 317 317	343 - 343	- 353,34 -	9,4 9,4 9,4	5 5 5	2,1 2,1 2,1	2,1 - -	6 6 -	293 293 293	312 - 305	368 368 368	2 2 2	2 - -	0,25 0,25 0,25
	318	372	-	9,4	5	4	4	10	299	310	404	3	3	0,5
300	330 330 330	349 - 349	- 356,7 -	9,4 9,4 9,4	5 5 5	2,1 2,1 2,1	2,1 - -	6 6 -	310 310 310	319 - 319	370 370 370	2 2 2	2 - -	0,2 0,2 0,2
	340 340 341	374 - 374	- 385,51 -	9,4 9,4 9,4	5 5 5	3 3 3	3 - -	6 6 -	315 315 315	335 - 328	406 406 406	2,5 2,5 2,5	2,5 - -	0,25 0,25 0,25
	352	418	-	9,4	5	4	4	9	319	336	443	3	3	0,5
20	352 352 352	372 - 372	- 379,7 -	9,4 9,4 9,4	5 5 5	2,1 2,1 2,1	2,1 - -	6 6 -	331 331 331	341 - 341	390 390 390	2 2 2	2 - -	0,2 0,2 0,2
	368 368 368	401 - 401	- 412,27 -	9,4 9,4 9,4	5 5 5	3 3 3	3 - -	6 6 -	336 336 336	352 - 352	425 425 425	2,5 2,5 2,5	2,5 - -	0,25 0,25 0,25
	370	434	-	9,4	5	4	4	9	339	360	462	3	3	0,5
40	368 368 369	390 - 369	- 396,9 -	9,4 9,4 9,4	5 5 5	2,1 2,1 2,1	2,1 - -	6 6 -	351 351 551	360 - 360	410 410 410	2 2 2	2 - -	0,2 0,2 0,2
	385 385 385	419 - 419	- 430,11 -	9,4 9,4 9,4	5 5 5	3 3 3	3 - -	6 6 -	356 356 356	371 - 371	445 445 445	2,5 2,5 2,5	2,5 - -	0,25 0,25 0,25
	395	468	_	9,4	5	5	5	11	362	384	500	4	4	0,5

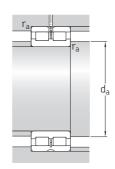
¹⁾ Recommended shaft abutment diameter for axially loaded bearings -> Flange support, page 512

6.4 Double row full complement cylindrical roller bearings

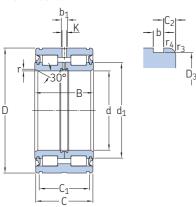
d **360 – 400** mm

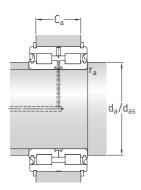


Princip	oal dimens	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Speed rati Reference speed	ngs Limiting speed	Mass	Designation
d	D	В	С	C_0	P_{u}	specu	specu		
mm			kN		kN	r/min	,	kg	-
360	440	80	935	2 550	224	560	700	26,5	NNCF 4872 CV
	440	80	935	2 550	224	560	700	26	NNCL 4872 CV
	440	80	935	2 550	224	560	700	27	NNC 4872 CV
	480	118	1 830	4 500	405	530	670	61,5	NNCF 4972 CV
	480	118	1 830	4 500	405	530	670	61	NNCL 4972 CV
	480	118	1 830	4 500	405	530	670	62	NNC 4972 CV
	540	243	4 180	8 650	735	500	630	195	NNCF 5072 CV
380	480	100	1 400	3 650	315	530	670	45	NNCF 4876 CV
	480	100	1 400	3 650	315	530	670	44	NNCL 4876 CV
	480	100	1 400	3 650	315	530	670	45,5	NNC 4876 CV
	520	140	2 380	5 700	500	500	630	91,5	NNCF 4976 CV
	520	140	2 380	5 700	500	500	630	90,5	NNCL 4976 CV
	520	140	2 380	5 700	500	500	630	92,5	NNC 4976 CV
	560	243	4 680	9 150	750	480	600	200	NNCF 5076 CV
400	500	100	1 420	3 750	325	500	630	46	NNCF 4880 CV
	500	100	1 420	3 750	325	500	630	46	NNCL 4880 CV
	500	100	1 420	3 750	325	500	630	46,5	NNC 4880 CV
	540	140	2 420	6 000	520	480	600	95,5	NNCF 4980 CV
	540	140	2 420	6 000	520	480	600	94,5	NNCL 4980 CV
	540	140	2 420	6 000	520	480	600	96,5	NNC 4980 CV
	600	272	5 500	11 000	900	450	560	270	NNCF 5080 CV


6.4 —

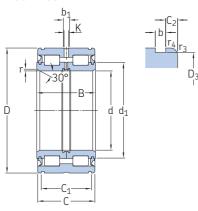
574 **SKF**:



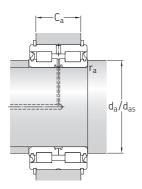


Dime	nsions								Abutm	ent and fi	llet dimen	sions		Calculation factor
d	d ₁ ≈	D ₁ ≈	Е	b ₁	K	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _{as} 1)	D _a max.	r _a max.	r _b max.	k _r
mm									mm					
360	391 391 391	413 - 413	- 419,8 -	9,4 9,4 9,4	5 5 5	2,1 2,1 2,1	2,1 - -	6 6 -	371 371 371	381 - 381	429 429 429	2 2 2	2 -	0,2 0,2 0,2
	404 404 404	437 - 437	- 447,95 -	9,4 9,4 9,4	5 5 5	3 3 3	3 - -	6 6 -	375 375 375	390 - 390	464 464 464	2,5 2,5 2,5	2,5 - -	0,25 0,25 0,25
	412	486	_	9,4	5	5	5	11	383	402	519	4	4	0,5
380	419 419 419	447 - 447	- 455,8 -	9,4 9,4 9,4	5 5 5	2,1 2,1 2,1	2,1 - -	6 6 -	391 391 391	405 - 405	469 469 469	2 2 2	2 - -	0,2 0,2 0,2
	430 430 430	469 - 469	- 481,35 -	9,4 9,4 9,4	5 5 5	4 4 4	4 - -	7 7 -	398 398 398	414 - 414	502 502 502	3 3 3	3 - -	0,25 0,25 0,25
	485	531	_	9,4	5	5	5	11	403	417	539	4	4	0,5
400	434 434 434	462 - 462	- 470,59 -	9,4 9,4 9,4	5 5 5	2,1 2,1 2,1	2,1 - -	6 6 -	411 411 411	423 - 423	488 488 488	2 2 2	2 - -	0,2 0,2 0,2
	451 451 451	489 - 489	_ 501,74 _	9,4 9,4 9,4	5 5 5	4 4 4	4 - -	7 7 –	418 418 418	435 - 435	521 521 521	3 3 3	3 -	0,25 0,25 0,25
	460	540	_	9,4	5	5	5	11	424	442	578	4	4	0,5

¹⁾ Recommended shaft abutment diameter for axially loaded bearings -> Flange support, page 512



Princi	al dimen	sions		Basic lo dynamic	ad ratings static	Fatigue load limit	Limiting speed	Mass	Designation
d	D	В	С		C_0	P_{u}			
mm				kN		kN	r/min	kg	-
20	42	30	29	45,7	55	5,7	3 400	0,2	► NNF 5004 ADB-2LSV
25	47	30	29	50,1	65,5	6,8	3 000	0,24	► NNF 5005 ADB-2LSV
30	55	34	33	57,2	75	7,8	2 600	0,37	► NNF 5006 ADB-2LSV
35	62	36	35	70,4	98	10,6	2 200	0,48	► NNF 5007 ADB-2LSV
40	68	38	37	85,8	116	13,2	2 000	0,56	► NNF 5008 ADB-2LSV
45	75	40	39	102	146	17	1 800	0,7	► NNF 5009 ADB-2LSV
50	80	40	39	108	160	18,6	1 700	0,76	► NNF 5010 ADB-2LSV
55	90	46	45	128	193	22,8	1 500	1,2	► NNF 5011 ADB-2LSV
60	95	46	45	134	208	25	1 400	1,25	► NNF 5012 ADB-2LSV
65	100	46	45	138	224	26,5	1 300	1,35	► NNF 5013 ADB-2LSV
70	110	54	53	187	285	34,5	1 200	1,85	► NNF 5014 ADB-2LSV
75	115	54	53	224	310	40	1 100	1,95	► NNF 5015 ADB-2LSV
80	125	60	59	251	415	53	1 000	2,7	► NNF 5016 B-2LS
85	130	60	59	270	430	55	1 000	2,85	► NNF 5017 B-2LS
90	140	67	66	319	550	69,5	900	3,7	► NNF 5018 B-2LS
95	145	67	66	330	570	71	900	3,9	NNF 5019 B-2LS
100	150	67	66	336	570	68	850	3,95	► NNF 5020 B-2LS
110	170	80	79	413	695	81,5	750	6,45	► NNF 5022 B-2LS
120	180	80	79	429	750	86,5	700	6,9	► NNF 5024 B-2LS
130	190 200	80 95	79 94	446 616	815 1 040	91,5 120	670 630	7,3 10,5	319426 B-2LS ► NNF 5026 B-2LS
140	200 210	80 95	79 94	468 644	865 1 120	96,5 127	630 600	8 11	319428 DA-2LS ► NNF 5028 B-2LS



Dime	nsions									Abutn	nent and	l fillet di	mensio	ns ¹⁾	Calcu- lation factor	Associate rings ²⁾ Seeger	d snap DIN 471
d	d ₁ ≈	D_3	C ₁ +0.2	C_2	b	b ₁	K	r min.	r _{3,4} min.	d _a min.	d _{as} 3)	C _{a1} -0,2	C _{a2} -0,2	r _a max.	k _r	Seegei	DIN 4/1
mm										mm					-	-	
20	30,6	40,2	24,7	2,15	1,8	6,5	3,5	0,5	0,3	24	28,8	21,5	21	0,3	0,4	SW 42	42x1.75
25	35,4	45,2	24,7	2,15	1,8	6,5	3,5	0,5	0,3	29	33,6	21,5	21	0,3	0,4	SW 47	47x1.75
30	40,6	53	28,2	2,4	2,1	7,5	4,5	0,5	0,3	34	38,7	25	24	0,3	0,4	SW 55	55x2
35	46,1	60	30,2	2,4	2,1	7,5	4,5	0,5	0,3	39	44	27	26	0,3	0,4	SW 62	62x2
40	51,4	65,8	32,2	2,4	2,7	7,5	4,5	0,8	0,6	44	49,2	28	27	0,4	0,4	SW 68	68x2.5
45	57	72,8	34,2	2,4	2,7	8,5	4,5	0,8	0,6	49	54,7	30	29	0,4	0,4	SW 75	75x2.5
50	61,8	77,8	34,2	2,4	2,7	8,5	4,5	0,8	0,6	54	59,5	30	29	0,4	0,4	SW 80	80x2.5
55	68,6	87,4	40,2	2,4	3,2	8,5	4,5	1	0,6	60	66,1	35	34	0,6	0,4	SW 90	90x3
60	73,7	92,4	40,2	2,4	3,2	9,5	5	1	0,6	65	71,2	35	34	0,6	0,4	SW 95	95x3
65	78,8	97,4	40,2	2,4	3,2	9,5	5	1	0,6	70	76,3	35	34	0,6	0,4	SW 100	100x3
70	84,5	107,1	48,2	2,4	4,2	9,5	5	1	0,6	75	82	43	40	0,6	0,4	SW 110	110x4
75	90	112,1	48,2	2,4	4,2	9,5	5	1	0,6	80	87	43	40	0,6	0,4	SW 115	115x4
80	97	122,1	54,2	2,4	4,2	6	3,5	1,5	0,6	86	94,3	49	46	1	0,4	SW 125	125x4
85	101	127,1	54,2	2,4	4,2	6	3,5	1,5	0,6	91	100	49	46	1	0,4	SW 130	130x4
90	109	137	59,2	3,4	4,2	6	3,5	1,5	0,6	96	106	54	51	1	0,4	SW 140	140x4
95	113	142	59,2	3,4	4,2	6	3,5	1,5	0,6	101	110	54	51	1	0,4	SW 145	145x4
100	118	147	59,2	3,4	4,2	6	3,5	1,5	0,6	106	115	54	51	1	0,4	SW 150	150x4
110	132	167	70,2	4,4	4,2	6	3,5	1,8	0,6	117	128	65	62	1,5	0,4	SW 170	170x4
120	141	176	71,2	3,9	4,2	6	3,5	1,8	0,6	127	138	65	63	1,5	0,4	SW 180	180x4
130	151 155	186 196	71,2 83,2	3,9 5,4	4,2 4,2	6 7	3,5 4	1,8 1,8	0,6 0,6	137 137	147 150	65 77	63 75	1,5 1,5	0,4 0,4	SW 190 SW 200	190x4 200x4
140	160 167	196 206	71,2 83,2	3,9 5,4	4,2 5,2	7 7	4	1,8 1,8	0,6 0,6	147 147	156 162	65 77	63 73	1 1,5	0,4 0,4	SW 200 SW 210	200x4 210x5

The values for C_{a1} apply for SW snap rings, the values for C_{a2} for snap rings in accordance with DIN 471.
 Snap rings are not supplied by SKF.
 Recommended shaft abutment diameter for axially loaded bearings → Flange support, page 512

Princip	al dimens	sions		Basic loa dynamic	n d ratings static	Fatigue load limit	Limiting speed	Mass	Designation
d	D	В	С		C_0	P_{u}			
mm				kN		kN	r/min	kg	-
150	210	80	79	484	915	100	600	8,4	319430 B-2LS
	225	100	99	748	1 290	143	560	13,5	► NNF 5030 B-2LS
160	220	80	79	501	1 000	106	530	8,8	319432 DA-2LS
	240	109	108	781	1 400	153	500	16,5	NNF 5032 B-2LS
170	230	80	79	512	1 060	110	530	9,2	319434 B-2LS
	260	122	121	1 010	1 800	193	480	22,5	► NNF 5034 B-2LS
180	240	80	79	528	1 100	114	480	9,8	319436 DA-2LS
	280	136	135	1170	2 120	228	450	31	NNF 5036 B-2LS
190	260	80	79	550	1 180	120	450	12,5	319438 DA-2LS
	290	136	135	1 190	2 200	236	430	31,5	NNF 5038 B-2LS
200	270	80	79	583	1 370	137	430	13	319440 B-2LS
	310	150	149	1 450	2 900	300	400	42	NNF 5040 B-2LS
220	300	95	94	880	1 860	190	380	19	319444 B-2LS
	340	160	159	1 610	3 100	315	360	54	NNF 5044 B-2LS
240	320	95	94	952	2 040	200	360	20	319448 B-2LS
	360	160	159	1 680	3 350	335	340	57,5	NNF 5048 B-2LS
260	340	95	94	990	2 160	212	340	22	319452 B-2LS
	400	190	189	2 420	4 650	455	300	86	NNF 5052 B-2LS
280	420	190	189	2 550	5 000	490	280	91	NNF 5056 B-2LS

Dime	nsions	Abutment and fillet dimensions ¹⁾							Calcu- lation	Associate rings ²⁾	d snap						
d	d ₁ ≈	D_3	C ₁ +0.2	C_2	b	b ₁	K	r min.	r _{3,4} min.	d _a min.	d _{as} 3)	C _{a1} -0,2	C _{a2} -0,2	r _a max.	factor k _r	Seeger	DIN 471
mm		,					,			mm					_	_	,
150	170 177	206 221	71,2 87,2	3,9 5,9	5,2 5,2	7 7	4	1,8 2	0,6 0,6	157 157	166 172	65 81	61 77	1,5 2	0,4 0,4	SW 210 SW 225	210x5 225x5
160	184 191	216 236	71,2 95,2	3,9 6,4	5,2 5,2	7 7	4	1,8 2	0,6 0,6	167 167	180 186	65 89	61 85	1	0,4 0,4	SW 220 SW 240	220x5 240x5
170	194 203	226 254	71,2 107,2	3,9 6,9	5,2 5,2	7 7	4 4	1,8 2	0,6 0,6	177 177	190 197	65 99	61 97	1,5 2	0,4 0,4	SW 230 SW 260	230x5 260x5
180	203 220	236 274	71,2 118,2	3,9 8,4	5,2 5,2	7 8	4 4	1,8 2	0,6 0,6	187 187	199 214	65 110	61 108	1 2	0,4 0,4	SW 240 SW 280	240x5 280x5
190	218 228	254 284	73,2 118,2	2,9 8,4	5,2 5,2	7 8	4 4	1,8 2	0,6 0,6	197 197	214 222	65 110	63 108	1 2	0,4 0,4	SW 260 SW 290	260x5 290x5
200	227 245	264 304	73,2 128,2	2,9 10,4	5,2 6,3	7 8	4 4	1,8 2	0,6 0,6	207 207	223 239	65 120	63 116	1,5 2	0,4 0,4	SW 270 SW 310	270x5 310x6
220	250 263	295 334	83,2 138,2	5,4 10,4	5,2 6,3	8 9,5	6 6	1,8 2	1	227 227	246 256	75 130	73 126	1,5 2	0,4 0,4	SW 300 SW 340	300x5 340x6
240	269 282	314 354	83,2 138,2	5,4 10,4	6,3 6,3	8 9,5	6 6	1,8 2	1	247 247	265 275	75 130	71 126	1,5 2	0,4 0,4	SW 320 SW 360	320x6 360x6
260	291 309	334 394	83,2 162,2	5,4 13,4	6,3 6,3	8 9,5	6	1,8 2	1 1,1	267 268	286 300	75 154	71 150	1,5 2	0,4 0,4	SW 340 SW 400	340x6 400x6
280	333	413	163,2	12,9	7,3	9,5	6	2	1,1	288	324	154	149	2	0,4	SW 420	420x7

The values for C_{a1} apply for SW snap rings, the values for C_{a2} for snap rings in accordance with DIN 471.
 Snap rings are not supplied by SKF.
 Recommended shaft abutment diameter for axially loaded bearings → Flange support, page 512

7

Needle roller bearings

7 Needle roller bearings

Basic design bearings. 583 Product tables Other needle roller and cage assemblies. 584 7.1 Needle roller and cage assemblies. 614 Drawn cup needle roller bearings. 584 7.2 Drawn cup needle roller bearings. 618 Basic design bearings. 586 7.3 Needle roller bearings with machined rings with flanges, without an inner ring. 626 Needle roller bearings with machined rings. 586 7.4 Needle roller bearings with machined rings with flanges, with an inner ring. 636 Basic design bearings. 587 7.5 Alignment needle roller bearings, without an inner ring. 636 Arrangements with other bearings. 588 7.6 Alignment needle roller bearings, without an inner ring. 636 Alignment needle roller bearings. 588 7.5 Alignment needle roller bearings, with an inner ring. 650 Needle roller / angular contact ball bearings. 588 7.6 Alignment needle roller bearings, with an inner ring. 652 Needle roller / volindrical roller thrust bearings. 593 Needle roller flav flav thrust ball bearings, full 652 Needle roller bearing searing inner rings.	Designs and variants	583	Designation system	612
Other needle roller and cage assemblies 584 7.1 Needle roller and cage assemblies 612 Drawn cup needle roller bearings 584 7.2 Drawn cup needle roller bearings 618 Basic design bearings. 585 7.3 Needle roller bearings with machined rings with Meachined rings with machined rings with an inner ring. 624 Arrangements with other bearings. 587 Alignment needle roller bearings, without an inner ring. 636 Arrangements with other bearings. 588 7.6 Alignment needle roller bearings, with an inner ring. 642 Combined needle roller bearings. 588 7.6 Alignment needle roller bearings, with an inner ring. 650 Needle roller / Arnust ball bearings. 588 7.6 Alignment needle roller bearings, with an inner ring. 652 Needle roller / Supritional roller thrust bearings. 593	Needle roller and cage assemblies	583		
Drawn rup needle roller bearings 584 7.2 Drawn cup needle roller bearings 618 Basic design bearings 585 7.3 Needle roller bearings with machined rings with flanges, without an inner ring 624 Needle roller bearings with machined rings 586 7.4 Needle roller bearings with machined rings with flanges, without an inner ring 626 Arrangements with other bearings 587 7.5 Alignment needle roller bearings, without an inner ring 636 Alignment needle roller bearings 588 7.5 Alignment needle roller bearings, without an inner ring 646 Combined needle roller bearings 588 7.6 Alignment needle roller bearings, without an inner ring 646 Combined needle roller bearings 588 7.6 Alignment needle roller bearings, without an inner ring 646 Combined needle roller bearings 588 7.6 Alignment needle roller bearings, without an inner ring 646 Combined needle roller bearings 588 7.6 Alignment needle roller bearings, without an inner ring 652 Needle roller / drivat ball bearings 652 7.8 Needle roller / drivat ball bearings, with an inner ring				
Basic design bearings				
Arrangements with components and other bearings 586 flanges, without an inner ring 624 Needle roller bearings with machined rings 587 7.5				618
Needle roller bearings with machined rings 586 7.4 Needle roller bearings with machined rings with Basic design bearings. 587 flanges, with an inner ring. 636 Arrangements with other bearings. 587 7.5 Alignment needle roller bearings, without an inner ring. 648 Combined needle roller bearings. 588 7.6 Alignment needle roller bearings, with an inner ring. 648 Needle roller / angular contact ball bearings. 588 7.6 Alignment needle roller bearings, with an inner ring. 650 Needle roller / drindrical roller thrust bearings. 590 7.7 Needle roller / angular contact ball bearings. 652 Needle roller / drindrical roller thrust bearings. 592 7.8 Needle roller / angular contact ball bearings. 652 Needle roller bearing inner rings. 593 7.8 Needle roller foller / thrust ball bearings. 652 Needle roller bearing inner rings. 593 Needle roller / thrust ball bearings, thrust bearing with a cage. 594 Sealing solutions. 594 7.10 Needle roller / cylindrical roller thrust bearing solutions. 656 Associated external seals. 594 7.11			7.3 Needle roller bearings with machined rings with	
Basic design bearings	Arrangements with components and other bearings	586	flanges, without an inner ring	624
Arrangements with other bearings	Needle roller bearings with machined rings	586	7.4 Needle roller bearings with machined rings with	
Arrangements with other bearings	Basic design bearings	587	flanges, with an inner ring	636
Combined needle roller bearings. 588 7.6 Alignment needle roller bearings, with an inner ring. 650 Needle roller / thrust ball bearings. 590 7.7 Needle roller / angular contact ball bearings. 652 Needle roller / cylindrical roller thrust bearings. 592 7.8 Needle roller / thrust ball bearings, full complement thrust bearing. 652 Needle roller bearing inner rings. 593 7.9 Needle roller / thrust ball bearings, full complement thrust bearing. 652 Needle roller bearing inner rings. 593 Needle roller / thrust ball bearings, thrust bearing 652 Needle roller searing inner rings. 593 Needle roller / thrust ball bearings, thrust bearing 652 Needle roller / thrust ball bearings. 652 7.9 Needle roller / thrust ball bearings, thrust bearing 652 Needle roller / thrust ball bearings. 652 7.9 Needle roller / thrust ball bearings, thrust bearing. 652 Associated external seals. 594 7.1 Needle roller / cylindrical roller thrust bearings. 652 Associated external seals. 594 7.1 Needle roller / cylindrical roller thrust bearings. 656 Capped bearings. 595		587	7.5 Alignment needle roller bearings, without an inner	
Combined needle roller bearings. 588 7.6 Alignment needle roller bearings, with an inner ring. 650 Needle roller / thrust ball bearings. 590 7.7 Needle roller / angular contact ball bearings. 652 Needle roller / cylindrical roller thrust bearings. 592 7.8 Needle roller / thrust ball bearings, full complement thrust bearing. 652 Needle roller bearing inner rings. 593 7.9 Needle roller / thrust ball bearings, full complement thrust bearing. 652 Needle roller bearing inner rings. 593 Needle roller / thrust ball bearings, thrust bearing 652 Needle roller searing inner rings. 593 Needle roller / thrust ball bearings, thrust bearing 652 Needle roller / thrust ball bearings. 652 7.9 Needle roller / thrust ball bearings, thrust bearing 652 Needle roller / thrust ball bearings. 652 7.9 Needle roller / thrust ball bearings, thrust bearing. 652 Associated external seals. 594 7.1 Needle roller / cylindrical roller thrust bearings. 652 Associated external seals. 594 7.1 Needle roller / cylindrical roller thrust bearings. 656 Capped bearings. 595	Alignment needle roller bearings	588	ring	648
Needle roller / angular contact ball bearings 588 ring 650 Needle roller / thrust ball bearings 590 7.7 Needle roller / angular contact ball bearings 652 Needle roller / cylindrical roller thrust bearings 592 7.8 Needle roller / thrust ball bearings, full Needle roller bearing components 593 complement thrust bearing 652 Needle roller bearing inner rings 593 7.9 Needle roller / thrust ball bearings, thrust bearing 656 Needle roller bearing inner rings 593 7.9 Needle roller / thrust ball bearings, thrust bearing 656 Sealing solutions 594 7.10 Needle roller / cylindrical roller thrust bearings 656 Associated external seals 594 7.11 Needle roller bearing inner rings 656 Capped bearings 595 595 595 596 Gereases for capped bearings 595 596 598 Bearing data 598 598 598 (Dimension standards, tolerances, operating clearance, internal clearance, permissible misalignment) 608 608 Loads		588		
Needle roller / thrust ball bearings. 590 7.7 Needle roller / angular contact ball bearings. 652 Needle roller / cylindrical roller thrust bearings. 592 7.8 Needle roller / thrust ball bearings, full 652 Needle roller poller bearing components 593 7.9 Needle roller / thrust ball bearings, thrust bearing 652 Needle rollers. 593 7.9 Needle roller / thrust ball bearings, thrust bearing 656 Sealing solutions. 594 7.10 Needle roller / cylindrical roller thrust bearings 656 Sealing solutions. 594 7.11 Needle roller bearing inner rings 656 Associated external seals 594 7.11 Needle roller bearing inner rings 656 Capped bearings 595 7.11 Needle roller bearing inner rings 660 Greases for capped bearings 595 595 596 Bearing data 598 598 (Dimension standards, tolerances, operating clearance, internal clearance, permissible misalignment) 606 Loads 607 608 Permissible speed 608		588		650
Needle roller / cylindrical roller thrust bearings. 592 7.8 Needle roller / thrust ball bearings, full complement thrust bearing. 654 Needle roller bearing components 593 7.9 Needle roller / thrust ball bearings, thrust bearing with a cage. 656 Needle rollers 593 7.9 Needle roller / thrust ball bearings, thrust bearing with a cage. 656 Sealing solutions. 594 7.10 Needle roller / cylindrical roller thrust bearings. 655 Associated external seals. 594 7.11 Needle roller bearing inner rings. 660 Capped bearings. 595 Needle roller bearing inner rings. 660 Greases for capped bearings. 595 Needle roller bearing inner rings. 660 Gages. 596 598 598 598 Bearing data. 598 606 606 606 (Minimum load, equivalent dynamic bearing load, equivalent static bearing load) 608 608 608 608 Permissible speed. 608 609 609 609 609 609 609 609 609 609			3	
Needle roller bearing components 593 complement thrust bearing 654 Needle roller bearing inner rings 593 7.9 Needle roller / thrust ball bearings, thrust bearing 656 Needle roller bearing inner rings 593 with a cage. 656 Sealing solutions 594 7.10 Needle roller / cylindrical roller thrust bearings 656 Associated external seals 594 7.11 Needle roller bearing inner rings 656 Associated external seals 594 7.11 Needle roller bearing inner rings 656 Capped bearings 595 666 666 666 Capped bearings 595 666 666 666 666 Relubrication features 595 595 595 666 <td< td=""><td></td><td></td><td></td><td>002</td></td<>				002
Needle roller bearing inner rings 593 7.9 Needle roller / thrust ball bearings, thrust bearing 656 Needle rollers 593 with a cage 656 Sealing solutions 594 7.10 Needle roller / cylindrical roller thrust bearings 658 Associated external seals 594 7.11 Needle roller bearing inner rings 660 Capped bearings 594 Greases for capped bearings 595 Relubrication features 595 Cages 596 Bearing data 598 (Dimension standards, tolerances, operating clearance, internal clearance, permissible misalignment) 606 Loads 606 (Minimum load, equivalent dynamic bearing load, equivalent static bearing load) 608 Temperature limits 608 Design considerations 609 Cam followers 943 Abutment dimensions 609 Cam followers 963 Shaft and housing tolerances 610 Bearings with Solid Oil 1023 NoWear coated bearings 1055 Mounting 611 Inner rings as wear sleeves ⇒ skf.com/seals				65/
Needle rollers 593 with a cage 656 Sealing solutions 594 7.10 Needle roller / cylindrical roller thrust bearings 658 Associated external seals 594 7.11 Needle roller bearing inner rings 660 Capped bearings 595 660 660 Greases for capped bearings 595 595 660 Relubrication features 596 596 598 660			•	034
Sealing solutions. 594 7.10 Needle roller / cylindrical roller thrust bearings 658 Associated external seals 594 7.11 Needle roller bearing inner rings 660 Capped bearings 594 Feases for capped bearings 595 Selubrication features 595 Feasing data 598 (Dimension standards, tolerances, operating clearance, internal clearance, permissible misalignment) 606 (Minimum load, equivalent dynamic bearing load, equivalent static bearing load) 606 Temperature limits 608 Permissible speed 608 Other needle roller bearings 943 Support rollers 943 Abutment dimensions 609 Cam followers 963 Abutment dimensions 609 Needle roller thrust bearings 895 Shaft and housing tolerances 610 Bearings with Solid Oil 1025 NoWear coated bearings 1055 Mounting 611 Inner rings as wear sleeves ⇒skf.com/seals				656
Associated external seals				
Capped bearings 594 Greases for capped bearings 595 Relubrication features 595 Cages 596 Bearing data 598 (Dimension standards, tolerances, operating clearance, internal clearance, permissible misalignment) 606 Loads 606 (Minimum load, equivalent dynamic bearing load, equivalent static bearing load) 608 Temperature limits 608 Permissible speed 608 Design considerations 609 Abutment dimensions 609 Shaft and housing tolerances 610 Bearings with Solid Oil 1023 NoWear coated bearings 1055 Mounting 511	-		,	
Greases for capped bearings 595 Relubrication features 595 Cages 596 Bearing data 598 (Dimension standards, tolerances, operating clearance, internal clearance, permissible misalignment) 606 Loads 606 (Minimum load, equivalent dynamic bearing load, equivalent static bearing load) 608 Temperature limits 608 Permissible speed 608 Obsign considerations 609 Abutment dimensions 609 Shaft and housing tolerances 609 Mounting 611 Inner rings as wear sleeves ⇒ skf.com/seals			7.11 Needle roller bearing inner rings	000
Relubrication features 595 Cages 596 Bearing data 598 (Dimension standards, tolerances, operating clearance, internal clearance, permissible misalignment) 606 Loads 606 (Minimum load, equivalent dynamic bearing load, equivalent static bearing load) 608 Temperature limits 608 Permissible speed 608 Obsign considerations 609 Abutment dimensions 609 Shaft and housing tolerances 610 Bearings with Solid Oil 1023 NoWear coated bearings 1059 Mounting 511				
Bearing data 598 (Dimension standards, tolerances, operating clearance, internal clearance, permissible misalignment) 606 Loads 606 (Minimum load, equivalent dynamic bearing load, equivalent static bearing load) 608 Temperature limits 608 Permissible speed 608 Other needle roller bearings Support rollers 943 Design considerations 609 Cam followers 943 Abutment dimensions 609 Needle roller thrust bearings 895 Shaft and housing tolerances 610 Bearings with Solid Oil 1023 NoWear coated bearings 1059 Mounting 611 Inner rings as wear sleeves → skf.com/seals				
Bearing data				
(Dimension standards, tolerances, operating clearance, internal clearance, permissible misalignment) Loads	Lages	596		
Loads 606 (Minimum load, equivalent dynamic bearing load, equivalent static bearing load) Temperature limits 608 Permissible speed 608 Other needle roller bearings Support rollers Design considerations 609 Cam followers Abutment dimensions 609 Needle roller thrust bearings Shaft and housing tolerances 610 Bearings with Solid Oil Mounting 611 Inner rings as wear sleeves		598		
Loads				
(Minimum load, equivalent dynamic bearing load, equivalent static bearing load) Temperature limits 608 Permissible speed 608 Other needle roller bearings Support rollers Design considerations 509 Cam followers Abutment dimensions 609 Needle roller thrust bearings Shaft and housing tolerances 610 Bearings with Solid Oil Mounting 611 Inner rings as wear sleeves	internal clearance, permissible misalignment)			
Temperature limits 608 Permissible speed 608 Other needle roller bearings Support rollers 943 Design considerations 609 Cam followers 963 Abutment dimensions 609 Needle roller thrust bearings 895 Shaft and housing tolerances 610 Bearings with Solid Oil 1023 NoWear coated bearings → skf.com/seals	Loads	606		
Temperature limits 608 Permissible speed 608 Other needle roller bearings Support rollers 943 Design considerations 609 Cam followers 963 Abutment dimensions 609 Needle roller thrust bearings 895 Shaft and housing tolerances 610 Bearings with Solid Oil 1023 NoWear coated bearings → skf.com/seals	(Minimum load, equivalent dynamic bearing load,			
Permissible speed 608 Other needle roller bearings Support rollers 943 Design considerations 609 Cam followers 963 Abutment dimensions 609 Needle roller thrust bearings 895 Shaft and housing tolerances 610 Bearings with Solid Oil 1023 NoWear coated bearings 1059 Mounting 611 Inner rings as wear sleeves → skf.com/seals				
Design considerationsSupport rollers943Abutment dimensions609Cam followers963Shaft and housing tolerances610Bearings with Solid Oil1023NoWear coated bearings1059Mounting611Inner rings as wear sleeves→ skf.com/seals	Temperature limits	608		
Design considerations609Cam followers963Abutment dimensions609Needle roller thrust bearings895Shaft and housing tolerances610Bearings with Solid Oil1023NoWear coated bearings1059Mounting611Inner rings as wear sleeves→ skf.com/seals	Permissible speed	608	<u> </u>	
Abutment dimensions 609 Needle roller thrust bearings 895 Shaft and housing tolerances 610 Bearings with Solid Oil 1023 NoWear coated bearings 1059 Mounting 611 Inner rings as wear sleeves → skf.com/seals			Support rollers	
Shaft and housing tolerances 610 Bearings with Solid 0il 1023 NoWear coated bearings 1059 Mounting 101 Inner rings as wear sleeves → skf.com/seals		609	Cam followers	
NoWear coated bearings 1059 Mounting 5 Inner rings as wear sleeves 3 skf.com/seals	Abutment dimensions	609	Needle roller thrust bearings	895
Mounting	Shaft and housing tolerances	610	Bearings with Solid Oil	1023
Mounting			NoWear coated bearings	1059
· · · · · · · · · · · · · · · · · · ·	Mounting	611	-	.com/seals
	-	611		

5KF. 581

7 Needle roller bearings

More information

General bearing knowledge	17
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Selecting internal clearance	182
Sealing, mounting and	
dismounting	193

SKF needle roller bearings are bearings with cylindrical rollers that are small in diameter relative to their length. The modified roller/raceway profile prevents stress peaks to extend bearing service life.

SKF supplies needle roller bearings in many different designs, series and in a wide range of sizes, which make them appropriate for a wide variety of operating conditions and applications.

Bearing features

• Low cross section

In applications where less space is available, needle roller bearings offer a very compact solution (fig. 1), and drawn cup needle roller bearings enable downsizing.

· High load carrying capacity

Owing to their large number of rollers, needle roller bearings have a high load carrying capacity.

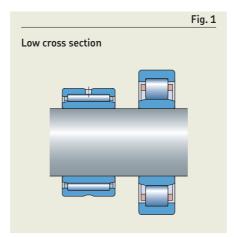
• High stiffness

Because of their large number of small-diameter rollers, needle roller bearings have high stiffness.

• Separable design

The possibility of assembling inner and outer rings separately permits interference fits for shaft and housing and also enables easy maintenance inspections (fig. 2).

· Accommodate axial displacement


Except for bearings with flanges on both the inner and outer rings, needle roller bearings with machined rings can accommodate axial displacement (fig. 3).


• Accommodate static misalignment

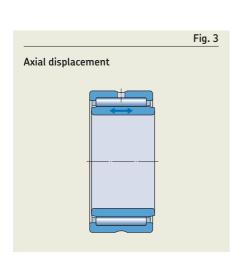
Alignment needle roller bearings are self-aligning up to 3° of static misalignment.

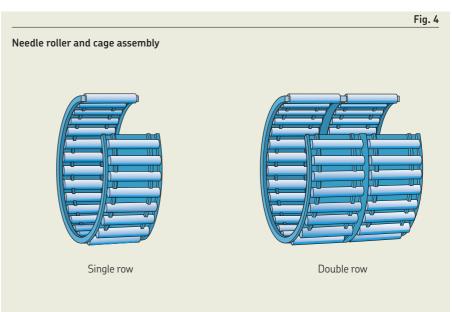
· Locating bearing arrangement

Combined needle roller bearings accommodate combined radial and axial loads in one or both directions.

Designs and variants

Needle roller and cage assemblies


SKF needle roller and cage assemblies are self-contained, ready-to-mount bearings. In applications where the shaft and housing bore can serve as raceways, the assemblies can be used to create bearing arrangements that require minimal radial space.


Basic design bearings

- are identified by the series designation K
- are available as (fig. 4):
 - single row design (no designation suffix)
 - double row design (designation suffix ZW)

They are characterized by the following properties:

- simple to mount and robust
- accurate roller guidance in the cage pockets
- good running performance

Other needle roller and cage assemblies

Needle roller and cage assemblies with a split cage can be used where raceways are recessed in the shaft (fig. 5).

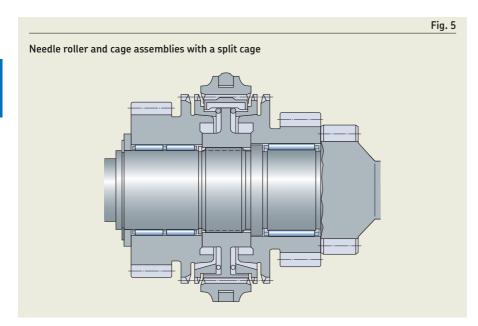
Special needle roller and cage assemblies are used for the gudgeon (wrist) pin (fig. 6) and crankpin (crankshaft journal) (fig. 7) for connecting rods of internal combustion engines and compressors. They provide excellent service in spite of rapid accelerations, elevated temperatures, unfavourable load, and poor lubrication conditions.

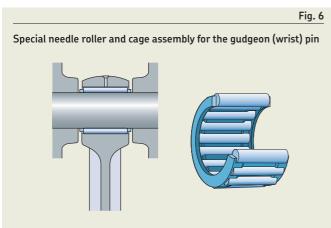
For additional information about special sizes and designs, which are available on request, contact SKF.

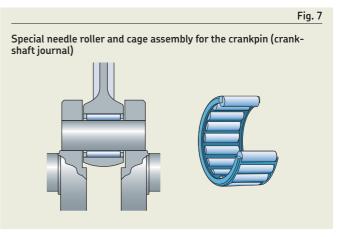
Drawn cup needle roller bearings

SKF drawn cup needle roller bearings have a deep drawn, thin-walled outer ring. Drawn cup needle roller bearings are typically used in applications where the housing bore cannot be used as a raceway for a needle roller and cage assembly, but where a very compact and economical bearing arrangement is required. These bearings are mounted with a tight interference fit in the housing. This enables a simple and economic design of the housing bore, as shoulders or snap rings are not required to locate the bearing axially.

The drawn cup of hardened steel and the needle roller and cage assembly of these bearings form a non-separable unit.

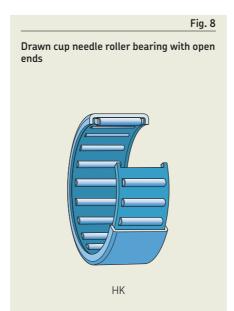

SKF standard assortment

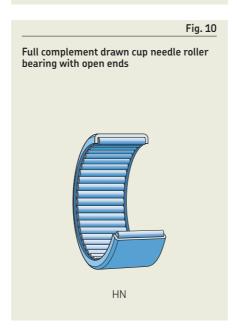

SKF supplies a wide assortment of drawn cup needle roller bearings. This includes:

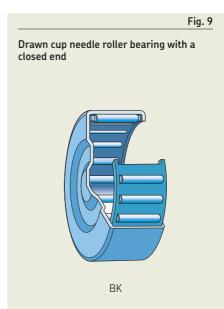

- bearings with open ends (fig. 8)
- bearings with a closed end (fig. 9)
- full complement bearings with open ends (fig. 10)

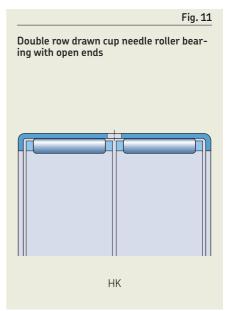
SKF drawn cup needle roller bearings:

- are supplied without an inner ring
- are generally designed with one needle roller and cage assembly – except wide sizes, which incorporate two needle roller and cage assemblies immediately adjacent to each other, with a lubrication hole in the outer ring (fig. 11).






Basic design bearings


- Drawn cup needle roller bearings with open ends (series designation HK, fig. 8)
 - are available open (without seals) or sealed on one or both sides (Sealing solutions, page 594)
- Drawn cup needle roller bearings with a closed end (series designation BK, fig. 9)
 - are available open or sealed (Sealing solutions)
 - are suitable for bearing arrangements where they are situated at the end of a shaft
 - accommodate small axial guidance forces, because of the profiled design of their closed end
- Full complement bearings with open ends (series designation HN, fig. 10)
 - are suitable for very heavy radial loads at moderate speeds
 - are available with open ends and without seals only

Full complement drawn cup needle roller bearings are supplied with a special grease to secure the rollers during transport. However, SKF recommends relubricating after mounting. Depending on the required grade, SKF recommends SKF LGEP 2 or SKF LGWM 1 grease for relubrication. The technical specifications of the initial grease fill and the relubrication greases are listed in table 1.

Arrangements with components and other bearings

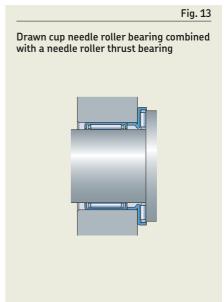
- Generally, drawn cup needle roller bearings run directly on a shaft. However, in applications where the shaft cannot be hardened and ground, bearings should be combined with an inner ring (fig. 12, and Needle roller bearing inner rings, page 593).
- Drawn cup needle roller bearings with wide inner rings (fig. 12 and Needle roller bearing inner rings) provide an excellent counterface for the lips of external G or SD design seals (skf.com/seals).
- Certain sizes of drawn cup needle roller bearings can be combined with a needle roller thrust bearing with a centring flange, AXW series (fig. 13 and Needle roller thrust bearings, page 895), to accommodate combined radial and axial loads.

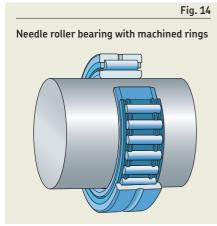
Needle roller bearings with machined rings

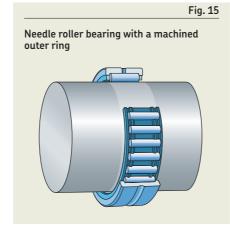
SKF needle roller bearings with machined rings are made of carbon chromium bearing steel. SKF supplies these bearings with or without flanges on the outer ring, in a wide range of series and sizes. SKF also supplies them with or without an inner ring.

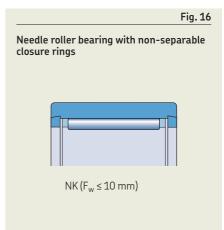
Needle roller bearings with machined inner and outer rings

- are used for applications where the shaft cannot be hardened and ground (fig. 14)
- have limited permissible axial displacement of the shaft relative to the housing (fig. 3, page 583 and product table, page 636), which can be extended, if needed, by using a wide inner ring (Needle roller bearing inner rings, page 593)


Needle roller bearings with a machined outer ring, without an inner ring


- are an excellent choice for compact bearing arrangements if the shaft can be hardened and ground (fig. 15)
- enable a larger shaft diameter and a stiffer bearing arrangement compared to arrangements with bearings with inner rings


Axial displacement of the shaft relative to the housing is only limited by the width of the raceway on the shaft. By machining the shaft raceways to the appropriate dimensional and geometrical tolerances, it is possible to obtain bearing arrangements with tighter geometrical tolerances. For additional information, refer to Raceways on shafts and in housings, page 179.



Basic design bearings

Needle roller bearings with machined rings, with flanges

- are available open (without seals) or sealed on one or both sides
- are available with or without an inner ring
- with D ≤ 17 mm (F_w ≤ 10 mm), are available with non-separable closure rings that act as flanges (fig. 16)

The flanges on larger bearings are an integral part of the outer ring, and the bearings have an annular groove and one or more lubrication holes in the outer ring (fig. 17).

are generally designed as single row bearings, with the exception of RNA 69 (fig. 18) and NA 69 series double row bearings with D ≥ 52 mm (F_w ≥ 40 mm)

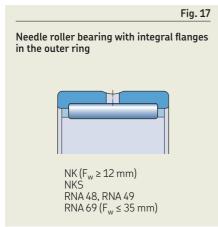
The roller and cage assembly and outer ring of a needle roller bearing with flanges form a non-separable unit.

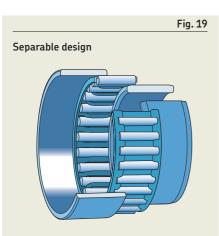
Needle roller bearings with machined rings, without flanges

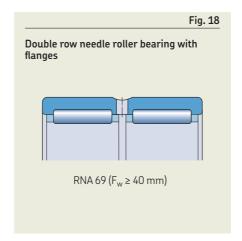
 are separable, i.e. the outer ring, needle roller and cage assembly, and inner ring, can all be mounted separately (fig. 19)

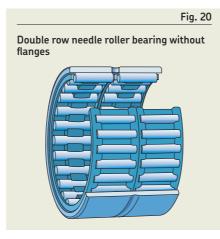
Needle roller and cage assemblies can, depending on the arrangement design, either be mounted:

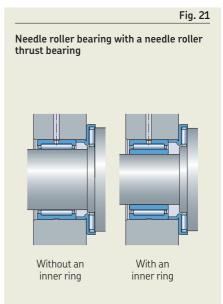
- together with the outer ring
- together with the shaft
- together with the inner ring
- between the outer ring and shaft or inner ring as the final step


However, needle roller and cage assemblies and bearing outer rings must always be kept together as supplied.


 are generally designed with one needle roller and cage assembly


However, wide sizes incorporate two needle roller and cage assemblies immediately adjacent to each other and have an annular groove and a lubrication hole in the outer ring (fig. 20).


Arrangements with other bearings


To accommodate combined radial and axial loads, needle roller bearings with machined rings can be combined with a needle roller thrust bearing with a centring flange, AXW series, if the outside diameter D of the radial bearing is equal to the flange diameter D_1 of the thrust bearing (fig. 21, and Needle roller thrust bearings, page 895).

Alignment needle roller bearings

SKF alignment needle roller bearings have an outer ring with a sphered (convex) outside surface. Two polymer seating rings with a sphered (concave) inside surface are encased in a drawn sheet steel sleeve and fitted over the outer ring.

SKF supplies alignment needle roller bearings with or without an inner ring (fig. 22).

Bearings with an inner ring

- should be used in applications where the shaft cannot be hardened and ground
- have limited permissible axial displacement of the shaft relative to the housing (product table, page 650), which can be extended, if needed, by using a wide inner ring (Needle roller bearing inner rings, page 593)

Bearings without an inner ring

• are an excellent choice for compact bearing arrangements, if the shaft can be hardened and ground.

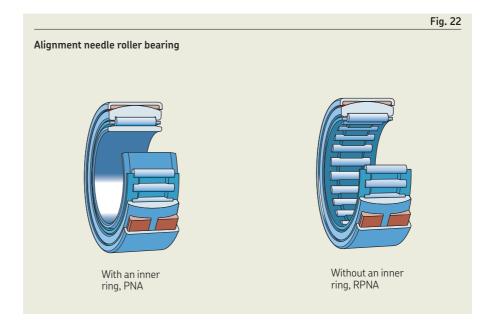
Combined needle roller bearings

SKF combined needle roller bearings consist of a radial needle roller bearing combined with a thrust bearing. They can accommodate both radial and axial loads. They are particularly suitable for applications where other types of locating bearing arrangements occupy too much space, or where the axial loads are too heavy, the speeds are too high, or the lubricant is inadequate for arrangements with simple thrust washers. SKF supplies combined needle roller bearings in the following basic designs:

- needle roller / angular contact ball bearing
- needle roller / thrust ball bearing
- needle roller / cylindrical roller thrust bearing

Relubrication intervals for the radial and thrust part of the bearing must be calculated separately. The shorter of the two intervals should be used. For additional information about lubrication, refer to Lubrication. page 110.

Needle roller / angular contact ball bearings


SKF supplies needle roller / angular contact ball bearings without seals in two series (fig. 23):

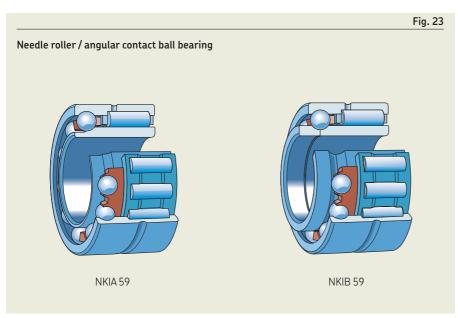
- NKIA 59 series bearings can accommodate axial loads in one direction
- NKIB 59 series bearings can accommodate axial loads in both directions

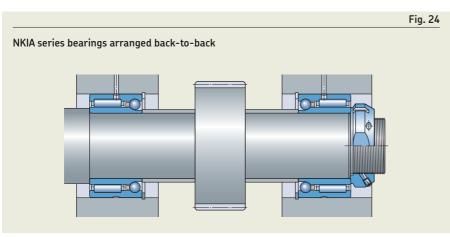
These combined bearings:

- consist of a radial needle roller bearing and an angular contact ball bearing
- accommodate heavy radial loads, carried exclusively by the needle roller bearing
- · accommodate light axial loads, carried exclusively by the angular contact ball bearing
- are low cross section bearings
- can operate at high speeds
- are separable, i.e. the inner ring can be mounted separately from the outer ring and rolling element and cage assemblies
- can be grease or oil lubricated, depending on the application

In the case of grease lubrication, both the needle roller and angular contact ball bearings should be filled with the same lubricant prior to mounting.

NKIA series bearings


- can accommodate axial loads in one direction and, therefore, locate the shaft in one direction only
- can be mounted back-to-back (fig. 24), for short shafts and where changes in length due to thermal expansion are relatively minor


NKIB series bearings

- can locate the shaft in both directions
- have axial clearance, between 0,08 and 0,25 mm
- have a two-piece inner ring to facilitate mounting

When mounting the inner ring, it is important that the two pieces are axially clamped to one another.

 have inner rings, which are not interchangeable with those from another seemingly identical bearing (keep together as supplied)

Needle roller / thrust ball bearings

SKF supplies needle roller / thrust ball bearings in two series (fig. 25):

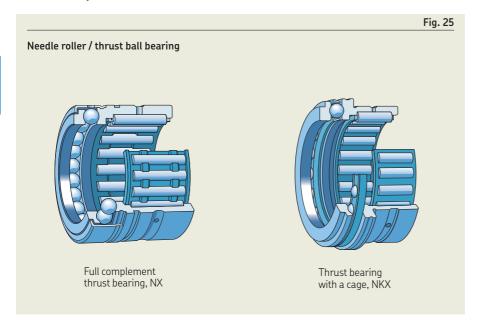
- NX series with a full complement thrust ball bearing
- NKX series with a thrust ball bearing with a cage

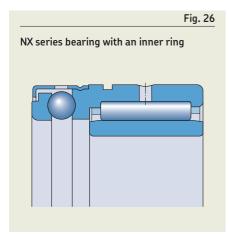
These combined bearings:

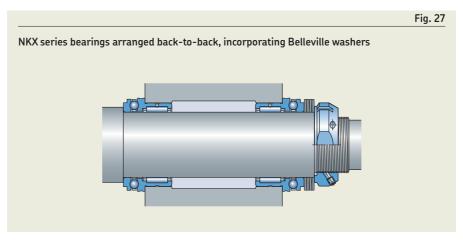
- consist of a radial needle roller bearing and a thrust ball bearing
- are supplied without an inner ring
- can be combined with an inner ring (fig. 26), where the shaft cannot be hardened and ground (product tables, page 654 and page 656, must be ordered separately)
- can accommodate axial loads in one direction and, therefore, locate the shaft in one direction only

 can be mounted back-to-back (fig. 27), for short shafts and where changes in length due to thermal expansion are relatively minor

For these types of arrangements, SKF recommends preloading the thrust ball bearings with Belleville washers (cup springs). This preload helps to prevent the balls from skidding if one of the thrust bearings becomes unloaded. Preload also improves performance of the thrust ball bearings while reducing noise levels.

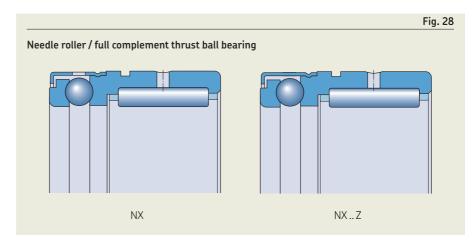

NX series bearings

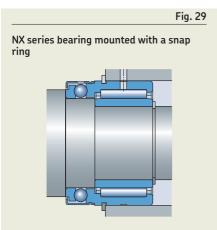

- consist of a radial needle roller bearing and a full complement thrust ball bearing (fig. 28)
- are suitable for applications where there are moderate radial loads and lighter, single direction axial loads
- have low cross-sectional height, which enables shaft centrelines to be positioned close together like for multi-spindle drills
- can be mounted with a snap ring, or against a shoulder in the housing bore, for axial support

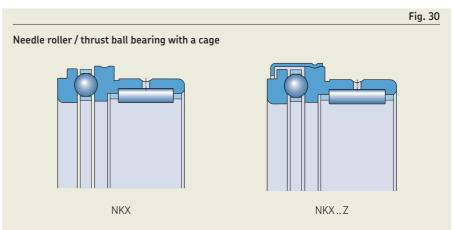

The snap ring groove in the outer ring provides a cost-effective and axially space-saving solution (fig. 29 and product tables, 7.8, page 654).

- are most often oil lubricated and therefore supplied without grease
- have a stamped steel cover that
 - extends over the shaft washer of the full complement thrust ball bearing
 - is firmly attached to the radial needle roller bearing
 - makes these bearings non-separable
- has lubrication holes as standard
- has no lubrication holes for bearings with designation suffix Z (fig. 28)

These bearings can be grease lubricated.



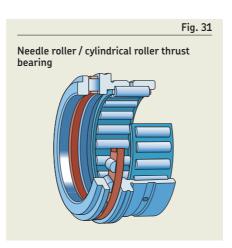


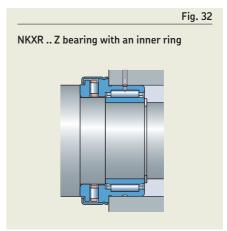


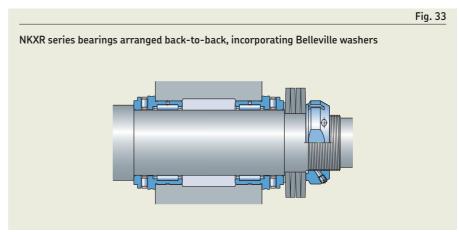
NKX series bearings with a cage

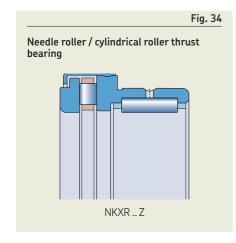
- consist of a radial needle roller bearing and a thrust ball bearing with a ball and cage thrust assembly identical to the 511 series (fig. 30)
- permit relatively high-speed operation
- are located axially in one direction by the outer ring flange
- can be mounted separately from both the ball and cage assembly and shaft washer
- should be oil lubricated, as there is no cover that retains the grease in the bearing
- have no stamped steel cover, as standard
- have a stamped steel cover for bearings with designation Z (fig. 30) that
 - has no lubrication holes
 - extends over the shaft washer of the thrust ball bearing
 - is firmly attached to the housing washer that is integral to the needle roller bearing outer ring
 - makes these bearings non-separable

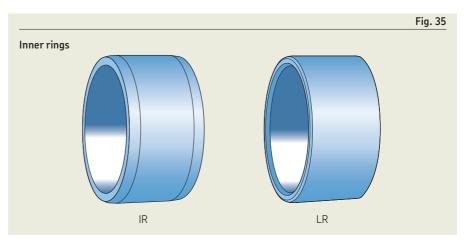
Needle roller / cylindrical roller thrust bearings


SKF supplies needle roller / cylindrical roller thrust bearings in the NKXR series (fig. 31). These combined bearings:


- consist of a radial needle roller bearing and a cylindrical roller thrust bearing The cylindrical roller and cage thrust assembly is identical to the 811 series.
- are supplied without an inner ring
- can be combined with an inner ring (fig. 32), where the shaft cannot be hardened and ground (product table, page 658, must be ordered separately)
- can accommodate axial loads in one direction
- can locate the shaft in one direction only
- can be mounted back-to-back (fig. 33) for short shafts and where changes in length due to thermal expansion are relatively minor


For these types of arrangements, SKF recommends preloading the thrust ball bearings with Belleville washers (cup springs). This elastic preload helps to prevent the balls from skidding if one of the thrust bearings becomes unloaded. Preload also improves performance of the thrust ball bearings while reducing noise levels.


NKXR series bearings


- are separable
- can be mounted separately from both the cylindrical roller and cage thrust assembly and the shaft washer
- should be oil lubricated, as oil facilitates an adequate supply of lubricant to the bearing
- have no stamped steel cover, as standard
- have a stamped steel cover for bearings with designation suffix Z (fig. 34) that
 - has no lubrication holes
 - extends over the shaft washer of the cylindrical roller thrust bearing
 - is firmly attached to the housing washer that is integral to the needle roller bearing outer ring
 - makes these bearings non-separable

Needle roller bearing components

Needle roller bearing inner rings

SKF supplies inner rings for needle roller bearings separately. They are typically combined with needle roller and cage assemblies (page 583) or drawn cup needle roller bearings (page 584) in applications where the shaft cannot be hardened and ground.

Inner rings are available in two series (fig. 35):

- IR series
 - with or without a lubrication hole
 - with or without a machining allowance
- LR series

Both inner ring series:

- are also available in different widths
- permit greater axial displacement of the shaft, relative to the housing, when they are wider than standard
 - provide an excellent counterface for the lips of contact seals (fig. 12, page 586)
- should be located on both sides to prevent axial movement (regardless of whether the ring has an interference or loose fit)
 - one side can be located against a shoulder
 - the other side can be located by either a snap ring, a distance ring or a nut

IR series inner rings

- are the standard SKF inner rings for needle roller bearings
- are hardened and ground
- have a precision ground raceway surface with a lead-in chamfer on both sides

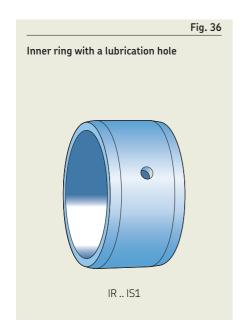
The chamfers facilitate assembly and protect the seal lips from damage during the mounting process.

- are available in some sizes with a lubrication hole (designation suffix IS1, fig. 36)
 Inner rings with additional lubrication holes are available on request.
- are available on request with a pre-ground raceway and a machining allowance (designation suffix VGS, table 2)

They can be finish ground after mounting on a shaft in applications where extremely tight geometrical tolerances are required.

LR series inner rings

- are hardened, and the bore and raceway diameter are ground
- side faces are turned and the edges are smoothed
- can be used to provide a cost-effective bearing arrangement for applications where the larger run-out and width tolerances are less important


Needle rollers

Needle rollers can be used to design full complement bearing arrangements for low-speed or oscillating applications. These compact bearing arrangements have a very high load carrying capacity when compared to bearings with a cage and are economical, provided the shaft and housing bore can serve as raceways (Raceways on shafts and in housings, page 179).

Needle rollers:

- are not listed in this catalogue, but can be found online at skf.com/go/17000-7-12
- are made of carbon chromium steel
- have a hardness of 58 to 65 HRC
- have a precision ground surface

For assistance in designing full complement bearing arrangements or to calculate performance data for these bearing arrangements, contact the SKF application engineering service.

acewa	y diameter	Machining allowance	Pre-ground raceway diameter F_{VGS}
	≤	_	· VG5
ı		mm	mm
	50 80 180	0,10 0,15 0,20	F _{VGS} = F + z (tolerance class h7℃)
	250 315 400	0,25 0,30 0,35	
	500	0,40	

- . . .

Sealing solutions

Associated external seals

- can be used for needle roller bearing arrangements (fig. 12, page 586)
- can be supplied in various sizes, as listed in the product tables:
 - Needle roller and cage assemblies, page 614
 - Drawn cup needle roller bearings, page 618
 - Needle roller bearings with machined rings with flanges, without an inner ring, page 624

For information about associated power transmission seals, refer to skf.com/seals.

Capped bearings

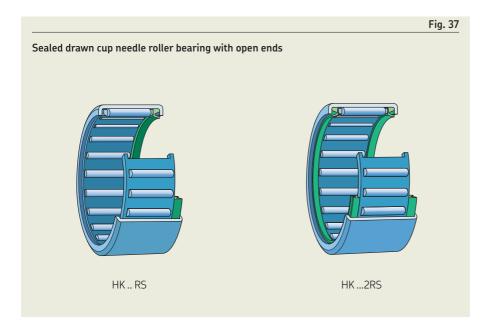
SKF supplies certain needle roller bearings capped with a seal or steel cover. The assortment of capped bearings includes:

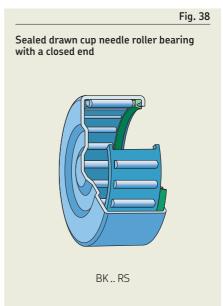
- drawn cup needle roller bearings, sealed on one or both sides
- needle roller bearings with machined rings in the (R)NA 49 series, sealed on one or both sides
- combined needle roller bearings, capped with a steel cover over the thrust part of the bearing

When capped bearings must operate under certain conditions, such as very high speeds or high temperatures, some grease may leak. For bearing arrangements where this would be detrimental, appropriate actions could be taken.

Sealed drawn cup needle roller bearings

For applications where a sufficiently effective seal is not available, or cannot be used for space reasons, SKF supplies certain drawn cup needle roller bearings as sealed bearings. The assortment includes:


- drawn cup needle roller bearings with open ends (fig. 37)
 - available for $8 \le F_w \le 50 \text{ mm}$
 - sealed on one side (designation suffix RS)
 - sealed on both sides (designation suffix .2RS)
- sealed drawn cup needle roller bearings with a closed end (designation suffix RS, fig. 38)
 - available for $10 \le F_w \le 25$ mm


These integral contact seals are made of PUR, FKM or NBR. Sealed drawn cup needle roller bearings are, under normal conditions and with appropriate counterface, an extremely cost-effective solution to exclude solid contaminants and moisture, and retain the lubricant in the bearing.

△ WARNING

Seals made of FKM (fluoro rubber) exposed to an open flame or temperatures above 300 °C (570 °F) are a health and environmental hazard! They remain dangerous even after they have cooled.

Read and follow the safety precautions on page 197.

Sealed needle roller bearings with machined rings

- are available in the (R)NA 49 series with a contact seal made of NBR (effective at keeping the lubricant in and contaminants out of the bearing) on one (designation suffix RS) or both sides (designation suffix .2RS) (fig. 39)
- have an inner ring that is 1 mm wider than the outer ring, which maintains the effectiveness of the seals and simplifies the bearing arrangements even when small axial displacements occur

Capped combined needle roller bearings

SKF supplies certain combined needle roller bearings capped with a stamped steel cover over the thrust part of the bearing (designation suffix Z). The cover, which has no lubrication holes, forms a gap-type seal to retain

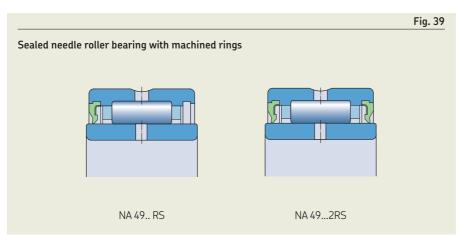
the grease in the bearing. The assortment includes:

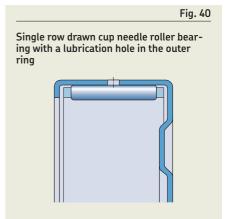
- needle roller / full complement thrust ball bearings (fig. 28, page 591)
- needle roller / thrust ball bearings (fig. 30, page 591)
- needle roller / cylindrical roller thrust bearings (fig. 34, page 592)

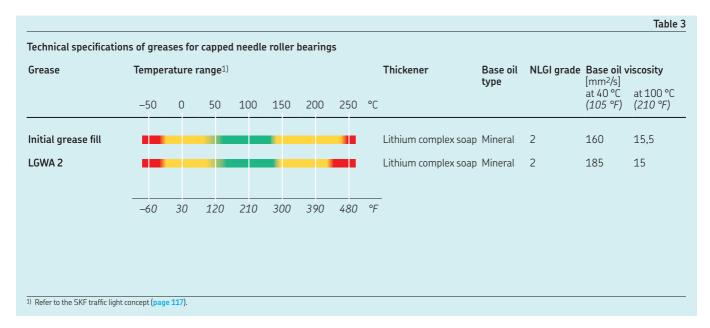
Greases for capped bearings

Needle roller bearings with one or two seals are supplied greased. The thrust part of combined needle roller bearings with the designation suffix Z is also supplied greased. They are filled with high-quality grease (table 3) under clean conditions.

The relatively large quantity of grease in the bearings means they can be operated for long periods before relubrication is required. SKF recommends SKF LGWA 2 grease (table 3), if relubrication is required.


Relubrication features


SKF supplies needle roller bearings with different features to facilitate effective lubrication and relubrication.


Drawn cup needle roller bearings

All double row drawn cup needle roller bearings have one lubrication hole in the outer ring (fig. 11, page 585), as standard.

On request, SKF can supply any single row drawn cup needle roller bearing for inside diameters under the rollers $F_w \ge 7$ mm with a lubrication hole in the outer ring (fig. 40).

Needle roller bearings with machined rings

- with flanges and D ≥ 19 mm
 (F, F_w ≥ 12 mm) have an annular groove and, depending on the bearing size, one or more lubrication holes in the outer ring
 (fig. 17, page 587)
- with seal(s) have an additional lubrication hole in the inner ring (fig. 39, page 595)
- double row and without flanges have an annular groove with one lubrication hole in the outer ring (fig. 20, page 587)
- without flanges and with an inner ring have one lubrication hole in the inner ring for certain sizes (product table, page 636)

Combined needle roller bearings

The needle roller bearing used in combined bearings has an annular groove with one lubrication hole in the outer ring.

Needle roller / full complement thrust ball bearings in the NX series without the designation suffix Z have a cover with lubrication holes over the thrust part of the bearing (fig. 28, page 591). Most often they are oil lubricated and, therefore, SKF supplies these bearings without grease.

Cages

SKF needle roller bearings are fitted with one of the cage designs shown in table 4.

When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For additional information about the suitability of cages, refer to *Cages*, page 187.

Double row needle roller bearings

Double row needle roller and cage assemblies have a double row cage in the same design as a single row cage (fig. 4, page 583).

Other double row needle roller bearings are fitted with two cage assemblies (fig. 11, page 585, and fig. 18, page 587).

							Table 4
I	I	I	I	I	Cages for thrust I	bearings	I
Window-type	Window-type	Window-type	Window-type	Window-type	Window-type	Snap-type	Window-type
Sheet steel or machined steel	Sheet steel	Sheet steel	Sheet steel or machined steel	Glass fibre rein- forced PA66	Sheet steel	Glass fibre rein- forced PA66	Glass fibre rein- forced PA66
-	_	_	_	TN	_	_	_
	Standard			Standard	_		
_	Staffualu	_	_	Staffualu	_	_	_
-	-	Standard	-	Standard	-	-	-
Standard	-	_	Standard	Standard	_	-	-
Standard	_	_	Standard	_	_	_	_
Standard	-	_	Standard	-	-	Standard	-
Standard	-	_	Standard	Standard	Standard	-	-
Standard	-	-	Standard	-	-	-	Standard

Bearing data

	Needle roller and cage assemblies	Drawn cup needle roller bearings
Dimension standards	ISO 3030 when $F_w \le 100$ mm, as far as standardized	Boundary dimensions: ISO 3245, as far as standardized
Tolerances	 rollers: ISO 3096 Grade 2 (grade G2) tolerance of each gauge 2 µm standard gauges (table 5, page 601) specific gauge to be stated when ordering U: ISO 3030, as far as standardized (-0,2/-0,8 mm) 	 ISO 3245, as far as standardized • F_w ≈ within F8 (table 8, page 602) Measuring of F_w: - bearing must be pressed into a thick-walled ring gauge, bore diameter listed in table 8 - check deviation of F_w with measuring mandrel • C: 0/-0,3 mm
For additional information → page 35		Dimensional tolerances can be checked only if bearings are mounted.
Operating clearance	Range of C2 to Normal if: • fitted with standard gauge rollers (table 5, page 601) • recommended raceway tolerances (table 6, page 601) applied • normal operating conditions	Range of C2 to C3 if recommended tolerances (table 17, page 610) applied
Internal clearance	Specific ranges: table 7, page 602	
Permissible misalignment	≈ 1 minute of arc	≈ 1 minute of arc
	Misalignment increases bearing noise and reduces bear	ing service life,

7
=

Needle roller bearings with machined rings	Alignment needle roller bearings
Boundary dimensions: ISO 1206 for bearings in the (R)NA 48, (R)NA 49 and (R)NA 69 series	d, D: ISO 15 D ≤ 47 mm → diameter series 0 D ≥ 55 mm → diameter series 9
Normal P6 or P5 on request Fw: F6 (table 9, page 603) Values are valid for unmounted bearings when rollers are in contact with the outer ring raceway. Tighter tolerance for inside diameter under the rollers on request (designation suffix H followed by two numbers that identify the tolerance limit, e.g. H+24+20). Values: ISO 492 (table 2, page 38, to table 4, page 40)	 Normal for the inner ring and the outer ring with sphered outside surface C of the external drawn sheet steel sleeve: ± 0,5 mm F_w: F6 (table 9, page 603) Values are valid for unmounted bearings and when rollers are in contact with the outer ring raceway. Values: ISO 492 (table 2, page 38)
Bearings without an inner ring Suitable ranges (table 10, page 603) where: • recommended shaft tolerance classes applied • housing bore tolerance not tighter than K7©	Bearings without an inner ring Range of C2 to C3 if recommended tolerances (table 17, page 610) applied
Normal (bearings with an inner ring) Check availability of C2, C3 or C4 clearance classes Values: ISO 5753-1 (table 11, page 603) Values are valid for unmounted bearings under zero measuring loa	d.
≈ 1 minute of arc	≤ 3° static misalignment No dynamic misalignment

... and when it exceeds the guideline value these effects become particularly noticeable.

	Needle roller / angular contact ball bearings	Needle roller / thrust ball bearings	Needle roller / cylindrica roller thrust bearings
Dimension standards	Boundary dimensions: ISO 15 – dimension series 59, except for following inner ring parameters in the NKIB 59 series: • extended width on one side • slightly larger bore diameter of the narrow part	Boundary dimensions: DIN 5429-1, except for NX and NX Z series bearings (not standardized)	Boundary dimensions: DIN 5429-1
Tolerances	Normal, except for width of the complete inner ring in the NKIB 59 series: 0/–0,3 mm Values: ISO 492 (table 2, page 38)	D: Normal F _w : F6 (table 9, page 603) d: E8 (table 9) C: 0/-0,25 mm C ₁ (applicable to NKX(R) serie	s only): 0/–0,2 mm
For additional information → page 35			92 (table 2, page 38) 99 (table 10, page 46)
Operating clearance	_	Bearings without an inner r Range slightly less than Norm ances (table 17, page 610) ap	nal if recommended toler-
Internal clearance	Normal (bearings with an inner ring) Check availability of C2, C3 or C4 clearance classes Values: ISO 5753-1 (table 11, page 603) Values are valid for unmounted bearings under zero measuring load.	_	
Permissible misalignment	Misalignment increases bearing noise and reduces bearing service life.	Cannot tolerate any misalignr	nent.

	Needle roller bearing inner rings		Needle rollers
	IR series	LR series	
Dimension standards	-		ISO 3096, except for RN-2x6.3 BF/G2 that is not standardized
Tolerances	Normal	F: h6 B: h12	ISO 3096 Grade 2 for flat end needle rollers
For additional information	Values: ISO 492 (table 2, page 38), except for raceway tolerances	d: K6	Available tolerances (table 14 page 604)
→ page 35	(table 12, page 604)	Values: table 13, page 604	
Operating	Depends on the bearing type with wh	ich the inner ring is combined.	_
clearance			

Depends on the bearing type with which the inner ring is combined.

Needle roller gauges		
Gauge type	Gauge	
-	μm	
Standard gauges	0/-2 -1/-3 -2/-4 -3/-5 -4/-6 -5/-7	

Internal clearance

Shaft Nomina	al diameter	Housing/shaft tol	lerance classes for opera	ating clearance ¹⁾
>	± 414111€€1	lower side	medium	higher side
mm		-		
-	80	G6/j5 H6/h5	G6/h5 H6/g5	G6/g6 H6/f6
80	120	G6/h5	G6/g5	G6/f6
120	-	G6/h5 -	G6/g5 H6/f5	G6/f6 H6/e6
			116,13	1.0700

5KF. 601

								Table 7
Mounting sc	heme – examp	le						
Needle roller Housing bore Shaft diamet		nbly:	K 16x22x12 22H6⊕ [mm 16h5⊕ [mm	ı], deviation 0/+13 μ], deviation 0/–8 μπ	ım n			
Shaft diameter	Housing bore	e diameter						
Deviation	Deviation gro	ups						
group	0 to +3 Needle roller gauge limits	Radial internal clearance	+3 to +6 Needle roller gauge limits	Radial internal clearance	+6 to +9 Needle roller gauge limits	Radial internal clearance	+9 to +13 Needle roller gauge limits	Radial internal clearance
μm	μm							
0 to -3					-5/-7	18-24	-3/-5	17-24
-3 to -6			-5/-7	18-24	-3/-5 -4/-6	17-25	-2/-4	18-25
-6 to -8	-5/-7 -6/-8	18-25	-3/-5 -4/-6	17-24	-2/-4 -3/-5	18-25	0/-2 -1/-3	17-25
The mean value of	f the needle roller ga	uge should be used to ca	alculate the internal cl	earance, e.g. –6 µm for the	e gauge –5 to –7 μm.			

Bearing Inside	Outside	Ring gauge Bore	Deviation inside di	ns from nominal ameter	Bearing Inside diameter	Outside	Ring gauge Bore diameter	Deviation inside di	ns from nominal ameter
diameter F _w	diameter D	diameter (measured)	U	L	F _w	diameter D	(measured)	U	L
mm		mm	μm		mm		mm	μm	
3	6,5	6,484	+24	+6	18	24	23,976	+34	+16
4	8	7,984	+28	+10	20	26	25,976	+41	+20
5	9	8,984	+28	+10	22	28	27,976	+41	+20
6	10	9,984	+28	+10	25	32	31,972	+41	+20
7	11	10,980	+31	+13	28	35	34,972	+41	+20
8	12	11,980	+31	+13	30	37	36,972	+41	+20
9	13	12,980	+31	+13	32	39	38,972	+50	+25
10	14	13,980	+31	+13	35	42	41,972	+50	+25
12	16	15,980	+34	+16	40	47	46,972	+50	+25
12	18	17,980	+34	+16	45	52	51,967	+50	+25
13	19	18,976	+34	+16	50	58	57,967	+50	+25
14	20	19,976	+34	+16	55	63	62,967	+60	+30
15 16 17	21 22 23	20,976 21,976 22,976	+34 +34 +34	+16 +16 +16	60	68	67,967	+60	+30

602 **5KF**.

					Table 9
ISO tol	erance classe	es			
Nomin >	al diameter ≤	E8 © Deviation U	L	F6 © Deviation U	L
mm		μm		μm	
- 3 6	3 6 10	- - +47	- - +25	+12 +27 +33	+6 +10 +13
10 18 30	18 30 50	+59 +73 +89	+32 +40 +50	+27 +33 +41	+16 +20 +25
50 80 120	80 120 180	+106 - -	+60 - -	+49 +58 +68	+30 +36 +43
180 250 315	250 315 400	- - -	_ _ _	+79 +88 +98	+50 +56 +62
400	500	-	-	+108	+68

diamet	al inside er	ways to g	erance classes live operating e medium	
F _w >	≤	lower side	e meaium	higher side
mm		-		
-	65	k5	h5	g6
65	80	k5	h5	f6
80	160	k5	g5	f6
160	180	k5	g5	e6
180	200	j5	g5	e6
200	250	j5	f6	e6
250	315	h5	f6	d6
315	400	g5	f6	d6

										Table 11
Radial ii	nternal clearan	ce for needle	roller bearin	gs						
Bore dia	ameter	Radia C2	l internal cle	arance Norma	a l	C3		C4		
d >	≤	min.	max.	min.	max.	min.	max.	min.	max.	
mm		μm								
-	30	0	25	20	45	35	60	50	75	
30	40	5	30	25	50	45	70	60	85	
40	50	5	35	30	60	50	80	70	100	
50	65	10	40	40	70	60	90	80	100	
65	80	10	45	40	75	65	100	90	125	
80	100	15	50	50	85	75	110	105	140	
100	120	15	55	50	90	85	125	125	165	
120	140	15	60	60	105	100	145	145	190	
140	160	20	70	70	120	115	165	165	215	
160	180	25	75	75	125	120	170	170	220	
180	200	35	90	90	145	140	195	195	250	
200	225	45	105	105	165	160	220	220	280	
225	250	45	110	110	175	170	235	235	300	
250	280	55	125	125	195	190	260	260	330	
280	315	55	130	130	205	200	275	275	350	
315	355	65	145	145	225	225	305	305	385	
355	400	100	190	190	280	280	370	370	460	

ner ring raceway	tolerance	S		Та
Nominal diameter	F		$t_{\Delta \text{Fmp}}$	1500
. ≤	>	≤	for CN a U	nd EGS L
nm	mm		μm	
3 3 6 5 10	3 6 6	6 10 10	-10 -7 -7	-27 -23 -23
18	10	18	-4	-18
10 24	18	30	0	-12
18 24	30	50	5	-4
24 30	24	30	0	-12
24 30	30	50	5	-4
30 40	30	50	0	-9
50 50	40	50	-5	-19
50 50	50	80	0	-11
50 65	50	80	-10	-21
85 80	65	80	-10	-26
85 80	80	120	-4	-17
80 100	80	120	-14	-27
100 120	100	120	-14	-32
100 120	120	180	-7	-22
120 140	120	180	-17	-37
140 160	140	180	-27	-52
160 180	160	180	-32	-57
160 180	180	250	-25	-46
200 200 225 225 250	180 200 250	250 250 315	-40 -55 -54	-66 -86 -87
250 280	250	315	-69	-107
280 315	315	400	-68	-107
215 335	315	400	-83	-127
355 400	355	400	-128	-182
355 400	400	500	-122	-172

diameter > ≤ mm	U μm	L	U	L	U	1
	μm					L
			μm		μm	
6 10 10 18 18 30	0	-9 -11 -13	- 0 0	- -180 -210	+2 +2 +2	-7 -9 -11
30 50 50 80		-16 -19	0 –	–250 –	+3	-13 -

grade	62				
Diam Devia	eter D_w tion	Gauge toler- ance	Gauge limits	Roundness (max. circularity devi- ation in accordance with ISO 3096)	Length L_w Tolerance class
μm					
0	-10	2	0/-2 -1/-3 -2/-4 -3/-5 -4/-6 -5/-7 -6/-8 -7/-9 -8/-10	1	h13€

Each gauge is packed separately and marked with the gauge limits, e.g. N/M2 or M2/M4, where M signifies minus and N zero. For a needle roller with a 2 mm nominal diameter and gauge limits M2/M4, the actual diameter is between 1,998 mm and 1,996 mm.

604

Loads

	Needle rollers and cage assemblies	Drawn cup needle roller bearings	Needle roller bearings with machined rings	Alignment needle roller bearings		
Minimum load For additional information → page 106	F _{rm} = 0,02 C					
Equivalent dynamic bearing load For additional information	P = F _r					
 ⇒ page 91 Equivalent static bearing load For additional information ⇒ page 105 	$P_0 = F_r$ For drawn cup needle roller bearings, SKF recommends applying a static safety factor $s_0 \ge 3$, i.e. $s_0 = C_0/P_0 \ge 3$.					
	Symbols A minimum load factor (C basic dynamic load rat C ₀ basic static load rating d _m bearing mean diamete = 0,5 (d +D) F _a axial load [kN] F _{rm} minimum axial load [k F _r radial load [kN] minimum radial load [r/min] equivalent dynamic be P ₀ equivalent static bearing static safety factor	ing [kN] (product tables) [kN] (product tables) er [mm] N] kN] earing load [kN]				

Combined needle roller bearings Thrust part		
Angular contact ball bearing	Thrust ball bearing	Cylindrical roller thrust bearing
$F_{am} = 0.25 \frac{C_0}{1000} \left(\frac{n d_m}{100000} \right)^2$	$F_{am} = A \left(\frac{n}{1000} \right)^2$	$F_{am} = 0,0005 C_0 + A \left(\frac{n}{1000}\right)^2$
P = F _a	P = F _a	$P = F_a$
F _a must not exceed 0,25 F _r .		
$P_0 = F_a$	$P_0 = F_a$	$P_0 = F_a$
F_a must not exceed 0,25 F_r .		

Temperature limits

The permissible operating temperature for needle roller bearings can be limited by:

- the dimensional stability of the bearing rings and rolling elements
- the cages
- the seals
- the seating rings
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings and rolling elements

SKF needle roller bearings, and roller and cage assemblies are heat stabilized up to $120 \,^{\circ}\text{C} (250 \,^{\circ}\text{F})$.

Drawn cup needle roller bearings are heat stabilized up to 140 °C (285 °F).

Cages

Steel cages can be used at the same operating temperatures as the bearing rings and rolling elements. For temperature limits of polymer cages, refer to *Polymer cages*, page 188.

Seals

The permissible operating temperature for seals depends on the seal material:

- NBR: -40 to +100 °C (-40 to +210 °F)
 Temperatures up to 120 °C (250 °F) can be tolerated for brief periods.
- PUR: -30 to +100 °C (-20 to +210 °F)
- FKM: -30 to +200 °C (-20 to +390 °F)
 Temperatures up to 230 °C (445 °F) can be tolerated for brief periods.

Typically, temperature peaks are at the seal lin.

Seating rings

The permissible operating temperature for seating rings is -30 to +100 °C (-20 to +210 °F).

Lubricants

Temperature limits for greases used in capped needle roller bearings are provided in **table 3**, **page 595**, and for full complement drawn cup needle roller bearings in **table 1**, **page 585**. For temperature limits of other SKF greases, refer to *Selecting a suitable SKF grease*, **page 116**.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Permissible speed

The speed ratings in the **product tables** indicate:

- the reference speed, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the **limiting speed**, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds

For additional information, refer to *Operating temperature and speed*, **page 129**.

Design considerations

For general information, refer to *Bearing* interfaces, page 140.

Abutment dimensions

Needle roller and cage assemblies

Appropriate abutment diameters are provided in **table 15**.

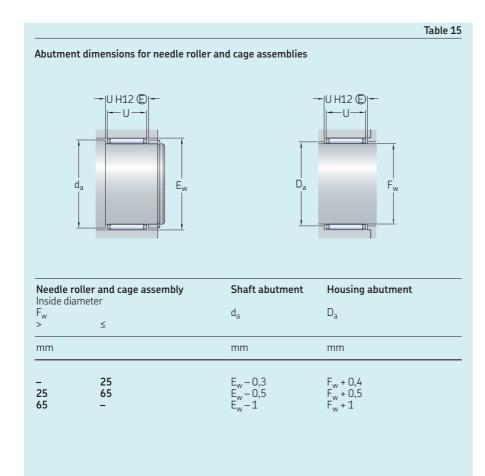
Recommendations for surfaces of adjacent machine components that guide needle roller and cage assemblies axially:

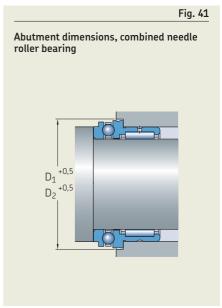
- fine turned and polished
- hardened and ground for high-speed operations
- no interruptions

For less demanding applications, snap rings can be used. Otherwise, use an intermediate ring, e.g. a spring steel washer, between the snap ring and the cage assembly.

Needle roller bearings with machined rings, without flanges

Appropriate abutment diameters are listed in the **product tables**.


Recommendations for surfaces of adjacent machine components that guide the cage of needle roller bearings without flanges axially:


- fine turned and polished
- hardened and ground for high-speed operations
- no interruptions

For less demanding applications, snap rings can be used. Otherwise, use an intermediate ring, e.g. a spring steel washer, between the snap ring and the cage assembly.

Combined needle roller bearings

The diameter of the thrust bearing support surface in the housing should be at least 0,5 mm larger than the dimension D_1 or D_2 (fig. 41 and product tables of *Needle roller / thrust ball bearings*, page 656, and *Needle roller / cylindrical roller thrust bearings*, page 658).

The following tables provide tolerance classes to obtain suitable fits and an appropriate operating clearance (page 598) for the following bearings:

- drawn cup needle roller bearings
- needle roller bearings with machined
- alignment needle roller bearings
- combined needle roller bearings

Shaft and housing raceway tolerances significantly influence the operating clearance of needle roller and cage assemblies and needle roller bearings with a machined outer ring (without an inner ring) and, therefore, are provided under Operating clearance, page 598.

For additional information about raceways, refer to Raceways on shafts and in housings, page 179.

Drawn cup needle roller bearings

Suitable tolerance classes for the housing bore and shaft for bearings with or without an inner ring are provided in table 16.

Needle roller bearings with machined rings

- Suitable tolerance classes for the shaft for bearings with machined inner and outer rings are provided in table 18.
- Housing seat tolerances for standard conditions are provided in table 8, page 151.

Alignment needle roller bearings

Suitable tolerance classes for the housing bore and shaft for bearings with or without an inner ring are provided in table 16.

Combined needle roller bearings

Suitable tolerance classes for the housing bore and shaft for bearings with or without an inner ring are provided in table 17.

Housing material ¹⁾	Tolerance classes ²⁾ Housing bore seat ³⁾	Raceway on the shaft	Shaft inner ring seat
Steel, cast iron	N6	h5	k5
Light alloy	R6	h5	k5

The geometrical tolerance in accordance with ISO 1101 for the housing bore of drawn cup needle roller bearings must correspond to IT5/2 tolerance grade.

Thrust part	Tolerance class ¹⁾		
	Housing bore seat	Shaft (raceway and inner ring seat)	
Angular contact ball bearing	M6	k5	
Thrust ball bearing	K6 ²⁾	k5	
Cylindrical roller thrust bearing	K6 ²)	k5	

¹⁾ The envelope requirement (symbol (1) from ISO 14405-1) is not shown but applies to all tolerance classes.
2) For stiff bearing arrangements, SKF recommends an M6 (1) housing bore tolerance class.

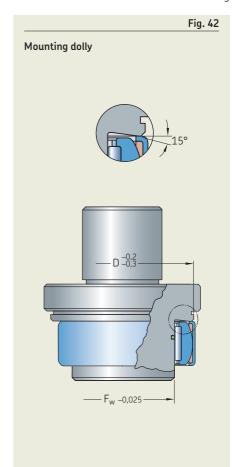
Mounting

Drawn cup and alignment needle roller bearings should be pressed into the housing bore using a mounting dolly (fig. 42). An O-ring provides a simple means of retaining the bearing on the mounting dolly. The stamped side (side face with the designation) should abut the flange of the mounting dolly.

Special care should be taken to prevent the bearing from skewing or tilting when it is being pressed into the housing. Otherwise the rollers and raceways could easily be damaged.

For grease lubricated bearings, the bearing should be lubricated prior to mounting.

Paired mounting


If bearings are to be mounted immediately adjacent to each other, the load should be shared equally by both bearings. Therefore, the following need to be considered:

- Full complement needle roller arrangements should incorporate rollers of the same gauge.
- Needle roller and cage assemblies should incorporate rollers of the same gauge
- Drawn cup needle roller bearings should have the same deviations from the nominal inside diameter F....

A delivery of needle rollers of the same nominal diameter may contain packages of one or more gauges. The gauge limits are also printed on the package.

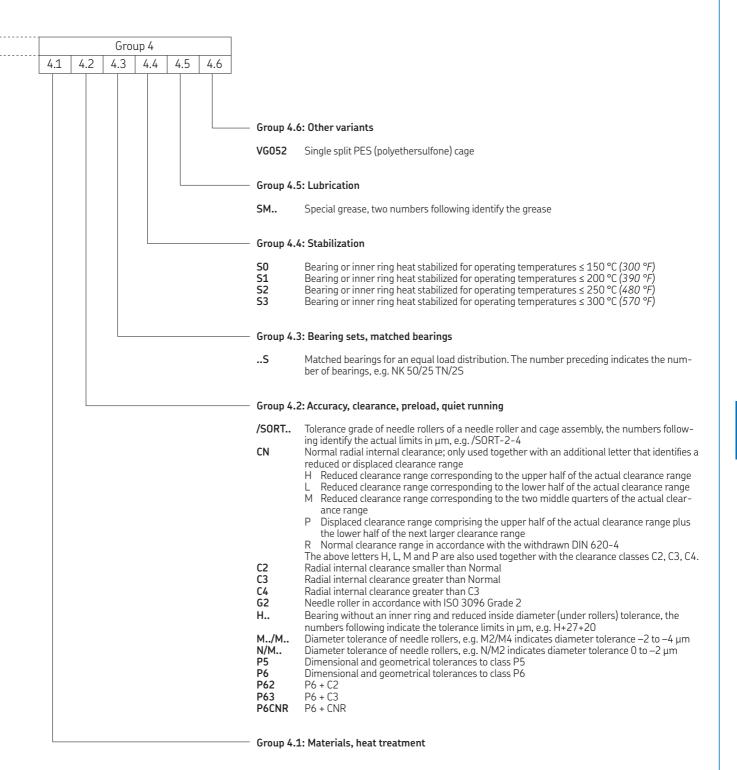
For needle roller and cage assemblies, the deviation from the nominal dimensions of the fitted needle rollers is printed on the package.

For additional information about gauges and inside diameter, refer to Tolerances, page 598.

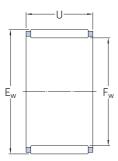
Table 18	Ta	bl	e	1	8
----------	----	----	---	---	---

Shaft tolerance classes for needle roller bearings with machined inner and outer rings on solid steel shafts									
Conditions	Shaft diameter	Dimensional tolerance ¹⁾	Total radial run-out tolerance ²⁾	Ra					
-	mm	_	-	μm					
Rotating inner ring load or direction of load indeterminate Light and variable loads (P ≤ 0.05 C)	≤ 10 > 10 to 25 > 25 to 100	k5 k6 m6	IT5/2 IT5/2 IT5/2	0,4 0,8 0,8					
Normal to heavy loads $(0.05 \text{ C} < P \le 0.1 \text{ C})$	≤ 25 > 25 to 60 > 60 to 100 > 100 to 400	k5 m6 n6 p6 ³⁾	IT5/2 IT5/2 IT5/2 IT5/2	0,4 0,8 0,8 1,6					
Heavy to very heavy loads (P > 0,1 C)	> 50 to 100 > 100 to 200 > 200	n63) p63) r63)	IT5/2 IT5/2 IT5/2	0,8 1,6 1,6					
Stationary inner ring load Easy axial displacement of the inner ring on the shaft desirable		g6	IT5/2	1,6					
Easy axial displacement of the inner ring on the shaft unnecessary		h6	IT5/2	1,6					

The envelope requirement (symbol (from ISO 14405-1) is not shown but applies to all tolerance classes.
 Values listed are for bearings to Normal tolerances.
 Bearings with radial internal clearance greater than Normal may be necessary.


SKF. 611

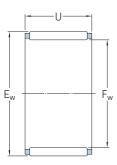
Designation system


	r		,								_
				<u> </u>	Gro	up 1	Grou	ip 2	Grou	p 3 /	_
Prefixes											
R	Bearing without an inner ring										
	3										
Basic des	signation —										
BK HK HN IR K LR NA 48, NA 69 NAO NK, NKS NKI, NKIS NKIA 59, NKIB 59 NKX NKXR NX PNA RN	Needle roller bearing with machined rings, with flanges, with an inner ring										
Suffixes	Needle folief										
Group 1:	Internal design										
BF D DS EGS VGS ZW	Needle roller with flat ends Deviating or modified internal design with the same boundary dimensions. Example: K 40x45x17 D (Needle roller and cage assembly with a double split of Single split needle roller and cage assembly Inner ring with a non-directionally ground raceway Inner ring with a pre-ground raceway and a machining allowance Double row needle roller and cage assembly (double row cage)	age)									
Group 2:	External design (seals, snap ring groove, etc.)										
AS ASR	Outer ring with lubrication hole(s), the number following indicates the number Outer ring with annular groove and lubrication hole(s), the number following in the number of holes	ndicate	es.								
IS ISR	Inner ring with lubrication hole(s), the number following indicates the number Inner ring with annular groove and lubrication hole(s), the number following in the number of holes										
RS, .2RS	Contact seal on one or both sides, respectively NBR or FKM or PUR for a drawn cup needle roller bearing NBR for a machined needle roller bearing										
Z	Combined needle roller bearing, factory greased thrust bearing with a cover will ubrication holes over the outside diameter	thout									
Group 3:	Cage design —										

TN Glass fibre reinforced PA66 cage

612

5KF. 613

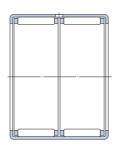

Princ	Principal dimensions		dynamic static load lim		Fatigue load limit		Limiting	Mass	ass Designation		Associated rad Single lip	ial shaft seals ¹ Double lip
F _w	E_w	U	С	C_0	P_{u}	speed	speed					
mm			kN		kN	r/min		g		-	_	
3	5 5	7 9	1,51 1,68	1,34 1,53	0,134 0,153	40 000 40 000	45 000 45 000	0,3 0,4	•	K 3x5x7 TN K 3x5x9 TN	- -	_ _
4	7 7	7 10	1,72 2,29	1,32 1,9	0,137 0,204	36 000 36 000	43 000 43 000	0,5 0,7		K 4x7x7 TN K 4x7x10 TN		- -
5	8	8 10	2,29 2,92	2 2,7	0,212 0,29	36 000 36 000	40 000 40 000	0,7 0,9	•	K 5x8x8 TN K 5x8x10 TN	-	_ _
6	9 9	8 10	2,55 3,3	2,36 3,2	0,25 0,345	34 000 34 000	38 000 38 000	0,8 1,1		K 6x9x8 TN K 6x9x10 TN	-	- -
7	10 10	8 10	2,81 3,58	2,75 3,75	0,29 0,415	32 000 32 000	36 000 36 000	0,9 1		K 7x10x8 TN K 7x10x10 TN	-	_ _
8	11 11 12	10 13 10	3,8 5,01 4,84	4,25 5,85 4,75	0,465 0,67 0,54	32 000 32 000 30 000	36 000 36 000 34 000	1,2 1,7 2		K 8x11x10 TN K 8x11x13 TN K 8x12x10 TN	- - G 8x12x3	- - -
9	12	10	4,4	5,2	0,57	30 000	34 000	1,5		K 9x12x10 TN	-	-
10	13 13 14	10 13 10	4,57 5,94 5,61	5,7 8 6,1	0,63 0,9 0,695	28 000 28 000 28 000	32 000 32 000 32 000	1,6 2,3 2,5	٠	K 10x13x10 TN K 10x13x13 TN K 10x14x10 TN	- - G 10x14x3	- - -
	14 16	13 12	7,21 7,65	8,5 7,2	0,98 0,85	28 000 28 000	32 000 32 000	4,6 5,5		K 10x14x13 TN K 10x16x12 TN	G 10x14x3	_ _
12	15 15 16	10 13 13	4,73 6,16 7,65	6,2 8,65 9,5	0,695 0,98 1,1	26 000 26 000 26 000	30 000 30 000 30 000	2,9 2,3 3,6		K 12x15x10 TN K 12x15x13 TN K 12x16x13 TN	- - G 12x16x3	- - -
	17 18	13 12	9,13 9,52	10,4 10	1,22 1,18	26 000 26 000	30 000 30 000	4,9 6		K 12x17x13 TN K 12x18x12 TN	– G 12x18x3	- SD 12x18x3
14	18 18 18	10 13 15	6,93 7,92 9,13	8,65 10,2 12,5	1 1,18 1,46	24 000 24 000 24 000	28 000 28 000 28 000	4 6,5 5		K 14x18x10 K 14x18x13 K 14x18x15 TN	- - -	_ _ _
	18	17	10,5	14,6	1,7	24 000	28 000	8		K 14x18x17	-	_
15	19 19 21	13 17 15	8,25 10,8 13,8	11,2 15,6 16,3	1,29 1,86 2	24 000 24 000 24 000	28 000 28 000 26 000	7 9,5 11		K 15x19x13 K 15x19x17 K 15x21x15	- - G 15x21x3	- - SD 15x21x3
	21	21	18,7	24,5	3	24 000	26 000	17		K 15x21x21	G 15x21x3	SD 15x21x3

Popular item
 For additional information → skf.com/seals

Principal dimensions		ions Basic load ratings Fatigue dynamic static load limit			Speed ration Reference speed	ngs Limiting speed	Mass	Designation	Associated ra Single lip	dial shaft seals Double lip	
F _w	E_w	U	С	C_0	P_u	speed	speed				
mm			kN		kN	r/min		g	_	_	
16	20	10	7,48	10	1,16	24 000	26 000	5,5	K 16x20x10	_	-
	20	13	8,58	12	1,37	24 000	26 000	7,5	K 16x20x13	_	-
	20	17	11,2	17	2	24 000	26 000	10	K 16x20x17	_	-
	22	12	11	12,5	1,5	22 000	26 000	10	K 16x22x12	G 16x22x3	SD 16x22x
	22	16	14,2	17,6	2,12	22 000	26 000	12	K 16x22x16	G 16x22x3	SD 16x22x
	22	20	17,6	22,8	2,8	22 000	26 000	17	K 16x22x20	G 16x22x3	SD 16x22x
	24	20	20,5	23,6	2,9	22 000	24 000	22	K 16x24x20	G 16x24x3	SD 16x24x
.7	21	10	7,81	10,8	1,22	22 000	26 000	5,5	K 17x21x10	-	-
L8	24	12	12,1	15	1,8	20 000	24 000	12	K 18x24x12	G 18x24x3	SD 18x24x
19	23	13	9,13	13,7	1,6	20 000	24 000	8	K 19x23x13	-	-
20	24	10	8,58	12,9	1,46	20 000	22 000	6,5	K 20x24x10	-	-
	24	13	9,52	14,6	1,66	20 000	22 000	9	K 20x24x13	-	-
	24	17	12,5	20,8	2,4	20 000	22 000	12	K 20x24x17	-	-
	26	17	18,3	26	3,2	19 000	22 000	16	K 20x26x17	G 20x26x4	SD 20x26x
	26	20	20,1	29	3,6	19 000	22 000	19	► K 20x26x20	G 20x26x4	SD 20x26x
	28	20	22,9	28,5	3,45	18 000	20 000	27	K 20x28x20	G 20x28x4	SD 20x28x
	28	25	29,2	39	4,9	18 000	20 000	32	► K 20x28x25	G 20x28x4	SD 20x28x
	30	30	34,1	41,5	5,2	17 000	20 000	49	K 20x30x30	-	-
1	25	13	9,68	15,3	1,76	19 000	22 000	9	K 21x25x13	_	-
2	26	10	8,8	13,7	1,56	18 000	20 000	7,5	► K 22x26x10	-	-
	26	13	10,1	16,3	1,86	18 000	20 000	9,5	K 22x26x13	-	-
	26	17	13,2	22,8	2,7	18 000	20 000	12	K 22x26x17	-	-
	28	17	18,3	27	3,25	17 000	20 000	18	K 22x28x17	G 22x28x4	SD 22x28x
	29	16	19,4	25,5	3,05	17 000	19 000	16	K 22x29x16	-	-
	30	15	19	23,6	2,8	17 000	19 000	18	K 22x30x15 TN	G 22x30x4	SD 22x30x
23	35	16	24,2	23,2	2,9	15 000	17 000	29	K 23x35x16 TN	_	-
24	28	10	9,35	15	1,73	17 000	19 000	8,5	K 24x28x10	_	-
	28	13	10,6	18	2,08	17 000	19 000	10	K 24x28x13	_	-
	30	17	18,7	27,5	3,4	16 000	18 000	19	K 24x30x17	_	-
25	29	10	9,52	15,6	1,8	16 000	18 000	8,5	K 25x29x10	-	-
	29	13	10,8	18,6	2,16	16 000	18 000	11	K 25x29x13	-	-
	30	17	17,9	30,5	3,6	16 000	18 000	16	K 25x30x17	-	-
	30	20	20,9	36,5	4,4	16 000	18 000	18	K 25x30x20	–	–
	32	16	19,8	27,5	3,35	15 000	17 000	21	K 25x32x16	G 25x32x4	–
	33	20	27,5	38	4,65	15 000	17 000	33	K 25x33x20	G 25x33x4	SD 25x33x
	35	30	44,6	62	7,8	15 000	17 000	65	► K 25x35x30	G 25x35x4	SD 25x35x
6	30	13	11,2	19,6	2,28	16 000	18 000	11	K 26x30x13	-	-
8	33	13	14,7	24,5	2,85	14 000	16 000	13	K 28x33x13	-	-
	33	17	19	33,5	4,05	14 000	16 000	17	K 28x33x17	-	-
80	35	13	15,1	25,5	3	13 000	15 000	14	K 30x35x13	-	-
	35	17	18,7	34	4,05	13 000	15 000	19	K 30x35x17	-	-
	35	27	29,2	60	7,35	13 000	15 000	30	K 30x35x27	-	-
	37	18	25,1	39	4,65	13 000	15 000	30	K 30x37x18	G 30x37x4	SD 30x37x
	40	30	46,8	69,5	8,65	12 000	14 000	73	K 30x40x30	G 30x40x4	SD 30x40x

[►] Popular item

1) For additional information → skf.com/seals


Principal dimensions			oad ratings c static	static load limit Reference Limiting speed speed		Mass	Designation	Associated rad Single lip	dial shaft seals ¹ Double lip		
w	E_w	U	С	C_0	P_u	speed	speed				
nm			kN		kN	r/min		g	-	-	
32	37 37 38	13 17 20	14,7 19 25,1	25,5 35,5 45	3 4,25 5,6	13 000 13 000 12 000	14 000 14 000 14 000	18 19 30	K 32x37x13 K 32x37x17 K 32x38x20	- - -	- - -
	40	25	35,8	58,5	7,2	12 000	14 000	49	K 32x40x25	-	-
35	40 40 40	13 17 27	15,4 19,8 23,8	28 39 49	3,25 4,65 6	12 000 12 000 12 000	13 000 13 000 13 000	19 21 39	K 35x40x13 K 35x40x17 K 35x40x27 TN	- - -	- - -
	42 42 45	16 18 20	23,3 26,4 35,2	37,5 44 50	4,5 5,3 6,2	11 000 11 000 11 000	13 000 13 000 12 000	34 34 56	K 35x42x16 K 35x42x18 K 35x45x20	G 35x42x4 G 35x42x4 G 35x45x4	SD 35x42x4 SD 35x42x4 SD 35x45x4
37	42	17	21,6	43	5,2	11 000	13 000	22	K 37x42x17	-	-
88	43 46	17 32	19,8 52,3	39 100	4,65 12,5	11 000 10 000	12 000 12 000	29 76	K 38x43x17 K 38x46x32	- -	- -
40	45 45 48	17 27 20	20,5 31,4 34,7	41,5 73,5 58,5	5 9 7,35	10 000 10 000 10 000	12 000 12 000 11 000	31 46 49	K 40x45x17 K 40x45x27 ► K 40x48x20	- - -	- - -
2	47 50	17 20	20,9 33,6	43 57	5,2 7,1	10 000 9 500	11 000 11 000	32 53	K 42x47x17 K 42x50x20	-	- -
3	48	17	20,9	43	5,2	9 500	11 000	30	K 43x48x17	-	-
45	50 50 53	17 27 28	21,6 33 49,5	46,5 81,5 98	5,6 10 12,2	9 000 9 000 9 000	10 000 10 000 10 000	34 52 81	K 45x50x17 K 45x50x27 K 45x53x28	- - -	- - -
¥7	52	17	22,4	49	6	9 000	10 000	35	K 47x52x17	_	_
50	55 55 57	20 30 18	25,5 37,4 31,9	60 98 64	7,2 12 7,8	8 500 8 500 8 000	9 500 9 500 9 000	43 65 47	► K 50x55x20 K 50x55x30 K 50x57x18	- - -	- - -
	58	25	41,8	81,5	10,2	8 000	9 000	90	K 50x58x25	G 50x58x4	SD 50x58x4
55	60 60 62	20 30 18	27 39,6 34,1	67 108 71	8,15 13,4 8,5	7 500 7 500 7 500	8 500 8 500 8 500	40 71 52	K 55x60x20 K 55x60x30 K 55x62x18	- - -	- - -
	63	32	59,4	129	16,3	7 500	8 500	102	K 55x63x32	G 55x63x5	_

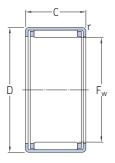
[►] Popular item
1) For additional information → skf.com/seals

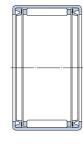
Principal dimensions Basic load rad dynamic state					Limiting	Mass	Designation	Associated ra Single lip	dial shaft seals ¹ Double lip		
F _w	E_w	U	С	C_0	P_{u}	speed	speed				
mm			kN		kN	r/min		g	_	_	
60	65 68	20 25	28,1 51,2	72 112	8,8 14	7 000 6 700	8 000 7 500	52 89	K 60x65x20 K 60x68x25	- -	- -
65	73	30	53,9	125	15,6	6 300	7 000	141	► K 65x73x30	-	-
70	76 78	20 30	34,1 57,2	86,5 137	10,6 17	6 000 6 000	6 700 6 700	71 148	K 70x76x20 K 70x78x30	– G 70x78x5	- -
75	83	23	47,3	110	13,7	5 300	6 300	124	K 75x83x23	-	-
80	88	30	68,2	176	22	5 000	6 000	138	K 80x88x30		-
85	92	20	42,9	108	13,2	4 800	5 600	102	K 85x92x20	-	-
90	97 98	20 30	42,9 64,4	114 173	13,7 21,6	4 500 4 500	5 300 5 300	109 172	K 90x97x20 K 90x98x30	_ _	- -
95	103	30	66	180	22,8	4 300	5 000	165	K 95x103x30	-	-
100	108	27	55	143	17,6	4 000	4 800	185	K 100x108x27	_	-

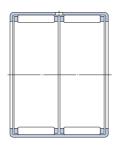
[►] Popular item
1) For additional information → skf.com/seals

НΚ

HK...2RS


HK (double row)


Princip	al dimen	sions		oad ratings c static	Fatigue load limit	Speed ration Reference	Limiting	Mass	Designation
$F_{\rm w}$	D	С	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min		g	-
3	6,5	6	1,23	0,88	0,088	24 000	26 000	1	► HK 0306 TN
4	8	8	1,76	1,37	0,14	22 000	26 000	2	► HK 0408
5	9	9	2,38	2,08	0,22	22 000	24 000	2	► HK 0509
6	10 10	8 9	2,01 2,81	1,73 2,7	0,18 0,285	20 000 20 000	22 000 22 000	2,1 2,5	► HK 0608 HK 0609
7	11	9	3,03	3,05	0,325	20 000	22 000	2,6	HK 0709
8	12 12 12	8 10 12	2,7 3,69 2,7	2,75 4,05 2,75	0,285 0,44 0,285	19 000 19 000 -	22 000 22 000 13 000	2,7 3 3,3	► HK 0808 ► HK 0810 ► HK 0812.2RS
9	13 13 13	8 10 12	3,52 4,13 5,12	3,9 4,8 6,4	0,415 0,53 0,72	18 000 18 000 18 000	20 000 20 000 20 000	3 4 4,6	► HK 0908 ► HK 0910 HK 0912
10	14 14 14	10 12 14	4,29 5,39 4,29	5,3 6,95 5,3	0,57 0,78 0,57	18 000 18 000 -	20 000 20 000 12 000	4,1 4,8 4,6	HK 1010 • HK 1012 • HK 1014.2RS
	14	15	6,6	9	1,02	18 000	20 000	6	► HK 1015
12	16 18 18	10 12 16	4,84 6,27 6,27	6,4 7,35 7,35	0,71 0,85 0,85	16 000 16 000 -	18 000 18 000 10 000	4,6 9,5 11	 HK 1210 HK 1212 HK 1216.2RS
13	19	12	6,6	8	0,915	16 000	17 000	10,5	► HK 1312
14	20	12	6,82	8,65	0,98	15 000	17 000	10,5	► HK 1412
15	21 21 21	12 16 22	7,65 10,1 13	9,5 14,6 20	1,08 1,7 2,28	15 000 15 000 15 000	16 000 16 000 16 000	11 15 20	► HK 1512 ► HK 1516 ► HK 1522 ¹⁾
16	22 22 22	12 16 20	7,37 10,5 10,5	9,8 15,6 15,6	1,12 1,8 1,8	14 000 14 000 -	16 000 16 000 9 000	12 16 18	► HK 1612 ► HK 1616 HK 1620.2RS
	22	22	12,8	19,6	2,24	14 000	16 000	24	► HK 1622 ¹⁾
17	23	12	7,65	10,6	1,2	14 000	15 000	13	► HK 1712

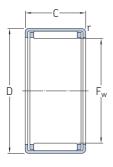

Popular item
1) Double row, outer ring with a lubrication hole.

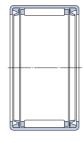
Dimen	sions	Associated inner IR series	rings ¹⁾ LR series	Associated radia Single lip	al shaft seals ²⁾ Double lip	
$F_{\rm w}$	r min.					
mm		-		_		
3	0,3	-	_	-	-	
4	0,3	-	_	G 4x8x2 S	-	
5	0,4	-	-	G 5x9x2 S	-	
6	0,4 0,4	_ _	_ _	G 6x10x2 S G 6x10x2 S	- -	
7	0,4	_	-	G 7x11x2 S	-	
8	0,4 0,4 0,4	– IR 5x8x12 –	_ _ _	G 8x12x3 G 8x12x3 -	- - -	
9	0,4 0,4 0,4	- - IR 6x9x12	- - -	G 9x13x3 G 9x13x3 G 9x13x3	- - -	
10	0,4 0,4 0,4	IR 7x10x10.5 IR 7x10x12 -	LR 7x10x10.5 - -	G 10x14x3 G 10x14x3 -	- - -	
	0,4	IR 7x10x16	-	G 10x14x3	-	
12	0,4 0,8 0,8	IR 8x12x10.5 IR 8x12x12.5 -	LR 8x12x10.5 LR 8x12x12.5 -	G 12x16x3 G 12x18x3 -	_ SD 12x18x3 _	
13	0,8	IR 10x13x12.5	LR 10x13x12.5	G 13x19x3	-	
14	0,8	IR 10x14x13	-	G 14x20x3	SD 14x20x3	
15	0,8 0,8 0,8	IR 12x15x12.5 IR 12x15x16.5 IR 12x15x22.5	LR 12x15x12.5 LR 12x15x16.5 LR 12x15x22.5	G 15x21x3 G 15x21x3 G 15x21x3	SD 15x21x3 SD 15x21x3 SD 15x21x3	
16	0,8 0,8 0,8	IR 12x16x13 IR 12x16x16 -	- - -	G 16x22x3 G 16x22x3 -	SD 16x22x3 SD 16x22x3 -	
	0,8	IR 12x16x22	_	G 16x22x3	SD 16x22x3	
17	0,8	-	-	G 17x23x3	SD 17x23x3	

 ¹⁾ For additional information → Needle roller bearing inner rings, page 593
 2) For additional information → skf.com/seals

НΚ

HK...2RS

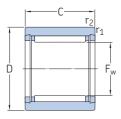

HK (double row)


Princi	pal dimen	sions		oad ratings c static	Fatigue load limit	Speed rati Reference speed		Mass	Designation
w	D	С	С	C_0	P_{u}	speeu	speed		
mm			kN		kN	r/min		g	_
18	24 24 24	12 16 16	7,92 7,92 11,2	11,2 11,2 17,6	1,27 1,27 2,04	13 000 - 13 000	15 000 8 500 15 000	13 15 18	► HK 1812 HK 1816.2RS ► HK 1816
20	26 26 26	10 12 16	6,16 8,42 8,42	8,5 12,5 12,5	0,93 1,4 1,4	12 000 12 000 -	14 000 14 000 8 000	12 14 18	HK 2010 ► HK 2012 HK 2016.2RS
	26 26 26	16 20 20	12,3 12,3 15,1	20,4 20,4 26,5	2,36 2,36 3,15	12 000 - 12 000	14 000 8 000 14 000	19 23 24	HK 2016HK 2020.2RSHK 2020
	26	30	20,9	40,5	4,75	12 000	14 000	35	► HK 2030 ¹⁾
22	28 28 28	10 12 16	7,21 8,8 8,8	10,6 13,7 13,7	1,2 1,56 1,56	11 000 11 000 -	12 000 12 000 7 500	13 15 18	HK 2210 • HK 2212 HK 2216.2RS
	28 28 28	16 20 20	13 13 15,7	22,4 22,4 29	2,6 2,6 3,45	11 000 - 11 000	12 000 7 500 12 000	21 23 26	► HK 2216 HK 2220.2RS ► HK 2220
25	32 32 32	12 16 16	10,5 10,5 15,1	15,3 15,3 24	1,76 1,76 2,85	9 500 - 9 500	11 000 6 700 11 000	20 27 25	► HK 2512 HK 2516.2RS ► HK 2516
	32 32 32	20 20 26	15,1 19 24,2	24 32,5 45	2,85 4 5,5	- 9 500 9 500	6 700 11 000 11 000	31 33 44	HK 2520.2RSHK 2520HK 2526
	32 32	30 38	24,2 33	45 65,5	5,5 8	- 9 500	6 700 11 000	47 64	 HK 2530.2RS HK 2538¹
28	35 35 35	16 20 20	15,7 15,7 20,1	26,5 26,5 36,5	3,15 3,15 4,4	9 000 - 9 000	9 500 6 300 9 500	26,5 34 36	► HK 2816 HK 2820.2RS ► HK 2820
30	37 37 37	12 16 16	11,7 11,7 16,5	18,3 18,3 29	2,12 2,12 3,4	8 000 - 8 000	9 000 5 600 9 000	23 31 31	► HK 3012 HK 3016.2RS ► HK 3016
	37 37 37	20 26 38	20,9 27 35,8	40 54 80	4,75 6,55 9,5	8 000 8 000 8 000	9 000 9 000 9 000	38 51 76	 ► HK 3020 ► HK 3026 ► HK 3038¹)

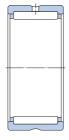
Popular item
1) Double row, outer ring with a lubrication hole.

Dimen	sions	Associated inner IR series	r ings 1) LR series	Associated radi Single lip	al shaft seals ²⁾ Double lip	
F_{w}	r min.					
mm		_		_		
18	0,8 0,8 0,8	– IR 15x18x16.5 IR 15x18x16.5	LR 15x18x12.5 LR 15x18x16.5 LR 15x18x16.5	G 18x24x3 - G 18x24x3	SD 18x24x3 - SD 18x24x3	
20	0,8 0,8 0,8	– IR 15x20x13 IR 17x20x16.5	- - LR 17x20x16.5	G 20x26x4 G 20x26x4 –	SD 20x26x4 SD 20x26x4 -	
	0,8 0,8 0,8	IR 17x20x16.5 IR 17x20x20.5 IR 17x20x20.5	LR 17x20x16.5 LR 17x20x20.5 LR 17x20x20.5	G 20x26x4 - G 20x26x4	SD 20x26x4 - SD 20x26x4	
	0,8	IR 17x20x30.5	LR 17x20x30.5	G 20x26x4	SD 20x26x4	
22	0,8 0,8 0,8	– IR 17x22x13 IR 17x22x23	- - -	G 22x28x4 G 22x28x4 -	SD 22x28x4 SD 22x28x4 -	
	0,8 0,8 0,8	IR 17x22x23 IR 17x22x23 IR 17x22x23	- - -	G 22x28x4 - G 22x28x4	SD 22x28x4 - SD 22x28x4	
25	0,8 0,8 0,8	– IR 20x25x17 IR 20x25x17	LR 20x25x12.5 LR 20x25x16.5 LR 20x25x16.5	G 25x32x4 - G 25x32x4	- - -	
	0,8 0,8 0,8	IR 20x25x20.5 IR 20x25x20.5 IR 20x25x26.5	LR 20x25x20.5 LR 20x25x20.5 LR 20x25x26.5	– G 25x32x4 G 25x32x4	- - -	
	0,8 0,8	IR 20x25x30 IR 20x25x38.5	_ LR 20x25x38.5	– G 25x32x4	- -	
28	0,8 0,8 0,8	IR 22x28x17 IR 22x28x20.5 IR 22x28x20.5	– LR 22x28x20.5 LR 22x28x20.5	G 28x35x4 - G 28x35x4	SD 28x35x4 - SD 28x35x4	
30	0,8 0,8 0,8	– IR 25x30x17 IR 25x30x17	LR 25x30x12.5 LR 25x30x16.5 LR 25x30x16.5	G 30x37x4 - G 30x37x4	SD 30x37x4 - SD 30x37x4	
	0,8 0,8 0,8	IR 25x30x20.5 IR 25x30x26.5 IR 25x30x38.5	LR 25x30x20.5 LR 25x30x26.5 LR 25x30x38.5	G 30x37x4 G 30x37x4 G 30x37x4	SD 30x37x4 SD 30x37x4 SD 30x37x4	

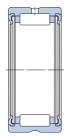
 ¹⁾ For additional information → Needle roller bearing inner rings, page 593
 2) For additional information → skf.com/seals

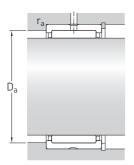

ΗK

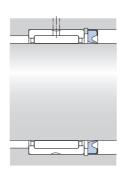
HK...2RS


Princi	oal dimen	sions		oad ratings c static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed	Mass	Designation
F _w	D	С	С	C_0	P_u	speeu	speeu		
nm			kN		kN	r/min		g	-
35	42 42 42	12 16 20	12,5 17,9 17,9	21,6 34 34	2,45 4 4	7 000 7 000 -	8 000 8 000 5 000	27 36 41	 HK 3512 HK 3516 HK 3520.2RS
	42	20	22,9	46,5	5,6	7 000	8 000	44	► HK 3520
40	47	12	13,4	24,5	2,8	6 300	7 000	30	► HK 4012
	47	16	14,5	27,5	3,15	-	4 500	37	HK 4016.2RS
	47	16	19	39	4,55	6 300	7 000	39	► HK 4016
	47	20	19	39	4,55	-	4 500	48	HK 4020.2RS
	47	20	24,2	53	6,4	6 300	7 000	54	► HK 4020
5	52	12	14,2	27,5	3,2	5 600	6 300	33	HK 4512
	52	16	20,5	43	5,1	5 600	6 300	47	► HK 4516
	52	20	20,5	43	5,1	-	4 000	54	HK 4520.2RS
	52	20	26	60	7,2	5 600	6 300	56	► HK 4520
50	58	20	29,2	63	7,8	5 000	5 600	70	► HK 5020
	58	24	29,2	63	7,8	-	3 600	81	HK 5024.2RS
	58	25	36,9	85	10,6	5 000	5 600	85	► HK 5025
55	63	20	30,3	67	8,3	4 500	5 000	74	► HK 5520
	63	28	41,8	104	12,9	4 500	5 000	105	HK 5528
60	68	12	17,6	32	3,8	4 300	4 800	49	HK 6012
	68	20	31,9	75	9,3	4 300	4 800	81	HK 6020
	68	32	51,2	137	17	4 300	4 800	136	HK 6032

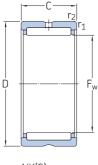
Dimen	sions	Associated inner	r ings ¹⁾ LR series	Associated radi Single lip	al shaft seals ²⁾ Double lip	
Fw	r min.	INSCRES	ENSETIES	Siligic up	Boasic up	
nm		-		-		
35	0,8 0,8 0,8	_ IR 30x35x17 IR 30x35x20.5	LR 30x35x12.5 LR 30x35x16.5 LR 30x35x20.5	G 35x42x4 G 35x42x4 -	SD 35x42x4 SD 35x42x4 -	
	0,8	IR 30x35x20.5	LR 30x35x20.5	G 35x42x4	SD 35x42x4	
40	0,8 0,8 0,8	– IR 35x40x20 IR 35x40x20	LR 35x40x12.5 LR 35x40x16.5 LR 35x40x16.5	G 40x47x4 - G 40x47x4	SD 40x47x4 - SD 40x47x4	
	0,8 0,8	IR 35x40x20.5 IR 35x40x20.5	LR 35x40x20.5 LR 35x40x20.5	– G 40x47x4	_ SD 40x47x4	
45	0,8 0,8 0,8	– IR 40x45x17 IR 40x45x20.5	– LR 40x45x16.5 LR 40x45x20.5	G 45x52x4 G 45x52x4 -	SD 45x52x4 SD 45x52x4 -	
	0,8	IR 40x45x20.5	_	G 45x52x4	SD 45x52x4	
50	0,8 0,8 0,8	– IR 45x50x25.5 IR 45x50x25.5	LR 45x50x20.5 LR 45x50x25.5 LR 45x50x25.5	G 50x58x4 - G 50x58x4	SD 50x58x4 - SD 50x58x4	
55	0,8 0,8	_ _	LR 50x55x20.5 -	G 55x63x5 G 55x63x5		
60	0,8 0,8 0,8	_ 	_ _ _	- - -	- - -	

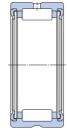

 ¹⁾ For additional information → Needle roller bearing inner rings, page 593
 2) For additional information → skf.com/seals




NK (F_w ≥ 12 mm) RNA 49 RNA 69

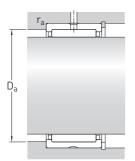
RNA 49 ...2RS

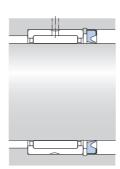

Princi	pal dimen	sions		oad ratings c static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designation
F _w	D	С	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	_
5	10	10	2,29	2	0,212	36 000	40 000	0,0031	► NK 5/10 TN
	10	12	2,92	2,7	0,29	36 000	40 000	0,0037	► NK 5/12 TN
6	12 12	10 12	2,55 3,3	2,36 3,2	0,25 0,345	34 000 34 000	38 000 38 000	0,0047 0,0057	NK 6/10 TNNK 6/12 TN
7	14	10	2,81	2,75	0,29	32 000	36 000	0,0069	NK 7/10 TN
	14	12	3,58	3,75	0,415	32 000	36 000	0,0082	NK 7/12 TN
8	15 15	12 16	3,8 5,01	4,25 5,85	0,465 0,67	32 000 32 000	36 000 36 000	0,0087 0,012	NK 8/12 TNNK 8/16 TN
9	16	12	4,4	5,2	0,57	30 000	34 000	0,01	► NK 9/12 TN
	16	16	5,72	7,2	0,815	30 000	34 000	0,013	NK 9/16 TN
10	17	12	4,57	5,7	0,63	28 000	32 000	0,01	► NK 10/12 TN
	17	16	5,94	8	0,9	28 000	32 000	0,013	► NK 10/16 TN
12	19 19	12 16	6,71 9,13	8,15 12	0,965 1,43	26 000 26 000	30 000 30 000	0,012 0,016	NK 12/12NK 12/16
14	22	13	7,37	8,15	0,965	-	12 000	0,016	► RNA 4900.2RS
	22	13	8,8	10,4	1,22	24 000	28 000	0,017	► RNA 4900
	22	16	10,2	12,5	1,5	24 000	28 000	0,021	► NK 14/16
	22	20	12,8	16,6	2	24 000	28 000	0,026	► NK 14/20
15	23	16	11	14	1,66	24 000	26 000	0,022	► NK 15/16
	23	20	13,8	18,3	2,2	24 000	26 000	0,027	► NK 15/20
16	24 24 24	13 13 16	8,09 9,9 11,7	9,65 12,2 15,3	1,14 1,46 1,8	- 22 000 22 000	11 000 26 000 26 000	0,018 0,017 0,022	RNA 4901.2RSRNA 4901NK 16/16
	24	20	14,5	20	2,4	22 000	26 000	0,028	► NK 16/20
	24	22	16,1	23,2	2,75	22 000	26 000	0,031	► RNA 6901
17	25	16	12,1	16,6	1,96	22 000	26 000	0,024	► NK 17/16
	25	20	15,1	22	2,65	22 000	26 000	0,03	► NK 17/20
18	26	16	12,8	17,6	2,12	22 000	24 000	0,025	► NK 18/16
	26	20	16,1	23,6	2,85	22 000	24 000	0,031	► NK 18/20
19	27	16	13,4	19	2,28	20 000	24 000	0,026	NK 19/16
	27	20	16,5	25,5	3,05	20 000	24 000	0,032	NK 19/20



Dimen	sions	Abutme dimensi	nt and fillet ons	Associated radial s Single lip	shaft seals ¹⁾ Double lip	Spring loaded lip
F_{w}	r _{1,2} min.	D _a max.	r _a max.			
mm		mm		_		
5	0,15 0,15	8,8 8,8	0,1 0,1	G 5x10x2 S G 5x10x2 S		<u>-</u>
6	0,15 0,15	10,8 10,8	0,1 0,1	G 6x12x2 S G 6x12x2 S		- -
7	0,3 0,3	12 12	0,3 0,3	G 7x14x2 G 7x14x2		- -
8	0,3	13	0,3	G 8x15x3	SD 8x15x3	-
	0,3	13	0,3	G 8x15x3	SD 8x15x3	-
9	0,3	14	0,3	G 9x16x3	_	-
	0,3	14	0,3	G 9x16x3	_	-
10	0,3	15	0,3	G 10x17x3	SD 10x17x3	-
	0,3	15	0,3	G 10x17x3	SD 10x17x3	-
12	0,3	17	0,3	G 12x19x3	SD 12x19x3	-
	0,3	17	0,3	G 12x19x3	SD 12x19x3	-
14	0,3	20	0,3	-	-	-
	0,3	20	0,3	G 14x22x3	SD 14x22x3	-
	0,3	20	0,3	G 14x22x3	SD 14x22x3	-
	0,3	20	0,3	G 14x22x3	SD 14x22x3	-
15	0,3 0,3	21 21	0,3 0,3	G 15x23x3 G 15x23x3	SD 15x23x3 SD 15x23x3	-
16	0,3	22	0,3	-	-	-
	0,3	22	0,3	G 16x24x3	SD 16x24x3	-
	0,3	22	0,3	G 16x24x3	SD 16x24x3	-
	0,3	22	0,3	G 16x24x3	SD 16x24x3	-
	0,3	22	0,3	G 16x24x3	SD 16x24x3	-
17	0,3	23	0,3	G 17x25x3	SD 17x25x3	-
	0,3	23	0,3	G 17x25x3	SD 17x25x3	-
18	0,3	24	0,3	G 18x26x4	SD 18x26x4	-
	0,3	24	0,3	G 18x26x4	SD 18x26x4	-
19	0,3 0,3	25 25	0,3 0,3	G 19x27x4 G 19x27x4	SD 19x27x4 SD 19x27x4	<u>-</u>

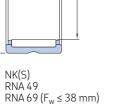
¹⁾ For additional information \rightarrow skf.com/seals

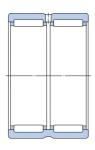




NK(S) RNA 49 RNA 69

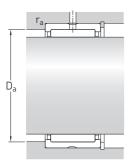
RNA 49 ...2RS

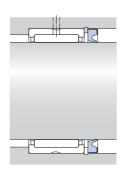

Princi	pal dimen	sions	Basic loa dynamic	n d ratings static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed	Mass	Designation
$F_{\rm w}$	D	С	С	C_0	P_{u}	эрсси	эрсси		
mm			kN		kN	r/min		kg	-
20	28 28 28	13 13 16	9,13 11,2 13,2	12 15,3 19,3	1,43 1,83 2,28	- 19 000 19 000	9 500 22 000 22 000	0,022 0,022 0,027	► RNA 4902.2RS► RNA 4902► NK 20/16
	28 28 32	20 23 20	16,5 17,2 23,3	25,5 27 27	3,05 3,35 3,25	19 000 19 000 18 000	22 000 22 000 20 000	0,034 0,04 0,049	NK 20/20► RNA 6902► NKS 20
21	29	16	13,8	20,4	2,45	19 000	22 000	0,028	NK 21/16
	29	20	17,2	27	3,35	19 000	22 000	0,035	NK 21/20
22	30	13	9,52	12,9	1,53	-	9 000	0,023	RNA 4903.2RS
	30	13	11,4	16,3	1,96	18 000	20 000	0,022	► RNA 4903
	30	16	14,2	21,6	2,6	18 000	20 000	0,03	► NK 22/16
	30	20	17,9	29	3,55	18 000	20 000	0,037	► NK 22/20
	30	23	18,7	30,5	3,75	18 000	20 000	0,042	► RNA 6903
24	32	16	15,4	24,5	2,9	16 000	19 000	0,032	► NK 24/16
	32	20	19	32,5	4	16 000	19 000	0,04	► NK 24/20
	37	20	26	33,5	4	15 000	17 000	0,066	NKS 24
25	33 33 37	16 20 17	15,1 19 19,4	24,5 32,5 22,4	2,9 4 2,65	16 000 16 000 -	18 000 18 000 7 500	0,033 0,042 0,056	 NK 25/16 NK 25/20 RNA 4904.2RS
	37	17	21,6	28	3,35	15 000	17 000	0,052	► RNA 4904
	37	30	35,2	53	6,55	15 000	17 000	0,1	► RNA 6904
	38	20	27,5	36	4,4	15 000	17 000	0,068	► NKS 25
26	34	16	15,7	26	3,1	15 000	17 000	0,034	► NK 26/16
	34	20	19,4	34,5	4,25	15 000	17 000	0,042	► NK 26/20
28	37 37 39	20 30 17	22 31,9 23,3	36,5 60 32	4,55 7,5 3,9	14 000 14 000 14 000	16 000 16 000 15 000	0,052 0,082 0,05	 NK 28/20 NK 28/30 RNA 49/22
	39	30	36,9	57	7,2	14 000	15 000	0,098	RNA 69/22
	42	20	28,6	39	4,75	13 000	15 000	0,084	NKS 28
29	38	20	24,6	42,5	5,2	14 000	15 000	0,05	NK 29/20 TN
	38	30	31,9	60	7,5	14 000	15 000	0,084	NK 29/30



Dimen	sions	Abutme dimens	ent and fillet ions	Associated radial Single lip	shaft seals ¹⁾ Double lip	Spring loaded lip
$F_{\rm w}$	r _{1,2} min.	D _a max.	r _a max.			
mm		mm		-		
20	0,3	26	0,3	–	–	-
	0,3	26	0,3	G 20x28x4	SD 20x28x4	-
	0,3	26	0,3	G 20x28x4	SD 20x28x4	-
	0,3	26	0,3	G 20x28x4	SD 20x28x4	–
	0,3	26	0,3	G 20x28x4	SD 20x28x4	–
	0,6	28	0,6	-	-	20x32x7 HMS5 RG
21	0,3 0,3	27 27	0,3 0,3	G 21x29x4 G 21x29x4		- -
22	0,3	28	0,3	–	–	-
	0,3	28	0,3	G 22x30x4	SD 22x30x4	-
	0,3	28	0,3	G 22x30x4	SD 22x30x4	-
	0,3	28	0,3	G 22x30x4	SD 22x30x4	-
	0,3	28	0,3	G 22x30x4	SD 22x30x4	-
24	0,3	30	0,3	G 24x32x4	SD 24x32x4	–
	0,3	30	0,3	G 24x32x4	SD 24x32x4	–
	0,6	33	0,6	-	-	24x37x7 HMS5 RG
25	0,3	31	0,3	G 25x33x4	SD 25x33x4	-
	0,3	31	0,3	G 25x33x4	SD 25x33x4	-
	0,3	35	0,3	-	-	-
	0,3	35	0,3	-	-	25x37x5 HMS5 RG
	0,3	35	0,3	-	-	25x37x5 HMS5 RG
	0,6	34	0,6	-	-	25x38x7 HMS5 RG
26	0,3	32	0,3	G 26x34x4	SD 26x34x4	-
	0,3	32	0,3	G 26x34x4	SD 26x34x4	-
28	0,3	35	0,3	G 28x37x4	-	-
	0,3	35	0,3	G 28x37x4	-	-
	0,3	37	0,3	-	-	-
	0,3	37	0,3	_	_	_
	0,6	38	0,6	_	_	28x42x7 HMS5 RG
29	0,3	36	0,3	G 29x38x4	_	_
	0,3	36	0,3	G 29x38x4	_	_

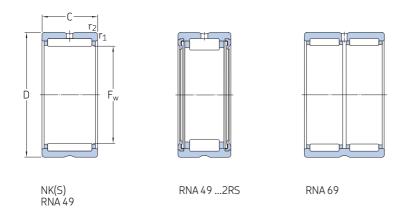
¹⁾ For additional information \rightarrow skf.com/seals

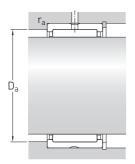


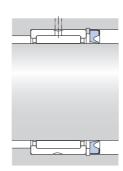

RNA 49 ...2RS

RNA 69 ($F_w \ge 40 \text{ mm}$)

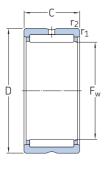
Princi	oal dimen	sions		oad ratings c static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designation
F _w	D	С	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min		kg	-
30	40 40 42	20 30 17	25,1 36,9 21,6	44 72 27,5	5,5 9 3,25	13 000 13 000 -	15 000 15 000 6 300	0,061 0,092 0,06	NK 30/20 TNNK 30/30 TNRNA 4905.2RS
	42 42 45	17 30 22	24,2 38 31,9	34,5 62 43	4,15 7,65 5,3	13 000 13 000 12 000	15 000 15 000 14 000	0,061 0,11 0,1	RNA 4905RNA 6905NKS 30
32	42	20	26,4	48	6	12 000	14 000	0,064	► NK 32/20 TN
	42	30	34,1	65,5	8,3	12 000	14 000	0,1	NK 32/30
	45	17	25,1	36,5	4,4	12 000	14 000	0,073	RNA 49/28
	45	30	39,6	65,5	8,3	12 000	14 000	0,14	► RNA 69/28
	47	22	34,1	46,5	5,7	12 000	13 000	0,11	NKS 32
35	45 45 47	20 30 17	27,5 40,2 23,3	52 85 32	6,55 10,6 3,8	11 000 11 000 -	13 000 13 000 5 600	0,069 0,11 0,069	NK 35/20 TNNK 35/30 TNRNA 4906.2RS
	47	17	25,5	39	4,65	11 000	13 000	0,069	► RNA 4906
	47	30	42,9	75	9,3	11 000	13 000	0,13	► RNA 6906
	50	22	35,2	50	6,2	11 000	12 000	0,12	► NKS 35
37	47	20	25,1	46,5	5,85	11 000	12 000	0,077	NK 37/20
	47	30	36,9	76,5	9,5	11 000	12 000	0,11	NK 37/30
	52	22	36,9	54	6,55	10 000	12 000	0,12	NKS 37
38	48	20	25,5	49	6,1	11 000	12 000	0,079	► NK 38/20
	48	30	37,4	80	10	11 000	12 000	0,12	NK 38/30
40	50 50 52	20 30 20	29,7 38 30,8	60 83 51	7,5 10,4 6,3	10 000 10 000 10 000	11 000 11 000 11 000	0,078 0,13 0,089	NK 40/20 TNNK 40/30RNA 49/32
	52	36	47,3	90	10,8	10 000	11 000	0,16	► RNA 69/32
	55	22	38	57	7,1	9 500	11 000	0,13	► NKS 40
42	52	20	27	53	6,55	9 500	11 000	0,086	► NK 42/20
	52	30	39,1	86,5	10,8	9 500	11 000	0,13	NK 42/30
	55	20	27	43	5,3	-	4 800	0,11	RNA 4907.2RS
	55	20	31,9	54	6,7	9 500	11 000	0,11	RNA 4907
	55	36	48,4	93	11,4	9 500	11 000	0,19	RNA 6907
43	53	20	27,5	55	6,8	9 500	11 000	0,086	NK 43/20
	53	30	40,2	90	11,2	9 500	11 000	0,13	NK 43/30
	58	22	39,1	61	7,5	9 000	10 000	0,14	NKS 43


[►] Popular item



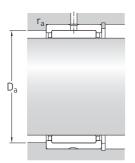

Dimen	sions	Abutme dimens	ent and fillet ions	Associated radia Single lip	Il shaft seals ¹⁾ Double lip	Spring loaded lip
F_{w}	r _{1,2} min.	D _a max.	r _a max.			
mm		mm		-		
30	0,3 0,3 0,3	38 38 40	0,3 0,3 0,3	G 30x40x4 G 30x40x4 -	SD 30x40x4 SD 30x40x4	- - -
	0,3	40	0,3	-	-	30x42x6 HMS5 RG
	0,3	40	0,3	-	-	30x42x6 HMS5 RG
	0,6	41	0,6	-	-	30x45x7 HMS5 RG
32	0,3	40	0,3	G 32x42x4	SD 32x42x4	-
	0,3	40	0,3	G 32x42x4	SD 32x42x4	-
	0,3	43	0,3	G 32x45x4	-	-
	0,3	43	0,3	G 32x45x4	-	_
	0,6	43	0,6	-	-	32x47x6 HMS5 RG
35	0,3	43	0,3	G 35x45x4	SD 35x45x4	-
	0,3	43	0,3	G 35x45x4	SD 35x45x4	-
	0,3	45	0,3	-	-	-
	0,3	45	0,3	-	-	35x47x6 HMS5 RG
	0,3	45	0,3	-	-	35x47x6 HMS5 RG
	0,6	46	0,6	-	-	35x50x7 HMS5 RG
37	0,3	45	0,3	G 37x47x4	SD 37x47x4	–
	0,3	45	0,3	G 37x47x4	SD 37x47x4	–
	0,6	48	0,6	-	-	37x52x8 HMS4 R
38	0,3	46	0,3	G 38x48x4	SD 38x48x4	_
	0,3	46	0,3	G 38x48x4	SD 38x48x4	_
40	0,3	48	0,3	G 40x50x4	SD 40x50x4	-
	0,3	48	0,3	G 40x50x4	SD 40x50x4	-
	0,6	48	0,6	G 40x52x5	SD 40x52x5	-
	0,6	48	0,6	G 40x52x5	SD 40x52x5	_
	0,6	51	0,6	-	-	40x55x7 HMS5 RG
42	0,3	50	0,3	G 42x52x4	SD 42x52x4	-
	0,3	50	0,3	G 42x52x4	SD 42x52x4	-
	0,6	51	0,6	-	-	-
	0,6	51	0,6	_	_	42x55x7 HMS5 RG
	0,6	51	0,6	_	_	42x55x7 HMS5 RG
43	0,3	51	0,3	G 43x53x4	-	-
	0,3	51	0,3	G 43x53x4	-	-
	0,6	53	0,6	-	-	-

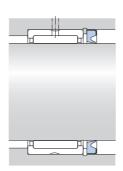
¹⁾ For additional information \rightarrow skf.com/seals


Princi	pal dimen	sions		oad ratings c static	Fatigue load limit	Speed ration Reference	Limiting	Mass	Designation
F _w	D	С	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	-
45	55 55 60	20 30 22	31,4 45,7 40,2	65,5 108 64	8,3 13,7 8	9 000 9 000 8 500	10 000 10 000 10 000	0,085 0,13 0,15	NK 45/20 TNNK 45/30 TNNKS 45
47	57 57	20 30	29,2 41,8	61 98	7,65 12,5	8 500 8 500	10 000 10 000	0,095 0,14	NK 47/20 ► NK 47/30
48	62 62 62	22 22 40	36,9 42,9 67,1	58,5 71 125	7,1 8,8 15,3	- 8 000 8 000	4 000 9 500 9 500	0,15 0,14 0,26	RNA 4908.2RS ► RNA 4908 ► RNA 6908
50	62 62 65	25 35 22	42,9 58,3 42,9	91,5 137 72	11,2 17 8,8	8 000 8 000 8 000	9 000 9 000 9 000	0,15 0,21 0,16	NK 50/25 TNNK 50/35 TNNKS 50
52	68 68 68	22 22 40	39,1 45,7 70,4	64 78 137	7,8 9,65 17	- 7 500 7 500	3 800 8 500 8 500	0,16 0,18 0,34	RNA 4909.2RS RNA 4909 ► RNA 6909
55	68 68 72	25 35 22	40,2 52,3 44,6	88 122 78	10,8 15,3 9,8	7 500 7 500 7 000	8 500 8 500 8 000	0,18 0,25 0,22	► NK 55/25 NK 55/35 ► NKS 55
58	72 72 72	22 22 40	40,2 47,3 73,7	69,5 85 150	8,5 10,6 18,6	- 7 000 7 000	3 400 8 000 8 000	0,16 0,16 0,31	► RNA 4910.2RS ► RNA 4910 ► RNA 6910
60	72 72 80	25 35 28	46,8 55 62,7	110 134 104	13,4 17 13,2	6 700 6 700 6 300	7 500 7 500 7 500	0,17 0,26 0,34	NK 60/25 TN ► NK 60/35 ► NKS 60
63	80 80	25 45	57,2 89,7	106 190	13,2 23,2	6 300 6 300	7 000 7 000	0,26 0,47	► RNA 4911 ► RNA 6911
65	78 78 85	25 35 28	44 58,3 66	104 146 114	12,7 18,3 14,6	6 300 6 300 6 000	7 000 7 000 6 700	0,22 0,31 0,36	► NK 65/25 ► NK 65/35 NKS 65
68	82 82 85	25 35 25	44 60,5 60,5	95 146 114	11,8 18,3 14,3	6 000 6 000 6 000	6 700 6 700 6 700	0,24 0,34 0,28	NK 68/25 NK 68/35 ► RNA 4912
	85	45	93,5	204	25	6 000	6 700	0,49	► RNA 6912
70	85 85 90	25 35 28	44,6 61,6 68,2	98 150 120	12,2 19 15,3	6 000 6 000 5 600	6 700 6 700 6 300	0,26 0,37 0,38	NK 70/25NK 70/35NKS 70

Dimen	sions	Abutme dimens	ent and fillet ions	Associated radial Single lip	shaft seals ¹⁾ Double lip	Spring loaded lip
F _w	r _{1,2} min.	D _a max.	r _a max.			
mm		mm		_		
45	0,3	53	0,3	G 45x55x4	SD 45x55x4	–
	0,3	53	0,3	G 45x55x4	SD 45x55x4	–
	0,6	56	0,6	–	-	45x60x7 HMS5 RG
47	0,3 0,3	55 55	0,3 0,3	_ _		_ _
48	0,6	58	0,6	-	-	_
	0,6	58	0,6	-	-	48x62x8 HMS5 RG
	0,6	58	0,6	-	-	48x62x8 HMS5 RG
50	0,6	58	0,6	G 50x62x5	SD 50x62x5	–
	0,6	58	0,6	G 50x62x5	SD 50x62x5	–
	1	60	1	–	-	50x65x8 HMS5 RG
52	0,6	64	0,6	-	-	_
	0,6	64	0,6	-	-	52x68x8 HMS5 RG
	0,6	64	0,6	-	-	52x68x8 HMS5 RG
55	0,6	64	0,6	-	-	55x68x8 HMS5 RG
	0,6	64	0,6	-	-	55x68x8 HMS5 RG
	1	67	1	-	-	55x72x8 HMS5 RG
58	0,6	68	0,6	-	-	–
	0,6	68	0,6	-	-	58x72x8 HMS5 RG
	0,6	68	0,6	-	-	58x72x8 HMS5 RG
60	0,6	68	0,6	-	-	60x72x8 HMS5 RG
	0,6	68	0,6	-	-	60x72x8 HMS5 RG
	1,1	73,5	1	-	-	60x80x8 HMS5 RG
63	1 1	75 75	1	- -	- -	63x80x8 CRW1 R 63x80x8 CRW1 R
65	0,6	74	0,6	-	-	–
	0,6	74	0,6	-	-	–
	1,1	78,5	1	-	-	65x85x8 HMS5 RG
68	0,6	78	0,6	-	-	-
	0,6	78	0,6	-	-	-
	1	80	1	-	-	-
	1	80	1	-	-	68x85x8 CRW1 R
70	0,6	81	0,6	-	-	70x85x8 HMS5 RG
	0,6	81	0,6	-	-	70x85x8 HMS5 RG
	1,1	83,5	1	-	-	70x90x10 HMS5 RG

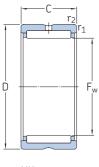
¹⁾ For additional information \rightarrow skf.com/seals

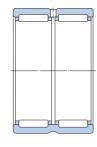




NK(S) RNA 49

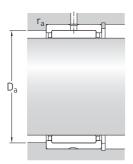
RNA 69

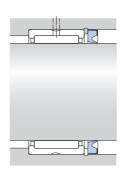

Princip	oal dimens	sions	Basic loa dynamic	i d ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation
$F_{\rm w}$	D	С	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min		kg	-
72	90 90	25 45	61,6 95,2	120 212	14,6 26	5 600 5 600	6 300 6 300	0,31 0,58	RNA 4913 ► RNA 6913
73	90 90	25 35	52,8 73,7	106 163	13,2 20,4	5 600 5 600	6 300 6 300	0,3 0,43	NK 73/25 NK 73/35
75	92 92 95	25 35 28	53,9 74,8 70,4	110 170 132	13,7 21,2 16,6	5 300 5 300 5 300	6 000 6 000 6 000	0,32 0,45 0,4	NK 75/25 ► NK 75/35 NKS 75
80	95 95 100	25 35 30	56,1 76,5 84,2	127 190 163	15,6 24 20,8	5 000 5 000 5 000	5 600 5 600 5 600	0,3 0,43 0,46	NK 80/25NK 80/35RNA 4914
	100	54	128	285	36	5 000	5 600	0,86	► RNA 6914
85	105 105 105	25 30 35	69,3 84,2 96,8	132 170 200	16,6 21,6 26	4 800 4 800 4 800	5 300 5 300 5 300	0,43 0,49 0,6	► NK 85/25 RNA 4915 ► NK 85/35
	105	54	130	290	37,5	4 800	5 300	0,94	RNA 6915
90	110 110 110	25 30 35	72,1 88 101	140 183 216	18 23,2 28	4 500 4 500 4 500	5 000 5 000 5 000	0,45 0,52 0,63	NK 90/25► RNA 4916► NK 90/35
	110	54	134	315	40	4 500	5 000	0,99	► RNA 6916
95	115 115	26 36	73,7 105	146 232	18,6 30	4 300 4 300	4 800 4 800	0,49 0,68	NK 95/26 NK 95/36
100	120 120 120	26 35 36	76,5 108 108	156 250 250	19,6 31 31	4 000 4 000 4 000	4 500 4 500 4 500	0,52 0,66 0,72	 NK 100/26 RNA 4917 NK 100/36
	120	63	165	425	53	4 000	4 500	1,2	► RNA 6917
105	125 125 125	26 35 36	78,1 112 112	166 265 265	20,4 32,5 32,5	3 800 3 800 3 800	4 300 4 300 4 300	0,54 0,75 0,71	NK 105/26 RNA 4918 NK 105/36
	125	63	172	450	55	3 800	4 300	1,35	RNA 6918



Dimen	sions	Abutme dimens	ent and fillet ions	Associated radial s Single lip	shaft seals ¹⁾ Double lip	Spring loaded lip
F _w	r _{1,2} min.	D _a max.	r _a max.			
mm		mm		-		
72	1 1	85 85	1 1	- -	- -	72x90x10 HMS5 RG 72x90x10 HMS5 RG
73	1	85 85	1 1	_ _	- -	- -
75	1 1 1,1	87 87 88,5	1 1 1	- - -	- - -	73x92x11.1 CRWH1 R 73x92x11.1 CRWH1 R 75x95x10 HMS5 RG
80	1 1 1	90 90 95	1 1 1	- - -	- - -	80x95x10 HMS5 RG 80x95x10 HMS5 RG 80x100x10 HMS5 RG
	1	95	1	_	-	80x100x10 HMS5 RG
85	1 1 1	100 100 100	1 1 1	- - -	- - -	85x105x12 HMS5 RG 85x105x12 HMS5 RG 85x105x12 HMS5 RG
	1	100	1	_	-	85x105x12 HMS5 RG
90	1 1 1	105 105 105	1 1 1	- - -	- - -	90x110x10 HMS5 RG 90x110x10 HMS5 RG 90x110x10 HMS5 RG
	1	105	1	_	-	90x110x10 HMS5 RG
95	1	110 110	1	- -	- -	95x115x12 HMS5 RG 95x115x12 HMS5 RG
100	1 1,1 1	115 113,5 115	1 1 1	- - -	- - -	100x120x10 HMS5 RG 100x120x10 HMS5 RG 100x120x10 HMS5 RG
	1,1	113,5	1	_	_	100x120x10 HMS5 RG
105	1 1,1 1	120 118,5 120	1 1 1	- - -	- - -	105x125x13 HMS4 R 105x125x13 HMS4 R 105x125x13 HMS4 R
	1,1	118,5	1	_	-	105x125x13 HMS4 R

¹⁾ For additional information \rightarrow skf.com/seals

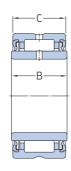



NK RNA 48 RNA 49

RNA 69

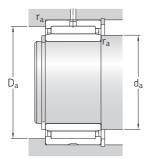
Princip	oal dimens	sions	Basic lo	ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation
F_w	D	С	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	-
110	130 130 130	30 35 40	96,8 114 123	220 270 305	27 33,5 37,5	3 600 3 600 3 600	4 000 4 000 4 000	0,65 0,72 0,83	► NK 110/30 RNA 4919 ► NK 110/40
	130	63	172	465	56	3 600	4 000	1,45	► RNA 6919
115	140	40	125	280	34	3 400	4 000	1,15	RNA 4920
120	140	30	93,5	232	27	3 400	3 800	0,66	► RNA 4822
125	150	40	130	300	35,5	3 200	3 600	1,25	RNA 4922
130	150	30	99	255	29	3 200	3 600	0,73	► RNA 4824
135	165	45	176	405	49	3 000	3 400	1,85	► RNA 4924
145	165	35	119	325	36,5	2 800	3 200	0,99	RNA 4826
150	180	50	198	480	57	2 600	3 000	2,2	RNA 4926
155	175	35	121	345	37,5	2 600	3 000	0,97	► RNA 4828
160	190	50	205	510	60	2 400	2 800	2,35	RNA 4928
165	190	40	147	415	46,5	2 400	2 800	1,6	RNA 4830
175	200	40	157	450	49	2 200	2 600	1,7	► RNA 4832
185	215	45	179	520	56	2 200	2 400	2,55	RNA 4834
195	225	45	190	570	60	2 000	2 400	2,7	RNA 4836
210	240	50	220	710	73,5	1 900	2 200	3,2	► RNA 4838
220	250	50	224	735	75	1 800	2 000	3,35	RNA 4840
240	270	50	238	815	81,5	1 700	1 900	3,6	► RNA 4844
265	300	60	347	1 120	112	1 500	1 700	5,4	RNA 4848
285	320	60	358	1 200	118	1 400	1 500	5,8	RNA 4852
305	350	69	429	1 320	129	1 300	1 400	9,3	RNA 4856
330	380	80	594	1 800	173	1 100	1 300	12,5	RNA 4860


[►] Popular item

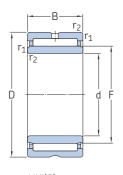


Dimen	sions	Abutme dimensi	nt and fillet ons	Associated radial s Single lip	shaft seals ¹⁾ Double lip	Spring loaded lip
F _w	r _{1,2} min.	D _a max.	r _a max.			
mm		mm		-		
110	1,1 1,1 1,1	123,5 123,5 123,5	1 1 1	- -	- - -	110x130x12 HMS5 RG 110x130x12 HMS5 RG 110x130x12 HMS5 RG
	1,1	123,5	1	_	_	110x130x12 HMS5 RG
115	1,1	133,5	1	_	-	115x140x12 HMS5 RG
120	1	135	1	_	_	120x140x12 HMS5 RG
125	1,1	143,5	1	_	_	125x150x12 HMS5 RG
130	1	145	1	_	_	130x150x10 CRSA1 R
135	1,1	158,5	1	_	_	135x165x14 HMSA7 R
145	1,1	158,5	1	_	_	-
150	1,5	172	1,5	_	_	150x180x12 HMS5 RG
155	1,1	168,5	1	_	_	-
160	1,5	182	1,5	_	_	160x190x15 HMS5 RG
165	1,1	183,5	1	_	_	165x190x15 HMS5 RG
175	1,1	193,5	1	_	_	175x200x15 HMS5 RG
185	1,1	208,5	1	_	_	185x215x15 HMS42 R
195	1,1	218,5	1	_	_	-
210	1,5	232	1,5	_	_	210x240x15 HMS5 RG
220	1,5	242	1,5	-	_	220x250x15 HMS5 RG
240	1,5	262	1,5	_	_	240x270x15 HMS5 RG
265	2	291	2	-	-	Available on request
285	2	311	2	_	_	285x320x16 HDS2 R
305	2	341	2	_	-	Available on request
330	2,1	369	2	-	-	Available on request

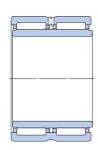
¹⁾ For additional information \rightarrow skf.com/seals



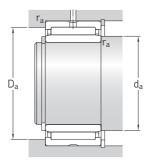
NKI ($d \le 7 \text{ mm}$)


NKI(S) (d ≥ 9 mm) NA 49 NA 69

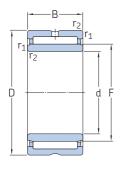
NA 49 ...2RS

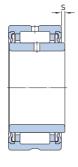

Princip	al dimens	ions			ad ratings static	Fatigue load limit	Speed rat Reference speed	Limiting	Mass	Designation
d	D	В	С	С	C_0	P_{u}	speed	speed		
mm				kN		kN	r/min		kg	_
5	15 15	12 16	- -	3,8 5,01	4,25 5,85	0,465 0,67	32 000 32 000	36 000 36 000	0,012 0,015	NKI 5/12 TN NKI 5/16 TN
6	16 16	12 16	- -	4,4 5,72	5,2 7,2	0,57 0,815	30 000 30 000	34 000 34 000	0,014 0,017	NKI 6/12 TNNKI 6/16 TN
7	17 17	12 16	- -	4,57 5,94	5,7 8	0,63 0,9	28 000 28 000	32 000 32 000	0,014 0,018	NKI 7/12 TN NKI 7/16 TN
9	19 19	12 16		6,71 9,13	8,15 12	0,965 1,43	26 000 26 000	30 000 30 000	0,017 0,022	NKI 9/12NKI 9/16
10	22 22 22	13 14 16	- 13 -	8,8 7,37 10,2	10,4 8,15 12,5	1,22 0,965 1,5	24 000 - 24 000	28 000 12 000 28 000	0,024 0,025 0,029	NA 4900NA 4900.2RSNKI 10/16
	22	20	-	12,8	16,6	2	24 000	28 000	0,037	► NKI 10/20
12	24 24 24	13 14 16	- 13 -	9,9 8,09 11,7	12,2 9,65 15,3	1,46 1,14 1,8	22 000 - 22 000	26 000 11 000 26 000	0,026 0,028 0,033	NA 4901NA 4901.2RSNKI 12/16
	24 24	20 22		14,5 16,1	20 23,2	2,4 2,75	22 000 22 000	26 000 26 000	0,042 0,046	► NKI 12/20 ► NA 6901
15	27 27 28	16 20 13	- - -	13,4 16,5 11,2	19 25,5 15,3	2,28 3,05 1,83	20 000 20 000 19 000	24 000 24 000 22 000	0,039 0,049 0,034	NKI 15/16NKI 15/20NA 4902
	28 28 35	14 23 20	13 - -	9,13 17,2 24,6	12 27 30	1,43 3,35 3,65	- 19 000 16 000	9 500 22 000 19 000	0,037 0,064 0,092	NA 4902.2RSNA 6902NKIS 15
17	29 29 30	16 20 13	- - -	13,8 17,2 11,4	20,4 27 16,3	2,45 3,35 1,96	19 000 19 000 18 000	22 000 22 000 20 000	0,042 0,053 0,038	NKI 17/16NKI 17/20NA 4903
	30 30 37	14 23 20	13 - -	9,52 18,7 26	12,9 30,5 33,5	1,53 3,75 4	- 18 000 15 000	9 000 20 000 17 000	0,04 0,072 0,098	NA 4903.2RSNA 6903NKIS 17

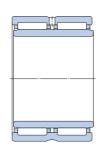
Dimen	sions			Abutme	ent and fill	et dimensio
d	F	r _{1,2} min.	s max.	d _a min.	D _a max.	r _a max.
mm				mm		
5	8	0,3 0,3	1,5 2	7 7	13 13	0,3 0,3
6	9	0,3	1,5	8	14	0,3
	9	0,3	2	8	14	0,3
7	10	0,3	1,5	9	15	0,3
	10	0,3	2	9	15	0,3
9	12	0,3	1,5	11	17	0,3
	12	0,3	2	11	17	0,3
10	14	0,3	0,5	12	20	0,3
	14	0,3	0,5	12	20	0,3
	14	0,3	0,5	12	20	0,3
	14	0,3	0,5	12	20	0,3
12	16	0,3	0,5	14	22	0,3
	16	0,3	0,5	14	22	0,3
	16	0,3	0,5	14	22	0,3
	16	0,3	0,5	14	22	0,3
	16	0,3	1	14	22	0,3
15	19	0,3	0,5	17	25	0,3
	19	0,3	0,5	17	25	0,3
	20	0,3	0,5	17	26	0,3
	20	0,3	0,5	17	26	0,3
	20	0,3	1	17	26	0,3
	22	0,6	0,5	19	31	0,6
17	21	0,3	0,5	19	27	0,3
	21	0,3	0,5	19	27	0,3
	22	0,3	0,5	19	28	0,3
	22	0,3	0,5	19	28	0,3
	22	0,3	1	19	28	0,3
	24	0,6	0,5	21	33	0,6



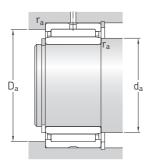
NKI(S) NA 49 NA 69 (d ≤ 30 mm)


NA 49 ...2RS

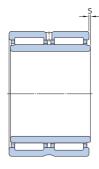

NA 69 (d \geq 32 mm)


Princi	pal dimens	ions			ad ratings static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designation
d	D	В	С	С	C_0	P_{u}	speed	speed		
mm				kN		kN	r/min		kg	_
20	32 32 37	16 20 17	- - -	15,4 19 21,6	24,5 32,5 28	2,9 4 3,35	16 000 16 000 15 000	19 000 19 000 17 000	0,048 0,06 0,075	NKI 20/16NKI 20/20NA 4904
	37 37 42	18 30 20	17 - -	19,4 35,2 28,6	22,4 53 39	2,65 6,55 4,75	- 15 000 13 000	7 500 17 000 15 000	0,08 0,14 0,13	NA 4904.2RSNA 6904NKIS 20
22	34 34 39	16 20 17	- - -	15,7 19,4 23,3	26 34,5 32	3,1 4,25 3,9	15 000 15 000 14 000	17 000 17 000 15 000	0,052 0,065 0,08	NKI 22/16NKI 22/20NA 49/22
	39	30	-	36,9	57	7,2	14 000	15 000	0,15	► NA 69/22
25	38 38 42	20 30 17	- - -	24,6 31,9 24,2	42,5 60 34,5	5,2 7,5 4,15	14 000 14 000 13 000	15 000 15 000 15 000	0,08 0,12 0,088	NKI 25/20 TNNKI 25/30NA 4905
	42 42 47	18 30 22	17 - -	21,6 38 34,1	27,5 62 46,5	3,25 7,65 5,7	- 13 000 12 000	6 300 15 000 13 000	0,09 0,16 0,16	NA 4905.2RSNA 6905NKIS 25
28	42 42 45	20 30 17	- - -	26,4 34,1 25,1	48 65,5 36,5	6 8,3 4,4	12 000 12 000 12 000	14 000 14 000 14 000	0,092 0,14 0,098	NKI 28/20 TNNKI 28/30NA 49/28
	45	30	-	39,6	65,5	8,3	12 000	14 000	0,18	NA 69/28
30	45 45 47	20 30 17	- - -	27,5 40,2 25,5	52 85 39	6,55 10,6 4,65	11 000 11 000 11 000	13 000 13 000 13 000	0,11 0,17 0,1	NKI 30/20 TNNKI 30/30 TNNA 4906
	47 47 52	18 30 22	17 - -	23,3 42,9 36,9	32 75 54	3,8 9,3 6,55	- 11 000 10 000	5 600 13 000 12 000	0,1 0,19 0,18	NA 4906.2RSNA 6906NKIS 30
32	47 47 52	20 30 20	- - -	25,1 36,9 30,8	46,5 76,5 51	5,85 9,5 6,3	11 000 11 000 10 000	12 000 12 000 11 000	0,11 0,17 0,16	NKI 32/20NKI 32/30NA 49/32
	52	36	_	47,3	90	10,8	10 000	11 000	0,29	► NA 69/32

-						
Dimen	sions			Abutme	ent and fille	et dimensions
d	F	r _{1,2} min.	s max.	d _a min.	D _a max.	r _a max.
mm				mm		
20	24	0,3	0,5	22	30	0,3
	24	0,3	0,5	22	30	0,3
	25	0,3	0,8	22	35	0,3
	25	0,3	0,5	22	35	0,3
	25	0,3	1	22	35	0,3
	28	0,6	0,5	24	38	0,6
22	26	0,3	0,5	24	32	0,3
	26	0,3	0,5	24	32	0,3
	28	0,3	0,8	24	37	0,3
	28	0,3	0,5	24	37	0,3
25	29	0,3	1	27	36	0,3
	29	0,3	1,5	27	36	0,3
	30	0,3	0,8	27	40	0,3
	30	0,3	0,5	27	40	0,3
	30	0,3	1	27	40	0,3
	32	0,6	1	29	43	0,6
28	32	0,3	1	30	40	0,3
	32	0,3	1,5	30	40	0,3
	32	0,3	0,8	30	43	0,3
	32	0,3	1	30	43	0,3
30	35	0,3	0,5	32	43	0,3
	35	0,3	1	32	43	0,3
	35	0,3	0,8	32	45	0,3
	35	0,3	0,5	32	45	0,3
	35	0,3	1	32	45	0,3
	37	0,6	1	34	48	0,6
32	37	0,3	0,5	34	45	0,3
	37	0,3	1	34	45	0,3
	40	0,6	0,8	36	48	0,6
	40	0,6	0,5	36	48	0,6

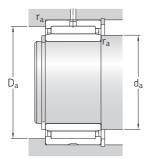


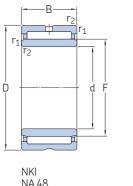
NKI(S) NA 49

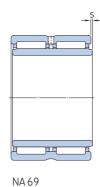

NA 49 ...2RS

NA 69

Princip	al dimens	ions		Basic lo dynami	oad ratings static	Fatigue load limit	Speed rat Reference speed		Mass	Designation
d	D	В	С	С	C_0	P_{u}	speeu	speeu		
mm		,		kN		kN	r/min		kg	-
35	50 50 55	20 30 20	- - -	29,7 38 31,9	60 83 54	7,5 10,4 6,7	10 000 10 000 9 500	11 000 11 000 11 000	0,12 0,19 0,17	NKI 35/20 TNNKI 35/30NA 4907
	55 55 58	21 36 22	20 - -	27 48,4 39,1	43 93 61	5,3 11,4 7,5	- 9 500 9 000	4 800 11 000 10 000	0,18 0,31 0,22	NA 4907.2RSNA 6907NKIS 35
38	53 53	20 30		27,5 40,2	55 90	6,8 11,2	9 500 9 500	11 000 11 000	0,13 0,21	NKI 38/20 ► NKI 38/30
40	55 55 62	20 30 22	- - -	31,4 45,7 42,9	65,5 108 71	8,3 13,7 8,8	9 000 9 000 8 000	10 000 10 000 9 500	0,14 0,22 0,23	NKI 40/20 TNNKI 40/30 TNNA 4908
	62 62 65	23 40 22	22 - -	36,9 67,1 42,9	58,5 125 72	7,1 15,3 8,8	- 8 000 8 000	4 000 9 500 9 000	0,25 0,43 0,28	NA 4908.2RSNA 6908NKIS 40
42	57 57	20 30	_ _	29,2 41,8	61 98	7,65 12,5	8 500 8 500	10 000 10 000	0,14 0,22	NKI 42/20 NKI 42/30
45	62 62 68	25 35 22	- - -	42,9 58,3 45,7	91,5 137 78	11,2 17 9,65	8 000 8 000 7 500	9 000 9 000 8 500	0,22 0,31 0,27	NKI 45/25 TNNKI 45/35 TNNA 4909
	68 68 72	23 40 22	22 - -	39,1 70,4 44,6	64 137 78	7,8 17 9,8	- 7 500 7 000	3 800 8 500 8 000	0,29 0,5 0,34	NA 4909.2RSNA 6909NKIS 45
50	68 68 72	25 35 22	- - -	40,2 52,3 47,3	88 122 85	10,8 15,3 10,6	7 500 7 500 7 000	8 500 8 500 8 000	0,26 0,36 0,27	NKI 50/25NKI 50/35NA 4910
	72 72 80	23 40 28	22 - -	40,2 73,7 62,7	69,5 150 104	8,5 18,6 13,2	- 7 000 6 300	3 400 8 000 7 500	0,3 0,52 0,52	NA 4910.2RSNA 6910NKIS 50
55	72 72 80	25 35 25	- - -	46,8 55 57,2	110 134 106	13,4 17 13,2	6 700 6 700 6 300	7 500 7 500 7 000	0,26 0,36 0,39	 NKI 55/25 TN NKI 55/35 NA 4911
	80 85	45 28	_ _	89,7 66	190 114	23,2 14,6	6 300 6 000	7 000 6 700	0,78 0,56	► NA 6911 NKIS 55

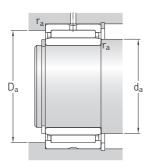

Dimens	sions			Abutme	ent and fille	et dimensio
d	F	r _{1,2} min.	s max.	d _a min.	D _a max.	r _a max.
mm				mm		
35	40	0,3	0,5	37	48	0,3
	40	0,3	1	37	48	0,3
	42	0,6	0,8	39	51	0,6
	42	0,6	0,5	39	51	0,6
	42	0,6	0,5	39	51	0,6
	43	0,6	0,5	39	53	0,6
38	43	0,3	0,5	40	51	0,3
	43	0,3	1	40	51	0,3
40	45	0,3	0,5	42	53	0,3
	45	0,3	1	42	53	0,3
	48	0,6	1	44	58	0,6
	48	0,6	0,5	44	58	0,6
	48	0,6	0,5	44	58	0,6
	50	1	0,5	45	60	1
42	47	0,3	0,5	44	55	0,3
	47	0,3	1	44	55	0,3
45	50	0,6	1,5	49	58	0,6
	50	0,6	2	49	58	0,6
	52	0,6	1	49	64	0,6
	52	0,6	0,5	49	64	0,6
	52	0,6	0,5	49	64	0,6
	55	1	0,5	50	67	1
50	55	0,6	1,5	54	64	0,6
	55	0,6	2	54	64	0,6
	58	0,6	1	54	68	0,6
	58	0,6	0,5	54	68	0,6
	58	0,6	0,5	54	68	0,6
	60	1,1	2	56,5	73,5	1
55	60	0,6	1,5	59	68	0,6
	60	0,6	2	59	68	0,6
	63	1	1,5	60	75	1
	63	1	1,5	60	75	1
	65	1,1	2	61,5	78,5	1


NKI(S) NA 49

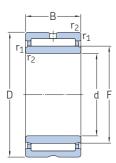

NA 69

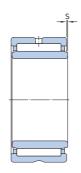
Princip	al dimensi	ons			oad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation
d	D	В	С	С	C_0	P_{u}	speed	speed		
mm				kN		kN	r/min		kg	-
60	82 82 85	25 35 25	- - -	44 60,5 60,5	95 146 114	11,8 18,3 14,3	6 000 6 000 6 000	6 700 6 700 6 700	0,39 0,55 0,43	NKI 60/25NKI 60/35NA 4912
	85 90	45 28		93,5 68,2	204 120	25 15,3	6 000 5 600	6 700 6 300	0,81 0,56	NA 6912NKIS 60
65	90 90 90	25 25 35	- - -	52,8 61,6 73,7	106 120 163	13,2 14,6 20,4	5 600 5 600 5 600	6 300 6 300 6 300	0,46 0,46 0,66	NKI 65/25 ► NA 4913 ► NKI 65/35
	90 95	45 28	_ _	95,2 70,4	212 132	26 16,6	5 600 5 300	6 300 6 000	0,83 0,64	NA 6913NKIS 65
70	95 95 100	25 35 30	- - -	56,1 76,5 84,2	127 190 163	15,6 24 20,8	5 000 5 000 5 000	5 600 5 600 5 600	0,51 0,72 0,73	NKI 70/25 ► NKI 70/35 ► NA 4914
	100	54	-	128	285	36	5 000	5 600	1,35	► NA 6914
75	105 105 105	25 30 35	- - -	69,3 84,2 96,8	132 170 200	16,6 21,6 26	4 800 4 800 4 800	5 300 5 300 5 300	0,64 0,78 0,91	 NKI 75/25 NA 4915 NKI 75/35
	105	54	-	130	290	37,5	4 800	5 300	1,45	► NA 6915
80	110 110 110	25 30 35	- - -	72,1 88 101	140 183 216	18 23,2 28	4 500 4 500 4 500	5 000 5 000 5 000	0,68 0,88 0,96	 NKI 80/25 NA 4916 NKI 80/35
	110	54	-	134	315	40	4 500	5 000	1,5	► NA 6916
85	115 115 120	26 36 35	- - -	73,7 105 108	146 232 250	18,6 30 31	4 300 4 300 4 000	4 800 4 800 4 500	0,74 1,05 1,25	NKI 85/26NKI 85/36NA 4917
	120	63	-	165	425	53	4 000	4 500	2,2	► NA 6917
90	120 120 125	26 36 35	- - -	76,5 108 112	156 250 265	19,6 31 32,5	4 000 4 000 3 800	4 500 4 500 4 300	0,78 1,1 1,3	NKI 90/26NKI 90/36NA 4918
	125	63	-	172	450	55	3 800	4 300	2,3	► NA 6918

Dimens	ions			Abutme	nt and fille	t dimensions
d	F	r _{1,2} min.	s max.	d _a min.	D _a max.	r _a max.
mm				mm		
60	68 68 68	0,6 0,6 1	1 1 1,5	64 64 65	78 78 80	0,6 0,6 1
	68 70	1 1,1	1,5 2	65 66,5	80 83,5	1 1
65	73 72 73	1 1 1	1 1,5 1	70 70 70	85 85 85	1 1 1
	72 75	1 1,1	1,5 2	70 71,5	85 88,5	1
70	80 80 80	1 1 1	0,8 0,8 1,5	75 75 75	90 90 95	1 1 1
	80	1	1	75	95	1
75	85 85 85	1 1 1	1 1,5 1	80 80 80	100 100 100	1 1 1
	85	1	1	80	100	1
80	90 90 90	1 1 1	1 1,5 1	85 85 85	105 105 105	1 1 1
	90	1	1	85	105	1
85	95 95 100	1 1 1,1	1,5 1,5 1	90 90 91,5	110 110 113,5	1 1 1
	100	1,1	1	91,5	113,5	1
90	100 100 105	1 1 1,1	1,5 1,5 1	95 95 96,5	115 115 118,5	1 1 1
	105	1,1	1	96,5	118,5	1

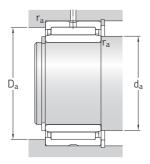


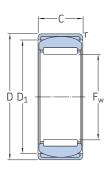
48
49


Princip	al dimensi	ons			ad ratings static	Fatigue load limit	Speed ration Reference	Limiting	Mass	Designation
d	D	В	С	С	C_0	P_{u}	speed	speed		
mm				kN		kN	r/min		kg	-
95	125 125 130	26 36 35	- - -	78,1 112 114	166 265 270	20,4 32,5 33,5	3 800 3 800 3 600	4 300 4 300 4 000	0,82 1,15 1,35	 NKI 95/26 NKI 95/36 NA 4919
	130	63	-	172	465	56	3 600	4 000	2,5	► NA 6919
100	130 130 140	30 40 40	- - -	96,8 123 125	220 305 280	27 37,5 34	3 600 3 600 3 400	4 000 4 000 4 000	0,99 1,35 1,9	NKI 100/30NKI 100/40NA 4920
110	140 150	30 40	_ _	93,5 130	232 300	27 35,5	3 400 3 200	3 800 3 600	1,1 2,05	► NA 4822 ► NA 4922
120	150 165	30 45	- -	99 176	255 405	29 49	3 200 3 000	3 600 3 400	1,15 2,85	► NA 4824 ► NA 4924
130	165 180	35 50	- -	119 198	325 480	36,5 57	2 800 2 600	3 200 3 000	1,8 3,9	► NA 4826 ► NA 4926
140	175 190	35 50	- -	121 205	345 510	37,5 60	2 600 2 400	3 000 2 800	1,9 4,15	► NA 4828 ► NA 4928
150	190	40	-	147	415	46,5	2 400	2 800	2,7	► NA 4830
160	200	40	-	157	450	49	2 200	2 600	2,85	► NA 4832
170	215	45	-	179	520	56	2 200	2 400	3,95	► NA 4834
180	225	45	-	190	570	60	2 000	2 400	4,2	► NA 4836
190	240	50	-	220	710	73,5	1 900	2 200	5,55	► NA 4838
200	250	50	-	224	735	75	1 800	2 000	5,8	► NA 4840
220	270	50	-	238	815	81,5	1 700	1 900	6,35	► NA 4844
240	300	60	-	347	1 120	112	1 500	1 700	9,9	► NA 4848
260	320	60	-	358	1 200	118	1 400	1 500	10,5	► NA 4852
280	350	69	-	429	1 320	129	1 300	1 400	15,5	► NA 4856
300	380	80	-	594	1 800	173	1 100	1 300	22	NA 4860
320	400	80	-	605	1 900	176	1 100	1 200	23	NA 4864

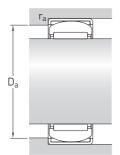


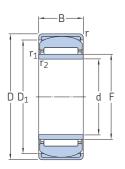
Dimens	sions			Abutme	nt and fille	t dimensio
d	F	r _{1,2} min.	s max.	d _a min.	D _a max.	r _a max.
mm				mm		
95	105 105 110	1 1 1,1	1,5 1,5 1	100 100 101,5	120 120 123,5	1 1 1
	110	1,1	1	101,5	123,5	1
100	110 110 115	1,1 1,1 1,1	1,5 2 2	106,5 106,5 106,5	123,5 123,5 133,5	1 1 1
110	120 125	1 1,1	0,8 2	115 116,5	135 143,5	1 1
120	130 135	1 1,1	0,8 2	125 126,5	145 158,5	1
130	145 150	1,1 1,5	1 1,5	136,5 138	158,5 172	1 1,5
140	155 160	1,1 1,5	1 1,5	146,5 148	168,5 182	1 1,5
150	165	1,1	1,5	156,5	183,5	1
160	175	1,1	1,5	166,5	193,5	1
170	185	1,1	1,5	176,5	208,5	1
180	195	1,1	1,5	186,5	218,5	1
190	210	1,5	1,5	198	232	1,5
200	220	1,5	1,5	208	242	1,5
220	240	1,5	1,5	228	262	1,5
240	265	2	2	249	291	2
260	285	2	2	269	311	2
280	305	2	2,5	289	341	2
300	330	2,1	2	311	369	2
320	350	2,1	2	331	389	2

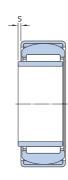

7.4~ Needle roller bearings with machined rings with flanges, with an inner ring d $\,340-380~\text{mm}$



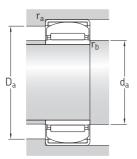
Principal dimensions					Basic load ratings dynamic static		Speed ratings Reference Limiting		Mass	Designation
d	D	В	С	С	C_0	P_{u}	speed speed	speed		
mm				kN		kN	r/min		kg	_
340	420	80	_	616	1 960	183	1 000	1 200	24	NA 4868
360	440	80	-	627	2 040	186	950	1 100	25,5	NA 4872
380	480	100	-	968	3 000	270	900	1 000	42,5	NA 4876


SKF. 646

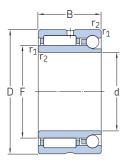

Dimens	sions			Abutme	Abutment and fillet dimensions				
d	F	r _{1,2} min.	s max.	d _a min.	D _a max.	r _a max.			
mm				mm					
340	370	2,1	2	351	409	2			
360	390	2,1	2	371	429	2			
380	415	2,1	2	391	469	2			

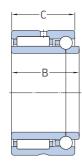


Princip	al dimens	ions	Basic load ratings dynamic static		Fatigue load limit	Speed ratings Reference Limiting		Mass	Designation
F _w	D	С	С	C_0	P_{u}	speed	speed		
nm			kN		kN	r/min		kg	_
5	28	12	7,37	9,15	1,08	24 000	28 000	0,032	RPNA 15/28
8	32	16	12,8	17,6	2,12	22 000	24 000	0,052	RPNA 18/32
0	35	16	13,2	19,3	2,28	19 000	22 000	0,062	► RPNA 20/35
5	42	20	19	32,5	4	16 000	18 000	0,11	► RPNA 25/42
0	47	20	22,9	38	4,8	13 000	15 000	0,13	► RPNA 30/47
5	52	20	24,6	45	5,6	11 000	13 000	0,13	► RPNA 35/52
)	55	20	26,4	51	6,3	10 000	11 000	0,14	RPNA 40/55
5	62	20	27,5	57	7,1	9 000	10 000	0,18	► RPNA 45/62



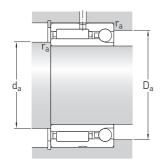
Dimens	ions		Abutme	Abutment and fillet dimensions					
F_{w}	D_1	r min.	D _a min.	D _a max.	r _a max.				
mm			mm						
15	24,5	0,8	23,5	24,5	0,8				
18	27	0,8	26	27	0,8				
20	30,5	0,8	29,5	30,5	0,8				
25	36,5	0,8	35	37	0,8				
30	42	0,8	41	42	0,8				
35	47,5	0,8	46,5	47,5	0,8				
40	50,5	0,8	49,5	50,5	0,8				
45	58	0,8	57	58	0,8				

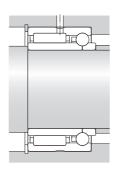




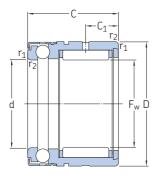
Princip	oal dimen	sions		ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation
d	D	В	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	-
12	28	12	7,37	9,15	1,08	24 000	28 000	0,037	PNA 12/28
15	32	16	12,8	17,6	2,12	22 000	24 000	0,062	► PNA 15/32
17	35	16	13,2	19,3	2,28	19 000	22 000	0,073	► PNA 17/35
20	42	20	19	32,5	4	16 000	18 000	0,14	► PNA 20/42
22	44	20	22	36,5	4,55	14 000	16 000	0,15	PNA 22/44
25	47	20	22,9	38	4,8	13 000	15 000	0,16	PNA 25/47
30	52	20	24,6	45	5,6	11 000	13 000	0,18	► PNA 30/52
35	55	20	26,4	51	6,3	10 000	11 000	0,18	► PNA 35/55
40	62	20	27,5	57	7,1	9 000	10 000	0,23	► PNA 40/62

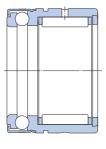
Dimen	sions					Abutm	ent and fi	llet dimen	sions	
d	F	D_1	r min.	r _{1,2} min.	s max.	d _a min.	D _a min.	D _a max.	r _a max.	r _b max.
mm						mm				
12	15	24,5	0,8	0,3	0,5	14	23,5	24,5	0,8	0,3
15	18	27	0,8	0,3	0,5	17	26	27	0,8	0,3
17	20	30,5	0,8	0,3	0,5	19	29,5	30,5	0,8	0,3
20	25	36,5	0,8	0,3	0,5	22	35	37	0,8	0,3
22	28	38,5	0,8	0,3	0,5	24	37,5	39	0,8	0,3
25	30	42	0,8	0,3	0,5	25	41	42	0,8	0,3
30	35	47,5	0,8	0,3	0,5	32	46,5	47,5	0,8	0,3
35	40	50,5	0,8	0,3	0,5	37	49,5	50,5	0,8	0,3
40	45	58	0,8	0,3	0,5	42	57	58	0,8	0,3

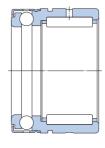


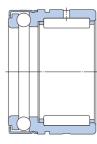


NKIA

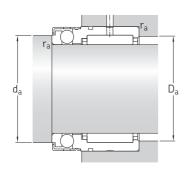

NKIB

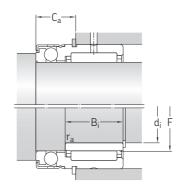

Princi	pal dimei	nsions		radial	oad ratir static	axial	static	Fatigu radial	e load limit axial	Speed rat Reference	Limiting	Mass	Designation
d	D	В	С	dynam C	ic C ₀	dynami C	с С ₀	$P_{\rm u}$	$P_{\rm u}$	speed	speed		
mm				kN				kN		r/min		kg	_
12	24 24	16 17,5	_ 16	8,09 8,09	9,65 9,65	2,07 2,07	1,92 1,92	1,14 1,14	0,083 0,083	22 000 22 000	26 000 26 000	0,04 0,043	NKIA 5901NKIB 5901
15	28 28	18 20	- 18	11,2 11,2	15,3 15,3	2,27 2,27	2,37 2,37	1,83 1,83	0,099 0,099	19 000 19 000	22 000 22 000	0,05 0,052	NKIA 5902NKIB 5902
17	30	18	-	11,4	16,3	2,24	2,74	1,96	0,116	18 000	20 000	0,056	► NKIA 5903
	30	20	18	11,4	16,3	2,24	2,74	1,96	0,116	18 000	20 000	0,058	► NKIB 5903
20	37	23	-	21,6	28	3,79	4,21	3,35	0,176	15 000	17 000	0,1	► NKIA 5904
	37	25	23	21,6	28	3,79	4,21	3,35	0,176	15 000	17 000	0,11	► NKIB 5904
22	39	23	-	23,3	32	4,14	4,93	3,9	0,205	14 000	15 000	0,12	NKIA 59/22
	39	25	23	23,3	32	4,14	4,93	3,9	0,205	14 000	15 000	0,12	► NKIB 59/22
25	42	23	-	24,2	34,5	4,24	5,26	4,15	0,224	13 000	15 000	0,13	► NKIA 5905
	42	25	23	24,2	34,5	4,24	5,26	4,15	0,224	13 000	15 000	0,13	► NKIB 5905
30	47	23	-	25,5	39	4,54	6,32	4,65	0,268	11 000	13 000	0,15	► NKIA 5906
	47	25	23	25,5	39	4,54	6,32	4,65	0,268	11 000	13 000	0,15	► NKIB 5906
35	55	27	_	31,9	54	5,83	8,42	6,7	0,355	9 500	11 000	0,24	► NKIA 5907
	55	30	27	31,9	54	5,83	8,42	6,7	0,355	9 500	11 000	0,25	► NKIB 5907
40	62	30	-	42,9	71	7,17	10,9	8,8	0,467	8 000	9 500	0,32	► NKIA 5908
	62	34	30	42,9	71	7,17	10,9	8,8	0,467	8 000	9 500	0,32	► NKIB 5908
45	68	30	-	45,7	78	7,47	12	9,65	0,513	7 500	8 500	0,38	NKIA 5909
	68	34	30	45,7	78	7,47	12	9,65	0,513	7 500	8 500	0,38	► NKIB 5909
50	72	30	-	47,3	85	7,74	13,7	10,6	0,579	7 000	8 000	0,38	► NKIA 5910
	72	34	30	47,3	85	7,74	13,7	10,6	0,579	7 000	8 000	0,39	► NKIB 5910
55	80	34	-	57,2	106	9,27	16,7	13,2	0,697	6 300	7 000	0,55	NKIA 5911
	80	38	34	57,2	106	9,27	16,7	13,2	0,697	6 300	7 000	0,56	► NKIB 5911
60	85	34	-	60,5	114	9,58	18	14,3	0,77	6 000	6 700	0,59	► NKIA 5912
	85	38	34	60,5	114	9,58	18	14,3	0,77	6 000	6 700	0,6	► NKIB 5912
65	90	34	-	61,6	120	9,96	19,2	14,6	0,816	5 600	6 300	0,64	NKIA 5913
	90	38	34	61,6	120	9,96	19,2	14,6	0,816	5 600	6 300	0,64	► NKIB 5913
70	100	40	_	84,2	163	13,2	25	20,8	1,05	5 000	5 600	0,98	NKIA 5914
	100	45	40	84,2	163	13,2	25	20,8	1,05	5 000	5 600	0,99	► NKIB 5914





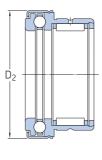
Dimensions			Ahutma	Abutment and fillet dimensions					
					et allileli310113				
d	F	r _{1,2} min.	d _a min.	D _a max.	r _a max.				
mm			mm						
12	16	0,3	14	22	0,3				
	16	0,3	14	22	0,3				
15	20	0,3	17	26	0,3				
	20	0,3	17	26	0,3				
17	22	0,3	19	28	0,3				
	22	0,3	19	28	0,3				
20	25	0,3	22	35	0,3				
	25	0,3	22	35	0,3				
22	28	0,3	24	37	0,3				
	28	0,3	24	37	0,3				
25	30	0,3	27	40	0,3				
	30	0,3	27	40	0,3				
30	35	0,3	32	45	0,3				
	35	0,3	32	45	0,3				
35	42	0,6	39	51	0,6				
	42	0,6	39	51	0,6				
40	48	0,6	44	58	0,6				
	48	0,6	44	58	0,6				
45	52	0,6	49	64	0,6				
	52	0,6	49	64	0,6				
50	58	0,6	54	68	0,6				
	58	0,6	54	68	0,6				
55	63	1	60	75	1				
	63	1	60	75	1				
60	68 68	1 1	65 65	80 80	1				
65	72	1	70	85	1				
	72	1	70	85	1				
70	80 80	1 1	75 75	95 95	1				

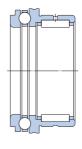


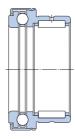

$$NX$$
 ($F_w = 7 mm$)

NX		Z	
$(F_w$	=	7	mm)

NX..Z ($F_w \ge 10 \text{ mm}$)

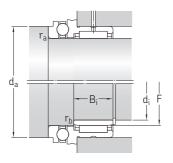

Princ	ipal dim	ensions	radial	oad ratir static	axial	static	Fatigu radial	e load limit axial	Minimum load factor	Speed rat Reference	Limiting	Mass	Designation
$F_{\rm w}$	D	С	dynam C	ic C ₀	dynami C	c C ₀	$P_{\rm u}$	P_u	А	speed	speed		
mm			kN				kN		_	r/min		kg	-
7	14	18	2,81	2,75	3,45	5	0,29	0,186	0,00013	10 000	6 000	0,014	NX7ZTN
	14	18	2,81	2,75	3,45	5	0,29	0,186	0,00013	10 000	11 000	0,014	NX7TN
10	19	18	4,95	4,55	5,07	8,5	0,53	0,31	0,00038	8 500	5 600	0,025	NX 10 Z
	19	18	4,95	4,55	5,07	8,5	0,53	0,31	0,00038	8 500	9 500	0,025	NX 10
12	21	18	5,39	5,2	5,27	9,65	0,61	0,355	0,00048	8 000	5 300	0,028	► NX 12 Z
	21	18	5,39	5,2	5,27	9,65	0,61	0,355	0,00048	8 000	9 000	0,028	NX 12
15	24	28	11	14	6,18	12,2	1,66	0,45	0,00077	7 500	5 300	0,048	NX 15 Z
	24	28	11	14	6,18	12,2	1,66	0,45	0,00077	7 500	8 500	0,048	NX 15
17	26	28	12,1	16,6	6,37	13,4	1,96	0,5	0,00093	7 000	5 000	0,053	NX 17 Z
	26	28	12,1	16,6	6,37	13,4	1,96	0,5	0,00093	7 000	8 500	0,053	NX 17
20	30	28	13,2	19,3	7,8	17,3	2,28	0,64	0,0016	6 300	4 500	0,068	► NX 20 Z
	30	28	13,2	19,3	7,8	17,3	2,28	0,64	0,0016	6 300	7 500	0,068	NX 20
25	37	30	15,1	24,5	12,4	28,5	2,9	1,06	0,0042	5 600	3 800	0,12	NX 25 Z
	37	30	15,1	24,5	12,4	28,5	2,9	1,06	0,0042	5 600	6 300	0,12	NX 25
30	42	30	22,9	38	12,7	32,5	4,8	1,2	0,0055	5 300	3 600	0,13	► NX 30 Z
	42	30	22,9	38	12,7	32,5	4,8	1,2	0,0055	5 300	6 000	0,13	NX 30
35	47	30	24,6	45	13,5	38	5,6	1,4	0,0075	5 000	3 400	0,16	NX 35 Z
	47	30	24.6	45	13.5	38	5.6	1.4	0.0075	5 000	5 600	0.16	NX 35

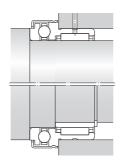




Dimer	nsions			Abutm	ent and fil	let dimen	sions	Assoc Dimer		er ring ¹⁾	Designation	Associated snap ring ²⁷ Designation
F_{w}	C_1	d	r _{1,2} min.	d _a min.	D _a max.	C _a	r _a max.	d _i	F	B _i		
mm				mm				mm			_	_
7	4,7 4,7	7 7	0,3 0,3	9,6 9,6	12 12	10 10	0,3 0,3	_ _	- -	_ _	- -	SW 14 SW 14
10	4,7 4,7	10 10	0,3 0,3	14,6 14,6	17 17	10 10	0,3 0,3	6 6	10 10	10 10	IR 6x10x10 IS1 IR 6x10x10 IS1	SW 19 SW 19
12	4,7 4,7	12 12	0,3 0,3	16,6 16,6	19 19	10 10	0,3 0,3	8 8	12 12	10 10	IR 8x12x10 IS1 IR 8x12x10 IS1	SW 21 SW 21
15	8	15 15	0,3 0,3	19 19	22 22	12,2 12,2	0,3 0,3	12 12	15 15	16 16	IR 12x15x16 IR 12x15x16	SW 24 SW 24
17	8	17 17	0,3 0,3	21 21	24 24	12,2 12,2	0,3 0,3	14 14	17 17	17 17	IR 14x17x17 IR 14x17x17	SW 26 SW 26
20	8	20 20	0,3 0,3	25 25	28 28	12,2 12,2	0,3 0,3	17 17	20 20	16 16	IR 17x20x16 IR 17x20x16	SW 30 SW 30
25	8	25 25	0,3 0,3	31,6 31,6	35 35	14,2 14,2	0,3 0,3	20 20	25 25	16 16	IR 20x25x16 IS1 IR 20x25x16 IS1	SW 37 SW 37
30	10 10	30 30	0,3 0,3	36,5 36,5	40 40	14,2 14,2	0,3 0,3	25 25	30 30	20 20	IR 25x30x20 IR 25x30x20	SW 42 SW 42
35	10 10	35 35	0,3 0,3	40,5 40,5	45 45	14,2 14,2	0,3 0,3	30 30	35 35	20 20	IR 30x35x20 IR 30x35x20	SW 47 SW 47

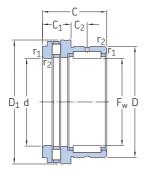
For additional information → Needle roller bearing inner rings, page 593
 In accordance with DIN 471, not supplied by SKF.

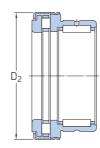

NKX (F_w = 10 mm)


NKX .. Z (F_w = 10 mm)

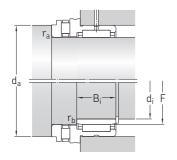
NKX (F_w ≥ 12 mm)

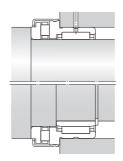
NKX..Z $(F_w \ge 12 \text{ mm})$


Princ	ipal dim	ensions	radial	oad ratin	axial	ic static	Fatigu radial	e load limit axial	Minimum load factor	Speed ra Reference	e Limiting	Mass	Designation
$F_{\rm w}$	D	С	С	ic static C ₀	C	C ₀	P_{u}	P_{u}	А	speed	speed		
mm			kN	,			kN		_	r/min		kg	_
10	19 19	23 23	5,94 5,94	8	9,95 9,95	15,3 15,3	0,9 0,9	0,56 0,56	0,0012 0,0012	9 500 9 500	8 000 13 000	0,036 0,034	NKX 10 ZTN NKX 10 TN
12	21	23	9,13	12	10,4	16,6	1,43	0,62	0,0014	9 000	7 500	0,04	NKX 12 Z
	21	23	9,13	12	10,4	16,6	1,43	0,62	0,0014	9 000	13 000	0,038	NKX 12
15	24	23	11	14	10,6	18,3	1,66	0,67	0,0017	8 500	7 000	0,047	► NKX 15 Z
	24	23	11	14	10,6	18,3	1,66	0,67	0,0017	8 500	12 000	0,044	► NKX 15
17	26	25	12,1	16,6	10,8	19,6	1,96	0,735	0,002	8 500	7 000	0,055	► NKX 17 Z
	26	25	12,1	16,6	10,8	19,6	1,96	0,735	0,002	8 500	12 000	0,053	NKX 17
20	30	30	16,5	25,5	14,3	27	3,05	1	0,0038	7 500	6 000	0,09	► NKX 20 Z
	30	30	16,5	25,5	14,3	27	3,05	1	0,0038	7 500	10 000	0,083	► NKX 20
25	37 37	30 30	19 19	32,5 32,5	19,5 19,5	40,5 40,5	4	1,5 1,5	0,0085 0,0085	6 300 6 300	5 500 9 000	0,13 0,13	► NKX 25 Z NKX 25
30	42	30	22,9	38	20,3	45,5	4,8	1,7	0,01	6 000	5 000	0,14	► NKX 30 Z
	42	30	22,9	38	20,3	45,5	4,8	1,7	0,01	6 000	8 500	0,14	► NKX 30
35	47	30	24,6	45	21,2	51	5,6	1,9	0,013	5 600	4 500	0,17	► NKX 35 Z
	47	30	24,6	45	21,2	51	5,6	1,9	0,013	5 600	7 500	0,16	► NKX 35
40	52	32	26,4	51	27	68	6,3	2,55	0,024	5 000	4 000	0,21	► NKX 40 Z
	52	32	26,4	51	27	68	6,3	2,55	0,024	5 000	7 000	0,2	NKX 40
45	58	32	27,5	57	28,1	75	7,1	2,8	0,029	4 500	3 800	0,27	► NKX 45 Z
	58	32	27,5	57	28,1	75	7,1	2,8	0,029	4 500	6 300	0,25	NKX 45
50	62	35	38	78	28,6	81,5	9,65	3,05	0,034	4 300	3 600	0,3	► NKX 50 Z
	62	35	38	78	28,6	81,5	9,65	3,05	0,034	4 300	6 300	0,28	► NKX 50
60	72	40	41,8	96,5	41,6	122	11,8	4,55	0,077	3 600	3 000	0,38	► NKX 60 Z
	72	40	41,8	96,5	41,6	122	11,8	4,55	0,077	3 600	5 000	0,36	► NKX 60
70	85	40	44,6	98	43,6	137	12,2	5,1	0,097	3 400	2 700	0,52	► NKX 70 Z
	85	40	44,6	98	43,6	137	12,2	5,1	0,097	3 400	4 500	0,5	► NKX 70

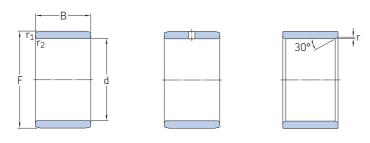


Dimer	sions						Abutm dimens	ent and fil sions	llet	Assoc Dimer	i ated inne Isions	er ring ¹⁾	Designation
F _w	C_1	C_2	d	D_1	D ₂	r _{1,2} min.	d _a min.	r _a max.	r _b max.	d _i	F	B _i	
mm							mm			mm			_
10	9	6,5	10	_	25,2	0,3	19,7	0,3	0,3	7	10	16	IR 7x10x16
	9	6,5	10	24,1	-	0,3	19,7	0,3	0,3	7	10	16	IR 7x10x16
12	9	6,5	12	_	27,2	0,3	21,7	0,3	0,3	9	12	16	IR 9x12x16
	9	6,5	12	26,1	-	0,3	21,7	0,3	0,3	9	12	16	IR 9x12x16
15	9	6,5	15	-	29,2	0,3	23,7	0,3	0,3	12	15	16	IR 12x15x16
	9	6,5	15	28,1	-	0,3	23,7	0,3	0,3	12	15	16	IR 12x15x16
17	9 9	8	17 17	_ 30,1	31,2 -	0,3 0,3	25,7 25,7	0,3 0,3	0,3 0,3	14 14	17 17	17 17	IR 14x17x17 IR 14x17x17
20	10	10,5	20	-	36,2	0,3	30,7	0,3	0,3	17	20	20	IR 17x20x20
	10	10,5	20	35,1	-	0,3	30,7	0,3	0,3	17	20	20	IR 17x20x20
25	11	9,5	25	-	43,2	0,6	37,7	0,6	0,3	20	25	20	IR 20x25x20
	11	9,5	25	42,1	-	0,6	37,7	0,6	0,3	20	25	20	IR 20x25x20
30	11	9,5	30	-	48,2	0,6	42,7	0,6	0,3	25	30	20	IR 25x30x20
	11	9,5	30	47,1	-	0,6	42,7	0,6	0,3	25	30	20	IR 25x30x20
35	12	9	35	-	53,2	0,6	47,7	0,6	0,3	30	35	20	IR 30x35x20
	12	9	35	52,1	-	0,6	47,7	0,6	0,3	30	35	20	IR 30x35x20
40	13	10	40	-	61,2	0,6	55,7	0,6	0,3	35	40	20	IR 35x40x20
	13	10	40	60,1	-	0,6	55,7	0,6	0,3	35	40	20	IR 35x40x20
¥5	14	9	45	-	66,5	0,6	60,5	0,6	0,3	40	45	20	IR 40x45x20
	14	9	45	65,2	-	0,6	60,5	0,6	0,3	40	45	20	IR 40x45x20
50	14	10	50	-	71,5	0,6	65,5	0,6	0,6	45	50	25	IR 45x50x25
	14	10	50	70,2	-	0,6	65,5	0,6	0,6	45	50	25	IR 45x50x25
60	17 17	12 12	60 60	- 85,2	86,5 -	1	80,5 80,5	1	1	50 50	60 60	25 25	IR 50x60x25 IR 50x60x25
70	18 18	11 11	70 70	- 95,2	96,5 -	1 1	90,5 90,5	1	1 1	60 60	70 70	25 25	IR 60x70x25 IR 60x70x25


 $[\]overline{\ \ }^{1)}$ For additional information ightarrow Needle roller bearing inner rings, page 593



NKXR NKXR..Z


Princi	pal dime	ensions	radial	load ratin	axial		Fatigu radial	e load limit axial	Minimum load factor		e Limiting	Mass	Designation
$F_{\rm w}$	D	С	dynam C	nic static C ₀	dynam C	ic static C ₀	$P_{\rm u}$	P_u	Α	speed	speed		
mm			kN				kN		_	r/min		kg	_
15	24	23	11	14	11,2	27	1,66	2,45	0,000 058	4 300	8 500	0,042	NKXR 15
	24	23	11	14	11,2	27	1,66	2,45	0,000 058	4 300	8 500	0,045	► NKXR 15 Z
17	26	25	12,1	16,6	12,2	31,5	1,96	2,85	0,000 079	4 300	8 500	0,05	► NKXR 17
	26	25	12,1	16,6	12,2	31,5	1,96	2,85	0,000 079	4 300	8 500	0,053	► NKXR 17 Z
20	30	30	16,5	25,5	18,6	48	3,05	4,65	0,00018	3 800	7 500	0,08	► NKXR 20
	30	30	16,5	25,5	18,6	48	3,05	4,65	0,00018	3 800	7 500	0,084	► NKXR 20 Z
25	37 37	30 30	19 19	32,5 32,5	25 25	69,5 69,5	4	6,8 6,8	0,00039 0,00039	3 200 3 200	6 300 6 300	0,12 0,13	NKXR 25 ► NKXR 25 Z
30	42 42	30 30	22,9 22,9	38 38	27 27	78 78	4,8 4,8	7,65 7,65	0,00049 0,00049	3 000 3 000	6 000 6 000	0,14 0,14	NKXR 30 • NKXR 30 Z
35	47	30	24,6	45	29	93	5,6	9,15	0,00069	2 800	5 600	0,16	NKXR 35
	47	30	24,6	45	29	93	5,6	9,15	0,00069	2 800	5 600	0,17	► NKXR 35 Z
40	52	32	26,4	51	43	137	6,3	13,7	0,0015	2 400	5 000	0,2	NKXR 40
	52	32	26,4	51	43	137	6,3	13,7	0,0015	2 400	5 000	0,21	► NKXR 40 Z
45	58	32	27,5	57	45	153	7,1	15,3	0,0019	2 200	4 500	0,24	NKXR 45
	58	32	27,5	57	45	153	7,1	15,3	0,0019	2 200	4 500	0,26	NKXR 45 Z
50	62 62	35 35	38 38	78 78	47,5 47.5	166 166	9,65 9.65	16,6 16.6	0,0022 0.0022	2 200 2 200	4 300 4 300	0,27 0,29	NKXR 50 NKXR 50 Z

-													
Dimen	sions						Abutm dimens	ent and fil	llet	Assoc Dimer	iated inne nsions	r ring ¹⁾	Designation
$F_{\rm w}$	C_1	C_2	d	D_1	D_2	r _{1,2} min.	d _a min.	r _a max.	r _b max.	d _i	F	B _i	
mm							mm			mm			_
15	9	6,5 6,5	15 15	28,1	- 29,2	0,3 0,3	23,7 23,7	0,3 0,3	0,3 0,3	12 12	15 15	16 16	IR 12x15x16 IR 12x15x16
17	9 9	8	17 17	30,1 -	- 31,2	0,3 0,3	25,7 25,7	0,3 0,3	0,3 0,3	14 14	17 17	17 17	IR 14x17x17 IR 14x17x17
20	10	10,5	20	35,1	-	0,3	30,7	0,3	0,3	17	20	20	IR 17x20x20
	10	10,5	20	-	36,2	0,3	30,7	0,3	0,3	17	20	20	IR 17x20x20
25	11	9,5	25	42,1	-	0,6	37,7	0,6	0,3	20	25	20	IR 20x25x20
	11	9,5	25	-	43,2	0,6	37,7	0,6	0,3	20	25	20	IR 20x25x20
30	11	9,5	30	47,1	-	0,6	42,7	0,6	0,3	25	30	20	IR 25x30x20
	11	9,5	30	-	48,2	0,6	42,7	0,6	0,3	25	30	20	IR 25x30x20
35	12	9	35	52,1	-	0,6	47,7	0,6	0,3	30	35	20	IR 30x35x20
	12	9	35	-	53,2	0,6	47,7	0,6	0,3	30	35	20	IR 30x35x20
40	13	10	40	60,1	-	0,6	55,7	0,6	0,3	35	40	20	IR 35x40x20
	13	10	40	-	61,2	0,6	55,7	0,6	0,3	35	40	20	IR 35x40x20
45	14	9	45	65,2	-	0,6	60,6	0,6	0,3	40	45	20	IR 40x45x20
	14	9	45	-	66,5	0,6	60,6	0,6	0,3	40	45	20	IR 40x45x20
50	14	10	50	70,2	-	0,6	65,5	0,6	0,6	45	50	25	IR 45x50x25
	14	10	50	-	71,5	0,6	65,5	0,6	0,6	45	50	25	IR 45x50x25

 $[\]overline{\ ^{1)}}$ For additional information ightarrow Needle roller bearing inner rings, page 593

IR

IR..IS1

LR

Dime	nsions			Mass	Designation	Dime	nsions			Mass	Designation
İ	F	В	r, r _{1,2} min.			d	F	В	r, r _{1,2} min.		
m				kg	_	mm				kg	
	8	12 16	0,3 0,3	0,0028 0,0037	IR 5x8x12 IR 5x8x16	15	18 18 18	12,5 16 16.5	0,3 0,3 0,3	0,0072 0,0094 0,0098	LR 15x18x1 IR 15x18x16 IR 15x18x16
	9 9	12 16	0,3 0,3	0,003 0,0043	► IR 6x9x12 IR 6x9x16		19 19	16 20	0,3 0,3	0,013 0,016	IR 15x19x16 IR 15x19x20
	10 10	10,5 10,5	0,3 0,3	0,0031 0,0031	► IR 7x10x10.5 LR 7x10x10.5		20	13	0,3	0,014	IR 15x20x13
	10	12	0,3	0,0036	► IR 7x10x12	47	20	23	0,3	0,024	IR 15x20x23
}	10	16 10	0,3	0,0049	IR 7x10x16	17	20 20 20	16 16,5	0,3 0,3	0,011 0,011	► IR 17x20x16 ► IR 17x20x16
•	12 12 12	10,5 10,5	0,3 0,3 0,3	0,0048 0,005 0,005	► IR 8X12X10 IS1 IR 8x12x10.5 LR 8x12x10.5		20	16,5 20	0,3	0,011	LR 17x20x1 • IR 17x20x20
	12	12,5	0,3	0,0059	► IR 8x12x12.5		20 20	20,5 20,5	0,3 0,3	0,014 0,014	► IR 17x20x20 LR 17x20x2
•	12 12	12 16	0,3 0,3	0,0044 0,006	IR 9x12x12 IR 9x12x16		20 20 22	30,5 30,5 13	0,3 0,3 0,3	0,021 0,021 0,015	► IR 17x20x30 LR 17x20x3 ► IR 17x22x13
0	13 13 14	12,5 12,5 13	0,3 0,3 0,3	0,0052 0,0052 0,0074	► IR 10x13x12.5 LR 10x13x12.5 IR 10x14x13		22 22 24	16 23	0,3 0,3	0,018 0,027	► IR 17x22x16 ► IR 17x22x23
	14 14	16 20	0,3 0,3	0,0092 0,012	► IR 10x14x16 IR 10x14x20	20	24	20 16	0,6	0,034	► IR 17x24x20
2	15	12	0,3	0,0057	IR 12x15x12		24 25	20 12,5	0,3 0,3	0,021 0,016	► IR 20x24x20 LR 20x25x1
	15 15	12,5 12,5	0,3 0,3	0,0061 0,0061	► IR 12x15x12.5 LR 12x15x12.5		25 25	16,5 17	0,3 0,3	0,022 0,025	LR 20x25x1 IR 20x25x17
	15 15	16 16,5	0,3 0,3	0,0076 0,0081	► IR 12x15x16 IR 12x15x16.5		25	20	0,3	0,025	► IR 20x25x20
	15	22,5	0,3	0,011	IR 12x15x22.5		25 25	20,5 20,5	0,3 0,3	0,027 0,027	► IR 20x25x20 LR 20x25x2
	15 16	22,5 13	0,3 0,3	0,011 0,0085	LR 12x15x22.5 ► IR 12x16x13		25	26,5	0,3	0,038	► IR 20x25x26
	16	16	0,3	0,011	IR 12x16x16		25 25	26,5 30	0,3 0,3	0,038 0,04	LR 20x25x2 ► IR 20x25x30
	16 16	20 22	0,3 0,3	0,014 0,015	► IR 12x16x20 IR 12x16x22		25	38,5	0,3	0,053	► IR 20x25x38
4	17	17	0,3	0,0095	► IR 14x17x17		28	20	0,6	0,045	IR 20x28x20

Dime	nsions			Mass	Designation	Dime	nsions			Mass	Designation
b	F	В	r, r _{1,2} min.			d	F	В	r, r _{1,2} min.		
mm				kg	-	mm				kg	_
22	26 26 28	16 20 17	0,3 0,3 0,3	0,018 0,023 0,03	IR 22x26x16 IR 22x26x20 ► IR 22x28x17	40	45 45 45	16,5 17 20	0,3 0,3 0,3	0,041 0,043 0,049	LR 40x45x10 IR 40x45x17 ► IR 40x45x20
	28 28 28	20 20,5 30	0,3 0,3 0,3	0,035 0,036 0,054	IR 22x28x20 IR 22x28x20.5 IR 22x28x30		45 45 45	20,5 20,5 30	0,3 0,3 0,3	0,052 0,052 0,084	IR 40x45x20 LR 40x45x20 ► IR 40x45x30
25	29 29 30	20 30 12,5	0,3 0,3 0,3	0,026 0,039 0,02	IR 25x29x20 IR 25x29x30 ► LR 25x30x12.5		48 48 50	22 40 22	0,6 0,6 1	0,092 0,17 0,12	► IR 40x48x22 ► IR 40x48x40 IR 40x50x22
	30 30 30	16,5 17 20	0,3 0,3 0,3	0,027 0,027 0,033	LR 25x30x16.5 ► IR 25x30x17 ► IR 25x30x20	42	47 47	20 30	0,3 0,3	0,053 0,081	IR 42x47x20 IR 42x47x30
	30 30 30	20,5 20,5 26,5	0,3 0,3 0,3	0,033 0,033 0,046	► IR 25x30x20.5 LR 25x30x20.5 ► IR 25x30x26.5	45	50 50 50	20,5 25 25,5	0,3 0,6 0,3	0,059 0,071 0,075	LR 45x50x20 ► IR 45x50x25 IR 45x50x25
	30 30 30 30	26,5 30 32	0,3 0,3 0,3	0,046 0,053 0,056	LR 25x30x26.5 • IR 25x30x30 IR 25x30x30		50 50 52	25,5 35 22	0,3 0,6 0,6	0,075 0,1 0,089	LR 45x50x25 ► IR 45x50x35 ► IR 45x52x22
	30 30	38,5 38,5	0,3 0,3	0,065 0,065	► IR 25x30x38.5 LR 25x30x38.5		52 55	40 22	0,6 1	0,16 0,13	IR 45x52x40 ► IR 45x55x22
28	32 32	22 17	0,6	0,053 0,025	IR 25x32x22 IR 28x32x17	50	55 55 55	20,5 25 35	0,6 0,6 0,6	0,064 0,078 0,11	LR 50x55x20 ► IR 50x55x25 ► IR 50x55x35
30	32 32 35	20 30 12,5	0,3 0,3 0,3	0,029 0,044 0,023	IR 28x32x20 IR 28x32x30 LR 30x35x12.5		58 58 60	22 40 25	0,6 0,6 1	0,12 0,21 0,16	IR 50x58x22 IR 50x58x40 ► IR 50x60x25
50	35 35	13 16	0,3 0,3	0,025 0,034	► IR 30x35x13 IR 30x35x16		60	28	1,1	0,18	IR 50x60x28
	35 35 35	17 20 20,5	0,3 0,3 0,3	0,036 0,039 0,04	► IR 30x35x17 ► IR 30x35x20 IR 30x35x20.5	55	60 60 63	25 35 25	0,6 0,6 1	0,086 0,12 0,14	► IR 55x60x25 ► IR 55x60x35 IR 55x63x25
	35 35 35	20,5 26 30	0,3 0,3 0,3	0,04 0,05 0,059	LR 30x35x20.5 ► IR 30x35x26 ► IR 30x35x30		63 65	45 28	1 1,1	0,26 0,2	IR 55x63x45 ► IR 55x65x28
	37	22	0,6	0,062	IR 30x37x22	60	68 68 68	25 35 45	1 0,6 1	0,15 0,21 0,28	IR 60x68x25 ► IR 60x68x35 ► IR 60x68x45
32	37 37 40	20 30 20	0,3 0,3 0,6	0,042 0,062 0,068	IR 32x37x20 ► IR 32x37x30 IR 32x40x20		70 70	25 28	1 1,1	0,2 0,2 0,22	► IR 60x70x25 ► IR 60x70x28
	40	36	0,6	0,12	► IR 32x40x36	65	72 72	25 45	1	0,14 0,26	► IR 65x72x25 IR 65x72x45
35	40 40 40	12,5 16,5 17	0,3 0,3 0,3	0,027 0,037 0,038	LR 35x40x12.5 LR 35x40x16.5 IR 35x40x17		73 75	35 28	1 1,1	0,23	IR 65x73x35 ► IR 65x75x28
	40 40 40	20 20,5 20,5	0,3 0,3 0,3	0,044 0,046 0,046	► IR 35x40x20 ► IR 35x40x20.5 LR 35x40x20.5	70	80 80 80	25 30 35	1 1 1	0,22 0,27 0,31	► IR 70x80x25 IR 70x80x30 ► IR 70x80x35
	40 42	30 36	0,3 0,6	0,067 0,12	► IR 35x40x30 ► IR 35x42x36	75	80	54	1	0,49	► IR 70x80x54
38	43 43 43	22 20 30	0,6 0,3 0,3	0,082 0,048 0,074	IR 35x43x22 IR 38x43x20 IR 38x43x30	75	85 85 85	25 35 54	1 1 1	0,24 0,34 0,53	IR 75x85x25 ► IR 75x85x35 ► IR 75x85x54

[►] Popular item

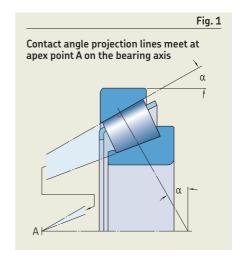
7	.11

Dime	nsions			Mass	Designation
d	F	В	r, r _{1,2} min.		
nm				kg	_
30	90 90 90	25 30 35	1 1 1	0,25 0,3 0,36	► IR 80x90x25 ► IR 80x90x30 ► IR 80x90x35
	90	54	1	0,56	► IR 80x90x54
35	95 95 100	26 36 35	1 1 1,1	0,28 0,39 0,58	► IR 85x95x26 IR 85x95x36 ► IR 85x100x35
	100	63	1,1	1,05	IR 85x100x63
90	100 100 100	26 30 36	1 1 1	0,29 0,34 0,41	► IR 90x100x26 IR 90x100x30 ► IR 90x100x36
	105	35	1,1	0,61	► IR 90x105x35
95	105	26	1	0,31	IR 95x105x26
100	110 115	40 40	1,1 1,1	0,51 0,8	► IR 100×110×40 ► IR 100×115×40
110	120 125	30 40	1 1,1	0,41 0,84	► IR 110x120x30 ► IR 110x125x40
120	130 135	30 45	1 1,1	0,44 1,05	► IR 120x130x30 ► IR 120x135x45
130	145 150	35 50	1,1 1,5	0,86 1,7	► IR 130x145x35 ► IR 130x150x50
140	155 160	35 50	1,1 1,5	0,92 1,8	► IR 140x155x35 ► IR 140x160x50
150	165	40	1,1	1,1	► IR 150x165x40
160	175	40	1,1	1,2	► IR 160x175x40
170	185	45	1,1	1,45	► IR 170x185x45
180	195	45	1,1	1,5	► IR 180x195x45
L90	210	50	1,5	2,4	► IR 190x210x50

Dimer	nsions			Mass	Designation
d	F	В	r, r _{1,2} min.		
mm				kg	-
200	220	50	1,5	2,5	► IR 200x220x50
220	240	50	1,5	2,75	► IR 220x240x50
240	265	60	2	4,6	IR 240x265x60

7.11

Designs and variants	669	Bear	ing designations	691
Single row tapered roller bearings	669	Metr	ic bearings	691
Basic design bearings	669	Inch	bearings	691
Application-specific bearings	669			
Bearings with a flanged outer ring	670	Desi	gnation system	692
Matched tapered roller bearings	670			
Matched bearings arranged face-to-face	670	Prod	luct tables	
Matched bearings arranged back-to-back	670	8.1	Metric single row tapered roller bearings	694
Matched bearings arranged in tandem	671	8.2	Inch single row tapered roller bearings	714
Double row tapered roller bearings	671	8.3	Single row tapered roller bearings with a flanged	
TDO design bearings	671		outer ring	742
TDI design bearings	672	8.4	Matched bearings arranged face-to-face	744
Variants/features	674	8.5	Matched bearings arranged back-to-back	754
SKF Explorer bearings	675	8.6	Matched bearings arranged in tandem	760
Cages	675	8.7	Double row tapered roller bearings, TDO design	762
		8.8	Double row tapered roller bearings, TDI design	766
Bearing data	676			
(Dimension standards, tolerances, internal clearance,				
preload, permissible misalignment)				
Loads	680			
(Minimum load, equivalent dynamic bearing load,				
equivalent static bearing load)				
Calculating the axial load for bearings mounted singly or				
paired in tandem	681			
Calculating the radial load acting on matched bearings	683			
Comparative load ratings for double row tapered roller				
bearings	685			
Temperature limits	685			
Permissible speed	686			
Design considerations	687			
Single row and matched tapered roller bearings	687	Othe	r tapered roller bearings	
Adjustment procedure	687	Bear	ings with Solid Oil	1023
Fits	687	Four	-row tapered roller bearings \rightarrow skf.com/b	earings
			OCOAT bearings → cont	act SKF
Mounting	690		ear coated bearings → cont	act SKF
Double row tapered roller bearings	690	Hub	units for industrial, automotive,	
Load zone	690	railw	ay and off-highway applications $ ightarrow$ cont	act SKF


SKF. 665

More information

General bearing knowledge	17
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Seat tolerances for standard	
conditions	148
Selecting internal clearance or	
preload	182
Sealing, mounting and	
dismounting	193

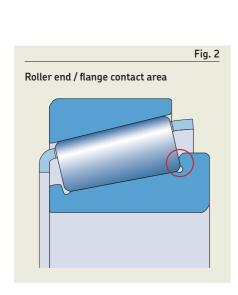
Mounting instructions for individual bearings → skf.com/mount

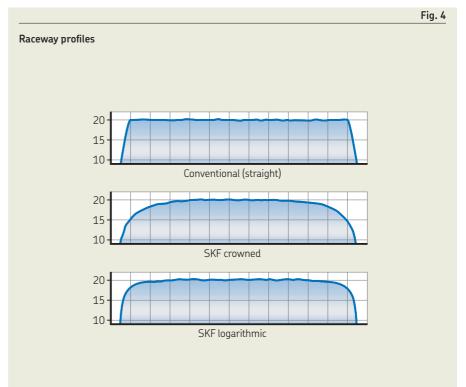
SKF bearing maintenance handbook ISBN 978-91-978966-4-1 Tapered roller bearings have tapered inner and outer ring raceways as well as tapered rollers. They are designed to accommodate combined loads, i.e. simultaneously acting radial and axial loads. The projection lines of the raceways meet at a common point on the bearing axis (apex point A, fig. 1) to provide a true rolling action and therefore low frictional moments during operation. The axial load carrying capacity of tapered roller bearings increases with increasing contact angle α . The size of the contact angle, which is usually between 10° and 30°, is related to the calculation factor e (product tables, page 694): the larger the value of e, the larger the contact angle.

Bearing features

• Low friction

The optimized roller end design and surface finish on the flange (fig. 2) promote lubricant film formation, resulting in lower friction. This also reduces frictional heat and flange wear. In addition, the bearings can better maintain preload and run at reduced noise levels.


• Long service life


The crowned raceway profiles of basic design bearings and the logarithmic raceway profiles of SKF Explorer bearings optimize the load distribution along the contact surfaces, reduce stress peaks at the roller ends (fig. 3), and reduce the sensitivity to misalignment and shaft deflection compared with conventional straight raceway profiles (fig. 4).

• Enhanced operational reliability

Optimized surface finish on the contact surfaces of the rollers and raceways supports the formation of a hydrodynamic lubricant film.

• Consistency of roller profiles and sizes
The rollers incorporated in SKF tapered
roller bearings are manufactured to such
close dimensional and geometrical tolerances that they are practically identical.
This provides optimal load distribution,
reduces noise and vibration, and enables

preload to be set more accurately.

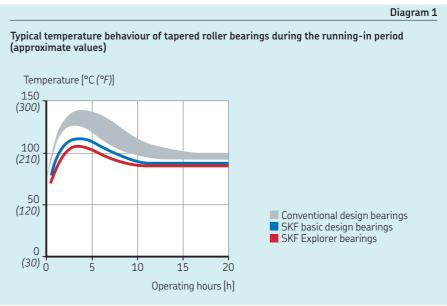
· Rigid bearing application

A single row tapered roller bearing is typically adjusted against a second tapered roller bearing. By applying a preload, a rigid bearing application can be achieved.

Running-in period with reduced temperature peaks

Tapered roller bearings typically have a running-in period, during which a conventional design tapered roller bearing experiences a significant amount of friction, resulting in wear. This effect is noticed as a temperature spike (diagram 1). With SKF tapered roller bearing designs, friction, frictional heat and wear are significantly reduced, provided the bearings are mounted and lubricated correctly.


• Separable and interchangeable


Depending on the design, tapered roller bearings are separable and components of same-sized bearings are fully interchangeable. For example, single row tapered roller bearings are separable (fig. 5), i.e. the inner ring with roller and cage assembly (cone) can be mounted separately from the outer ring (cup). This facilitates mounting, dismounting and also maintenance inspection routines.

SKF manufactures tapered roller bearings in many designs, series and sizes. In addition to the bearings presented in this catalogue, SKF supplies tapered roller bearings for special application requirements. This assortment includes:

- Four-row tapered roller bearings
- → skf.com/bearings
- hub units for industrial, automotive, railway and off-highway applications
 → contact SKF

On request, SKF can also supply customized tapered roller bearings for various operating conditions to meet the customer and application requirements.

Designs and variants

Single row tapered roller bearings

SKF single row tapered roller bearings (fig. 6) are available in many designs and variants and in many series and sizes, including:

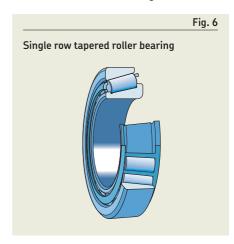
- basic design bearings
- application-specific bearings
- bearings with a flanged outer ring
- SKF Explorer bearings (page 675)

Basic design bearings

- have a design and internal geometry that provide long service life
- have crowned raceway profiles and an optimized surface finish of the inner ring guide flange that enables them to run cooler and consume less lubricant than conventional design bearings
- have load rating values that are in accordance with ISO and even above (product tables, page 762)
- offer a cost-effective solution for standard industrial applications

On request, SKF can also supply any inner ring with roller and cage assembly (cone) or any outer ring (cup) separately (fig. 7).

Application-specific bearings


For applications where the bearings are subjected to unique operating conditions, SKF manufactures customized single row tapered roller bearings on request. To meet the needs of these particular applications, SKF manufactures, for example, pinion or low-friction bearings with the following features:

Pinion bearings

- are designed for pinion shafts in the differentials of automotive transmissions to provide a constant, accurate gear mesh
- have very narrow geometrical tolerances and high preload capability
- have special friction characteristics and can be axially adjusted within narrow limits using the friction-torque method
- have an internal design that supports the formation of a hydrodynamic lubricant film to substantially reduce friction, and consequently the operating temperature, during the running-in period
- retain their preload setting when mounted, lubricated and maintained properly
- are identified by the designation suffix CL7C

Low-friction bearings

- are designed to meet the ever-increasing demands to reduce friction and energy
- optimize a reduction in friction through their internal geometry, number of rollers, surface finish and redesign of their cage
- have a frictional moment that is at least 30% lower when compared with a samesized SKF standard bearing
- normally do not need a running-in procedure because their optimized contact profiles provide optimum load distribution and they experience only a small, controlled loss of initial preload
- generate less frictional heat and therefore enable extended lubrication intervals or operation at higher speeds
- have a roller and cage assembly with a lower mass and therefore reduced inertial forces in the bearing, which reduce the risk of skidding and smearing
- are typically used in automotive and industrial transmissions

Bearings with a flanged outer ring

SKF also manufactures certain sizes of single row tapered roller bearings with a flange on the outer ring (fig. 8). These bearings are easy to locate axially in the housing. The housing bore can be manufactured more easily and more cost-effectively because housing shoulders are not required.

Matched tapered roller bearings

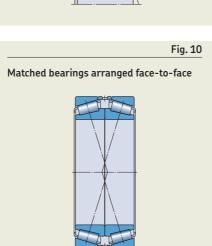
The SKF assortment of matched single row tapered roller bearings (fig. 9) is based on popular sizes of single row tapered roller bearings. Depending on the application requirements, matched tapered roller bearings are available in different designs and variants:

- matched bearings arranged face-to-face
- matched bearings arranged back-to-back
- matched bearings arranged in tandem
- basic design and SKF Explorer bearings (page 675)

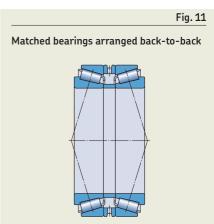
The matched bearings listed in the product tables constitute the basic SKF assortment. SKF can supply other matched bearings on request.

Depending on the design, matched bearings can locate the shaft axially in both directions with a specific axial clearance or preload. Also depending on the design, these bearings can provide a relatively stiff bearing arrangement.


The bearings and ring spacer(s) are matched in production, are delivered as a set and are ready-to-mount.


Matched bearings arranged face-to-face

- have load lines that converge toward the bearing axis (fig. 10)
- can accommodate a limited amount of misalignment
- can accommodate axial loads in both directions
- are supplied with an intermediate outer ring spacer as a set


Matched bearings arranged back-to-back

- have load lines that diverge toward the bearing axis (fig. 11)
- provide a relatively stiff bearing arrangement
- can accommodate tilting moments
- can accommodate axial loads in both directions
- are supplied with intermediate inner and outer ring spacers as a set

Matched bearings arranged in tandem

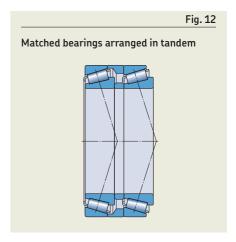
- have load lines that are parallel (fig. 12)
- share radial and axial loads equally
- are used when the load carrying capacity of a single bearing is inadequate
- can accommodate axial loads in one direction only

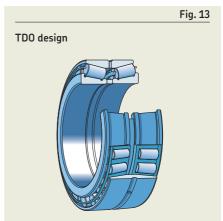
If axial loads act in both directions, a third bearing must be added and adjusted against the tandem pair.

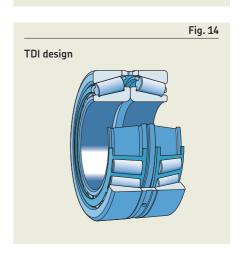
 are supplied with intermediate inner and outer ring spacers as a set

Double row tapered roller bearings

SKF manufactures double row tapered roller bearings in the TDO (fig. 13) and TDI (fig. 14) designs, in many variants and with different features.

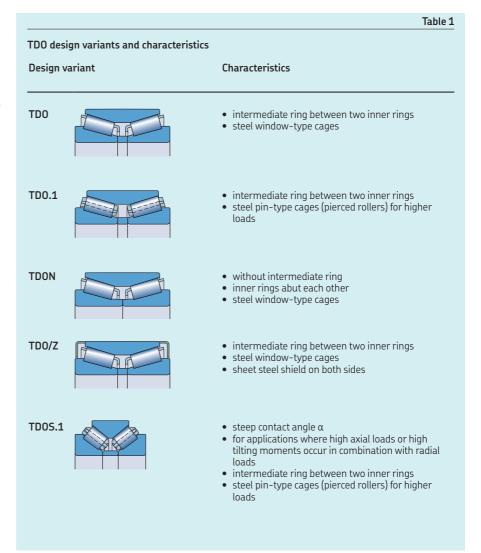

Depending on the design, these bearings can accommodate heavy radial loads, axial loads in both directions and have a high degree of stiffness. Therefore, they provide a stiff bearing arrangement and locate the shaft in both directions with a specific axial clearance or preload. Because of their second row of rollers, double row tapered roller bearings are suitable for heavy radial and axial loads.


Double row tapered roller bearings are typically used in gearboxes, hoisting equipment, rolling mills and machines in the mining industry, e.g. tunnelling machines.


TDO design bearings

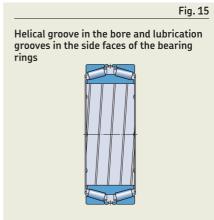
- have one double row outer ring (double cup) and two inner rings with roller and cage assemblies (cones), usually with an intermediate ring between the two inner rings (fig. 13)
- have rows of rollers arranged back-toback (load lines diverge toward the bearing axis), which enable stiff arrangements and accommodate considerable tilting moments
- are ready-to-mount units, manufactured with the predetermined axial clearance or preload
- can be used either as locating or nonlocating bearings:
 - for non-locating arrangements, the axial displacement should take place between the outer ring and the housing bore
 - bearings with a blind hole or locating slot in the outer ring can be used with a cylindrical pin engaged in the hole or slot to prevent the outer ring from turning in its seat

SKF manufactures TDO design bearings in many variants (table 1, page 672).



TDI design bearings

- have two outer rings (cups) and one double row inner ring with two roller and cage assemblies (double cone), usually with an intermediate ring between the two outer rings (fig. 14, page 671)
- have rows of rollers arranged face-to-face (load lines converge toward the bearing axis)
- are available open or capped with shields or seals
 - HNBR or FKM contact seal on both sides
- are ready-to-mount units, manufactured with the predetermined axial clearance or preload
- are designed primarily for use as locating bearings
- are available with a helical groove in the bore and/or lubrication grooves in the side faces of the bearing rings (fig. 15):
 - where a loose fit on the shaft is needed, these grooves counteract the disadvantage of a loose fit
 - when the inner ring turns on its seat under load, these grease-filled grooves enable lubricant to be supplied between the inner ring and seat surfaces
 - in addition, the grooves can absorb wear particles

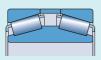

SKF manufactures TDI design bearings in many variants (table 2).

△ WARNING

Seals made of FKM (fluoro rubber) exposed to an open flame or temperatures above 300 °C (570 °F) are a health and environmental hazard! They remain dangerous even after they have cooled.

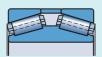
Read and follow the safety precautions on page 197.

SKF.


Table 2

TDI design variants and characteristics

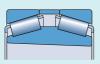
Design variant


Characteristics

TDI

- intermediate ring between two outer rings
- steel window-type cages

TDI.1


- intermediate ring between two outer rings
- steel pin-type cages (pierced rollers) for higher loads

TDIE

- intermediate ring between two outer rings
- steel window-type cages
- inner ring extensions at both sides
- extensions are ground as counterface for seal lips

TDIT

- intermediate ring between two outer rings
- tapered bore, taper 1:12
- steel window-type cages

TDIS

- steep contact angle α
- for applications where high axial loads in combination with radial loads occur
- intermediate ring between two outer rings
- steel window-type cages
- used in rolling mill applications with a loose fit on the roll neck and only subjected to purely axial load
- the inner ring has one or more locating slots (notches) in one or both side faces to prevent it from turning on its seat
- depending on the application, the bearings can be supplied with or without an intermediate ring between the two outer rings

TDIS.1

- steep contact angle $\boldsymbol{\alpha}$
- for applications where high axial loads in combination with radial loads occur
- intermediate ring between two outer rings
- steel pin-type cages (pierced rollers) for higher loads

TDIS.2

- self-retaining unit with a retention sleeve over the outer rings
- the outer rings are pressed into the sleeve
- the deformation of the outer rings normally resulting from heavy axial loads is considerably reduced
 - as a consequence, the stress distribution in the rolling contacts is more favourable and extends bearing service life
- the axial internal clearance is determined by the sleeve
- preloading by means of springs is unnecessary
- steep contact angle α
- for applications where high axial loads in combination with radial loads occur
- the simplified and economic design facilitates mounting, dismounting and also maintenance inspection routines

Optional TDI design bearings composed of four-row tapered roller bearing components

On request, TDI design bearings with dimensions different from those listed in the TDI design product table can be specially created as tailored double row bearings using standard components of SKF four-row tapered roller bearings in the TQO design, but without intermediate rings (TQO design, skf.com/go/17000-8-9). For example, it is possible to combine standard components as follows (fig. 16):

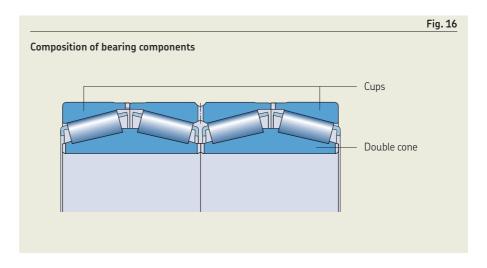
- two single row outer rings (cups)
- one double row inner ring (double cone)
- two roller and cage assemblies

This option may be advantageous as regards both price and delivery time and should be considered if sealed double row bearings are required, although this will require a non-standard inner ring. For details about this option, contact the SKF application engineering service.

Variants/features

SKF manufactures TDO and TDI design bearings in many variants and with different features. Bearing-related design variants and features are identified in the **product tables**, **page 762**, under *Design variant/feature*. For other sizes, design variants or feature combinations not listed in the product tables, contact SKF. Design variants and features are identified by the following characters within designation suffixes:

Design variants

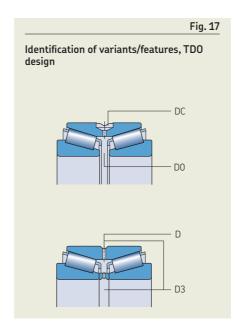

- **E** Extended inner ring
- **N** Without intermediate ring
- **S** Steep contact angle α
- **T** Tapered bore, taper 1:12
- .1 Steel pin-type cages and pierced rollers
- .2 Retention sleeve over the outer rings

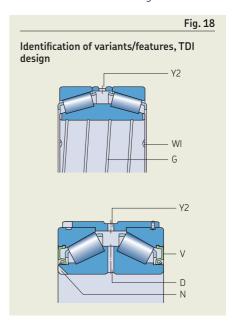
Features

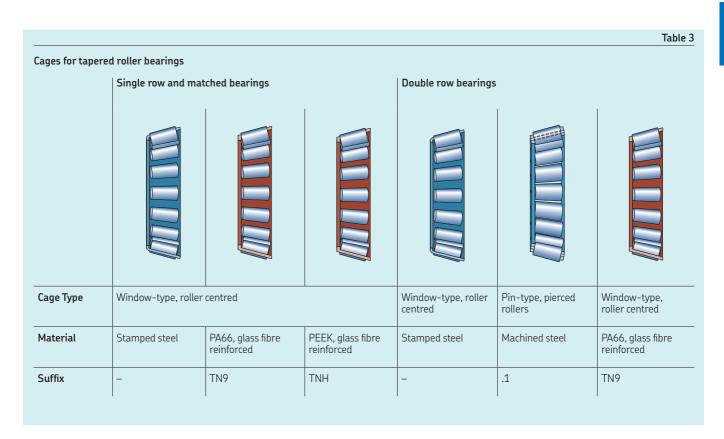
 $(TDO \rightarrow fig. 17, TDI \rightarrow fig. 18)$

- C Outer ring with blind hole to prevent, together with a cylindrical pin, the outer ring from turning in its seat
- D Outer ring with annular groove and lubrication holes (TDO), inner ring with annular groove and lubrication holes (TDI)
- **D0** Outer ring with annular groove and lubrication holes, without intermediate ring between the inner rings
- D2 Outer ring with annular groove and lubrication holes, intermediate ring with lubrication holes or lubrication grooves between the inner rings
- D3 Outer ring with annular groove and lubrication holes, intermediate ring with annular groove and lubrication holes or lubrication grooves between the inner rings
- **G** Helical groove in the inner ring bore
- N Two locating slots (notches) at 180° in one side face of the inner ring
- **N1** One locating slot in each side face of the inner ring, at 180° to slot in opposite side face
- **N2** Two locating slots at 180° in both side faces of the inner ring, at 90° to slots in opposite side face
- TN9 Glass fibre reinforced PA66 cage
- V Contact seals on both sides
- W Lubrication grooves in the side faces of the bearing rings
- **WI** Lubrication grooves in the side faces of the inner ring(s)
- **WO** Lubrication grooves in the side faces of the outer ring(s)
- X Bearings with retention sleeve with annular groove and lubrication holes over the outer rings (TDI, replaced by design variant .2)

- Outer ring with lubrication holes (TDO)
- Y Bearing without intermediate ring between the outer rings
- Y2 Intermediate ring with annular groove and lubrication holes between the outer rings (TDI)
- **Z** Sheet steel shield on both sides


SKF Explorer bearings


SKF continuously expands its assortment of SKF Explorer bearings (page 7). In addition to the existing SKF Explorer tapered roller bearings (product tables, page 694), SKF can also manufacture basic design tapered roller bearings as SKF Explorer bearings, on request. These SKF Explorer tapered roller bearings are identified by the designation suffix PEX.

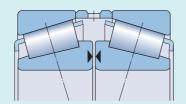

Cages

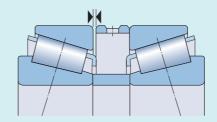
SKF single row and matched tapered roller bearings are fitted with one, double row tapered roller bearings are fitted with two of the cages shown in **table 3**. The standard stamped steel cage is not identified in the bearing designation. If non-standard cages are required, check availability prior to ordering.

When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For information about the suitability of cages, refer to *Cages*, page 187.

Bearing data

	Metric single row bearings	Inch single row bearings
Dimension standards	Boundary dimensions: ISO 355 Bearings with designation prefix J: ANSI/ABMA Standard 19.1	Boundary dimensions: AFBMA Standard 19 (ANSI B3.19) ANSI/ABMA Standard 19.2 has replaced the above standard, but does not include dimensions.
Tolerances	Normal tighter geometrical tolerances for bearings with designations.	ation suffix CL7C
	Bearings with designation prefix J: ANSI/ABMA Standard 19.1 Check availability of tighter width tolerance to 6 X tolerance class (designation suffix CLN) or P5 Values: ISO 492 (table 5, page 41 to table 7, page 43)	Check availability of CL3, CL0 or tighter width tolerance Values: ANSI/ABMA Standard 19.2 (table 9, page 45) Deviating width tolerances for cups and cones are identified by a designation suffix (table 4, page 678).
For additional infor- mation → page 35	The inner ring with roller and cage assembly (cone) and or changeable. The tolerance for the total abutment width To interchanged.	
For additional information → page 182	Obtained after mounting, depending on adjustment again	st a second bearing.
Preload	Obtained after mounting, depending on adjustment again	st a second bearing.
For additional information → page 182		
Permissible misalignment	SKF Explorer bearings: ≈ 2 to 4 minutes of arc Where misalignment cannot be avoided, SKF recommend The permissible angular misalignment between the inner of the bearing, the radial internal clearance in operation a result, only approximate values are listed here. Any misalignment increases bearing noise and reduces	and outer rings depends on the size and internal design nd the forces and moments acting on the bearing. As a


Matched bearings	Double row bearings
Boundary dimensions: ISO 355 (single bearing)	 metric bearings: not standardized inch bearings: cones and cups dimensions of many inch bearings → AFBMA Standard 19 (ANSI B3.19) ANSI/ABMA Standard 19.2 has replaced the above standard, but does not include dimensions.
 Normal tighter geometrical tolerances for bearings with designation suffix CL7C check availability of P5 Values: ISO 492 (table 5, page 41, and table 7, page 43) Total width tolerances: not standardized (table 5, page 678) 	 dimensional tolerances (except for width T): Normal geometrical tolerances: P5 Values: ISO 492 (table 5, page 41, table 7, page 43, and table 9, page 45)
Standard (table 6, page 679) Other clearance values are identified by the designation suffix C followed by a three-digit number. For clearance values not listed in the product tables, contact SKF. Values are valid for unmounted bearing sets under measuring loads of: • D ≤ 90 mm → 0,1 kN • 90 < D ≤ 240 mm → 0,3 kN • D > 240 mm → 0,5 kN	 bearings are ready-to-mount units with an axial internal clearance adapted for the actual application bearing components should be arranged in the prescribed order and may not be interchanged with components of another bearing designations with suffix C followed by a three- or four-digit number expresses mean value of the axial internal clearance in µm (for clearance values not listed in the product tables, contact SKF)
_	
Where misalignment cannot be avoided, SKF recommends using a face-to-face arrangement. Any misalignment increases bearing noise and reduces bearing service life.	If misalignment cannot be avoided, SKF recommends using TDI design bearings (face-to-face arrangement). For information, contact the SKF application engineering service. Any misalignment increases bearing noise and reduces bearing service life.


Designation suffix	Width tolerance ¹) t _{∆Ts} U		
	U	L	
-	μm		
/1	+25	0	
/1A	+38	+12	
/-1	0	-25	
/11	+25	-25	
/2	+50	0	
/2B	+75	+25	
/2C	+88	+37	
/-2	0	-50	
/22	+50	-55	
/3	+75	0	
/-3	0	-75	
/4	+100	0	

																	Tabl
tal v	width t	tolerance	s of ma	tched me	tric sing	jle row ta	apered	roller b	earings	;							
ore iame	eter <	Total wi 329 Δ _{TsD} U	dth tole	erance Δ _{Ts} 320 Δ _{TsD} U	_D of ma	tched be 330 Δ _{TsD} U	arings i	in the s 331 Δ_{TsD} U	eries L	302, 32 Δ _{TsD} U	.2 L	332 Δ _{TsD} U	L	303, 32 Δ _{TsD} U	3 L	313 Δ _{TsD} U	L
m		μm															
0	30 40 50	- +600 +650	- +150 +150	+550 +550 +600	+50 +100 +100	- - +650	- - +150	- +600 +600	- +100 +100	+550 +600 +600	+100 +100 +100	+600	+100 +100 +100	+600 +600 +600	+100 +100 +150	+500 +550 +550	+50 +50 +50
5	65 80 100	+650 +700 +750	+200 +200 -150	+600 +600 +650	+100 +150 -250	+650 +700 +800		+600 +650 +700		+600 +650 +700	+150 +150 -200	+650	+150 +150 -200	+650 +700 +700	+150 +200 -200	+550 +600 +600	+100 +100 -300
20	120 140 160	+750 +1 100 +1 150		+700 +1 000 +1 050		+800 +1100 +1100	-200	+700 - -	-200 - -	+700 +1 000 +1 050		+700 - -	-200 - -	+750 +1 100 +1 150		+600 +950 +950	-300 -350 -350
.80	180 190 200	+1 150 +1 150 +1 150	-150	+1 100 +1 100 +1 100	-200	- - -	- - -	- - -	- - -	+1 100 +1 100 +1 100	-200	- - -	- - -	+1 150 +1 200 +1 200	-100	- - -	- - -
25	225 250 280	+1 200 +1 200 +1 300	-100	+1 150 +1 200 +1 250	-100	- - -	- - -	- - -	- - -	+1 150 +1 200 +1 250	-100	- - -	- - -	+1 250 +1 300 -		- - -	- - -
00	300 315 340	+1 400 +1 400 +1 500	+100	+1 300 +1 350 +1 450	+50	- - -	- - -	- - -	- - -	+1 300 +1 350 +1 450	+50	- - -	- - -	_ _ _	- - -	- - -	- - -

678 **SKF**.

Axial internal clearance of matched metric single row tapered roller bearings, arranged face-to-face or back-to-back

Bore diame	ter	Axial 329	internal	clearan 320	ce of ma	tched be 330	earings i	n the se 331	ries	302,	322	332		303,	323	313	
u >	≤	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
mm		μm															
-	30	-	-	80	120	-	-	-	-	100	140	110	150	130	170	60	100
30	40	160	200	100	140	-	-	120	160	120	160	130	170	140	180	70	110
40	50	180	220	120	160	180	220	140	180	140	180	130	170	160	200	80	120
50	65	210	250	140	180	200	240	160	200	160	200	150	190	180	220	100	140
65	80	230	270	160	200	250	290	180	240	180	220	180	220	200	260	110	170
80	100	270	310	190	230	350	390	210	270	210	270	200	260	240	300	110	170
100	120	270	330	220	280	340	400	240	300	220	280	240	300	280	340	130	190
120	140	310	370	240	300	340	400	-	-	240	300	-	-	330	390	160	220
140	160	370	430	270	330	340	400	-	-	270	330	-	-	370	430	180	240
160	180	370	430	310	370	-	-	-	-	310	370	-	-	390	450	-	-
180	190	370	430	340	400	-	-	-	-	340	400	-	-	440	500	-	-
190	200	390	450	340	400	-	-	-	-	340	400	-	-	440	500	-	-
200	225	440	500	390	450	-	-	-	-	390	450	-	-	490	550	-	-
225	250	440	500	440	500	-	-	-	-	440	500	-	-	540	600	-	-
250	280	540	600	490	550	-	-	-	-	490	550	-	-	-	-	-	-
280 300	300 340	640 640	700 700	540 590	600 650		-	_		540 590	600 650	- -		-	-	_	

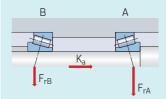
Loads

	Single row bearings	Matched bearings	Double row bearings									
Minimum load	F _{rm} = 0,02 C											
For additional information → page 106	Except for SKF Explorer bearings: F _{rm} =	= 0,017 C										
Equivalent	$F_a/F_r \le e \rightarrow P = F_r$	Face-to-face or back-to-back	$F_a/F_r \le e \rightarrow P = F_r + Y_1 F_a$									
dynamic bearing load	$F_a/F_r > e \rightarrow P = 0.4 F_r + Y F_a 1$	arrangement $F_a/F_r \le e \rightarrow P = F_r + Y_1 F_a$	$F_a/F_r > e \rightarrow P = 0.67 F_r + Y_2 F_a$									
		$F_a/F_r > e \rightarrow P = 0,67 F_r + Y_2 F_a$										
For additional		Tandem arrangement ¹ $F_a/F_r \le e \rightarrow P = F_r$										
information → page 91		$F_a/F_r > e \rightarrow P = 0.4 F_r + Y F_a$										
Equivalent static bearing	$P_0 = 0.5 F_r + Y_0 F_a^{1}$	Face-to-face or back-to-back arrangement	$P_0 = F_r + Y_0 F_a$									
load	$P_0 < F_r \rightarrow P_0 = F_r$	$P_0 = F_r + Y_0 F_a$	$P_0 < F_r \rightarrow P_0 = F_r$									
		$P_0 < F_r \rightarrow P_0 = F_r$										
For additional information → page 105		Tandem arrangement ¹⁾ $P_0 = 0.5 F_r + Y_0 F_a$										
	Symbols											
	C basic dynamic load rating [kN] (product tables, page 694) e calculation factor (product tables) F _a axial load [kN] F _r radial load [kN] F _{rm} minimum radial load [kN] P equivalent dynamic bearing load [kN] P ₀ equivalent static bearing load [kN] Y, Y ₀ , Y ₁ , Y ₂ calculation factors (product tables)											

 $[\]overline{\ ^{1)}}$ When determining the axial load F_a , refer to Calculating the axial load for bearings mounted singly or paired in tandem.

Calculating the axial load for bearings mounted singly or paired in tandem

When a radial load is applied to a single row tapered roller bearing, the load is transmitted from one raceway to the other at an angle to the bearing axis and an internal axial load is induced. This should be considered when calculating the equivalent bearing loads for bearing applications consisting of two single bearing arrangements and/or bearing pairs arranged in tandem.

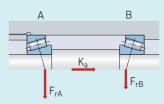

Necessary equations for various bearing applications and load cases are provided in **table 7**, **page 682**. The equations are valid under the following conditions:

- the bearings are adjusted against each other to practically zero clearance, but without any preload
- bearing A is subjected to a radial load F_{rA} and bearing B to a radial load F_{rB}
- both F_{rA} and F_{rB} are always considered positive, even when they act in a direction opposite to that shown in the figures
- the radial loads act at the pressure centres of the bearings (distance a, refer to product tables, page 694)

 K_a is the external axial force acting on the shaft or on the housing. Load cases 1c and 2c are also valid when $K_a = 0$.

Values of the calculation factor Y are listed in the product tables.

Back-to-back


Case 1a

$$\frac{\mathsf{F}_{\mathsf{rA}}}{\mathsf{Y}_{\mathsf{A}}} \geq \frac{\mathsf{F}_{\mathsf{rB}}}{\mathsf{Y}_{\mathsf{B}}}$$

$$F_{aA} = \frac{0.5 F_{rA}}{Y_{\Delta}}$$

$$F_{aB} = F_{aA} + K_{a}$$

$$F_{aB} = F_{aA} + K_a$$

Face-to-face

Case 1b

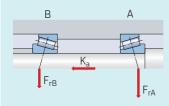
$$\frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B}$$

$$K_a \ge 0.5 \left(\frac{F_rB}{Y_B} - \frac{F_rA}{Y_A} \right)$$

$$F_{aA} = \frac{0.5 F_{rA}}{Y_A}$$

$$F_{aB} = F_{aA} + K_a$$

$$F_{aB} = F_{aA} + K_a$$

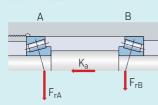

$$\frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B}$$

$$F_{aA} = F_{aB} - K_a$$

$$F_{aA} = F_{aB} - K_a \qquad F_{aB} = \frac{0.5 F_{rB}}{Y_B}$$

$$K_a < 0.5 \left(\frac{F_{rB}}{Y_B} - \frac{F_{rA}}{Y_A} \right)$$

Back-to-back


Case 2a

$$\frac{\mathsf{F}_{\mathsf{rA}}}{\mathsf{Y}_{\mathsf{A}}} \leq \frac{\mathsf{F}_{\mathsf{rB}}}{\mathsf{Y}_{\mathsf{B}}}$$

$$F_{aA} = F_{aB} + K_a$$

$$F_{aA} = F_{aB} + K_a \qquad F_{aB} = \frac{0.5 F_{rB}}{Y_B}$$

Face-to-face

Case 2b

 $K_a \ge 0$

$$\frac{F_{rA}}{Y_A} > \frac{F_{rB}}{Y_B}$$

$$F_{aA} = F_{aB} + K_a$$

$$F_{aA} = F_{aB} + K_a \qquad F_{aB} = \frac{0.5 F_{rB}}{Y_{B}}$$

$$K_a \ge 0.5 \left(\frac{F_r A}{Y_A} - \frac{F_r B}{Y_B} \right)$$

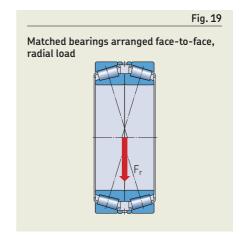
Case 2c

$$\frac{F_{rA}}{Y_A} > \frac{F_{rB}}{Y_B}$$

$$F_{aA} = \frac{0.5 F_{rA}}{Y_A} \qquad F_{aB} = F_{aA} - K_a$$

$$F_{aB} = F_{aA} - K_a$$

$$\mathsf{K}_{\mathsf{a}} < 0.5 \left(\frac{\mathsf{F}_{\mathsf{r}\mathsf{A}}}{\mathsf{Y}_{\mathsf{A}}} - \frac{\mathsf{F}_{\mathsf{r}\mathsf{B}}}{\mathsf{Y}_{\mathsf{B}}} \right)$$


Ծ

Calculating the radial load acting on matched bearings

When matched tapered roller bearings, arranged face-to-face or back-to-back, are mounted together with a third bearing, the bearing arrangement is statically indeterminate. In these cases, the radial load F_r acting on the bearing pair must be calculated first.

Matched bearings arranged face-to-face

For matched bearings, where two bearings are arranged face-to-face (fig. 19), it can be assumed that the radial load acts at the geometric centre of the matched bearings, as the distance between the pressure centres of the two bearings is short when compared with the distance between the geometric centres of the set and the other bearing. In this case, it can be assumed that the bearing arrangement is statically determined.

8 Tapered roller bearings

Matched bearings arranged back-to-back

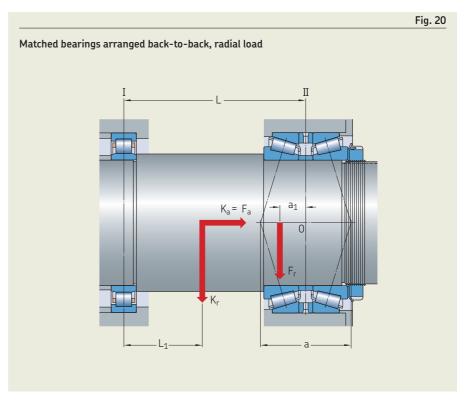
The distance a between the pressure centres of two matched bearings arranged back-to-back is significant when compared with the distance L between the geometric centres of the matched bearings and the other bearing (fig. 20). Therefore, it is necessary to calculate the magnitude of the load acting on the bearing pair and also the distance a_1 at which the load acts. The magnitude of the radial load can be obtained using:

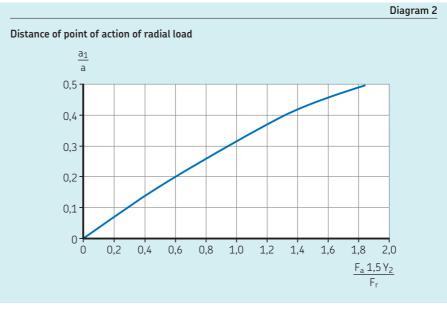
$$F_r = \frac{L_1}{L - a_1} K_r$$

where

 F_r = radial load acting on a bearing pair [kN] K_r = radial force acting on the shaft [kN]

L = distance between the geometric centres of the two bearing positions [mm]


 L_1 = distance between the centre of bearing position I and the point of action of the force K_r [mm]


a = distance between the bearing pressure centres [mm] (product table, page 754)

 a_1 = distance between the geometric centre of the matched bearings and the point of action of the radial load F_r [mm]

• diagram 2

calculation factor Y₂, product table
 The distance a₁ can be determined from diagram 2 by making an initial assumption for F_r and if necessary followed by several iterative calculations.

Comparative load ratings for double row tapered roller bearings

For rolling mill applications, load ratings are not necessarily calculated according to ISO 281. Instead, they are often calculated by a different method based on a rating life of 90 million revolutions (500 r/min for 3 000 operating hours). Therefore, for double row tapered roller bearings these comparative load ratings are provided in the product tables because a direct comparison between the comparative and ISO load ratings is not possible, even if the comparative ratings are converted for 1 million revolutions (ISO life definition).

These comparative load ratings may not be used to calculate an ISO rating life. They may only be used together with the comparative rating life and equivalent load equations specified as follows:

$$L_{F10} = 90 \left(\frac{C_F}{P_F} \right)^{10/3}$$

$$L_{F10h} = \left(\frac{C_F}{P_F}\right)^{10/3} \left(\frac{1500000}{n}\right)$$

where

 L_{F10} = comparative rating life [million revolutions)

L_{F10h} = comparative rating life [operating

= comparative dynamic load rating to give a rating life of 90 million revolutions [kN] (product tables, page 762)

= comparative equivalent dynamic bearing load [kN] (table 8, page 686)

= constant rotational speed [r/min]

Temperature limits

The permissible operating temperature for tapered roller bearings can be limited by:

- the dimensional stability of the bearing rings and rollers
- the cages
- the seals
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings and rollers

SKF single row and matched tapered roller bearings are heat stabilized up to:

- D ≤ 160 mm → 120 °C (250 °F)
- D > 160 mm → 150 °C (300 °F)

SKF double row tapered roller bearings are heat stabilized up to 150 °C (300 °F).

Seals

The permissible operating temperature for seals depends on the seal material:

• HNBR: -40 to +150 °C (-40 to +300 °F)

• FKM: -30 to +200 °C (-20 to +390 °F)

Typically, temperature peaks are at the seal

Cages

Steel or PEEK cages can be used at the same operating temperatures as the bearing rings and rollers. For temperature limits of cages made of other polymer materials, refer to Polymer cages, page 188.

Lubricants

For temperature limits of SKF greases, refer to Selecting a suitable SKF grease, page 116.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Permissible speed

The speed ratings in the **product tables** indicate:

- the **reference speed**, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the **limiting speed**, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds

For additional information, refer to *Operating temperature and speed*, page 130.

					Table 8
Equivalent dynam	ic bearing load P _F for calculating com	parative rating life			
Bearing arrangen	nent	Load c	ase	Comparative equivalent dynamic radial load	
F _r	Fr	1a)	$F_a \le 0.6 F_{rL}/K_L$	$P_{FL1} = 0.5 F_{rL} + 0.83 K_L F_a$ $P_{FL2} = 0.5 F_{rL} - 0.83 K_L F_a$ $P_{FN} = F_{rN}$	
Locating	Non-locating F _r	1b)	$F_a > 0.6 F_{rL}/K_L$	$P_{FL1} = 0.4 F_{rL} + K_L F_a$ $P_{FL2} = 0$ $P_{FN} = F_{rN}$	
1 2	T _a	1c)	$F_a = 0$	$P_{FL1} = F_{rL}$ $P_{FN} = F_{rN}$	
Locating	Non-locating				
Values of the thrus	t factor K _L are listed as K in the product t	tables.			
For load cases 1a) The load rating for	and 1b), the load rating for one roller ro	w needs to be applied	when using P _{FL} .		

686

 $C_{F(row)} = 0.58 C_{F(bearing)}$

Design considerations

Single row and matched tapered roller bearings

Single row tapered roller bearings must be used either with a second bearing (fig. 21) or as a matched pair (fig. 10, page 670, and fig. 11, page 670). The bearings must be adjusted against each other until the requisite clearance or preload is obtained (Selecting preload, page 186).

When the operating clearance in a bearing arrangement is too large, the load carrying capacity of both bearings cannot be fully utilized. Excessive preload increases friction, which increases the amount of frictional heat and reduces bearing service life.

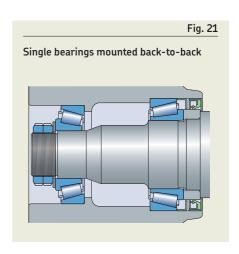
Adjustment procedure

When adjusting tapered roller bearings against each other, the bearings must be rotated so that the rollers assume their correct position, i.e. the large end face of the rollers must be in contact with the guide flange.

Fits

Inch bearings

In contrast to metric bearings, which are machined to a minus tolerance, inch bearings are machined to a plus tolerance (table 9, page 45). Therefore, the deviations for shaft and housing diameters for metric bearings are not applicable. Suitable shaft and housing fits for inch tapered roller bearings are provided in table 9, page 688, and table 10, page 689. These fits are valid for bearings with Normal tolerances in typical applications.


Matched bearings

The axial internal clearance of matched bearings arranged face-to-face or back-to-back (table 6, page 679) provides an appropriate operating clearance when the bearings are mounted on shafts machined to:

• $d \le 50 \text{ mm}$ \rightarrow m5 E• $50 \text{ mm} < d \le 140 \text{ mm}$ \rightarrow m6 E• $140 \text{ mm} < d \le 200 \text{ mm}$ \rightarrow n6 E• d > 200 mm \rightarrow p6 E

SKF recommends these shaft seat tolerance classes for rotating loads on the inner ring where $P \le 0.06$ C. If tighter fits are selected, be sure that the bearings are not preloaded and are able to rotate freely. The reduction of internal clearance caused by axial locating forces should also be taken into consideration.

For stationary outer ring loads, SKF recommends housing bore tolerance classes J6© or H7©.

10	- - - - ,,2 - 0 -		g6© U	L -4 -7	h6© U	L	j6 € U	L	k6€ U	L	m6© U	L
10 18 30 50 50 120 120 180 250 304 115 400 500 600 600	- - - - - 0 - 0 -	- - -	2 3	-4		L	U	L	U	L	U	
10 18 18 30 10 50 10 76, 30 120 120 180 180 250 180 250 180 400 115 400 100 500 100 609	- - - - ,,2 - 0 -	- - -	3		8							
18 30 50 50 60 76, 80 120 120 180 180 250 304 115 400 600 500 600 609	- - ,2 - 0 - 0 -	- - -	3		2							
80 120 120 180 180 250 250 304 315 400 400 500 600 609	0 – 0 –	_		-1 2	10 12	2 0 -3	16 19 23	10 9 8	20 25 30	14 15 15	- - -	- - -
250 304 315 400 300 500 500 609	0 –	- -	5 8 11	-16 -9 -14	15 20 25	-6 3 0	27 33 39	6 16 14	- - -	- - -	45 55 65	24 38 40
609	4,8 –	- - -47	15 18 22	-19 -24 -3	30 35 40	-4 -7 15	46 51 58	12 9 33	- - -	- - -	- - -	- - -
,50 600	9,6 –26	-57 -69 -54	25 28 51	-9 -15 2	45 50 75	11 7 26	65 72 100	31 29 51	_ _ _	- - -	- - -	- - -
300 914	4,4 14	-66	74	6	100	20	128	48	-	-	-	-
Nominal liameter	Deviati	ons for fits	clearance	/interfere	nce in accor	dance with						
. ≤	n6€ U	L	p6€ U	L	r6€ U	L	r7€ U	L	r6© + I U	T6 L	r7© + U	IT7 L
nm	μm											
50 76, 80 100	0 65	33 48 48	- 79 79	- 62 62	- - -	-	-	- -	- -	_	-	-
120 140 140 160 160 180	0 77 0 77	52 52 52	93 93 93	68 68 68	113 115 118	88 90 93	- - -	- - -	- - -	- - -	- - -	- -
180 200 200 225 225 250	0 – 5 –	- - -	109 109 109	75 75 75	136 139 143	102 105 109	- - -	- - -	- - -	- - -	_ _ _	- - -
250 280	0 – 4,8 –	- - -	123 - -	81 - -	161 165 184	119 123 159	- - -	- - -	- - 220	- - 195	- - -	- - -
355 400 450 450 450 500	0 – 0 –	- - -	- - -	- - -	190 211 217	165 177 183	- - -	- - -	226 251 257	201 217 223	- - -	- - -
500 560 560 609 530 710	0 – 9,6 –	- - -	- - -	- - -	- - -	- - -	270 275 330	201 206 251	288 293 350	245 250 301	340 345 410	271 276 331
710 800 800 900	0 – 0 –	- -	- -	- -	- -	- -	340 400	281 286	360 422	311 342	420 490	341 376

688 **SKF**.

For nominal diameter ranges not listed or higher requirements on accuracy, contact the SKF application engineering service.

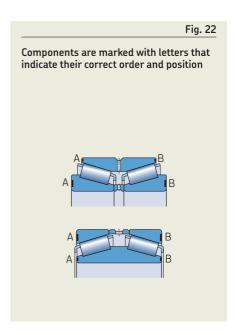
Nomina		Deviatio	ns for fits cl	earance/inte	rference in	accordance w	vith					
iameto	er <	F6© U	L	G6€ U	L	H7€ U	L	H8€ U	L	J7 © U	L	
nm		μm										
80 80	50 80 120	- - -	- - -	- - -	- - -	36 43 50	25 25 25	50 59 69	25 25 25	25 31 37	14 13 12	
20 50 80	150 180 250	- - -	- - -	- - -	- - -	58 65 76	25 25 25	81 88 102	25 25 25	44 51 60	11 11 9	
50 04,8 15	304,8 315 400	- - -	- - -	104 104 115	42 68 69	87 87 97	25 51 51	116 116 129	25 51 51	71 71 79	9 35 33	
600 600 609,6	500 609,6 630	- 196 196	- 127 152	128 142 142	71 73 98	108 120 120	51 51 76	142 160 160	51 51 76	88 - -	31 - -	
30 300 914,4	800 914,4 1 000	235 276 276	156 162 188	179 216 216	100 102 128	155 190 190	76 76 102	200 240 240	76 76 102	Ξ	- - -	
000	1 219,2	328	200	258	130	230	102	290	102	-	-	
lomina liameto			ns for fits cl		rference in a	accordance w	rith					
>	≤	K7© U	L	M7© U	L	N7€ U	L	P7© U	L			
nm		μm										
0 0 0	50 80 120	18 22 25	7 4 0	11 13 15	0 -5 -10	3 4 5	-8 -14 -20	-6 -8 -9	-17 -26 -34			
.20 .50 .80	150 180 250	30 37 43	-3 -3 -8	18 25 30	–15 –15 –21	6 13 16	-27 -27 -35	-10 -3 -3	-43 -43 -54			
250	304,8 315 400	51 51 57	-11 15 11	35 35 40	-27 -1 -6	21 21 24	-41 -15 -22	-1 -1 -1	-63 -37 -47			
304,8 315	500	63 50	6 -19 6	45 24 24	-12 -45 -20	28 6 6	-29 -63 -38	0 -28 -28	–57 –97 –72			
	609,6 630	50				25	-54	-13	-92			
00 00	609,6	75	-4 -14 12	45 66 66	-34 -48 -22	44 44	–70 –44	0	–114 –88			

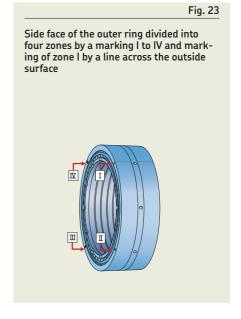
Mounting

Double row tapered roller bearings

Depending on their design, components of double row tapered roller bearings can also be mounted separately. The individual rings of one bearing must be mounted in the correct order and position. They must also not be mixed with those of another bearing when several bearings are mounted at the same time. Therefore, some precautions have been taken to ease mounting:

- Components of one bearing are marked with letters that indicate their correct order and position (fig. 22).
- All components of one bearing are marked with the same serial number.


Special care should be taken not to deform or compress the relatively thin-walled intermediate rings when mounting smaller TDI design bearings. This can happen, for example, when tightening the cover screws and can have a negative impact on the axial clearance or the preload. Therefore, SKF recommends applying a cover with a centring spigot that is appropriate to the widths of the bearing and the housing seat.


If the knowledge and experience required to mount double row tapered roller bearings is unavailable, especially where large bearings are concerned, SKF recommends that the assistance of SKF service personnel be requested. Further details of the SKF mounting service are available on request.

Load zone

In the majority of rolling mill applications, the direction of a radial load is constant. Depending on the ratio between axial and radial loads, usually only approximately one quarter of the outer ring raceway is under load. Therefore (fig. 23):

- Outer rings are divided into four zones identified by a marking I to IV on the outer ring side faces, on request.
- Markings for zone I are also joined by a line across the outside surface.
- For initial mounting, zone I (line across the outside surface) should be positioned in the direction of the load.
- Depending on the operating conditions, after a period of service the outer rings should be turned through 90° so that a new (the next) zone becomes the loaded zone.

690

Bearing designations

Metric bearings

The designations of metric tapered roller bearings follow one of the following principles:

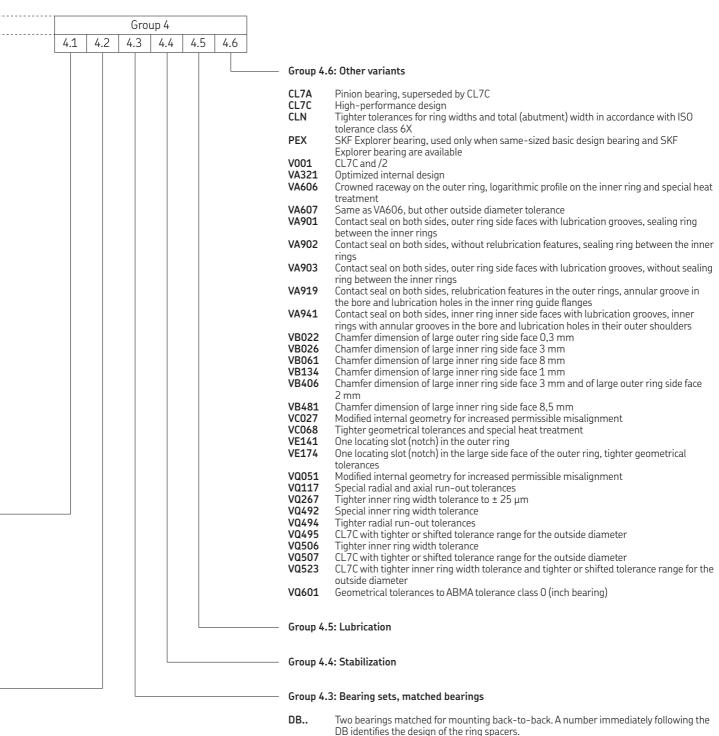
- The series designations in accordance with ISO 355 consist of a digit and two letters. The digit represents the contact angle. The two letters represent the diameter and width series, respectively. This is followed by a three-digit bore diameter d [mm]. The basic designations of SKF tapered roller bearings start with the letter T, e.g. T2ED 045.
- Designations established prior to 1977 are based on the system shown under *Basic* designations, page 31, e.g. 32206 (table 4, page 30).
- Metric bearings with the designation prefix J follow the ABMA designation system, which is used for inch bearings (ANSI/ ABMA Std. 19.1).

Inch bearings

Inch tapered roller bearing designations are in accordance with ANSI/ABMA Std. 19.2. Within a series:

- roller and cage assemblies are equal but the inner and outer rings can have different sizes and designs
- any inner ring with roller and cage assembly (cone) can be assembled with any outer ring (cup)

General:

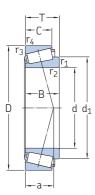

- Cup and cone have individual designations and can be supplied separately (fig. 24).
- The designations of cups and cones, as well as the series, consist of a three- to six-digit number, which may be prefixed to characterize a bearing series from extralight to extra-heavy.
- The complete bearing designation is an abbreviated combination of cone and cup designations. It consists of the cone designation followed by the complete or parts of the cup designation, separated by an oblique stroke (table 11).

Complete bearing	Cone	Сир	Series
LM 11749/710 ¹⁾	LM 11749	LM 11710	LM 11700
JL 26749/710 ¹⁾	JL 26749	JL 26710	L 26700
HM 89449/410 ¹⁾	HM 89449	HM 89410	HM 89400
H 913842/810 ¹⁾	H 913842	H 913810	H 913800
4580/2/4535/2 ²⁾	4580/2	4535/2	4500
9285/9220 ²⁾	9285	9220	9200

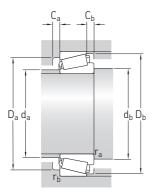
Designation system Group 1 Group 2 Group 3 **Prefixes** Metric bearing following the ABMA designation system (ANSI/ABMA Std. 19.2) Т Metric bearing in accordance with ISO 355 Basic designation Refer to *Bearing designations*, page 691 or drawing number identification. BT2-Drawing number prefixes that may precede a four- or six-digit drawing number BT2B Suffixes Group 1: Internal design Deviating or modified internal design, combinations are possible Steep contact angle Group 2: External design (seals, grooves, etc) Ε SKF Explorer bearing (only for double row bearings) G Helical groove in the inner ring bore (only for double row bearings) R Flanged outer ring T.. A number immediately following the Tidentifies the total width of matched bearings, arranged back-to-back or in tandem. Х Boundary dimensions changed to conform to ISO Group 3: Cage design TN9 Glass fibre reinforced PA66 cage, roller centred TNH Glass fibre reinforced PEEK cage, roller centred Group 4.1: Materials, heat treatment HA1 Case-hardened inner and outer rings HA2 Case-hardened outer ring HA3 Case-hardened inner ring HA4 Case-hardened inner and outer rings and rollers HA₅ Case-hardened rollers HA6 Case-hardened outer ring(s) and rollers HA7 Case-hardened inner ring(s) and rollers HB1 Bainite-hardened inner and outer rings Bainite-hardened outer ring(s) HB₂ HN3 Inner ring with special surface heat treatment L4B Bearing rings and rollers with special surface coating Group 4.2: Accuracy, clearance, preload, quiet running Deviating width tolerances of cups and cones for inch bearings (table 4, page 678) /1 /-1 to /-3 /4 C... Axial internal clearance (only for double row bearings) The three- or four-digit number immediately following the C is the mean axial internal clearance in µm. CLO Geometrical tolerances to ABMA tolerance class 0 (inch bearing) CL00 Geometrical tolerances to ABMA tolerance class 00 (inch bearing) P5 Geometrical tolerances to P5 tolerance class U., U combined with a one- or two-digit number identifies tighter total width tolerance, e.g.: $U2 \rightarrow +5/0 \,\mu m$ $U4 \rightarrow +10/0 \, \mu m$ W Modified ring width tolerance to $+5/0 \mu m$

692

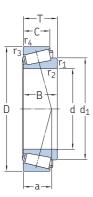
DF.. Two bearings matched for mounting face-to-face. A number immediately following the DF identifies the design of the ring spacer.


DT.. Two bearings matched for mounting in tandem. A number immediately following the DT identifies the design of the ring spacers.

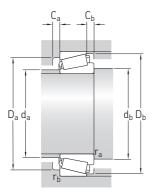
C... Special clearance

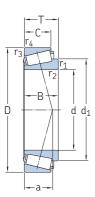

The two- or three-digit number immediately following the C is the mean axial internal clearance in μm . The range remains the same as specified in **table 6**, page 679.

In addition to their designation, double row bearings are also identified by their design variants/features (product tables, page 762). Some of these features may not be part of the bearing designation, but are always part of the design variants/features (Variants/features, page 674).

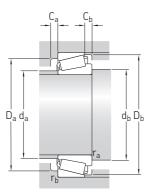


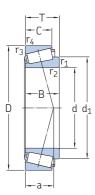
Princi	oal dimen	sions	Basic lo	ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation	Dimension series to ISO 355
d	D	Т	С	C_0	P_u	speed	speed			(ABMA)
mm			kN		kN	r/min		kg	_	_
15	35 42	11,75 14,25	18,5 27,7	14,6 20	1,43 2,08	17 000 15 000	20 000 18 000	0,055 0,094	► 30202 ► 30302	2CC 2FB
17	40 47 47	13,25 15,25 20,25	23,4 34,2 42,8	18,6 25 33,5	1,83 2,7 3,65	15 000 13 000 12 000	18 000 16 000 16 000	0,079 0,13 0,17	→ 30203→ 30303→ 32303	2DB 2FB 2FD
20	42 47 52	15 15,25 16,25	29,7 34,1 41,9	27 28 32,5	2,65 3 3,55	13 000 12 000 12 000	16 000 15 000 14 000	0,099 0,12 0,17	► 32004 X ► 30204 ► 30304	3CC 2DB 2FB
	52	22,25	54,3	45,5	5	11 000	14 000	0,23	▶ 32304	2FD
22	44	15	30,9	29	2,85	13 000	15 000	0,1	► 320/22 X	3CC
25	47 52 52	15 16,25 19,25	33,2 38,1 44,5	32,5 33,5 44	3,25 3,45 4,65	12 000 11 000 10 000	14 000 13 000 13 000	0,11 0,15 0,19	➤ 32005 X ➤ 30205 ➤ 32205 B	4CC 3CC 5CD
	52 52 62	19,25 22 18,25	50,4 57,9 46,6	45,5 56 40	4,9 6 4,4	11 000 10 000 8 500	13 000 13 000 11 000	0,19 0,22 0,27	32205 ► 33205 ► 31305	2CD 2CE 7FB
	62 62	18,25 25,25	55,3 74,1	43 63	4,75 7,1	9 500 9 000	12 000 12 000	0,26 0,36	➤ 30305 ➤ 32305	2FB 2FD
28	52 58 58	16 17,25 20,25	39 46,6 51,9	38 41,5 50	4 4,4 5,5	10 000 10 000 9 500	13 000 12 000 12 000	0,14 0,2 0,25	→ 320/28 X→ 302/28→ 322/28 B	4CC 3DC 5CD
30	55 62 62	17 17,25 21,25	43,9 50 61,8	44 44 57	4,55 4,8 6,3	10 000 9 000 9 000	12 000 11 000 11 000	0,17 0,23 0,29	► 32006 X ► 30206 ► 32206	4CC 3DB 3DC
	62 72 72	25 20,75 20,75	79,7 58,3 69,2	76,5 50 56	8,5 5,7 6,4	8 500 7 500 8 000	11 000 9 500 10 000	0,35 0,39 0,38	332063130630306	2DE 7FB 2FB
	72	28,75	95	85	9,65	7 500	10 000	0,55	▶ 32306	2FD
32	53 58	14,5 17	33 45,1	35,5 46,5	3,65 4,8	10 000 9 000	12 000 11 000	0,12 0,19	JL 26749/710 ▶ 320/32 X	L 26700 4CC

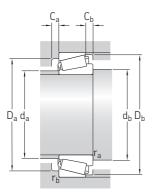

Dime	nsions						Abutn	nent and	d fillet d	limensio	ns					Calcula	ation fact	tors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm							mm									-		
15	25,6 27,8	11 13	9,25 11	0,6 1	0,6 1	8	20 22	20,5 21,5	30 36	30,5 36,5	32 38	2 2	2,5 3	0,6 1	0,6 1	0,35 0,28	1,7 2,1	0,9 1,1
17	29 30,5 30,7	12 14 19	11 12 16	1 1 1	1 1 1	9 10 12	23 25 24	23,5 23,5 23,5	34 40 39	34,5 41,5 41,5	37 42 43	2 2 3	2 3 4	1 1 1	1 1 1	0,35 0,28 0,28	1,7 2,1 2,1	0,9 1,1 1,1
20	32,1 33,7 34,4	15 14 15	12 12 13	0,6 1 1,5	0,6 1 1,5	10 11 11	25 28 28	25,5 26,5 27,5	36 40 44	37,5 41,5 45,5	39 43 47	3 2 2	3 3 3	0,6 1 1,5	0,6 1 1,5	0,37 0,35 0,3	1,6 1,7 2	0,9 0,9 1,1
	34,6	21	18	1,5	1,5	13	27	27,5	43	45,5	47	3	4	1,5	1,5	0,3	2	1,1
22	34,3	15	11,5	0,6	0,6	10	27	27,5	38	39	41	3	3,5	0,6	0,6	0,4	1,5	0,8
25	37,5 38 41,5	15 15 18	11,5 13 15	0,6 1 1	0,6 1 1	11 12 15	30 32 30	31 31,5 32	40 44 41	42 46 46,5	44 48 50	3 2 3	3,5 3 4	0,6 1 1	0,6 1 1	0,43 0,37 0,57	1,4 1,6 1,05	0,8 0,9 0,6
	38,4 38,7 45,8	18 22 17	16 18 13	1 1 1,5	1 1 1,5	13 13 19	31 31 34	32 32 33	44 43 47	46 46 55	50 49 59	3 4 3	3 4 5	1 1 1,5	1 1 1,5	0,35 0,35 0,83	1,7 1,7 0,72	0,9 0,9 0,4
	41,5 41,7	17 24	15 20	1,5 1,5	1,5 1,5	12 15	35 33	33 33	54 52	55 55	57 57	2	3 5	1,5 1,5	1,5 1,5	0,3 0,3	2 2	1,1 1,1
28	41,3 42 43,9	16 16 19	12 14 16	1 1 1	1 1 1	12 13 16	34 35 33	35 35 35	45 50 46	46 52 52	49 54 55	3 2 3	4 3 4	1 1 1	1 1 1	0,43 0,37 0,57	1,4 1,6 1,05	0,8 0,9 0,6
30	43,6 45,3 45,2	17 16 20	13 14 17	1 1 1	1 1 1	13 13 15	36 38 37	37 37 37	48 53 52	49 56 56	52 57 58	3 2 3	4 3 4	1 1 1	1 1 1	0,43 0,37 0,37	1,4 1,6 1,6	0,8 0,9 0,9
	45,8 52,7 48,4	25 19 19	19,5 14 16	1 1,5 1,5	1 1,5 1,5	15 22 14	37 40 41	37 38,5 38	53 55 62	56 65 64	59 68 66	4 3 3	5,5 6,5 4,5	1 1,5 1,5	1 1,5 1,5	0,35 0,83 0,31	1,7 0,72 1,9	0,9 0,4 1,1
	48,7	27	23	1,5	1,5	17	39	38	59	65	66	4	5,5	1,5	1,5	0,31	1,9	1,1
32	43,6 46,2	15 17	11,5 13	3,6 1	1,3 1	11 13	38 38	44 39	48 50	46,5 52	50 55	2	3 4	3,6 1	1,3 1	0,33 0,46	1,8 1,3	1 0,7

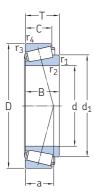

Princip	al dimens	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rat Reference speed		Mass	Designation Dimension ser to ISO 355 (ABMA)	ies
d	D	Т	С	C_0	P_u	Specu	Speed		(
mm			kN		kN	r/min		kg	= -	
35	62 72 72	18 18,25 24,25	52,3 63,2 81,2	54 56 78	5,85 6,1 8,5	8 500 8 000 8 000	10 000 9 500 9 500	0,23 0,33 0,44	► 32007 X ► 30207 3DB ► 32207 3DC	
	72 80 80	28 22,75 22,75	104 75,4 88,9	106 67 73,5	11,8 7,8 8,3	7 000 6 300 7 500	9 500 8 500 9 000	0,53 0,52 0,51	▶ 33207 2DE ▶ 31307 7FB ▶ 30307 2FB	
	80 80	32,75 32,75	115 117	114 106	12,9 12,2	6 300 6 700	8 500 9 000	0,8 0,75	► 32307 B 5FE ► 32307 2FE	
38	63 63 63	17 17 17	45,7 45,7 45,7	52 52 52	5,4 5,4 5,4	8 500 8 500 8 500	10 000 10 000 10 000	0,2 0,21 0,21	JL 69349/310 L 69300 JL 69345/310 L 69300 JL 69349 A/310 L 69300	
	63	17	45,7	52	5,4	8 500	10 000	0,21	JL 69349 X/310 L 69300	
40	68 75 80	19 26 19,75	64,7 97,5 75,8	71 104 68	7,65 11,4 7,65	7 500 7 000 7 000	9 500 9 000 8 500	0,28 0,5 0,42	▶ 32008 X 3CD ▶ 33108 2CE ▶ 30208 3DB	
	80 80 85	24,75 32 33	91,6 128 150	86,5 132 150	9,8 15 17,3	7 000 6 300 6 700	8 500 8 500 8 000	0,53 0,73 0,9	➤ 32208 3DC ➤ 33208 2DE T2EE 040 2EE	
	90 90 90	25,25 25,25 35,25	91,1 106 134	81,5 95 140	9,5 10,8 16	5 600 6 300 5 600	7 500 8 000 7 500	0,72 0,73 1,1	31308 7FB ▶ 30308 2FB 32308 B 5FD	
	90	35,25	143	140	16	6 000	8 000	1,05	▶ 32308 2FD	
45	75 80 85	20 26 20,75	71,7 104 81,6	80 114 76,5	8,8 12,9 8,65	7 000 6 700 6 300	8 500 8 000 8 000	0,34 0,55 0,47	▶ 32009 X 3CC ▶ 33109 3CE ▶ 30209 3DB	
	85 85 95	24,75 32 29	98,7 132 110	98 143 112	11 16,3 12,7	6 300 6 000 5 300	8 000 7 500 7 000	0,58 0,79 0,93	➤ 32209 3DC ➤ 33209 3DE T7FC 045 7FC	
	95 100 100	36 27,25 27,25	182 113 132	186 102 120	20,8 12,5 14,3	6 000 5 000 5 600	7 000 6 700 7 000	1,2 0,95 0,97	► T2ED 045 2ED 31309 7FB ► 30309 2FB	
	100 100	38,25 38,25	166 173	176 170	20 20,4	5 000 5 300	6 700 7 000	1,5 1,4	32309 B 5FD ▶ 32309 2FD	

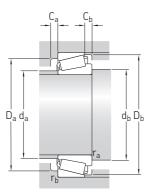
SKF Explorer bearing


Popular item

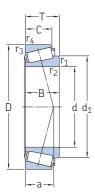

Dime	nsions						Abutn	nent an	d fillet d	limensio	ns					Calcul	ation fact	tors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm							mm									-		
35	49,6	18	14	1	1	14	41	42	54	56	59	4	4	1	1	0,46	1,3	0,7
	51,9	17	15	1,5	1,5	14	44	43,5	62	64	67	3	3	1,5	1,5	0,37	1,6	0,9
	52,4	23	19	1,5	1,5	17	43	43,5	61	64	67	3	5	1,5	1,5	0,37	1,6	0,9
	53,4	28	22	1,5	1,5	18	43	43,5	61	64	68	5	6	1,5	1,5	0,35	1,7	0,9
	59,6	21	15	2	1,5	24	45	44,5	62	72	76	3	7,5	2	1,5	0,83	0,72	0,4
	54,5	21	18	2	1,5	16	46	44,5	70	72	74	3	4,5	2	1,5	0,31	1,9	1,1
	59,3 54,8	31 31	25 25	2	1,5 1,5	24 20	43 44	44,5 44,5	61 66	72 72	76 74	4 4	7,5 7,5	2	1,5 1,5	0,54 0,31	1,1 1,9	0,6 1,1
38	52,2	17	13,5	3,6	1,3	14	44	50,5	55	56	60	3	3,5	3,6	1,3	0,43	1,4	0,8
	52,2	19	13,5	3,6	1,3	14	44	50,5	55	56	60	3	3,5	3,6	1,3	0,43	1,4	0,8
	52,2	17	13,5	1,3	1,3	14	44	46	55	56	60	3	3,5	1,3	1,3	0,43	1,4	0,8
	52,2	17	13,5	2,3	1,3	14	44	48	55	56	60	3	3,5	2,3	1,3	0,43	1,4	0,8
40	54,7	19	14,5	1	1	14	46	47,5	60	61	65	4	4,5	1	1	0,37	1,6	0,9
	57,5	26	20,5	1,5	1,5	17	47	48,5	65	67	71	4	5,5	1,5	1,5	0,35	1,7	0,9
	57,5	18	16	1,5	1,5	16	49	48,5	69	72	74	3	3,5	1,5	1,5	0,37	1,6	0,9
	58,4	23	19	1,5	1,5	18	49	48,5	68	72	75	3	5,5	1,5	1,5	0,37	1,6	0,9
	59,7	32	25	1,5	1,5	20	47	48,5	67	72	76	5	7	1,5	1,5	0,35	1,7	0,9
	61,2	32,5	28	2,5	2	21	48	50,5	70	76	80	5	5	2,5	2	0,35	1,7	0,9
	67,1	23	17	2	1,5	28	51	50	71	82	86	3	8	2	1,5	0,83	0,72	0,4
	62,5	23	20	2	1,5	19	53	49,5	77	82	82	3	5	2	1,5	0,35	1,7	0,9
	67,1	33	27	2	1,5	27	50	50	67	82	84	4	8	2	1,5	0,54	1,1	0,6
	62,9	33	27	2	1,5	22	51	49,5	73	82	82	4	8	2	1,5	0,35	1,7	0,9
45	60,7	20	15,5	1	1	16	52	52,5	67	68	72	4	4,5	1	1	0,4	1,5	0,8
	63	26	20,5	1,5	1,5	18	52	53,5	69	72	77	4	5,5	1,5	1,5	0,37	1,6	0,9
	63,1	19	16	1,5	1,5	17	54	53,5	74	77	80	3	4,5	1,5	1,5	0,4	1,5	0,8
	64,1	23	19	1,5	1,5	19	54	53,5	73	77	80	3	5,5	1,5	1,5	0,4	1,5	0,8
	65,3	32	25	1,5	1,5	21	52	53,5	72	77	81	5	7	1,5	1,5	0,4	1,5	0,8
	73,4	26,5	20	2,5	2,5	32	54	56	71	85	91	3	9	2,5	2,5	0,88	0,68	0,4
	68,7	35	30	2,5	2,5	23	55	56	80	85	89	6	6	2,5	2,5	0,33	1,8	1
	74,7	25	18	2	1,5	31	57	55	79	92	95	4	9	2	1,5	0,83	0,72	0,4
	70,2	25	22	2	1,5	20	59	55	86	92	92	3	5	2	1,5	0,35	1,7	0,9
	76,1 71,1	36 36	30 30	2 2	1,5 1,5	29 24	56 57	55 55	76 82	92 92	94 93	5 4	8	2 2	1,5 1,5	0,54 0,35	1,1 1,7	0,6 0,9


Princip	oal dimens	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation Dimension ser to ISO 355
d	D	Т	С	C_0	P_u	speed	speed		(ABMA)
mm			kN		kN	r/min		kg	
50	72 80 80	15 20 24	41,3 75,1 84,8	53 88 102	5,6 9,65 11,4	7 000 6 300 6 300	8 500 8 000 8 000	0,19 0,38 0,45	32910 2BC ► 32010 X 3CC ► 33010 2CE
	82	21,5	88,9	100	11	6 300	8 000	0,43	JLM 104948 LM 104900 AA/910 AA
	82 85	21,501 26	88,9 106	100 122	11 13,4	6 300 6 000	8 000 7 500	0,46 0,58	JLM 104945/910 LM 104900 > 33110 3CE
	90 90 90	21,75 24,75 28	93,1 101 130	91,5 100 140	10,4 11,4 16	6 000 6 000 6 000	7 500 7 500 7 500	0,54 0,62 0,75	➤ 30210 3DB ➤ 32210 3DC JM 205149/110 M 205100
	90 90 100	28 32 36	130 142 189	140 160 200	16 18,3 22,4	6 000 5 300 5 600	7 500 7 000 6 700	0,75 0,86 1,3	JM 205149/110 A M 205100 ► 33210 3DE ► T2ED 050 2ED
	105 110 110	32 29,25 29,25	134 131 154	137 120 140	16 14,3 16,6	4 800 4 500 5 300	6 300 6 000 6 300	1,25 1,2 1,25	T7FC 050 7FC 31310 7FB 30310 2FB
	110 110	42,25 42,25	196 211	216 212	24,5 24	4 500 4 800	6 000 6 300	1,95 1,85	32310 B 5FD ▶ 32310 2FD
55	80 90 90	17 23 27	51,7 99,4 111	69,5 116 137	7,2 12,9 15,3	6 300 5 600 5 600	7 500 7 000 7 000	0,28 0,56 0,66	➤ 32911 2BC ➤ 32011 X 3CC ➤ 33011 2CE
	95 100 100	30 22,75 26,75	136 111 130	156 106 129	17,6 12 15	5 600 5 300 5 300	6 700 6 700 6 700	0,85 0,7 0,84	▶ 33111 3CE ▶ 30211 3DB ▶ 32211 3DC
	100 110 115	35 39 34	170 220 155	190 232 163	21,6 26 19,3	4 800 5 000 4 300	6 300 6 000 5 600	1,15 1,7 1,6	► 33211 3DE T2ED 055 2ED T7FC 055 7FC
	120 120 120	31,5 31,5 45,5	149 176 233	137 163 260	16,6 19,3 30	4 300 4 800 4 300	5 600 5 600 5 600	1,55 1,55 2,5	► 31311 7FB ► 30311 2FB 32311 B 5FD
	120	45,5	245	250	28,5	4 300	5 600	2,35	► 32311 2FD

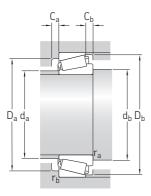

Dime	nsions						Abutn	nent an	d fillet d	limensio	ns					Calcul	ation fac	tors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm							mm									_		
50	62,2	15	12	1	1	13	56	57,5	66	65	69	3	3	1	1	0,35	1,7	0,9
	65,9	20	15,5	1	1	17	57	57,5	72	73	77	4	4,5	1	1	0,43	1,4	0,8
	65,3	24	19	1	1	17	57	57,5	72	73	76	4	5	1	1	0,31	1,9	1,1
	65,1	21,5	17	3,6	1,2	15	57	63	74	75	78	4	4,5	3,6	1,2	0,3	2	1,1
	65,2	27,7	17	3	0,5	15	57	61,5	74	76	78	4	4,5	3	0,5	0,3	2	1,1
	68	26	20	1,5	1,5	20	57	59	74	77	82	4	6	1,5	1,5	0,4	1,5	0,8
	68	20	17	1,5	1,5	19	59	59	79	82	85	3	4,5	1,5	1,5	0,43	1,4	0,8
	68,6	23	19	1,5	1,5	20	58	59	78	82	85	3	5,5	1,5	1,5	0,43	1,4	0,8
	68,8	28	23	3	2,5	20	58	62	78	80	85	5	5	3	2,5	0,33	1,8	1
	68,8	28	23	3	0,8	20	58	62	78	83	85	5	5	3	0,8	0,33	1,8	1
	70,8	32	24,5	1,5	1,5	22	57	59	77	82	87	5	7,5	1,5	1,5	0,4	1,5	0,8
	73,5	35	30	2,5	2,5	24	59	61	84	90	94	6	6	2,5	2,5	0,35	1,7	0,9
	81,3	29	22	3	3	35	60	62	78	94	100	4	10	3	3	0,88	0,68	0,4
	81,5	27	19	2,5	2	33	63	61	87	101	104	4	10	2,5	2	0,83	0,72	0,4
	77,2	27	23	2,5	2	22	66	61	95	101	102	4	6	2,5	2	0,35	1,7	0,9
	83,1 77,7	40 40	33 33	2,5 2,5	2 2	33 27	62 63	61,5 61	83 90	101 101	103 102	5 5	9 9	2,5 2,5	2 2	0,54 0,35	1,1 1,7	0,6 0,9
55	68,8	17	14	1	1	14	62	62,5	73	73	76	3	3	1	1	0,31	1,9	1,1
	73,3	23	17,5	1,5	1,5	19	63	64	81	82	86	4	5,5	1,5	1,5	0,4	1,5	0,8
	73,1	27	21	1,5	1,5	19	64	64	81	82	86	5	6	1,5	1,5	0,31	1,9	1,1
	75,1	30	23	1,5	1,5	22	63	64	83	87	91	5	7	1,5	1,5	0,37	1,6	0,9
	74,7	21	18	2	1,5	20	64	65	88	92	94	4	4,5	2	1,5	0,4	1,5	0,8
	75,3	25	21	2	1,5	22	64	65	87	92	95	4	5,5	2	1,5	0,4	1,5	0,8
	78,1	35	27	2	1,5	24	63	65	85	92	96	6	8	2	1,5	0,4	1,5	0,8
	80,9	39	32	2,5	2,5	26	65	66	93	100	104	7	7	2,5	2,5	0,35	1,7	0,9
	89,5	31	23,5	3	3	38	66	67,5	86	104	109	4	10,5	3	3	0,88	0,68	0,4
	88,4	29	21	2,5	2	37	68	66,5	94	111	113	4	10,5	2,5	2	0,83	0,72	0,4
	84	29	25	2,5	2	23	72	66,5	104	110	111	4	6,5	2,5	2	0,35	1,7	0,9
	90,5	43	35	2,5	2	36	67	66,5	91	111	112	5	10,5	2,5	2	0,54	1,1	0,6
	84,6	43	35	2,5	2	29	68	66,5	99	110	111	5	10,5	2,5	2	0,35	1,7	0,9


Princi	pal dimens	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rati Reference speed	ngs Limiting speed	Mass	Designation	Dimension series to ISO 355 (ABMA)
d	D	Т	С	C_0	P_u	speeu	speed			(ADMA)
mm			kN		kN	r/min		kg	_	_
60	85	17	53,2	75	7,8	6 000	7 000	0,3	32912	2BC
	95	23	101	122	13,4	5 300	6 700	0,59	32012 X	4CC
	95	24	103	132	15	5 300	6 700	0,62	JLM 508748/710	LM 508700
	95 100 110	27 30 23,75	113 144 120	143 170 114	16 19,6 13,2	5 300 5 300 5 000	6 700 6 300 6 000	0,7 0,92 0,88	→ 33012→ 33112→ 30212	2CE 3CE 3EB
	110	29,75	155	160	18,6	5 000	6 000	1,15	► 32212	3EC
	110	38	207	236	26,5	4 500	6 000	1,55	► 33212	3EE
	115	40	239	260	30	4 800	5 600	1,85	► T2EE 060	2EE
	125 130 130	37 33,5 33,5	190 177 208	204 166 196	24,5 20,4 23,6	4 000 3 800 4 300	5 300 5 300 5 300	2,05 1,9 1,95	T7FC 060 ► 31312 ► 30312	7FC 7FB 2FB
	130	48,5	271	305	35,5	3 800	5 000	3,1	32312 B	5FD
	130	48,5	282	290	34	4 000	5 300	2,9	▶ 32312	2FD
65	90	17	54,7	80	8,15	5 600	6 700	0,32	32913	2BC
	100	23	103	127	14	5 000	6 000	0,63	▶ 32013 X	4CC
	100	27	119	153	17,3	5 000	6 300	0,75	▶ 33013	2CE
	105	24	122	137	16	5 000	6 000	0,76	JLM 710949/910	LM 710900
	110	28	152	183	21,2	4 800	5 600	1,05	JM 511946/910	M 511900
	110	31	170	193	22,4	4 800	6 000	1,15	► T2DD 065	2DD
	110 120 120	34 24,75 32,75	175 141 186	208 134 193	24 16,3 22,8	4 800 4 500 4 500	5 600 5 600 5 600	1,3 1,1 1,5	→ 33113→ 30213→ 32213	3DE 3EB 3EC
	120	41	239	270	30,5	4 000	5 300	2	➤ 33213	3EE
	130	37	194	216	25,5	3 800	5 000	2,2	T7FC 065	7FC
	140	36	203	193	23,6	3 600	4 800	2,35	31313	7GB
	140	36	240	228	27,5	4 000	4 800	2,4	➤ 30313	2GB
	140	51	305	345	40	3 600	4 800	3,75	32313 B	5GD
	140	51	323	335	40	3 600	4 800	3,5	➤ 32313	2GD

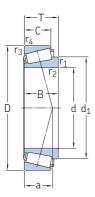
Dime	nsions						Abutn	nent an	d fillet d	limensio	ns					Calcul	ation fact	tors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm							mm									_		
60	73,8	17	14	1	1	15	67	68	78	78	81	3	3	1	1	0,33	1,8	1
	77,8	23	17,5	1,5	1,5	20	67	69	85	87	91	4	5,5	1,5	1,5	0,43	1,4	0,8
	78,5	24	19	5	2,5	20	68	76	84	85	91	4	5	5	2,5	0,4	1,5	0,8
	77,2	27	21	1,5	1,5	19	67	69	85	87	90	5	6	1,5	1,5	0,33	1,8	1
	80,5	30	23	1,5	1,5	23	68	69	88	92	96	5	7	1,5	1,5	0,4	1,5	0,8
	80,9	22	19	2	1,5	21	70	70	96	101	103	3	4,5	2	1,5	0,4	1,5	0,8
	81,9	28	24	2	1,5	24	69	70,5	95	102	104	4	5,5	2	1,5	0,4	1,5	0,8
	85,3	38	29	2	1,5	27	69	70,5	93	102	105	6	9	2	1,5	0,4	1,5	0,8
	85,6	39	33	2,5	2,5	27	70	71,5	98	104	109	6	7	2,5	2,5	0,33	1,8	1
	97,2	33,5	26	3	3	40	72	72,5	94	113	119	4	11	3	3	0,83	0,72	0,4
	96	31	22	3	2,5	39	74	72,5	103	119	123	5	11,5	3	2,5	0,83	0,72	0,4
	91,8	31	26	3	2,5	25	77	72,5	112	119	120	5	7,5	3	2,5	0,35	1,7	0,9
	98,6 91,9	46 46	37 37	3	2,5 2,5	38 31	73 74	72,5 72,5	99 107	119 119	122 120	6 6	11,5 11,5	3	2,5 2,5	0,54 0,35	1,1 1,7	0,6 0,9
55	78,8	17	14	1	1	16	71	73	83	83	86	3	3	1	1	0,35	1,7	0,9
	83,3	23	17,5	1,5	1,5	22	73	74	90	92	97	4	5,5	1,5	1,5	0,46	1,3	0,7
	82,6	27	21	1,5	1,5	21	72	74	89	92	96	5	6	1,5	1,5	0,35	1,7	0,9
	84,1	23	18,5	3	1	23	73	77,5	93	97	101	4	5,5	3	1	0,46	1,3	0,7
	87,9	28	22,5	3	2,5	23	75	77,5	96	99	104	5	5,5	3	2,5	0,4	1,5	0,8
	85,7	31	25	2	2	23	74	75,5	97	100	105	5	6	2	2	0,33	1,8	1
	88,3	34	26,5	1,5	1,5	25	74	74,5	96	101	106	6	7,5	1,5	1,5	0,4	1,5	0,8
	89	23	20	2	1,5	23	78	75,5	106	111	113	4	4,5	2	1,5	0,4	1,5	0,8
	90,3	31	27	2	1,5	26	76	75,5	104	111	115	4	5,5	2	1,5	0,4	1,5	0,8
	92,5	41	32	2	1,5	29	75	75,5	102	111	115	6	9	2	1,5	0,4	1,5	0,8
	102	33,5	26	3	3	44	77	78	98	118	124	4	11	3	3	0,88	0,68	0,4
	103	33	23	3	2,5	42	80	78	111	129	132	5	13	3	2,5	0,83	0,72	0,4
	98,7	33	28	3	2,5	27	84	78	122	129	130	5	8	3	2,5	0,35	1,7	0,9
	105	48	39	3	2,5	41	79	78	107	129	131	6	12	3	2,5	0,54	1,1	0,6
	99,2	48	39	3	2,5	33	81	78	117	129	130	6	12	3	2,5	0,35	1,7	0,9



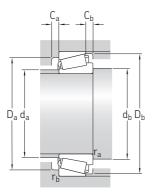
Princi	oal dimens	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rati	Limiting	Mass	Designation	Dimension series to ISO 355
d	D	Т	С	C_0	P_u	speed	speed			(ABMA)
mm		,	kN		kN	r/min		kg	_	_
70	100	20	85,8	112	12,7	5 000	6 000	0,49	32914	2BC
	110	25	125	153	17,3	4 500	5 600	0,85	► 32014 X	4CC
	110	31	159	196	22,8	4 800	5 600	1,05	► 33014	2CE
	120 125 125	37 26,25 33,25	211 155 195	250 156 208	28,5 18 24,5	4 300 4 300 4 300	5 300 5 300 5 300	1,7 1,25 1,6	331143021432214	3DE 3EB 3EC
	125	41	247	285	32,5	3 800	5 000	2,1	► 33214	3EE
	130	43	289	325	38	4 000	5 000	2,5	T2ED 070	2ED
	140	39	219	240	27,5	3 400	4 500	2,65	T7FC 070	7FC
	150	38	229	220	27	3 400	4 500	2,85	31314	7GB
	150	38	271	260	31	3 800	4 500	2,95	► 30314	2GB
	150	54	346	400	45	3 400	4 300	4,55	32314 B	5GD
	150	54	363	380	45	3 400	4 500	4,3	► 32314	2GD
75	105	20	86,8	116	13,2	4 800	5 600	0,51	32915	2BC
	115	25	130	163	18,6	4 300	5 300	0,91	► 32015 X	4CC
	115	31	167	228	26	4 300	5 300	1,2	► 33015	2CE
	120	31	170	216	25	4 300	5 300	1,3	JM 714249/210	M 714200
	125	37	216	265	30	4 000	5 000	1,8	► 33115	3DE
	130	27,25	171	176	20,4	4 000	5 000	1,4	► 30215	4DB
	130	33,25	197	212	24,5	4 000	5 000	1,65	► 32215	4DC
	130	41	255	300	34	3 600	4 800	2,2	► 33215	3DE
	145	51	380	450	51	3 600	4 500	3,9	JH 415647/610	H 415600
	145	52	364	450	50	3 600	4 500	3,95	T3FE 075	3FE
	150	42	249	280	31	3 200	4 300	3,25	T7FC 075	7FC
	160	40	255	245	29	3 200	4 300	3,4	31315	7GB
	160	40	301	290	34	3 400	4 300	3,5	➤ 30315	2GB
	160	58	410	475	53	3 200	4 000	5,55	32315 B	5GD
	160	58	416	440	51	3 200	4 300	5,2	➤ 32315	2GD

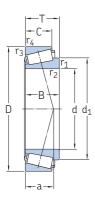


Dime	nsions						Abutn	nent an	d fillet d	limensio	ns					Calcul	ation fac	tors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm							mm									-		
70	84,7	20	16	1	1	17	77	78	93	92	96	4	4	1	1	0,31	1,9	1,1
	89,9	25	19	1,5	1,5	23	78	79,5	98	101	105	5	6	1,5	1,5	0,43	1,4	0,8
	88,9	31	25,5	1,5	1,5	22	78	79,5	99	101	105	5	5,5	1,5	1,5	0,28	2,1	1,1
	95,3	37	29	2	1,5	27	80	80,5	104	111	115	6	8	2	1,5	0,37	1,6	0,9
	94	24	21	2	1,5	25	82	80,5	110	116	118	4	5	2	1,5	0,43	1,4	0,8
	95	31	27	2	1,5	28	81	80,5	108	116	119	4	6	2	1,5	0,43	1,4	0,8
	97,4	41	32	2	1,5	30	80	80,5	107	116	120	6	9	2	1,5	0,4	1,5	0,8
	98,1	42	35	3	2,5	30	81	82,5	111	119	123	7	8	3	2,5	0,33	1,8	1
	110	35,5	27	3	3	46	82	83	106	128	133	5	12	3	3	0,88	0,68	0,4
	111	35	25	3	2,5	45	85	83	118	139	141	5	13	3	2,5	0,83	0,72	0,4
	105	35	30	3	2,5	29	90	83	130	139	140	5	8	3	2,5	0,35	1,7	0,9
	113	51	42	3	2,5	43	85	83	115	139	141	7	12	3	2,5	0,54	1,1	0,6
	106	51	42	3	2,5	35	87	83	125	139	140	6	12	3	2,5	0,35	1,7	0,9
75	89,7	20	16	1	1	18	82	83,5	98	97	101	4	4	1	1	0,33	1,8	1
	95,1	25	19	1,5	1,5	24	83	84,5	103	106	110	5	6	1,5	1,5	0,46	1,3	0,7
	95	31	25,5	1,5	1,5	23	84	84,5	104	106	110	6	5,5	1,5	1,5	0,3	2	1,1
	98,1	29,5	25	3	2,5	28	84	87,5	104	109	115	5	6	3	2,5	0,44	1,35	0,8
	100	37	29	2	1,5	28	84	85,5	109	116	120	6	8	2	1,5	0,4	1,5	0,8
	99,8	25	22	2	1,5	26	87	85,5	115	121	124	4	5	2	1,5	0,43	1,4	0,8
	100	31	27	2	1,5	29	85	85,5	114	121	125	4	6	2	1,5	0,43	1,4	0,8
	102	41	31	2	1,5	31	84	86	111	121	125	6	10	2	1,5	0,43	1,4	0,8
	111	51	42	3	2,5	35	89	88	123	134	139	9	9	3	2,5	0,37	1,6	0,9
	111	51	43	5	3	39	88	92	117	133	138	7	9	5	3	0,43	1,4	0,8
	116	38	29	3	3	50	88	88	114	138	143	5	13	3	3	0,88	0,68	0,4
	118	37	26	3	2,5	48	91	88	127	149	151	5	14	3	2,5	0,83	0,72	0,4
	112	37	31	3	2,5	30	96	88	139	149	149	5	9	3	2,5	0,35	1,7	0,9
	119	55	45	3	2,5	46	89	88	122	149	151	7	13	3	2,5	0,54	1,1	0,6
	113	55	45	3	2,5	37	92	88	133	149	149	7	13	3	2,5	0,35	1,7	0,9


703

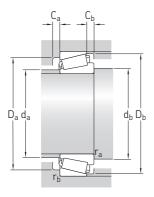
Princi	pal dimens	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rati Reference speed	ngs Limiting speed	Mass	Designation	Dimension series to ISO 355 (ABMA)
d	D	Т	С	C_0	P_u	speeu	speed			(ADIVIA)
mm			kN		kN	r/min		kg	_	_
80	110	20	89,7	125	14	4 500	5 600	0,54	32916	2BC
	125	29	168	216	24,5	4 000	5 000	1,3	► 32016 X	3CC
	125	36	207	285	32	4 000	5 000	1,65	► 33016	2CE
	130	35	216	275	31	4 000	4 800	1,75	JM 515649/610	M 515600
	130	37	221	280	31	4 000	4 800	1,85	➤ 33116	3DE
	140	28,25	184	183	21,2	3 800	4 800	1,6	➤ 30216	3EB
	140	35,25	228	245	28,5	3 800	4 500	2,05	➤ 32216	3EC
	140	46	308	375	41,5	3 400	4 500	2,9	➤ 33216	3EE
	160	45	280	315	35,5	3 000	4 000	4	T7FC 080	7FC
	170	42,5	276	265	30,5	3 000	4 000	4,05	31316	7GB
	170	42,5	333	320	36,5	3 200	4 000	4,15	► 30316	2GB
	170	61,5	440	520	57	3 200	3 800	6,65	32316 B	5GD
	170	61,5	404	500	56	3 200	4 000	6,2	► 32316	2GD
85	120	23	115	156	17,6	4 000	5 000	0,78	32917	2CC
	130	29	171	224	25,5	3 800	4 800	1,35	► 32017 X	4CC
	130	30	172	228	26	3 800	4 800	1,4	JM 716649/610	M 716600
	130 140 150	36 41 30,5	223 268 216	310 340 220	34,5 38 25,5	3 800 3 600 3 600	4 800 4 500 4 300	1,75 2,45 2,05	330173311730217	2CE 3DE 3EB
	150	38,5	263	285	33,5	3 600	4 300	2,6	➤ 32217	3EC
	150	49	353	430	48	3 200	4 300	3,55	➤ 33217	3EE
	170	48	333	380	43	2 800	3 800	4,85	T7FC 085	7FC
	180	44,5	297	285	32	2 800	3 800	4,6	► 31317	7GB
	180	44,5	372	365	40,5	3 000	3 800	4,85	► 30317	2GB
	180	63,5	417	560	62	3 000	3 600	7,6	32317 B	5GD
	180	63,5	435	530	60	3 000	3 800	7,1	▶ 32317	2GD


Dime	nsions						Abutn	nent an	d fillet d	limensio	ns					Calcul	ation fac	tors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
nm							mm									_		
30	94,8	20	16	1	1	19	86	88,5	102	102	106	4	4	1	1	0,35	1,7	0,9
	103	29	22	1,5	1,5	26	90	90	112	116	120	6	7	1,5	1,5	0,43	1,4	0,8
	102	36	29,5	1,5	1,5	25	90	89,5	112	116	119	6	6,5	1,5	1,5	0,28	2,1	1,1
	104	34	28,5	3	2,5	28	90	93	114	119	124	6	6,5	3	2,5	0,4	1,5	0,8
	105	37	29	2	1,5	30	89	91	114	121	126	6	8	2	1,5	0,43	1,4	0,8
	105	26	22	2,5	2	27	92	92	124	130	132	4	6	2,5	2	0,43	1,4	0,8
	106	33	28	2,5	2	30	91	92	122	130	134	5	7	2,5	2	0,43	1,4	0,8
	110	46	35	2,5	2	34	90	92	119	130	135	7	11	2,5	2	0,43	1,4	0,8
	125	41	31	3	3	53	94	93,5	121	148	152	5	14	3	3	0,88	0,68	0,4
	125	39	27	3	2,5	51	97	93,5	134	159	159	5	15,5	3	2,5	0,83	0,72	0,4
	122	39	33	3	2,5	33	103	93,5	148	158	159	5	9,5	3	2,5	0,35	1,7	0,9
	128	58	48	3	2,5	49	97	93,5	130	159	160	7	13,5	3	2,5	0,54	1,1	0,6
	120	58	48	3	2,5	40	98	93,5	142	159	159	7	13,5	3	2,5	0,35	1,7	0,9
85	101	23	18	1,5	1,5	21	93	94,5	111	111	115	4	5	1,5	1,5	0,33	1,8	1
	108	29	22	1,5	1,5	27	95	95	117	121	125	6	7	1,5	1,5	0,44	1,35	0,8
	107	29	24	3	2,5	29	94	98	115	119	125	5	6	3	2,5	0,44	1,35	0,8
	107	36	29,5	1,5	1,5	26	95	95	118	121	125	6	6,5	1,5	1,5	0,3	2	1,1
	112	41	32	2,5	2	32	95	97	122	130	135	7	9	2,5	2	0,4	1,5	0,8
	112	28	24	2,5	2	29	97	97	132	140	141	5	6,5	2,5	2	0,43	1,4	0,8
	113	36	30	2,5	2	33	97	97	130	140	142	5	8,5	2,5	2	0,43	1,4	0,8
	117	49	37	2,5	2	36	96	97	128	140	144	7	12	2,5	2	0,43	1,4	0,8
	132	45	33	4	4	53	100	100	131	156	161	6	15	4	4	0,79	0,76	0,4
	131	41	28	4	3	53	104	100	143	167	169	5	16,5	4	3	0,83	0,72	0,4
	126	41	34	4	3	34	108	100	156	167	167	5	10,5	4	3	0,35	1,7	0,9
	135	60	49	4	3	51	102	100	138	168	169	7	14,5	4	3	0,54	1,1	0,6
	127	60	49	4	3	41	103	100	150	167	167	7	14,5	4	3	0,35	1,7	0,9

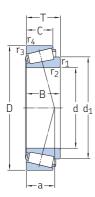

Princip	oal dimens	sions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designation	Dimension series to ISO 355
d	D	Т	С	C_0	P_{u}	speed	speed			(ABMA)
mm			kN		kN	r/min		kg	_	
90	125	23	119	166	18,3	4 000	4 800	0,83	32918	2CC
	140	32	208	270	31	3 600	4 300	1,75	► 32018 X	3CC
	140	39	266	355	39	3 600	4 500	2,2	► 33018	2CE
	145	35	246	305	33,5	3 600	4 300	2,15	JM 718149 A/11	0 M 718100
	145	35	246	305	33,5	3 600	4 300	2,15	JM 718149/110	M 718100
	150	45	310	390	43	3 400	4 300	3,1	► 33118	3DE
	160	32,5	240	245	28,5	3 400	4 000	2,5	➤ 30218	3FB
	160	42,5	309	340	38	3 400	4 000	3,35	➤ 32218	3FC
	160	55	415	520	57	3 000	4 000	4,6	➤ 33218	3FE
	190 190 190	46,5 46,5 67,5	283 353 487	315 400 610	35,5 44 65,5	2 400 2 600 2 600	3 400 3 600 3 600	5,4 5,65 8,4	313183031832318	7GB 2GB 2GD
	190	67,5	540	630	69,5	2 800	3 400	8,95	32318 B	5GD
95	130	23	121	173	18,6	3 800	4 500	0,86	32919	2CC
	145	32	206	270	30,5	3 400	4 300	1,85	► 32019 X	4CC
	145	39	272	375	40,5	3 400	4 300	2,3	► 33019	2CE
	170	34,5	266	275	31,5	3 200	3 800	3	► 30219	3FB
	170	45,5	348	390	43	3 200	3 800	4,1	► 32219	3FC
	170	58	460	560	62	2 800	3 800	5,45	► 33219	3FE
	200	49,5	314	355	39	2 400	3 400	6,3	► 31319	7GB
	200	49,5	353	390	42,5	2 600	3 400	6,45	30319	2GB
	200	71,5	535	670	72	2 400	3 400	9,8	► 32319	2GD
100	140	25	147	204	22,4	3 400	4 300	1,15	► 32920	2CC
	145	24	154	190	20,8	3 400	4 300	1,2	► T4CB 100	4CB
	150	32	209	280	31	3 200	4 000	1,9	32020 X	4CC
	150	39	278	390	41,5	3 400	4 000	2,4	► 33020	2CE
	165	47	383	480	52	3 200	3 800	3,9	► T2EE 100	2EE
	180	37	304	320	36	3 000	3 600	3,65	► 30220	3FB
	180	49	390	440	48	3 000	3 600	4,95	► 32220	3FC
	180	63	532	655	71	2 600	3 600	6,75	► 33220	3FE
	215	51,5	431	490	53	2 400	3 200	7,95	► 30320	2GB
	215	56,5	399	465	51	2 200	3 000	8,6	► 31320 X	7GB
	215	77,5	617	780	83	2 200	3 200	12,5	► 32320	2GD

SKF Explorer bearing

Popular item

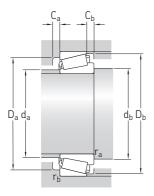

Dime	nsions						Abutn	nent an	d fillet d	limensio	ns					Calcul	ation fac	ors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm							mm									-		
90	106	23	18	1,5	1,5	22	98	100	116	116	120	4	5	1,5	1,5	0,35	1,7	0,9
	115	32	24	2	1,5	29	100	101	125	131	134	6	8	2	1,5	0,43	1,4	0,8
	114	39	32,5	2	1,5	27	101	101	127	131	135	7	6,5	2	1,5	0,27	2,2	1,3
	117	34	27	6	2,5	32	100	109	127	134	139	6	8	6	2,5	0,44	1,35	0,8
	117	34	27	3	2,5	32	100	103	127	134	139	6	8	3	2,5	0,44	1,35	0,8
	120	45	35	2,5	2	34	101	102	130	140	144	7	10	2,5	2	0,4	1,5	0,8
	120	30	26	2,5	2	31	104	102	140	150	150	5	6,5	2,5	2	0,43	1,4	0,8
	121	40	34	2,5	2	35	103	102	138	150	152	5	8,5	2,5	2	0,43	1,4	0,8
	125	55	42	2,5	2	40	101	102	135	150	154	8	13	2,5	2	0,43	1,4	0,8
	138	43	30	4	3	57	110	105	151	177	179	5	16,5	4	3	0,83	0,72	0,4
	133	43	36	4	3	36	114	105	165	177	176	6	10,5	4	3	0,35	1,7	0,9
	133	64	53	4	3	44	109	105	157	177	177	7	14,5	4	3	0,35	1,7	0,9
	141	64	53	4	3	55	107	105	145	177	179	7	14,5	4	3	0,54	1,1	0,6
95	112	23	18	1,5	1,5	23	103	105	121	121	125	4	5	1,5	1,5	0,35	1,7	0,9
	120	32	24	2	1,5	31	106	106	130	136	140	6	8	2	1,5	0,44	1,35	0,8
	118	39	32,5	2	1,5	28	105	106	131	136	139	7	6,5	2	1,5	0,28	2,1	1,1
	126	32	27	3	2,5	32	110	108	149	158	159	5	7,5	3	2,5	0,43	1,4	0,8
	128	43	37	3	2,5	38	109	108	145	158	161	5	8,5	3	2,5	0,43	1,4	0,8
	132	58	44	3	2,5	42	107	108	144	158	163	9	14	3	2,5	0,4	1,5	0,8
	145	45	32	4	3	59	114	111	157	187	187	5	17,5	4	3	0,83	0,72	0,4
	139	45	38	4	3	38	119	111	172	187	184	7	11,5	4	3	0,35	1,7	0,9
	141	67	55	4	3	47	115	111	166	187	186	8	16,5	4	3	0,35	1,7	0,9
100	119	25	20	1,5	1,5	23	110	110	131	131	135	5	5	1,5	1,5	0,33	1,8	1
	121	22,5	17,5	3	3	29	109	113	133	133	140	4	6,5	3	3	0,48	1,25	0,7
	125	32	24	2	1,5	32	110	111	134	141	144	6	8	2	1,5	0,46	1,3	0,7
	122	39	32,5	2	1,5	28	109	111	135	141	143	7	6,5	2	1,5	0,28	2,1	1,1
	129	46	39	3	3	35	111	113	145	152	157	7	8	3	3	0,31	1,9	1,1
	134	34	29	3	2,5	35	116	113	157	168	168	5	8	3	2,5	0,43	1,4	0,8
	136	46	39	3	2,5	40	115	113	154	168	171	5	10	3	2,5	0,43	1,4	0,8
	139	63	48	3	2,5	44	112	113	151	168	172	10	15	3	2,5	0,4	1,5	0,8
	149	47	39	4	3	40	128	116	184	202	197	6	12,5	4	3	0,35	1,7	0,9
	158 152	51 73	35 60	4 4	3	64 51	121 123	116 116	168 177	202 202	202 200	7 8	21,5 17,5	4 4	3	0,83 0,35	0,72 1,7	0,4 0,9

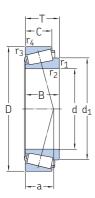
Princip	al dimens	sions	Basic loa dynamic	n d ratings static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designation	Dimension series to ISO 355 (ABMA)
d	D	Т	С	C_0	P_u	speed	speed			(ADIVIA)
mm			kN		kN	r/min		kg	_	_
105	145	25	149	212	22,8	3 400	4 000	1,2	32921	2CC
	160	35	248	335	37,5	3 200	3 800	2,45	► 32021 X	4DC
	160	43	303	430	45,5	3 200	3 800	3	► 33021	2DE
	190	39	333	355	40	2 800	3 400	4,3	► 30221	3FB
	190	53	443	510	55	2 800	3 400	6	► 32221	3FC
	225	53,5	462	530	57	2 200	3 000	9,1	30321	2GB
	225	58	429	500	53	2 000	3 000	9,65	31321 X	7GB
	225	81,5	645	815	85	2 000	3 000	14	▶ 32321	2GD
110	150	25	154	224	24	3 200	4 000	1,25	32922	2CC
	165	35	256	355	37,5	3 000	3 600	2,55	JM 822049/010	M 822000
	170	38	288	390	40	3 000	3 600	3,05	► 32022 X	4DC
	170	47	343	500	53	3 000	3 600	3,85	► 33022	2DE
	180	56	455	630	65,5	2 800	3 400	5,5	33122	3EE
	200	41	327	405	43	2 600	3 200	5,05	► 30222	3FB
	200	56	491	570	61	2 600	3 200	7,1	► 32222	3FC
	240	54,5	507	585	62	2 200	2 800	11	30322	2GB
	240	63	491	585	61	1 900	2 800	12	► 31322 X	7GB
	240	84,5	675	830	86,5	1 900	2 800	16,5	▶ 32322	2GD
120	165	29	204	305	32	3 000	3 600	1,8	➤ 32924	2CC
	170	27	195	250	26,5	2 800	3 600	1,75	➤ T4CB 120	4CB
	180	38	299	415	42,5	2 800	3 400	3,3	➤ 32024 X	4DC
	180	48	356	540	56	2 800	3 400	4,2	► 33024	2DE
	215	43,5	417	465	49	2 400	3 000	6,15	► 30224	4FB
	215	61,5	573	695	72	2 400	3 000	9,05	► 32224	4FD
	260	59,5	601	710	73,5	2 000	2 600	13,5	► 30324	2GB
	260	68	578	695	72	1 700	2 400	15,5	► 31324 X	7GB
	260	90,5	855	1 120	110	1 800	2 600	21,5	► 32324	2GD
130	180	32	245	365	38	2 600	3 200	2,4	► 32926	2CC
	200	45	388	540	55	2 400	3 000	4,95	► 32026 X	4EC
	200	55	470	680	69,5	2 400	3 000	6,15	33026	2EE
	230	43,75	451	490	51	2 200	2 800	6,85	► 30226	4FB
	230	67,75	590	830	85	2 000	2 800	11	► 32226	4FD
	280	63,75	679	800	81,5	1 800	2 400	17	► 30326	2GB
	280	72	647	780	80	1 600	2 400	18,5	► 31326 X	7GB
	280	98,75	1 019	1 340	132	1 600	2 400	27,5	32326	2GD


SKF Explorer bearing

Popular item

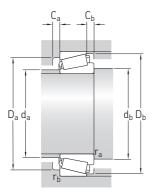
Dime	nsions						Abutn	nent an	d fillet d	imensio	ns					Calcul	ation fact	tors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm							mm									_		
105	124	25	20	1,5	1,5	25	114	115	135	135	140	5	5	1,5	1,5	0,35	1,7	0,9
	132	35	26	2,5	2	34	116	117	143	149	154	6	9	2,5	2	0,44	1,35	0,8
	131	43	34	2,5	2	30	117	117	145	149	153	7	9	2,5	2	0,28	2,1	1,1
	143	36	30	3	2,5	37	123	118	165	178	177	5	9	3	2,5	0,43	1,4	0,8
	143	50	43	3	2,5	44	121	119	161	178	180	6	10	3	2,5	0,43	1,4	0,8
	155	49	41	4	3	41	133	121	193	212	206	7	12,5	4	3	0,35	1,7	0,9
	165 158	53 77	36 63	4 4	3	67 53	127 129	121 121	176 185	212 212	211 209	7 9	22 18,5	4 4	3	0,83 0,35	0,72 1,7	0,4 0,9
110	129	25	20	1,5	1,5	26	119	120	140	140	145	5	5	1,5	1,5	0,35	1,7	0,9
	137	35	26,5	3	2,5	37	119	123	145	153	158	6	8,5	3	2,5	0,5	1,2	0,7
	140	38	29	2,5	2	36	123	122	152	159	163	7	9	2,5	2	0,43	1,4	0,8
	139	47	37	2,5	2	33	123	122	152	159	161	7	10	2,5	2	0,28	2,1	1,1
	146	56	43	2,5	2	43	122	123	155	169	174	9	13	2,5	2	0,43	1,4	0,8
	149	38	32	3	2,5	39	129	124	174	188	187	6	9	3	2,5	0,43	1,4	0,8
	151	53	46	3	2,5	46	127	124	170	188	190	6	10	3	2,5	0,43	1,4	0,8
	166	50	42	4	3	42	142	126	206	226	220	8	12,5	4	3	0,35	1,7	0,9
	176	57	38	4	3	72	136	126	188	227	224	8	25	4	3	0,83	0,72	0,4
	169	80	65	4	3	55	138	126	198	227	222	9	19,5	4	3	0,35	1,7	0,9
120	142	29	23	1,5	1,5	28	130	130	154	155	160	5	6	1,5	1,5	0,35	1,7	0,9
	143	25	19,5	3	3	34	131	133	157	157	164	5	7,5	3	3	0,48	1,25	0,7
	150	38	29	2,5	2	38	132	133	161	169	173	7	9	2,5	2	0,46	1,3	0,7
	149	48	38	2,5	2	36	132	133	160	169	171	6	10	2,5	2	0,3	2	1,1
	161	40	34	3	2,5	42	141	134	187	203	201	6	9,5	3	2,5	0,43	1,4	0,8
	164	58	50	3	2,5	51	137	134	181	203	204	7	11,5	3	2,5	0,43	1,4	0,8
	178	55	46	4	3	47	153	136	221	246	237	8	13,5	4	3	0,35	1,7	0,9
	191	62	42	4	3	78	146	136	203	246	244	9	26	4	3	0,83	0,72	0,4
	181	86	69	4	3	59	148	136	213	246	239	10	21,5	4	3	0,35	1,7	0,9
130	153	32	25	2	1,5	31	141	142	167	170	173	6	7	2	1,5	0,33	1,8	1
	165	45	34	2,5	2	42	144	143	178	189	192	7	11	2,5	2	0,43	1,4	0,8
	165	55	43	2,5	2	42	144	143	178	189	192	8	12	2,5	2	0,35	1,7	0,9
	173	40	34	4	3	44	152	146	203	216	217	6	9,5	4	3	0,43	1,4	0,8
	176	64	54	4	3	55	146	146	193	216	219	7	13,5	4	3	0,43	1,4	0,8
	192	58	49	5	4	50	165	149	239	264	255	8	14,5	5	4	0,35	1,7	0,9
	204	66	44	5	4	83	157	149	218	264	261	8	28	5	4	0,83	0,72	0,4
	196	93	78	5	5	65	160	149	230	262	260	10	20,5	5	5	0,35	1,7	0,9


8.1 Metric single row tapered roller bearings d 140 – 180 mm

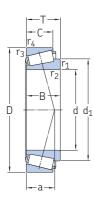

Princip	al dimens	sions	Basic loa dynamic	i d ratings static	Fatigue load limit	Speed rat i Reference speed		Mass	Designation	Dimension series to ISO 355 (ABMA)
d	D	Т	С	C_0	P_u	Specu	эрсси			(ADMA)
mm			kN	,	kN	r/min		kg	_	_
140	190	32	252	390	40	2 600	3 000	2,55	► 32928	2CC
	195	29	241	325	33,5	2 400	3 000	2,4	► T4CB 140	4CB
	210	45	404	585	58,5	2 400	2 800	5,25	► 32028 X	4DC
	250	45,75	451	570	58,5	1 900	2 600	8,7	► 30228	4FB
	250	71,75	691	1 000	100	1 900	2 600	14	► 32228	4FD
	300	67,75	787	950	93	1 700	2 200	20,5	30328	2GB
	300	77	737	900	90	1 500	2 200	22,5	► 31328 X	7GB
	300	107,75	1 220	1 660	156	1 600	2 200	34,5	32328	2GD
150	210	32	287	390	40	2 200	2 800	3,1	► T4DB 150	4DB
	210	38	346	530	52	2 200	2 800	3,95	32930	2DC
	225	48	456	655	65,5	2 200	2 600	6,4	► 32030 X	4DC
	225	59	487	865	85	2 200	2 600	8,05	33030	2EE
	270	49	455	560	57	1 800	2 400	10,5	30230	4GB
	270	77	782	1 140	112	1 700	2 400	18	▶ 32230	4GD
	320	72	879	1 060	104	1 600	2 000	25	► 30330	2GB
	320	82	832	1 020	100	1 400	2 000	27	► 31330 X	7GB
160	220	32	257	415	41,5	2 200	2 600	3,25	► T4DB 160	4DB
	220	38	349	540	53	2 200	2 600	4,2	32932	2DC
	240	51	532	780	76,5	2 000	2 400	7,8	► 32032 X	4EC
	245 290 290	61 52 84	649 566 934	980 735 1 400	96,5 72 132	2 000 1 600 1 600	2 400 2 200 2 200	10,5 13 23	T4EE 160 ► 30232 ► 32232	4EE 4GB 4GD
	340	75	970	1 180	114	1 500	2 000	29	▶ 30332	2GB
170	230	32	307	440	43	2 000	2 600	3,45	► T4DB 170	4DB
	230	38	351	585	55	2 000	2 400	4,5	► 32934	3DC
	260	57	625	915	88	1 900	2 200	10,5	► 32034 X	4EC
	310	57	657	865	83	1 500	2 000	16,5	► 30234	4GB
	310	91	1 075	1 630	150	1 500	2 000	28,5	► 32234	4GD
	360	80	1 103	1 340	129	1 400	1 800	34,5	30334	2GB
180	240	32	309	450	44	2 000	2 400	3,65	T4DB 180	4DB
	250	45	435	735	68	1 900	2 200	6,65	▶ 32936	4DC
	280	64	793	1 160	110	1 700	2 200	14	▶ 32036 X	3FD
	320	57	629	815	80	1 500	2 000	17	► 30236	4GB
	320	91	1 069	1 630	150	1 400	1 900	29,5	► 32236	4GD

SKF Explorer bearing

Popular item

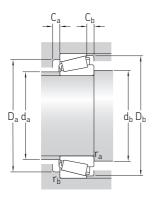

Dime	nsions						Abutn	nent an	d fillet d	limensio	ons					Calcula	ation fact	tors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm							mm									-		
140	164	32	25	2	1,5	33	151	152	177	180	184	6	7	2	1,5	0,35	1,7	0,9
	165	27	21	3	3	40	150	154	180	182	189	6	8	3	3	0,5	1,2	0,7
	175	45	34	2,5	2	45	153	153	187	199	202	8	11	2,5	2	0,46	1,3	0,7
	187	42	36	4	3	47	164	156	219	236	234	8	9,5	4	3	0,43	1,4	0,8
	191	68	58	4	3	59	159	156	210	236	238	8	13,5	4	3	0,43	1,4	0,8
	205	62	53	5	4	54	176	159	255	284	273	8	14,5	5	4	0,35	1,7	0,9
	220 212	70 102	47 85	5 5	4 4	90 71	169 172	159 159	235 247	284 284	280 280	9 12	30 22,5	5 5	4	0,83 0,35	0,72 1,7	0,4 0,9
150	177	30	23	3	3	41	162	164	194	196	203	5	9	3	3	0,46	1,3	0,7
	177	38	30	2,5	2	35	163	163	194	198	202	7	8	2,5	2	0,33	1,8	1
	187	48	36	3	2,5	48	165	164	200	212	216	8	12	3	2,5	0,46	1,3	0,7
	188	59	46	3	2,5	48	165	164	200	212	217	8	13	3	2,5	0,37	1,6	0,9
	200	45	38	4	3	50	176	167	234	256	250	9	11	4	3	0,43	1,4	0,8
	205	73	60	4	3	64	171	167	226	256	254	8	17	4	3	0,43	1,4	0,8
	223	65	55	5	4	58	189	169	273	303	292	9	17	5	4	0,35	1,7	0,9
	234	75	50	5	4	96	181	169	251	304	300	9	32	5	4	0,83	0,72	0,4
160	187	30	23	3	3	44	172	174	204	206	213	5	9	3	3	0,48	1,25	0,7
	188	38	30	2,5	2	38	173	173	204	208	212	7	8	2,5	2	0,35	1,7	0,9
	200	51	38	3	2,5	51	176	175	213	227	231	8	13	3	2,5	0,46	1,3	0,7
	204	59	50	6	4	57	174	181	212	229	236	10	11	6	4	0,44	1,35	0,8
	215	48	40	4	3	53	190	177	252	276	269	7	12	4	3	0,43	1,4	0,8
	222	80	67	4	3	69	183	177	242	276	274	10	17	4	3	0,43	1,4	0,8
	233	68	58	5	4	61	201	179	290	323	310	9	17	5	4	0,35	1,7	0,9
170	197	30	23	3	3	44	182	184	215	216	223	6	9	3	3	0,46	1,3	0,7
	200	38	30	2,5	2	41	183	183	213	218	222	7	8	2,5	2	0,37	1,6	0,9
	214	57	43	3	2,5	55	188	185	230	247	249	10	14	3	2,5	0,44	1,35	0,8
	231	52	43	5	4	58	203	189	269	293	288	8	14	5	4	0,43	1,4	0,8
	238	86	71	5	4	75	196	189	259	293	294	10	20	5	4	0,43	1,4	0,8
	248	72	62	5	4	65	213	190	307	343	329	9	18	5	4	0,35	1,7	0,9
180	207	30	23	3	3	47	191	195	224	226	233	6	9	3	3	0,48	1,25	0,7
	216	45	34	2,5	2	53	194	194	225	238	241	8	11	2,5	2	0,48	1,25	0,7
	230	64	48	3	2,5	59	200	195	247	267	267	10	16	3	2,5	0,43	1,4	0,8
	240 247	52 86	43 71	5 5	4 4	60 77	212 205	199 199	278 267	303 303	297 303	8 10	14 20	5 5	4	0,46 0,46	1,3 1,3	0,7 0,7

Princi	pal dimens	sions	Basic loa dynamic	n d ratings static	Fatigue load limit	Speed ra Reference	e Limiting	Mass	Designation	Dimension series to ISO 355
d	D	Т	С	C_0	P_{u}	speed	speed			(ABMA)
mm			kN		kN	r/min		kg	_	_
190	260	45	443	765	72	1 800	2 200	7	➤ 32938	4DC
	260	46	443	765	72	1 800	2 200	7,1	JM 738249/210	M 738200
	290	64	806	1 200	112	1 600	2 000	15	➤ 32038 X	4FD
	340	60	763	1 000	95	1 400	1 800	20,5	► 30238	4GB
	340	97	1 267	1 930	176	1 300	1 800	36	► 32238	4GD
200	270	37	401	600	57	1 700	2 200	5,45	► T4DB 200	4DB
	280	51	588	950	88	1 700	2 000	9,5	► 32940	3EC
	310	70	800	1 370	127	1 400	1 900	19	► 32040 X	4FD
	360	64	845	1 120	106	1 300	1 700	24,5	► 30240	4GB
	360	104	1 300	2 000	180	1 300	1 700	42,5	► 32240	3GD
220	285	41	489	830	75	1 600	2 000	6,45	T2DC 220	2DC
	300	51	601	1 000	91,5	1 500	1 900	10	► 32944	3EC
	340	76	955	1 660	150	1 300	1 700	24,5	► 32044 X	4FD
	400	72	1 059	1 400	127	1 200	1 600	34,5	► 30244	3GB
	400	114	1 720	2 700	232	1 100	1 500	59,5	► 32244	4GD
240	320	42	458	815	73,5	1 400	1 700	8,45	T4EB 240	4EB
	320	51	624	1 080	96,5	1 400	1 700	11	► 32948	4EC
	320	57	761	1 320	118	1 400	1 700	12,5	T2EE 240	2EE
	360	76	989	1 800	156	1 200	1 600	26,5	► 32048 X	4FD
	440	79	1 300	1 760	156	1 000	1 400	47	30248	3GB
	440	127	1 918	3 350	270	1 000	1 300	81,5	32248	4GD
260	360	63,5	910	1 530	134	1 300	1 600	19	32952	3EC
	400	87	1 241	2 200	190	1 100	1 400	38	► 32052 X	4FC
	480	137	2 340	3 650	300	900	1 200	105	32252	4GD
280	380	63,5	950	1 660	143	1 200	1 400	20	32956	4EC
	420	87	1 288	2 360	200	1 000	1 300	40,5	► 32056 X	4FC
	500	137	2 410	3 900	310	850	1 200	108	32256	4GD
300	420	76	1 126	2 240	186	950	1 300	31,5	> 32960	3FD
	460	100	1 644	3 000	245	900	1 200	58	32060 X	4GD
	540	149	2 935	4 750	365	800	1 100	140	32260	4GD
320	440	76	1 156	2 360	193	900	1 200	33,5	32964	3FD
	480	100	1 663	3 100	250	850	1 100	64	32064 X	4GD
	580	159	3 353	5 500	415	750	1 000	174	32264	4GD
340	460	76	1163	2 400	196	850	1 200	35	32968	4FD
360	480	76	1191	2 550	204	800	1 100	37	32972	4FD

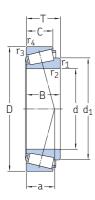

SKF Explorer bearing

Popular item

Dime	nsions						Abutn	nent an	d fillet d	limensio	ns					Calcul	ation fac	tors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
nm							mm									_		
190	227	45	34	2,5	2	54	205	204	235	248	251	8	11	2,5	2	0,48	1,25	0,7
	227	44	36,5	3	2,5	54	205	205	235	247	252	8	9,5	3	2,5	0,48	1,25	0,7
	240	64	48	3	2,5	62	210	205	257	276	279	10	16	3	2,5	0,44	1,35	0,8
	254 261	55 92	46 75	5 5	4 4	63 80	225 217	210 210	298 286	323 323	318 323	8 12	14 22	5 5	4	0,43 0,43	1,4 1,4	0,8 0,8
200	232	34	27	3	3	53	214	215	251	255	262	6	10	3	3	0,48	1,25	0,7
	240	51	39	3	2,5	53	217	215	257	266	271	9	12	3	2,5	0,4	1,5	0,8
	254	70	53	3	2,5	65	222	215	273	296	297	11	17	3	2,5	0,43	1,4	0,8
	269 274	58 98	48 82	5 4	4	67 82	237 231	220 218	315 302	343 343	336 340	9 11	16 22	5 4	4	0,43 0,4	1,4 1,5	0,8 0,8
220	249	40	33	4	3	45	233	237	270	270	277	7	8	4	3	0,31	1,9	1,1
	259	51	39	3	2,5	58	235	236	275	286	290	9	12	3	2,5	0,43	1,4	0,8
	280	76	57	4	3	72	244	238	300	325	326	12	19	4	3	0,43	1,4	0,8
	295 306	65 108	54 90	5 5	4 4	73 95	259 253	240 240	348 334	382 382	371 379	10 13	18 24	5 5	4	0,43 0,43	1,4 1,4	0,8 0,8
240	276	39	30	3	3	60	256	256	299	305	310	8	12	3	3	0,46	1,3	0,7
	280	51	39	3	2,5	64	255	256	294	306	311	9	12	3	2,5	0,46	1,3	0,7
	277	56	46	6	4	57	254	262	296	303	311	9	11	6	4	0,35	1,7	0,9
	300	76	57	4	3	77	262	258	318	345	346	12	19	4	3	0,46	1,3	0,7
	324	72	60	4	4	80	285	261	383	420	409	8	19	4	4	0,43	1,4	0,8
	346	120	100	5	4	105	276	262	365	420	415	7	27	4	3	0,43	1,4	0,8
260	308	63,5	48	3	2,5	68	280	276	328	345	347	11	15,5	3	2,5	0,4	1,5	0,8
	328	87	65	5	4	84	288	281	352	382	383	14	22	5	4	0,43	1,4	0,8
	366	130	106	5	5	112	303	286	401	458	454	10	31	5	4	0,43	1,4	0,8
280	329	63,5	48	3	2,5	74	299	297	348	365	368	11	15,5	3	2,5	0,43	1,4	0,8
	348	87	65	5	4	89	306	301	370	402	402	14	22	5	4	0,46	1,3	0,7
	384	130	106	6	5	116	319	302	418	478	473	10	31	5	4	0,44	1,35	0,8
300	359	76	57	4	3	79	325	319	383	404	405	13	19	4	3	0,4	1,5	0,8
	377	100	74	5	4	97	330	322	404	440	439	10	26	4	3	0,43	1,4	0,8
	412	140	115	6	5	126	343	326	453	518	511	10	34	5	4	0,43	1,4	0,8
320	379	76	57	4	3	84	343	337	402	424	426	9	19	3	2,5	0,43	1,4	0,8
	399	100	74	5	4	103	350	342	424	460	461	10	26	4	3	0,46	1,3	0,7
	442	150	125	6	5	133	368	343	486	559	550	12	34	6	5	0,43	1,4	0,8
40	399	76	57	4	3	90	361	357	421	444	446	14	19	3	2,5	0,44	1,35	0,8
60	419	76	57	4	3	96	380	377	439	464	466	10	19	3	2,5	0,46	1,3	0,7

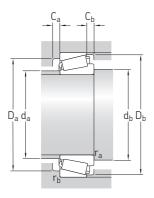

0.5906 – 1.0822 in.

Principal dimensions			Basic load ratings dynamic static		Fatigue load limit	Speed ratings Reference Limiting		Mass	Designation	Series	
d	D	Т	С	C_0	P_u	speed	speed				
mm/in.			kN		kN	r/min		kg		_	
15 0.5906	34,988 1.3775	10,998 <i>0.433</i>	16,5	13,2	1,29	17 000	22 000	0,051	A 4059/A 4138	A 4000	
15,875 0.625	42,862 1.6875	14,288 <i>0.5625</i>	21,5	17,6	1,8	13 000	17 000	0,1	11590/11520	11500	
17,462 0.6875	39,878 1.57	13,843 <i>0.545</i>	26,1	20,8	2,12	15 000	18 000	0,082	► LM 11749/710	LM 11700	
19,05 <i>0.75</i>	45,237 1.781	15,494 <i>0.61</i>	33,8	27,5	2,9	13 000	16 000	0,12	► LM 11949/910	LM 11900	
21,43 0.8437	50,005 1.9687	17,526 <i>0</i> .69	45,4	38	4,15	12 000	15 000	0,17	M 12649/610	M 12600	
22	45,237	15,494	33,9	31	3,2	12 000	15 000	0,12	► LM 12749/710	LM 12700	
0.8661	561 1.781 45,974 1.81	,974 15,494	33,9	31	3,2	12 000	15 000	0,12	LM 12749/711	LM 12700	
22,225 0.875	52,388 2.0625	19,368 <i>0.7625</i>	51,5	44	4,8	11 000	14 000	0,2	1380/1328	1300	
25,4	50,292	14,224	32	30	3	11 000	13 000	0,13	► L 44643/610	L 44600	
1	1.98 57,15	0.56 17,462	49,1	45,5	4,9	10 000	12 000	0,22	15578/15520	15500	
	2.25 57,15 2.25	0.6875 19,431 0.765	48,8	45	5	10 000	12 000	0,24	M 84548/510	M 84500	
	62 2.4409	19,05 <i>0.75</i>	59,5	57	6,2	9 000	11 000	0,3	15101/15245	15000	
26,162	61,912	19,05	59,5	57	6,2	9 000	11 000	0,29	15103 S/15243	15000	
1.03	2.4375 62 2.4409	0.75 19,05 0.75	59,5	57	6,2	9 000	11 000	0,29	15103 S/15245	15000	
26,988 1.0625	50,292 1.98	14,224 0.56	32	30	3	11 000	13 000	0,12	► L 44649/610	L 44600	
27,487 1.0822	57,159 2.2504	19,845 <i>0.7813</i>	55,6	51	5,6	10 000	12 000	0,23	1982/1924 A	1900	


SKF Explorer bearing

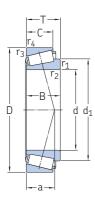
Popular item

Dimensions								Abutment and fillet dimensions								Calcu	Calculation factors		
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y_0	
mm/in.							mm									-			
15 0.5906	25,3	10,988 <i>0.436</i>	8,73 0.3437	0,8 <i>0.03</i>	1,3 0.05	8	20	20,5	28	29	31	2	2	0,8	1,3	0,46	1,3	0,7	
15,875 0.625	31,1	14,288 <i>0.5625</i>	9,525 <i>0.375</i>	1,5 0.06	1,5 0.06	12	23	23,5	32	36,5	38	2	4,5	1,5	1,5	0,72	0,84	0,45	
17,462 0.6875	28,7	14,605 <i>0.575</i>	10,668 <i>0.42</i>	1,3 0.05	1,3 0.05	8	23	24,5	35	34	36	2	3	1,3	1,3	0,28	2,1	1,1	
19,05 <i>0.75</i>	31,4	16,6373 <i>0.655</i>	12,065 <i>0.475</i>	1,3 0.05	1,3 0.05	9	26	26	38	39	41	3	3	1,3	1,3	0,3	2	1,1	
21,43 0.8437	34,6	18,288 <i>0.72</i>	13,97 0.55	1,3 0.05	1,3 0.05	10	28	28,5	43	43,5	46	3	3,5	1,3	1,3	0,28	2,1	1,1	
22 0.8661	34,8 34,8	16,637 0.655 16,637 0.655	12,065 0.475 12,065 0.475	1,3 0.05 1,3 0.05	1,3 0.05 1,3 0.05	10 10	28 28	29 29	39 39	39 40	42 42	3	3	1,3 1,3	1,3 1,3	0,31 0,31	1,9 1,9	1,1 1,1	
22,225 0.875	36	20,168 <i>0.794</i>	14,288 0.5625	1,5 0.06	1,5 0.06	11	29	30	45	45,5	48	4	5	1,5	1,5	0,3	2	1,1	
25,4 1	39,6 42,3 42,5	14,732 0.58 17,462 0.6875 19,431 0.765	10,668 0.42 13,495 0.5313 14,732 0.58	1,3 0.05 1,3 0.05 1,5 0.06	1,3 0.05 1,5 0.06 1,5 0.06	10 12 15	33 35 33	32,5 33 33,5	44 49 45	445050	47 53 53	2 3 3	3,5 3,5 4,5	1,3 1,3 1,5	1,3 1,5 1,5	0,37 0,35 0,54	1,6 1,7 1,1	0,9 0,9 0,6	
	45,8	20,638 0.8125	14,288 0.5625	0,8 0.03	1,3 0.05	12	38	32	54	55	58	4	4,5	0,8	1,3	0,35	1,7	0,9	
26,162 <i>1.03</i>	45,8 45,8	19,939 0.785 19,939 0.785	14,288 0.5525 14,288 0.5625	0,8 0.03 0,8 0.03	2 0.08 1,3 0.05	12 12	38 38	33 33	54 54	54 55	58 58	4	4,5 4,5	0,8	2 1,3	0,35 0,35	1,7 1,7	0,9	
26,988 1.0625	39,6	14,732 0.58	10,668 <i>0.42</i>	3,5 <i>0.14</i>	1,3 0.05	10	33	38,5	44	44	47	2	3,5	3,5	1,3	0,37	1,6	0,9	
27,487 1.0822	42	19,355 <i>0.762</i>	15,875 0.625	2,5 0.10	0,8 <i>0.03</i>	13	35	37,5	49	51	54	3	3,5	2,5	0,8	0,33	1,8	1	


1.125 – 1.375 in.

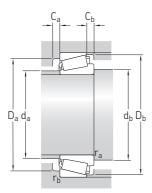
Principal dimensions			Basic load ratings dynamic static		Fatigue load limit	load limit Reference Limiti		Mass	Designation	Series	
d	D	Т	С	C_0	P_u	speed speed					
mm/in.			kN		kN	r/min		kg	_	_	
28,575	57,15 2.25	19,845 0.7813	58,2	55	6	10 000	12 000	0,23	1985/1922	1900	
1.125	57,15	19,845	58,2	55	6	10 000	12 000	0,23	1988/1922	1900	
	2.25 64,292 2.5312	0.7813 21,433 0.8438	60,4	61	6,8	8 500	11 000	0,35	M 86647/610	M 86600	
29 1.1417	50,292 1.98	14,224 0.56	31,8	32,5	3,35	11 000	13 000	0,11	► L 45449/410	L 45400	
30,162	64,292	21,433	60,4	61	6,8	8 500	11 000	0,34	M 86649/610	M 86600	
1.1875	2.5312 68,262 2.6875	0.8438 22,225 0.875	67,1	69,5	7,8	8 000	10 000	0,41	M 88043/010	M 88000	
31,75 <i>1.25</i>	59,131 2.328	15,875	42,8	41,5	4,4	9 500	11 000	0,18	LM 67048/010	LM 67000	
1.25	2.328 61,912 2.4375 62 2.4409	0.625 18,161	59,5	57	6,2	9 000	11 000	0,24	15123/15243	15000	
		0.715 18,161 0.715	59,5	57	6,2	9 000	11 000	0,24	► 15123/15245	15000	
	73,025 2.875	29,37 1.1563	86,5	95	10,4	7 500	9 000	0,62	HM 88542/510	HM 88500	
33,338	68,262	22,225	67,1	69,5	7,8	8 000	10 000	0,38	M 88048/010	M 88000	
1.3125	2.6875 69,012 2.717	0.875 19,845 0.7813	65,8	67	7,35	8 000	10 000	0,35	14131/14276	14000	
34,925	65,088	18,034	58	57	6,2	8 500	10 000	0,25	► LM 48548/510	LM 48500	
1.375	2.5625 65,088	0.71 18,034	58	57	6,2	8 500	10 000	0,26	► LM 48548 A/510	LM 48500	
	2.5625 69,012 2.717	0.71 19,845 0.7831	65,8	67	7,35	8 000	10 000	0,34	14137 A/14276	14000	
	72,233	25,4	83	90	10	7 500	9 000	0,5	HM 88649 X/610	HM 88600	
	2.8438 72,233	1 25,4	83	90	10	7 500	9 000	0,5	HM 88649/610	HM 88600	
	2.8438 73,025 2.875	1 23,812 0.9375	89,1	88	9,8	8 000	9 500	0,48	25877/25821	25800	
	73,025 2.875	26,988 1.0625	94,6	93	10,4	8 000	9 500	0,53	23690/23620	23600	
	76,2 3	29,37 1.1563	95,2	106	11,8	7 000	8 500	0,66	HM 89446/410	HM 89400	

SKF Explorer bearing

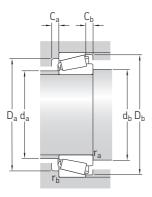

Popular item

Dimensions								Abutment and fillet dimensions								Calculation factors		
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm/in.							mm									_		
28,575 1.125	42,1	19,355 <i>0.762</i>	15,875 0.625	0,8 0.03	1,5 0.06	13	35	35	49	50	54	3	3,5	0,8	1,5	0,33	1,8	1
1.125	42	19,355	15,875	3,5	1,5	13	35	40,5	49	50	54	3	3,5	3,5	1,5	0,33	1,8	1
	50,1	0.762 21,433 0.8438	0.625 16,67 0.6563	0.04 1,5 0.06	0.06 1,5 0.06	17	38	36,5	51	57	60	3	4,5	1,5	1,5	0,54	1,1	0,6
29 1.1417	40,7	14,732 0.58	10,668 <i>0.42</i>	3,5 <i>0.14</i>	1,3 0.05	10	34	41	45	44	48	3	3,5	3,5	1,3	0,37	1,6	0,9
30,162	50,1	21,433	16,67	1,5	1,5	17	38	38,5	51	57	60	3	4,5	1,5	1,5	0,54	1,1	0,6
1.1875	52,3	0.8438 22,28 0.8772	0.6563 17,462 0.6875	0.06 2,4 0.09	0.06 1,6 0.06	18	41	40	54	61	64	3	4,5	2,4	1,6	0,54	1,1	0,6
31,75	45,6	16,77	11,811	3,6 0.14 3,6 0.14 3,6 0.14	1,3 0.05 2 0.08 1,3 0.05	12	38	44	51	52	55	3	4	3,6	1,3	0,4	1,5	0,8
1.25	45,7	0.6602 19,05	0.465 14,288			12	38	44	54	54	58	4	3,5	3,6	2	0,35	1,7	0,9
	45,7	0.75 19,05 0.75	0.5625 14,288 0.5625			12	38	44	54	55	58	4	3,5	3,6	1,3	0,35	1,7	0,9
	56,9	27,783 1.0938	23,02 0.9063	1,2 0.05	3,3 <i>0.13</i>	23	42	39,5	55	62	69	3	6	1,2	3,3	0,54	1,1	0,6
33,338	52,3	22,28	17,462 0.6875 15,875 0.625	0,8	1,6	18	41	40	54	61	64	3	4,5	0,8	1,6	0,54	1,1	0,6
1.3125	50,7	0.8872 19,583 0.771		0.03 0,8 0.03	0.06 1,3 0.05	15	43	40	57	62	63	3	3,5	0,8	1,3	0,37	1,6	0,9
34,925	50	18,288	13,97	3,6	1,3	14	42	47,5	57	58	61	3	4	3,6	1,3	0,37	1,6	0,9
1.375	50	0.72 18,288	0.55 13,97	0.14 0,8	0.05 1,3	14	42	41,5	57	58	61	3	4	0,8	1,3	0,37	1,6	0,9
	50,7	0.72 19,583 0.771	0.55 15,875 0.625	0.03 1,5 0.06	0.05 1,3 0.05	15	43	43	57	62	63	3	3,5	1,5	1,3	0,37	1,6	0,9
	56,6	25,4	19,842	1	2,3	20	42	42,5	57	63	68	5	5,5	1	2,3	0,54	1,1	0,6
	56,6	1 25,4	0.7812 19,842	0.04 2,3	0.09 2,3	20	42	45	57	63	68	5	5,5	2,3	2,3	0,54	1,1	0,6
	52,5	1 24,608 0.9688	0.7812 19,05 0.75	0.09 1,5 0.06	0.09 0,8 0.03	15	44	43	62	67	67	5	4,5	1,5	0,8	0,3	2	1,1
	52,3	26,975	22,225	3,5	1,5	18	42	47	59	65	67	3	4,5	3,5	1,5	0,37	1,6	0,9
	59,3	1.062 28,575 1.125	0.875 23,02 0.9063	0.14 3,5 0.14	0.06 3,3 0.13	23	44	47,5	58	65	72	3	6	3,5	3,3	0,54	1,1	0,6

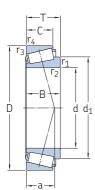
717


1.3774 - 1.5625 in.

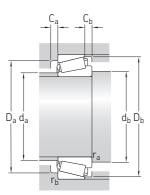
Principal dimensions		Basic lo	ad ratings static	Fatigue load limit	Reference			Designation	Series	
d	D	Т	С	C_0	P_{u}	speed	peed speed			
mm/in.			kN		kN	r/min		kg	-	_
34,987 1.3774	59,131 2.328	15,875 <i>0.625</i>	40,6	44	4,5	9 000	11 000	0,17	► L 68149/110	L 68100
1.3774	59,975 2.3612	15,875 0.625	40,6	44	4,5	9 000	11 000	0,18	► L 68149/111	L 68100
35,717 <i>1.4062</i>	72,233 2.8438	25,4 1	83	90	10	7 500	9 000	0,49	HM 88648/610	HM 88600
36,487 1.4365	73,025 2.875	23,812 0.9375	89,1	88	9,8	8 000	9 500	0,46	25880/25820	25800
36,512 1.4375	76,2 3	29,37 1.1563	95,2	106	11,8	7 000	8 500	0,64	HM 89449/410	HM 89400
38,1 <i>1.5</i>	65,088	18,034	53	57	6,1	8 000	10 000	0,23	► LM 29748/710	LM 29700
1.5	2.5625 65,088	0.71 18,034	53	57	6,1	8 000	10 000	0,24	► LM 29749/710	LM 29700
	2.5625 65,088 2.5625	0.71 19,812 0.78	53	57	6,1	8 000	10 000	0,25	LM 29749/711	LM 29700
	72,238	20,638	60,3	60	6,55	8 000	9 500	0,36	► 16150/16284	16000
	2.844 72,238	0.8125 23,813	60,3	60	6,55	8 000	9 500	0,39	16150/16283	16000
	2.844 76,2 3	0.9375 23,812 0.9375	92,1	93	10,4	7 500	9 000	0,5	2788/2720	2700
	79,375	29,37	112	110	12,5	7 000	8 500	0,68	3490/3420	3400
	3. <i>125</i> 82,55	1.1563 29,37	106	118	13,4	6 700	8 000	0,77	HM 801346 X/310	HM 801300
	3.25 82,55 3.25	1.1563 29,37 1.1563	106	118	13,4	6 700	8 000	0,78	► HM 801346/310	HM 801300
	82,931	23,812	99,1	106	11,8	6 700	8 000	0,65	► 25572/25520	25500
	3.265 88,5 3.4843	0.9375 26,988 1.0625	123	114	13,2	6 700	8 500	0,83	418/414	415
39,688 1.5625	76,2 3	23,812 <i>0</i> .93 <i>75</i>	92,1	93	10,4	7 500	9 000	0,48	2789/2729	2700


SKF Explorer bearing

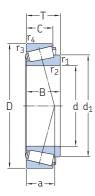
Popular item



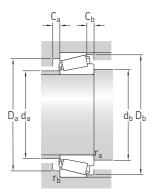
Dimensio	ns						Abutr	nent ar	nd fillet	dimens	sions					Calcu	lation 1	actors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y_0
mm/in.							mm									_		
34,987 1.3774	48,4	16,764 <i>0</i> .66 16.764	11,938 0.47	3,5 0.14	1,3 0.05	13 13	41 41	47 47	52	52 53	56	3	3,5	3,5	1,3	0,43	1,4	0,8
	48,4	0.66	11,938 <i>0.47</i>	3,5 <i>0.14</i>	1,3 <i>0.05</i>	13	41	4 /	52	53	56	3	3,5	3,5	1,3	0,43	1,4	0,8
35,717 <i>1.4062</i>	56,6	25,4 1	19,842 <i>0.7812</i>	3,5 <i>0.14</i>	2,3 <i>0.0</i> 9	20	42	48	57	63	68	5	5,5	3,5	2,3	0,54	1,1	0,6
36,487 1.4365	52,5	24,608 <i>0</i> .9688	19,05 <i>0.75</i>	1,5 <i>0.0</i> 6	2,3 0.09	15	44	45	62	64	67	5	4,5	1,5	2,3	0,3	2	1,1
36,512 <i>1.4375</i>	59,3	28,575 1.125	23,02 <i>0</i> .9063	3,5 <i>0.14</i>	3,3 <i>0.13</i>	23	44	49	58	65	72	3	6	3,5	3,3	0,54	1,1	0,6
38,1 <i>1.5</i>	52	18,288 0.72	13,97 0.55	3,6 0.14	1,3 0.05	13	44	51	58	58	61	3	4	3,6	1,3	0,33	1,8	1
1.5	51,8	18,288 0.72	13,97 0.55	2,3 0.09	1,3 0.05	13	45	48	58	58	61	3	4	2,3	1,3	0,33	1,8	1
	51,8	18,288 0.72	15,748 0.62	2,3 0.09	1,3 0.05	15	45	48	57	58	61	2	4	2,3	1,3	0,33	1,8	1
	53,8	20,638 <i>0.8125</i>	15,875 0.625	3,5 <i>0.14</i>	1,3 0.05	16	45	51	60	65	66	3	4,5	3,5	1,3	0,4	1,5	0,8
	53,8	20,638 0.8125	19,05 0.75	3,5 0.14	2,3 0.09	19	45	51	58	63	66	3	4,5	3,5	2,3	0,4	1,5	0,8
	54,8	25,654 1.01	19,05 0.75	3,5 0.14	3,3 0.13	15	46	51	64	65	69	5	4,5	3,5	3,3	0,3	2	1,1
	57,3	29,771 1.1721	23,812 <i>0</i> .93 <i>75</i>	3,5 <i>0.14</i>	3,3 <i>0.13</i>	20	46	51	65	68	73	4	5,5	3,5	3,3	0,37	1,6	0,9
	64,1	28,575 1.125	23,02	2,3	3,3	24	49	48,5	64	71	78	4	6	2,3	3,3	0,54	1,1	0,6
	64,1	28,575 1.125	0.9063 23,02 0.9063	0.09 0,8 0.03	0.13 3,3 0.13	24	49	45,5	64	71	78	4	6	0,8	3,3	0,54	1,1	0,6
	62,2	25,4	19,05	0,8	0,8	16	53	45,5	71	76	76	5	4,5	0,8	0,8	0,33	1,8	1
	58,8	1 29,083 1.145	0.75 22,225 0.875	0.03 3,5 0.14	0.03 1,5 0.06	16	49	51	73	81	78	5	4,5	3,5	1,5	0,26	2,3	1,3
39,688 1.5625	54,8	25,654 1.01	19,05 <i>0.75</i>	3,5 <i>0.14</i>	0,8 <i>0.03</i>	15	46	52	64	70	69	5	4,5	3,5	0,8	0,3	2	1,1


Principal	dimensions			ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation	Series
d	D	Т	С	C_0	P_{u}	speed	speed			
mm/in.			kN		kN	r/min		kg	_	_
40	80	21	87,6	80	9,15	7 000	8 500	0,47	344/332	335
1.5748	3.1496 80	0.8268 21	87,6	80	9,15	7 000	8 500	0,47	344/332 AA	335
	3.1496 80 3.1496	0.8268 21 0.8268	87,6	80	9,15	7 000	8 500	0,48	344 A/332	335
41 1.6142	68 2.6772	17,5 <i>0</i> .689	53,6	58,5	6,3	8 000	9 500	0,24	► LM 300849/811	LM 300800
41,275	73,025	16,667	57,7	56	6,2	7 500	9 000	0,28	► 18590/18520	18500
1.625	2.875 73,431	0.6562 19,558 0.77	67,6	68	7,65	7 500	9 000	0,34	► LM 501349/310	LM 501300
	2.891 73,431 2.891	0.77 21,43 0.8437	67,6	68	7,65	7 500	9 000	0,36	► LM 501349/314	LM 501300
	76,2 3	18,009 <i>0.70</i> 9	55,7	56	6,1	7 000	9 000	0,34	11162/11300	11000
	76,2 3	18,009 0.709	55,7	56	6,1	7 000	9 000	0,34	11163/11300	11000
	76,2 3	22,225 0.875	84,2	86,5	9,65	7 000	9 000	0,44	► 24780/24720	24700
	82,55 3. <i>25</i>	26,543 1.045	91,2	91,5	10,6	6 700	8 000	0,62	M 802048/011	M 802000
	3.23 87,312 3.4375	30,162 1.1875	126	132	15	6 300	8 000	0,85	3585/3525	3500
	3.4375 88,9 3.5	30,162 1.1875	116	127	14,6	6 000	7 500	0,91	HM 803146/110	HM 803100
	101,6 4	34,925 1.375	184	190	21,6	5 600	6 700	1,45	526/522	525
42,875	82,931	23,812	99,1	106	11,8	6 700	8 000	0,59	► 25577/25520	25500
1.688	3.265 82,931 3.265	0.9375 26,988 1.0625	99,1	106	12	6 700	8 000	0,63	25577/25523	25500

Dimensio	ns						Abutr	nent ar	nd fillet	dimens	sions					Calcu	lation f	actors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm/in.							mm									_		
40	57,6	22,403	17,826	3,5	1,3	14	50	53	72	73	75	4	3	3,5	1,3	0,27	2,2	1,3
1.5748	57,6	0.882 22,403	<i>0.7018</i> 17,826	0.14 3,5	0.05 0,8	14	50	53	72	74	75	4	3	3,5	0,8	0,27	2,2	1,3
	57,6	0.882 22,403 0.882	0.7018 17,826 0.7018	0.14 0,8 0.03	0.03 1,3 0.05	14	50	47	72	73	75	4	3	0,8	1,3	0,27	2,2	1,3
41 1.6142	55,4	18 <i>0.7087</i>	13,5 <i>0.5315</i>	3,6 <i>0.14</i>	1,5 0.06	13	47	54	61	60	64	3	4	3,6	1,5	0,35	1,7	0,9
41,275 1.625	56,2	17,463 0.6875	12,7 0.5	3,5 <i>0.14</i>	1,5	13	50	54	66	65	68	3	3,5	3,5	1,5	0,35	1,7	0,9
1.025	57,7	19,812 0.78	14,732 0.58	0.14 3,5 0.14	0.06 0,8 0.03	15	48	54	64	67	69	4	4,5	3,5	0,8	0,4	1,5	0,8
	57,7	0.78 19,812 0.78	16,604 0.6537	0.14 3,5 0.14	0.03 0,8 0.03	17	48	54	63	67	69	3	4,5	3,5	0,8	0,4	1,5	0,8
	58,2	17,384 0.6844	14,288 0.5625	1,5 0.06	1,5 0.06	16	50	49,5	65	68	71	3	3,5	1,5	1,5	0,48	1,25	0,7
	58,2	17,384	14,288	0,8	1,5	16	50	48,5	65	68	71	3	3,5	0,8	1,5	0,48	1,25	0,7
	57,7	0.6844 23,02 0.9063	0.5625 17,462 0.6875	0.03 3,5 0.14	0.06 0,8 0.03	17	49	54	65	70	71	4	4,5	3,5	0,8	0,4	1,5	0,8
	62,3	25,654 1.01	20,193 0.795	3,5 <i>0.14</i>	3,3 0.13	22	49	54	66	71	78	4	6	3,5	3,3	0,54	1,1	0,6
	63,1	30,886	23,812	1,5	3,3	19	53	50	73	76	80	4	6	1,5	3,3	0,31	1,9	1,1
	69	1.216 29,37 1.1563	0.9375 23,02 0.9063	0.06 3,5 0.14	0.13 3,3 0.13	25	53	54	70	77	84	4	7	3,5	3,3	0,54	1,1	0,6
	72,9	36,068 1.42	26,988 1.0625	3,5 <i>0.14</i>	3,3 <i>0.13</i>	21	61	55	87	90	94	6	7,5	3,5	3,3	0,28	2,1	1,1
42,875 1.688	62,2	25,4	19,05 <i>0.75</i>	3,5 <i>0.13</i>	0,8 0.03	16	53	56	71	76	76	5	4,5	3,5	0,8	0,33	1,8	1
1.088	62,2	1 25,4 1	0.75 22,225 0.875	0.13 3,5 0.14	0.03 2,3 0.09	20	53	56	70	73	76	3	4,5	3,5	2,3	0,33	1,8	1

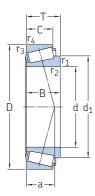


Principal (dimensions			ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation	Series
d	D	Т	С	C_0	P_u	speed	speed			
mm/in.			kN		kN	r/min		kg	_	_
44,45	82,931	23,812	99,1	106	11,8	6 700	8 000	0,57	25580/25520	25500
1.75	3.265 82,931	0.9375 26,988	99,1	106	11,8	6 700	8 000	0,61	25580/25522	25500
	3.265 82,931 3.265	1.0625 26,988 1.0625	99,1	106	11,8	6 700	8 000	0,61	25580/25523	25500
	88,9	30,162	116	127	14,6	6 000	7 500	0,86	HM 803149/110	HM 803000
	3.5 93,264 3.6 <i>7</i> 18	1.1875 30,163 1.1875	134	146	17	5 600	7 000	0,98	3782/3720	3700
	95,25 3. <i>75</i>	30,958 1.2188	108	96,5	11,4	5 300	7 000	0,93	► 53178/53377	53000
	95,25	30,958	124	122	14	5 300	7 000	1	HM 903249/210	HM 903200
	3. <i>75</i> 104,775	1.2188 36,512	180	204	22,4	5 000	6 300	1,65	HM 807040/010	HM-807000
	4.125 107,95 4.25	1.4375 36,512 1.4375	183	190	21,6	5 300	6 300	1,7	► 535/532 X	535
	111,125 4.375	38,1 <i>1.5</i>	183	190	21,6	5 300	6 300	1,85	► 535/532 A	535
45 1.7717	85 3.346 <i>5</i>	20,638 <i>0.8125</i>	87,3	81,5	9,3	6 700	8 000	0,5	358 X/354 X	355
45,237 1.781	87,312 3.4375	30,162 <i>1.1875</i>	126	132	15	6 300	8 000	0,78	3586/3525	3500
45,242	73,431	19,558	66	75	8,15	7 000	8 500	0,31	► LM 102949/910	LM 102900
1.7812	2.891 77,788 3.0625	0.77 19,842 0.7812	66,8	69,5	7,65	7 000	8 500	0,37	LM 603049/011	LM 603000
	77,788 3.0625	0.7812 19,842 0.7812	66,8	69,5	7,65	7 000	8 500	0,37	LM 603049/011 AA	LM 603000
	77,788 3.0625	21,43 0.8437	66,8	69,5	7,65	7 000	8 500	0,39	LM 603049/012	LM 603000
45,618	82,931	23,812	99,1	106	11,8	6 700	8 000	0,55	25590/25520	25500
1.796	3.265 82,931	0.9375 26,988 1.0625	99,1	106	11,8	6 700	8 000	0,59	25590/25523	25500
	3.265 83,058 3.27	23,876 0.94	99,1	106	11,8	6 700	8 000	0,55	25590/25522	25500

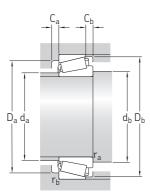


Dimensio	ns						Abutr	nent ar	nd fillet	dimens	sions					Calcu	lation f	actors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm/in.							mm									_		
44,45 1.75	62,2	25,4 1	19,05 <i>0.75</i>	3,5 <i>0.14</i>	0,8 0.03	16	53	57	71	76	76	5	4,5	3,5	0,8	0,33	1,8	1
1.75	62,2	25,4	22,225	3,5	2,3	20	53	57	70	73	76	3	4,5	3,5	2,3	0,33	1,8	1
	62,2	1 25,4 1	0.875 22,225 0.875	0.14 3,5 0.14	0.09 2,3 0.09	20	53	57	70	73	76	3	4,5	3,5	2,3	0,33	1,8	1
	69	29,37	23,02	3,5	3,3	25	53	58	70	77	84	4	7	3,5	3,3	0,54	1,1	0,6
	71,2	1.1563 30,302	0.9063 23,812	0.14 3,5	0.13 3,3	21	60	58	80	81	87	4	6	3,5	3,3	0,33	1,8	1
	69,3	1.193 28,3 1.1142	0.9375 20,638 0.8125	0.14 2 0.08	0.13 2,3 0.09	30	53	55	72	86	89	4	10	2	2,3	0,75	0,8	0,45
	71,6	28,575	22,225	3,5	0,8	30	53	58	71	89	90	4	8,5	3,5	0,8	0,75	0,8	0,45
	81,5	1.125 36,512	0.875 28,575	0.14 3,5	0.03 3,3	28	63	58	85	93	100	6	7,5	3,5	3,3	0,48	1,25	0,7
	76,5	1.4375 36,957 1.455	1.125 28,575 1.125	0.14 3,5 0.14	0.13 3,3 0.13	23	64	58	90	96	97	5	7,5	3,5	3,3	0,3	2	1,1
	76,5	36,957 1.455	30,162 1.1875	3,5 <i>0.14</i>	3,3 <i>0.13</i>	25	64	58	89	99	97	4	7,5	3,5	3,3	0,3	2	1,1
45 1. <i>7717</i>	62,4	21,692 0.854	17,462 0.6875	2 0.08	1,5 0.06	15	55	55	76	77	80	3	3	2	1,5	0,31	1,9	1,1
45,237 1.781	63,1	30,886 1.216	23,812 <i>0</i> .9375	3,5 <i>0.14</i>	3,3 <i>0.13</i>	19	53	58	73	76	80	4	6	3,5	3,3	0,31	1,9	1,1
45,242 1.7812	59,4	19,812 <i>0.7</i> 8	15,748 0.62	3,5 <i>0.14</i>	0,8 <i>0.0</i> 3	14	52	58	66	67	70	3	3,5	3,5	0,8	0,3	2	1,1
1.7012	62	19,842 0.7812	15,08 0.5937	3,5 0.14	0.03 0,8 0.03	17	52	58	68	71	74	4	4,5	3,5	0,8	0,43	1,4	0,8
	62	19,842 0.7812	15,08 0.5937	3,5 0.14	0.03 0,3 0.01	17	52	58	68	72	74	4	4,5	3,5	0,3	0,43	1,4	0,8
	62	19,842 0.7812	16,667 0.6562	3,5 <i>0.14</i>	0,8 0.03	18	52	58	67	71	74	3	4,5	3,5	0,8	0,43	1,4	0,8
45,618	62,1	25,4	19,05	3,5	0,8	16	53	58	71	76	76	5	4,5	3,5	0,8	0,33	1,8	1
1.796	62,1	1 25,4	0.75 22,225	0.14 3,5	0.03 2,3	20	53	58	70	73	76	3	4,5	3,5	2,3	0,33	1,8	1
	62,1	1 25,4 1	0.875 19,114 0.7525	0.14 3,5 0.14	0.09 2 0.08	17	53	58	71	74	76	5	4,5	3,5	2	0,33	1,8	1

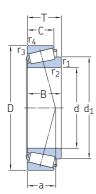
1.811 – 2 in.

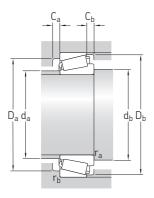


Principal (dimensions			ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation	Series
d	D	Т	С	C_0	P_{u}	speed	speed			
mm/in.	,		kN		kN	r/min		kg	_	_
46	75	18	62,1	71	7,65	7 000	8 500	0,3	► LM 503349 A/310	LM 503300
1.811	2.9528 75 2.9528	0.7087 18 0.7087	62,1	71	7,65	7 000	8 500	0,3	► LM 503349/310	LM 503300
46,038 1.8125	79,375 3.125	17,462 0.6875	61,1	62	6,8	7 000	8 500	0,33	► 18690/18620	18600
1.0123	85 3.3465	20,638 0.8125	87,3	81,5	9,3	6 700	8 000	0,49	359 S/354 X	355
47,625 1.875	88,9 3.5	20,638 0.8125	94	91,5	10,4	6 300	7 500	0,55	369 S/362 A	365
1.0/3	95,25 3. <i>75</i>	30,162 1.1875	133	146	17,3	5 600	7 000	0,99	HM 804846/810	HM 804800
	101,6 4	34,925 1.375	184	190	21,6	5 600	6 700	1,3	528 R/522	525
49,212 1.9375	114,3 4.5	44,45 1.75	226	224	25	5 000	6 300	2,2	65390/65320	65300
50,8 2	82,55	21,59	88,9	100	11	6 300	8 000	0,43	LM 104949/911	LM 104900
2	3.25 85 3.3465	0.85 17,462 0.6875	62,1	65,5	7,2	6 300	8 000	0,37	18790/18720	18700
	3.3465 88,9 3.5	20,638 0.8125	94	91,5	10,4	6 300	7 500	0,5	368 A/362 A	365
	90 3.5433	25 0.9843	94	91,5	10,4	6 300	7 500	0,58	368 A/362 X	365
	93,264 3.6718	30,162 1.1875	134	146	17	5 600	7 000	0,87	3780/3720	3700
	104,775 4.125	36,512 1.4375	180	204	22,4	5 000	6 300	1,5	HM 807046/010	HM 807000
	104,775	39,688	195	224	25	5 300	6 300	1,65	► 4580/4535	4500
	4.125 107,95 4.25	1.5625 36,512 1.4375	183	190	21,6	5 300	6 300	1,55	► 537/532 X	535

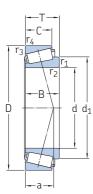


Dimensio	ns						Abutr	nent ar	nd fillet	dimens	sions					Calcu	lation f	actors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm/ <i>in</i> .							mm									-		
46 1.811	61 61	18 0.7087 18 0.7087	14 0.5512 14 0.5512	3,6 0.14 2,3 0.09	1,6 0.06 1,6 0.06	15 15	53 53	59 56	67 67	67 67	71 71	3	4	3,6 2,3	1,6 1,6	0,4	1,5 1,5	0,8
46,038 1.8125	60,2 62,4	17,462 0.6875 21,692 0.854	13,495 0.5313 17,462 0.6875	2,8 0.11 2,3 0.09	1,5 0.06 1,5 0.06	14 15	53 55	57 57	69 76	71 77	73 80	3	3,5 3	2,8 2,3	1,5 1,5	0,37 0,31	1,6 1,9	0,9 1,1
47,625 1.875	66,2 73,6 72,9	22,225 0.875 29,37 1.1563 36,068 1.42	16,513 0.6501 23,02 0.9063 26,988 1.0625	2,3 0.09 3,5 0.14 8 0.32	1,3 0.05 3,3 0.13 3,3 0.13	16 25 21	58 57 61	58 61 70	80 76 87	81 84 90	83 90 94	4 5 6	4 7 7,5	2,3 3,5 8	1,3 3,3 3,3	0,31 0,54 0,28	1,9 1,1 2,1	1,1 0,6 1,1
49,212 1.93 <i>75</i>	79,3	44,45 1.75	34,925 1.375	3,5 <i>0.14</i>	3,3 <i>0.13</i>	31	60	63	89	102	105	5	9,5	3,5	3,3	0,43	1,4	0,8
50,8 2	65,2 66 66,2	22,225 0.875 17,462 0.6875 22,225 0.875	16,51 0.65 13,495 0.5313 16,513 0.6501	3,5 0.13 3,5 0.14 3,5 0.14	1,3 0.05 1,5 0.06 1,3 0.05	15 16 16	57 59 58	64 64 64	75 75 80	75 77 81	78 79 83	5 3 4	5 3,5 4	3,5 3,5 3,5	1,3 1,5 1,3	0,3 0,4 0,31	2 1,5 1,9	1,1 0,8 1,1
	66,2 71,2 81,5	22,225 0.875 30,302 1.193 36,512 1.4375	20 0.7874 23,812 0.9375 28,575 1.125	3,5 0.14 3,5 0.14 3,5 0.14	2 0.08 3,3 0.13 3,3 0.13	20 21 28	58 60 63	64 64 64	78 80 85	81 81 93	83 87 100	3 4 6	5 6 7,5	3,5 3,5 3,5	2 3,3 3,3	0,31 0,33 0,48	1,9 1,8 1,25	1,1 1 0,7
	79,5 76,5	40,157 1.581 36,957 1.455	33,338 1.3125 28,575 1.125	3,5 0.14 3,5 0.14	3,3 0.13 3,3 0.13	27 23	65 64	64 64	87 90	93 96	98 97	5 5	6 7,5	3,5 3,5	3,3 3,3	0,33 0,3	1,8 2	1 1,1

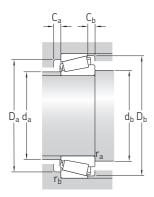

725


Principal	dimensions			ad ratings static	Fatigue load limit		Limiting	Mass	Designation	Series
d	D	Т	С	C_0	$P_{\rm u}$	speed	speed			
mm/in.			kN		kN	r/min		kg	_	-
53,975 2.125	88,9 3.5	19,05 <i>0.75</i>	71,5	78	9	6 000	7 000	0,44	LM 806649/610	LM 806600
2.123	95,25 3. <i>75</i>	27,783 1.0938	129	137	16	5 600	7 000	0,81	33895/33821	33800
	95,25 3. <i>75</i>	27,783 1.0938	129	137	16	5 600	7 000	0,81	33895/33822	33800
	107,95	36,512	183	190	21,6	5 300	6 300	1,45	► 539/532 X	535
	4.25 111,125	1.4375 38,1	183	190	21,6	5 300	6 300	1,65	► 539/532 A	535
	4.3 <i>75</i> 123,825 4.8 <i>75</i>	1.5 36,512 1.4375	174	160	19,6	4 300	5 600	2	72212/72487	72000
57,15 2.25	96,838 3.8125	21 0.8268	99,9	102	11,6	5 600	6 700	0,59	387 A/382 A	385
2.25	96,838	21	99,9	102	11,6	5 600	6 700	0,59	387/382 A	385
	3.8125 96,838 3.8125	0.8268 25,4 1	99,9	102	11,6	5 600	6 700	0,65	387 A/382 S	385
	98,425	21	99,9	102	11,6	5 600	6 700	0,64	387/382	385
	3.875 104,775	0.8268 30,162	150	160	18,6	5 300	6 300	1,05	► 462/453 X	455
	4.125 112,712 4.4375	1.1875 30,162 1.1875	175	204	23,6	4 500	5 600	1,4	39580/39520	39500
	112,712	30,162	175	204	23,6	4 500	5 600	1,4	▶ 39581/39520	39500
	4.4375 119,985	1.1875 32,751	175	204	23,6	4 500	5 600	1,75	39580/39528	39500
	4.7238 119,985 4.7238	1.2894 32,751 1.2894	175	204	23,6	4 500	5 600	1,75	39581/39528	39500
59,987	130,175	34,099	187	180	22	3 800	5 000	2,05	HM 911244/210	HM 911200
2.3617	5.125 135,755 5.3447	1.3425 53,975 2.125	353	400	45,5	4 000	5 000	3,95	6391/K-6320	6300
60,325 2.375	130,175 5.125	36,512 1.4375	187	180	22,4	3 800	5 000	2,1	HM 911245/210	HM 911200

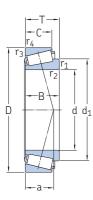
Dimensio	ns						Abutr	nent aı	nd fillet	dimens	sions					Calcu	lation f	actors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm/in.							mm									-		,
53,975	72,1	19,05	13,492	2,3	2	20	62	65	78	80	84	4	5,5	2,3	2	0,54	1,1	0,6
2.125	72,5	0.75 28,575	0.5312 22,225	0.09 1,5	0.08 2,3	20	61	63	83	85	90	6	5,5	1,5	2,3	0,33	1,8	1
	72,5	1.125 28,575 1.125	0.875 22,225 0.875	0.06 1,5 0.06	0.09 0,8 0.03	20	61	63	83	88	90	6	5,5	1,5	0,8	0,33	1,8	1
	76,5	36,957	28,575	3,5	3,3	23	64	67	90	96	97	5	7,5	3,5	3,3	0,3	2	1,1
	76,5	1.455 36,957	1.125 30,162	0.14 3,5	0.13 3,3	25	64	67	89	99	97	4	7,5	3,5	3,3	0,3	2	1,1
	89,2	1.455 32,791 1.291	1.1875 25,4 1	0.14 3,5 0.14	0.13 3,3 0.13	36	67	68	93	112	114	4	11	3,5	3,3	0,75	0,8	0,45
57,15	74,2	21,946	15,875	3,5	0,8	17	65	70	87	90	91	5	5	3,5	0,8	0,35	1,7	0,9
2.25	74,1	0.864 21,946	0.625 15,875	0.14 2,3	0.03 0,8	17	65	68	87	90	91	5	5	2,3	0,8	0,35	1,7	0,9
	74,2	0.864 21,946 0.864	0.625 20,274 0.7982	0.09 3,5 0.14	0.03 2,3 0.09	21	65	70	85	87	91	3	5	3,5	2,3	0,35	1,7	0,9
	74,1	21,946	17,826	2,3	0,8	17	65	68	87	91	92	5	3	2,3	0,8	0,35	1,7	0,9
	79	0.864 29,317	0.7018 24,605	0.09 2,3	0.03 3,3	23	68	68	91	93	98	4	5,5	2,3	3,3	0,33	1,8	1
	88,3	1.52 30,162 1.1875	0.9687 23,812 0.9375	0.09 3,5 0.14	0.13 3,3 0.13	23	76	71	100	100	107	6	6	3,5	3,3	0,33	1,8	1
	88,3	30,162	23,812	8	3,3	23	76	80	100	100	107	6	6	8	3,3	0,33	1,8	1
	88,3	1.1875 30,162	0.9375 26,949	0.32 3,5	0.13 0,8	25	76	71	99	113	107	4	5,5	3,5	0,8	0,33	1,8	1
	88,3	1.1875 30,162 1.1875	1.061 26,949 1.061	0.14 8 0.32	0.03 0,8 0.03	25	76	80	99	113	107	4	5,5	8	0,8	0,33	1,8	1
59,987	97,1	30,924	23,812	3,5	3,3	40	74	74	102	118	124	5	10	3,5	3,3	0,83	0,72	0,4
2.3617	97,5	1.2175 56,007 2.205	0.9375 44,45 1.75	0.14 3,5 0.14	0.13 3,3 0.13	34	78	74	110	123	125	7	9,5	3,5	3,3	0,33	1,8	1
60,325 2.375	97,2	33,39 1.3146	23,812 <i>0</i> .9375	5 0.20	3,3 <i>0.13</i>	40	74	77	102	118	124	5	12,5	5	3,3	0,83	0,72	0,4

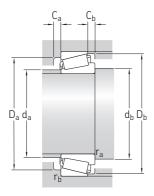


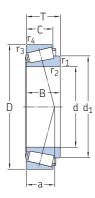
Principal (dimensions		Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rati Reference speed	ngs Limiting speed	Mass	Designation	Series
d	D	Т	С	C_0	P_{u}	эрсси	specu			
mm/in.			kN		kN	r/min		kg	_	_
63,5	110	22	108	118	13,4	4 800	6 000	0,84	395/394 A	395
2.5	4.3307 112,712	0.8661 30,162	175	204	23,6	4 500	5 600	1,25	39585/39520	39500
	4.4375 112,712 4.4375	1.1875 30,163 1.1875	152	183	21,2	4 800	5 600	1,25	3982/3920	3980
65,088 2.5625	135,755 5.3447	53,975 2.125	353	400	45,5	4 000	5 000	3,7	6379/K-6320	6300
66,675	110	22	108	118	13,4	4 800	6 000	0,78	395 S/394 A	395
2.625	4.3307 110	0.8661 22	108	118	13,4	4 800	6 000	0,79	395 A/394 A	395
	4.3307 112,712 4.4375	0.8661 30,162 1.1875	152	183	21,2	4 800	5 600	1,15	3984/3920	3900
	112,712	30,162	175	204	23,6	4 500	5 600	1,2	39590/39520	39500
	4.4375 119,985	1.1875 32,751	175	204	23,6	4 500	5 600	1,55	39590/39528	39500
	4.7238 122,238 4.8125	1.2894 38,1 1.5	229	245	28	4 500	5 300	1,85	► HM 212049/011	HM 212000
	135,755 5.3447	53,975 2.125	353	400	45,5	4 000	5 000	3,65	6386/K-6320	6300
69,85 2.75	112,712 4.4375	25,4 1	121	156	17,6	4 500	5 300	0,97	29675/29620	29600
2.73	120 4.7244	29,795 1.173	163	186	21,6	4 500	5 300	1,35	482/472	475
	120 4.7244	32,545 1.2813	188	228	26,5	4 300	5 300	1,5	▶ 47487/47420	47400
	120	32,545	188	228	26,5	4 300	5 300	1,5	► 47487/47420 A	47400
	4.7244 127	1.2813 36,512	217	255	29	4 300	5 000	1,95	566/563	565
	5 152,4 6	1.4375 41,275 1.625	270	320	35,5	3 600	4 300	3,65	655/652	655
71,438	117,475	30,162	152	190	21,6	4 500	5 300	1,25	33281/33462	33000
2.8125	4.625 136,525 5.375	1.1875 46,038 1.8125	273	355	39	3 800	4 500	3,1	H 715345/311	H 715300

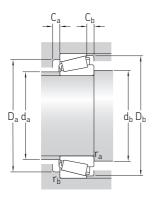


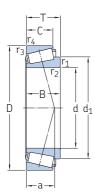
Dimensio	ns						Abutr	nent ar	nd fillet	dimens	sions					Calcu	lation f	actors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm/in.							mm									_		
63,5 2.5	86,5	21,996 <i>0</i> .866	18,824 0.7411	3,5 <i>0.14</i>	1,3 0.05	20	77	77	98	102	105	4	3	3,5	1,3	0,4	1,5	0,8
2.5	88,4	30,162	23,812	3,5	3,3	23	76	77	100	100	107	6	6	3,5	3,3	0,33	1,8	1
	87,9	1.1875 30,048 1.183	0.9375 23,812 0.9375	0.14 3,5 0.14	0.13 3,3 0.13	25	75	77	96	101	105	4	6	3,5	3,3	0,4	1,5	0,8
65,088 2.5625	97,5	56,007 2.205	44,45 1.75	3,5 <i>0.14</i>	3,3 <i>0.13</i>	34	78	79	110	123	125	7	9,5	3,5	3,3	0,33	1,8	1
66,675	86,5	21,996	18,824 0.7411	3,5 0.14	1,3	20	77	80	98	102	105	4	3	3,5	1,3	0,4	1,5	0,8
2.625	86,5	0.866 21,996	18,824	0,8	0.05 1,3	20	77	75	98	102	105	4	3	0,8	1,3	0,4	1,5	0,8
	87,9	0.866 30,048 1.183	0.7411 23,812 0.9375	0.03 3,5 0.14	0.05 3,3 0.13	25	75	80	96	101	105	4	6	3,5	3,3	0,4	1,5	0,8
	88,3	30,162 1.1875	23,812 0.9375	3,5 0.14	3,3 <i>0.13</i>	23	76	80	100	100	107	6	6	3,5	3,3	0,33	1,8	1
	88,3	30,162	26,949	3,5	0,8	25	76	80	99	113	107	4	5,5	3,5	0,8	0,33	1,8	1
	90,9	1.1875 38,354 1.5	1.061 29,718 1.17	0.14 3,5 0.14	0.32 3,3 0.13	26	76	80	106	110	115	7	8	3,5	3,3	0,33	1,8	1
	97,5	56,007 2.205	44,45 1.75	4,3 0.17	3,3 <i>0.13</i>	34	78	82	110	123	125	7	9,5	4,3	3,3	0,33	1,8	1
69,85 2.75	94,4	25,4 1	19,05	1,5 0.06	3,3	26	82	80	100	100	108	4	6	1,5	3,3	0,48	1,25	0,7
2.73	92,5	29,007	0.75 24,237	3,5	0.13	25	80	84	103	110	112	4	5,5	3,5	2	0,37	1,6	0,9
	94,3	1.142 32,545 1.2813	0.9542 26,195 1.0313	0.14 3,5 0.14	0.08 3,3 0.13	25	81	84	105	108	113	6	6	3,5	3,3	0,35	1,7	0,9
	94,3	32,545	26,195	3,5	0,5	25	81	84	105	113	113	6	6	3,5	0,5	0,35	1,7	0,9
	97,6	1.2813 36,17	1.0313 28,575	0.14 3,5	0.02 3,3	28	83	84	109	115	119	5	7,5	3,5	3,3	0,37	1,6	0,9
	113	1.424 41,275 1.625	1.125 31,75 1.25	0.14 3,5 0.14	0.13 3,3 0.13	32	96	84	125	140	138	6	9,5	3,5	3,3	0,4	1,5	0,8
71,438	94,1	30,162	23,812	3,5	3,3	26	81	85	101	105	111	5	6	3,5	3,3	0,44	1,35	0,8
2.8125	110	1.1875 46,038 1.8125	0.9375 36,513 1.4375	0.14 3,5 0.14	0.13 3,3 0.13	36	88	86	113	124	132	7	9,5	3,5	3,3	0,48	1,25	0,7

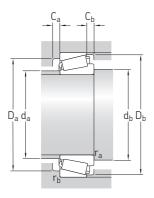

729

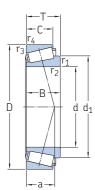

Principal	dimensions			ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation	Series
d	D	Т	С	C_0	P_u	speed	speed			
mm/in.			kN		kN	r/min		kg	_	_
73,025 2.875	112,712 4.4375	25,4 1	121	156	17,6	4 500	5 300	0,89	29685/29620	29600
2.073	117,475	30,162	152	190	21,6	4 500	5 300	1,2	33287/33462	33000
	4.625 127 5	1.1875 36,512 1.4375	217	255	29	4 300	5 000	1,85	567/563	565
76 2.9921	132 5.1969	39 1.5354	255	305	34,5	4 000	4 800	2,15	HM 215249/210	HM 215200
76,2	109,538	19,05	72,1	102	11	4 500	5 600	0,57	► L814749/710	L814700
3	4.3125 127	0.75 30,162	171	204	24	4 000	5 000	1,45	42687/42620	42600
	5 133,35 5.25	1.1875 33,338 1.3125	202	260	30	3 800	4 800	1,95	47678/47620	47600
	139,992	36,512	227	280	31	3 800	4 500	2,45	575/572	575
	5.5115 161,925 6.375	1.4375 49,212 1.9375	318	335	38	3 000	4 000	4,4	9285/9220	9200
77,788	121,442	24,608	115	134	15,3	4 300	5 300	0,92	34306/34478	34000
3.0625	4.7812 127 5	0.9688 30,163 1.1875	171	204	24	4 000	5 000	1,4	► 42690/42620	42600
82,55	139,992	36,512	227	280	31	3 800	4 500	2,2	580/572	575
3.25	5.5115 146,05	1.4375 41,275	270	320	35,5	3 600	4 300	2,8	663/653	655
	5.75 150,089 5.909	1.625 44,45 1.75	351	405	46,5	3 600	4 300	3,4	749 A/742	745
85,725	133,35	30,163	178	220	25,5	3 800	4 500	1,45	497/492 A	495
3.375	5.25 146,05 5.75	1.1875 41,275 1.625	270	320	35,5	3 600	4 300	2,65	665/653	655
88,9	152,4	39,688	237	305	33,5	3 400	4 300	2,8	593/592 A	593
3.5	6 152,4	1.5625 39,688	300	355	39	3 400	4 000	2,85	HM 518445/410	HM 518400
	6 161,925 6.375	1.5625 53,975 2.125	404	510	56	3 200	4 000	4,8	6580/6535	6500

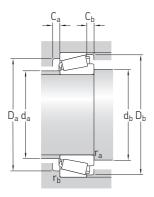

	ns						Abutr	nent ar	nd fillet	dimens	sions					Calcu	lation f	actor
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm/in.							mm									_		
73,025 2.875	94,4	25,4 1	19,05 <i>0.75</i>	3,5 0.14	3,3 0.13	26	82	87	100	100	108	4	6	3,5	3,3	0,48	1,25	0,7
2.073	94,1	30,162	23,812	3,5	3,3	26	81	87	101	105	111	5	6	3,5	3,3	0,44	1,35	0,8
	97,6	1.1875 36,17 1.424	0.9375 28,575 1.125	0.14 3,5 0.14	0.13 3,3 0.13	28	83	87	109	115	119	5	7,5	3,5	3,3	0,37	1,6	0,9
76 2.9921	102	39 1.5354	32 1.2598	7 0.28	3,5 <i>0.14</i>	27	88	97	116	119	126	7	7	7	3,5	0,33	1,8	1
76,2	94,5	19,05	15,083	1,5	1,5	23	85	86	98	101	105	3	3,5	1,5	1,5	0,5	1,2	0,7
3	101	0.75 31	0.5938 22,225	0.06 3,5	0.06 3,3	26	88	90	112	114	120	5	7,5	3,5	3,3	0,43	1,4	0,8
	107	1.2205 33,338 1.3125	0.875 26,195 1.0313	0.14 6,4 0.25	0.13 3,3 0.13	29	93	96	117	121	126	5	7	6,4	3,3	0,4	1,5	0,8
	109	36,098	28,575	3,5	3,3	30	94	90	120	127	131	5	7,5	3,5	3,3	0,4	1,5	0,8
	121	1.4212 46,038 1.8125	1.125 31,75 1.25	0.14 3,5 0.14	0.13 3,3 0.13	47	93	91	128	149	153	7	17	3,5	3,3	0,72	0,84	0,45
77,788	97,8	23,012	17,462	3,5	2	25	88	92	108	112	114	3	7	3,5	2	0,46	1,3	0,7
3.0625	101	0.906 31 1.2205	0.6875 22,225 0.875	0.14 3,5 0.14	0.08 3,3 0.13	26	88	92	112	114	120	5	7,5	3,5	3,3	0,43	1,4	0,8
82,55	109	36,098	28,575	3,5	3,3	30	94	97	120	127	131	5	7,5	3,5	3,3	0,4	1,5	0,8
3.25	113	1.4212 41,275	1.125 31,75	0.14 3,5	0.13 3,3	32	96	97	125	133	138	6	9,5	3,5	3,3	0,4	1,5	0,8
	113	1.625 46,672 1.8375	1.25 36,512 1.4375	0.14 3,5 0.14	0.13 3,3 0.13	31	95	97	130	137	142	8	7,5	3,5	3,3	0,33	1,8	1
85,725	108	29,769	22,225	3,5	3,3	29	95	100	119	121	128	5	7,5	3,5	3,3	0,44	1,35	0,8
3.375	113	1.172 41,275 1.625	0.875 31,75 1.25	0.14 3,5 0.14	0.13 3,3 0.13	32	96	100	125	133	138	6	9,5	3,5	3,3	0,4	1,5	0,8
88,9	121	36,322	30,162	3,5	3,3	36	104	103	128	139	141	4	9,5	3,5	3,3	0,44	1,35	0,8
3.5	119	1.43 39,688	1.1875 30,162	0.14 6,4	0.13 3,3	32	102	109	135	139	146	7	9,5	6,4	3,3	0,4	1,5	0,8
	125	1.5625 55,1 2.1693	1.1875 42,862 1.6875	0.25 3,5 0.14	0.13 3,3 0.13	39	102	103	134	149	153	8	11	3,5	3,3	0,4	1,5	0,8


Principal (dimensions		Basic lo dynamic	ad ratings static	Fatigue load limit	Speed ration Reference	Limiting	Mass	Designation	Series
d	D	Т	С	C_0	P_u	speed	speed			
mm/in.			kN		kN	r/min		kg	_	_
90 3.5433	147 5.7874	40 1.5748	280	355	39	3 400	4 300	2,55	HM 218248/210	HM 218200
3.3433	161,925 6.375	53,975 2.125	404	510	56	3 200	4 000	4,75	6581 X/6535	6500
92,075 3.625	146,05	33,338	209	280	31,5	3 400	4 300	2,1	47890/47820	47800
3.025	5.75 152,4 6	1.3125 39,688 1.5625	237	305	33,5	3 400	4 300	2,7	598/592 A	595
95,25	146,05	33,338	209	280	31,5	3 400	4 300	1,95	47896/47820	47800
3.75	5.75 152,4	1.3125 39,688	237	305	33,5	3 400	4 300	2,55	594 A/592 A	595
	6 152,4 6	1.5625 39,688 1.5625	237	305	33,5	3 400	4 300	2,55	594/592 A	595
	168,275 6.6 <i>25</i>	41,275 1.625	288	365	39	3 000	3 800	3,75	683/672	675
96,838 3.8125	188,912 7.4375	50,8 2	348	375	41,5	2 600	3 400	5,75	90381/90744	90300
99,975 3.936	212,725 8.375	66,675 2.625	619	830	88	2 200	3 000	11,5	HH 224334/310	HH 224300
100	157	42	303	400	42,5	3 200	4 000	2,9	HM 220149 A/110	HM 220100
3.937	6.1811 157 6.1811	1.6535 42 1.6535	303	400	42,5	3 200	4 000	2,9	► HM 220149/110	HM 220100
101,6	168,275	41,275	288	365	39	3 000	3 800	3,45	687/672	675
4	6.625 190,5	1.625 57,15	537	630	68	2 800	3 400	7	HH 221449/410	HH 221400
	7.5 212,725 8.375	2.25 66,675 2.625	619	830	88	2 200	3 000	11	HH 224335/310	HH 224300
107,95	158,75	23,02	124	163	18,3	3 200	3 800	1,4	37425/37625	37000
4.25	6.25 165,1 6.5	0.9063 36,512 1.4375	256	355	37,5	3 000	3 600	2,7	56425/56650	56000
110 4.3307	180 7.0866	41,275 1.625	307	415	42,5	2 800	3 400	3,95	64432/64708	64000

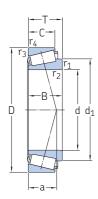

Dimensio	ons						Abutr	nent ai	nd fillet	dimens	sions					Calcu	lation f	actors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm/in.							mm									_		
90 3.5433	116	40 1.5748	32,5 1.2795	7 0.28	3,5 0.14	29	101	111	130	134	140	7	7,5	7	3,5	0,33	1,8	1
3.3433	125	55,1 2.1693	42,862 1.6875	3 0.12	3,3 0.13	39	102	104	134	149	153	8	11	3	3,3	0,4	1,5	0,8
92,075 3.625	120	34,925 1.375	26,195 1.0313	3,5 0.14	3,3 0.13	32	105	106	128	133	139	6	7	3,5	3,3	0,44	1,35	0,8
3.023	121	36,322 1.43	30,162 1.1875	3,5 0.14	3,3 0.13	36	104	107	128	139	141	4	9,5	3,5	3,3	0,44	1,35	0,8
95,25 3. <i>75</i>	120	34,925 1.375	26,195 1.0313	3,5 0.14	3,3 0.13	32	105	110	128	133	139	6	7	3,5	3,3	0,44	1,35	0,8
3.73	121	36,322 1.43	30,162 1.1875	5 0.20	3,3 0.13	36	104	113	128	139	141	4	9,5	5	3,3	0,44	1,35	0,8
	121	36,322 1.43	30,162 1.1875	3,5 0.14	3,3 0.13	36	104	110	128	139	141	4	9,5	3,5	3,3	0,44	1,35	0,8
	133	41,275 1.625	30,162 1.1875	3,5 <i>0.14</i>	3,3 <i>0.1</i> 3	38	114	110	143	155	157	6	11	3,5	3,3	0,48	1,25	0,7
96,838 3.8125	145	46,038 1.8125	31,75 <i>1.25</i>	3,5 <i>0.14</i>	3,3 <i>0.13</i>	61	114	112	148	176	179	6	19	3,5	3,3	0,88	0,68	0,4
99,975 3.936	158	66,675 2.625	53,975 2.125	3,5 <i>0.14</i>	3,3 <i>0.13</i>	46	132	115	184	199	202	10	12,5	3,5	3,3	0,33	1,8	1
100	127	42 1.6535	34 1.3386	5 0.20	3,5 <i>0.14</i>	31	111	118	140	143	151	7	8	5	3,5	0,33	1,8	1
3.937	127	1.6535 42 1.6535	1.3386 1.3386	0.20 8 0.32	3,5 0.14	31	111	124	140	143	151	7	8	8	3,5	0,33	1,8	1
101,6	133	41,275 1.625	30,162 1.1875	3,5 0.14	3,3 0.13	38	114	116	143	155	157	6	11	3,5	3,3	0,48	1,25	0,7
4	142	57,531 2.265	46,038 1.8125	0.14 8 0.32	3,3 0.13	40	119	126	163	177	179	9	11	8	3,3	0,33	1,8	1
	158	66,675 2.625	53,975 2.125	7 0.28	3,3 0.13	46	132	124	184	199	202	10	12,5	7	3,3	0,33	1,8	1
107,95	132	21,438	15,875	3,5	3,3	36	120	123	140	145	149	4	7	3,5	3,3	0,6	1	0,6
4.25	137	0.844 36,512 1.4375	0.625 26,988 1.0625	0.14 3,5 0.14	0.13 3,3 0.13	37	119	123	145	152	158	6	9,5	3,5	3,3	0,5	1,2	0,7
110 4.3307	146	41,275 1.625	30,162 1.1875	3,5 <i>0.14</i>	3,3 <i>0.13</i>	41	126	125	155	167	171	6	11	3,5	3,3	0,52	1,15	0,6


Principal c	dimensions			ad ratings static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designation	Series
d	D	Т	С	C_0	P_u	speed	speed			
mm/in.			kN		kN	r/min		kg	_	_
114,3 4.5	177,8 7	41,275 1.625	307	415	42,5	2 800	3 400	3,6	64450/64700	64000
4.5	180,975	34,925	227	280	30	2 800	3 400	2,95	68450/68712	68000
	7.125 212,725 8.375	1.375 66,675 2.625	619	830	88	2 200	3 000	10	HH 224346/310	HH 224300
	212,725 8.375	66,675 2.625	626	765	81,5	2 600	3 200	10	938/932	935
114,975 4.5266	212,725 8.375	66,675 2.625	619	830	88	2 200	3 000	10	HH 224349/310	HH 224300
120,65 4.75	190,5 7.5	46,038 1.8125	388	540	56	2 600	3 200	4,85	HM 624749/710	HM 624700
127 5	182,562 7.1875	39,688 1.5625	281	440	44	2 600	3 200	3,3	48290/48220	48200
5	196,85	46,038	395	585	60	2 400	3 000	5,2	67388/67322	67300
	7.75 206,375 8.125	1.8125 47,625 1.875	424	585	61	2 400	3 000	6,1	798/792	795
133,35 5.25	177,008 6.9688	25,4 1	166	280	28	2 600	3 200	1,7	► L 327249/210	L327200
5.25	196,85	46,038	395	585	60	2 400	3 000	4,65	67391/67322	67300
	7.75 234,95 9.25	1.8125 63,5 2.5	683	900	91,5	2 200	2 800	11	95525/95925	95000
139,7	228,6 9	57,15	578	800	80	2 200	2 800	8,95	898/892	895
5.5	236,538 9.3125	2.25 57,15 2.25	629	850	86,5	2 200	2 600	10	HM 231132/110	HM 231100
149,225 5.875	236,538 9.3125	57,15 2.25	629	850	86,5	2 200	2 600	9,05	HM 231148/110	HM 231100
152,4	203,2	41,275	251	480	45,5	2 400	2 800	3,7	LM 330448/410	LM 330400
6	8 222,25 8.75	1.625 46,83 1.8437	400	630	62	2 200	2 600	5,85	M 231649/610	M 231600

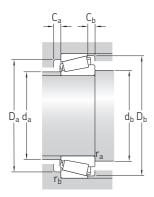

Dimension	ns						Abutr	nent ar	nd fillet	dimens	sions					Calcu	lation f	actors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y_0
mm/in.							mm									_		
114,3 4.5	146	41,275 1.625	30,162 1.1875	3,5 <i>0.14</i>	3,3 <i>0.13</i>	41	126	129	155	164	171	6	11	3,5	3,3	0,52	1,15	0,6
	144	31,75 <i>1.25</i>	25,4 1	3,5 0.14	3,3 <i>0.13</i>	39	129	129	158	167	170	4	9,5	3,5	3,3	0,5	1,2	0,7
	158	66,675 2.625	53,975 2.125	7 0.28	3,3 0.13	46	131	137	184	199	202	10	12,5	7	3,3	0,33	1,8	1
	154	66,675 2.625	53,975 2.125	7 0.28	3,3 <i>0.13</i>	46	130	137	175	199	193	8	12,5	7	3,3	0,33	1,8	1
114,975 4.5266	158	66,675 2.625	53,975 2.125	7 0.28	3,3 <i>0.13</i>	46	132	137	184	199	202	10	12,5	7	3,3	0,33	1,8	1
120,65 4.75	156	46,038 1.8125	34,925 1.375	3,5 <i>0.14</i>	1,5 0.06	41	135	136	167	180	182	8	11	3,5	1,5	0,43	1,4	0,8
127	154	38,1	33,338	3,5	3,3	34	140	142	165	169	174	6	6	3,5	3,3	0,3	2	1,1
5	164	1.5 46,038	1.3125 38,1	<i>0.14</i> 3,5	0.13 3,3	39	146	142	177	183	189	7	7,5	3,5	3,3	0,35	1,7	0,9
	167	1.8125 50,013 1.969	1.5 34,925 1.375	0.14 3,3 0.13	0.13 3,3 0.13	45	144	142	178	192	195	8	12,5	3,3	3,3	0,46	1,3	0,7
133,35	155	26,195	20,638	1,5	1,5	28	145	144	165	167	170	5	4,5	1,5	1,5	0,35	1,7	0,9
5.25	164	1.0313 46,038	0.8125 38,1	0.06 8	0.06 3,3	39	146	158	177	183	189	7	7,5	8	3,3	0,35	1,7	0,9
	178	1.8125 63,5 2.5	1.5 49,213 1.9375	0.32 9,7 0.38	0.13 3,3 0.13	48	152	161	198	221	217	10	14	9,7	3,3	0,37	1,6	0,9
139,7	181	57,15	44,45	3,5	3,3	49	155	155	195	214	215	8	12,5	3,5	3,3	0,43	1,4	0,8
5.5	187	2.25 56,642 2.23	1.75 44,45 1.75	0.14 3,5 0.14	0.13 3,3 0.13	44	165	156	210	222	223	9	12,5	3,5	3,3	0,31	1,9	1,1
149,225 5.875	187	56,642 2.23	44,45 1.75	6,4 0.25	3,3 <i>0.13</i>	44	165	171	210	222	223	10	12,5	6,4	3,3	0,31	1,9	1,1
152,4	180	41,275	34,925	3,3	3,3	38	166	168	186	189	197	5	6	3,3	3,3	0,35	1,7	0,9
6	185	1.625 46,83 1.8437	1.375 34,925 1.375	0.13 3,5 0.14	0.13 1,5 0.06	40	169	168	200	211	210	7	11,5	3,5	1,5	0,33	1,8	1


Principal d	limensions		Basic lo dynamic	ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation	Series
d	D	Т	С	C_0	P_u	speed	speed			
mm/in.			kN		kN	r/min		kg		-
158,75 6.25	205,583 8.0938	23,812 <i>0</i> .9375	168	280	27	2 200	2 800	1,9	► L 432348/310	L 432300
0.23	205,583 8. <i>0</i> 938	23,813 0.9375	168	280	27	2 200	2 800	1,95	► L 432349/310	L 432300
165,1 6.5	336,55 13.25	92,075 3.6 <i>25</i>	1 198	1 700	156	1 400	1 900	37	HH 437549/510	HH 437500
177,8 7	227,012	30,162	231	425	40	2 000	2 400	2,95	► 36990/36920	36900
/	8.9375 288,925 11.375	1.1875 63,5 2.5	774	1 140	108	1 700	2 000	16	94700/94113	94000
178,595 7.0313	265,112 10.4375	51,595 2.0313	532	880	85	1 800	2 200	9,55	M 336948/912	M 336900
179,934 7.084	265,112 10.4375	51,595 2.0313	532	880	85	1 800	2 200	9,4	M 336949/912	M 336900
187,325 <i>7.375</i>	282,575 11.125	50,8 2	427	695	67	1 700	2 000	9,9	87737/87111	87000
189,738 <i>7.47</i>	279,4 11	52,388 2.0625	643	980	93	1 700	2 000	11	M 239447/410	M 239400
190,5 <i>7.5</i>	282,575 11.125	50,8 2	427	695	67	1 700	2 000	9,55	87750/87111	87000
196,85 <i>7.75</i>	241,3 9.5	23,812 <i>0</i> .93 <i>75</i>	189	315	29	1 900	2 400	2,1	► LL 639249/210	LL 639200
7.75	9.5 257,175 10.125	39,688 1.5625	339	655	58,5	1 800	2 200	5,35	LM 739749/710	LM 739700
198,298 7.807	279,4 11	46,038 1.8125	465	830	76,5	1 600	2 000	9,2	67981/67919	67900
199,949 7.872	279,4 11	46,038 1.8125	465	830	76,5	1 600	2 000	9	67982/67919	67900
200,025 <i>7.875</i>	276,225 10.875	42,862 1.6875	478	780	72	1 700	2 000	7,7	LM 241147/110	LM 241100
203,2 8	282,575 11.125	46,038 1.8125	465	830	76,5	1 600	2 000	8,85	67983/67920	67900

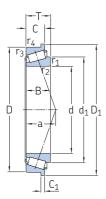
Dimensio	ns						Abutr	nent ar	nd fillet	dimens	sions					Calcu	lation f	actors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm/in.							mm									_		
158,75 6.25	181	23,812 0.9375	18,258 <i>0.7188</i>	4,8 0.19	1,5 0.06	32	172	177	194	195	197	5	5,5	4,8	1,5	0,37	1,6	0,9
0.23	181	23,812 0.9375	18,258 0.7188	1,5 0.06	1,5 0.06	32	172	170	194	195	197	5	5,5	1,5	1,5	0,37	1,6	0,9
165,1 6.5	242	95,25 3. <i>75</i>	69,85 2.75	3,3 <i>0.13</i>	6,4 0.25	69	203	182	280	315	308	14	22	3,3	6,4	0,37	1,6	0,9
177,8	203	30,162 1.1875	23,02 0.9063	1,5 0.13	1,5 <i>0.13</i>	42	190	190	212	216	220	5	7	1,5	1,5	0,44	1,35	0,8
,	232	63,5 2.5	47,625 1.875	7 0.28	3,3 0.13	62	201	201	247	274	270	10	15,5	7	3,3	0,46	1,3	0,7
178,595 <i>7.0313</i>	216	57,15 2.25	38,895 1.5313	3,3 <i>0.1</i> 3	3,3 <i>0.1</i> 3	46	196	195	240	250	251	9	12,5	3,3	3,3	0,33	1,8	1
179,934 7.084	216	57,15 2.25	38,895 1.5313	3,3 <i>0.1</i> 3	3,3 <i>0.1</i> 3	46	196	196	240	250	251	9	12,5	3,3	3,3	0,33	1,8	1
187,325 <i>7.375</i>	232	47,625 1.875	36,512 1.4375	3,5 <i>0.14</i>	3,3 <i>0.1</i> 3	54	213	204	253	267	267	6	14	3,5	3,3	0,43	1,4	0,8
189,738 <i>7.47</i>	232	57,15 2.25	41,275 1.625	3,3 <i>0.1</i> 3	3,3 <i>0.1</i> 3	48	211	206	254	264	266	9	11	3,3	3,3	0,33	1,8	1
190,5 <i>7.5</i>	232	47,625 1.875	36,512 1.4375	3,5 <i>0.14</i>	3,3 <i>0.1</i> 3	54	213	207	253	267	267	6	14	3,5	3,3	0,43	1,4	0,8
196,85 7.75	217	23,017 0.9062	17,462 0.6875	1,5 0.06	1,5 0.06	40	207	209	232	230	235	5	6	1,5	1,5	0,43	1,4	0,8
7.73	229	39,688 1.5625	30,162 1.1875	3,5 0.14	3,3 0.13	50	210	213	236	242	247	8	9,5	3,5	3,3	0,44	1,35	0,8
198,298 7.807	246	49,212 1.9375	36,512 1.4375	3,5 <i>0.14</i>	3,3 <i>0.13</i>	60	223	215	254	264	272	8	9,5	3,5	3,3	0,5	1,2	0,7
199,949 7.872	246	49,212 1.9375	36,512 1.4375	3,5 <i>0.14</i>	3,3 <i>0.1</i> 3	60	223	217	254	264	272	8	9,5	3,5	3,3	0,5	1,2	0,7
200,025 7.875	236	46,038 1.8125	34,133 1.3438	3,5 <i>0.14</i>	3,3 <i>0.1</i> 3	44	220	217	257	261	265	7	8,5	3,5	3,3	0,31	1,9	1,1
203,2 8	246	46,038 1.8125	36,512 1.4375	3,5 <i>0.14</i>	3,3 <i>0.13</i>	60	222	220	254	267	272	8	9,5	3,5	3,3	0,5	1,2	0,7



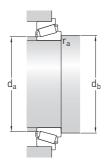
Principal d	limensions		Basic lo dynamic	ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation	Series
d	D	Т	С	C_0	P_{u}	speed	speed			
mm/in.			kN		kN	r/min		kg		_
203,987 8.031	276,225 10.875	42,862 1.6875	478	780	72	1 700	2 000	7,2	LM 241148/110	LM 241100
206,375	282,575	46,038 1.8125	465	830	76,5	1 600	2 000	8,45	67985/67920	67900
8.125	11.125 336,55 13.25	98,425 3.875	1 230	2 160	190	1 300	1 800	34	H 242649/610	H 242600
216,408 8. <i>52</i>	285,75 11.25	46,038 1.8125	466	850	76,5	1 600	2 000	7,9	LM 742747/710	LM 742700
220,662 8.6875	314,325 <i>12.375</i>	61,912 2.4375	784	1 320	118	1 500	1 800	15	M 244249 A/210	M 244200
230,188 9. <i>0</i> 6 <i>25</i>	317,5 <i>12.5</i>	47,625 1.875	556	980	90	1 500	1 800	11	LM 245846/810	LM 245800
231,775 9.125	300,038 11.8125	33,338 1.3125	267	425	39	1 500	1 900	5,2	► 544091/544118	544000
9.123	317,5 12.5	1.3125 47,625 1.875	556	980	90	1 500	1 800	10,5	► LM 245848/810	LM 245800
234,848 9.246	314,325 <i>12.375</i>	49,212 1.9375	608	1 000	91,5	1 500	1 800	10,5	► LM 545848/810	LM 545800
255,6 10.063	342,9 13.5	57,15 2.25	698	1 400	125	1 300	1 600	15	M 349547/510	M 349500
257,175 10.125	342,9 13.5	57,15 2.25	698	1 400	125	1 300	1 600	14	M 349549/510	M 349500
10.123	358,775 14.125	71,438 2.8125	1 030	1 760	156	1 300	1 600	21,5	M 249747/710	M 249700
263,525 <i>10.375</i>	325,438 <i>12.8125</i>	28,575 1.125	273	550	48	1 400	1 700	5,3	38880/38820	38800
10.373	355,6 14	57,15 2.25	789	1 400	122	1 300	1 600	16	LM 451345/310	LM 451300
292,1 11.5	374,65 14.75	47,625 1.875	539	1 140	98	1 200	1 500	12,5	► L 555249/210	L 555200
304,8	393,7	50,8	655	1 220	104	1 100	1 400	15	► L 357049/010	L357000
12	15.5 406,4 16	2 63,5 2.5	775	1 700	143	1 100	1 300	22,5	LM 757049/010	LM 757000


Dimensio	ns						Abutr	nent ar	nd fillet	dimens	sions					Calcu	lation f	actors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm/in.							mm									-		
203,987 8.031	236	46,038 1.8125	34,133 1.3438	3,5 0.14	3,3 0.13	44	220	221	257	261	265	7	8,5	3,5	3,3	0,31	1,9	1,1
206,375 8.125	246	46,038 1.8125	36,512 1.4375	3,5 <i>0.14</i>	3,3 0.13	60	222	223	254	267	272	8	9,5	3,5	3,3	0,5	1,2	0,7
0.123	268	100,013 3.93 <i>7</i> 5	77,788 3.0625	3,3 0.13	3,3 0.13	72	231	223	290	321	318	14	20,5	3,3	3,3	0,33	1,8	1
216,408 8.52	253	49,212 1.9375	34,925 1.375	3,5 <i>0.14</i>	3,3 0.13	60	230	233	261	270	277	7	11	3,5	3,3	0,48	1,25	0,7
220,662 8.6875	264	66,675 2.625	49,212 1.9375	1,5 <i>0.0</i> 6	3,3 0.13	56	241	234	284	299	300	9	12,5	1,5	3,3	0,33	1,8	1
230,188 9.0625	268	52,388 2.0625	36,512 1.4375	3,3 <i>0.13</i>	3,3 0.13	49	249	247	296	302	304	9	11	3,3	3,3	0,31	1,9	1,1
231,775 9.125	260	31,75 1.25	23,812 0.9375	3,5 <i>0.14</i>	3,3 0.13	49	247	249	278	284	284	5	9,5	3,5	3,3	0,4	1,5	0,8
7.123	268	52,388 2.0625	36,512 1.4375	3,3 0.13	3,3 0.13	49	249	249	296	302	304	9	11	3,3	3,3	0,31	1,9	1,1
234,848 9.246	271	53,975 2.125	36,512 1.4375	3,5 <i>0.14</i>	3,3 0.13	57	250	252	291	299	304	9	12,5	3,5	3,3	0,4	1,5	0,8
255,6 10.063	296	63,5 2.5	44,45 1.75	1,5 <i>0.0</i> 6	3,3 0.13	59	273	269	318	327	331	9	12,5	1,5	3,3	0,35	1,7	0,9
257,175 10.125	296	57,15 2.25	44,45 1.75	6,4 0.25	3,3 <i>0.1</i> 3	59	273	281	318	327	331	9	12,5	6,4	3,3	0,35	1,7	0,9
10.125	303	76,2 3	53,975 2.125	1,5 0.06	3,3 0.13	64	276	271	326	343	343	11	17	1,5	3,3	0,33	1,8	1
263,525 <i>10.375</i>	293	28,575 1.125	25,4 1	1,5 0.06	1,5 0.06	48	282	277	307	313	313	4	3	1,5	1,5	0,37	1,6	0,9
10.373	309	57,15 2.25	44,45 1.75	3,5 0.14	3,3 0.13	61	285	281	329	339	343	10	12,5	3,5	3,3	0,35	1,7	0,9
292,1 <i>11.5</i>	330	47,625 1.875	34,925 1.375	3,5 <i>0.14</i>	3,3 0.13	64	310	310	350	358	361	9	12,5	3,5	3,3	0,4	1,5	0,8
304,8	347	50,8	38,1	6,4	3,3	64	327	329	368	377	379	7	12,5	6,4	3,3	0,35	1,7	0,9
12	356	2 63,5 2.5	1.5 47,625 1.875	0.25 6,4 0.25	0.13 3,3 0.13	79	327	329	370	389	391	10	15,5	6,4	3,3	0,44	1,35	0,8

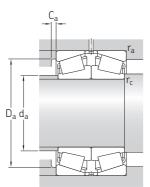
12.5 – 18 in.



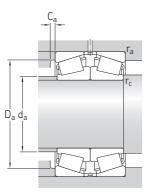
Principal d	limensions		Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation	Series
d	D	Т	С	C_0	P_{u}	speed	speed			
mm/in.			kN		kN	r/min		kg	_	_
317,5 <i>12.5</i>	447,675 17.625	85,725 3.3 <i>7</i> 5	1 363	2 700	220	900	1 200	41	HM 259048/010/HA4	HM 259000
333,375 13.125	469,9 18.5	90,488 3.5625	1 428	2 850	232	850	1 200	47	HM 261049/010	HM 261000
342,9 <i>13.5</i>	450,85 17.75	66,675 2.625	1 000	2 200	180	900	1 200	28	LM 361649/610	LM 361600
343,154 13.51	450,85 17.75	66,675 2.625	1 000	2 200	180	900	1 200	28	LM 361649 A/610	LM 361600
346,075 13.625	488,95 19.25	95,25 3.75	1 533	3 150	255	850	1 100	55	HM 262749/710	HM 262700
381 <i>15</i>	479,425 18.875	49,213 1.9375	638	1 500	120	800	1 100	20	L 865547/512	L 865500
406,4 16	549,275 21.625	85,725 3.3 <i>75</i>	1 467	3 050	236	700	950	53,5	LM 567949/910/HA1	LM 567900
431,8 <i>17</i>	571,5 22.5	74,612 2.9375	1145	2 550	204	670	900	49	LM 869448/410	LM 869400
457,2 18	573,088 22.5625	74,612 2.9375	1 205	3 000	228	670	900	43,5	L 570649/610	L 570600



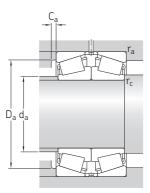
Dimensio	ns						Abuti	ment ai	nd fillet	dimen	sions					Calcu	lation	factors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm/in.							mm									_		
317,5 <i>12.5</i>	376	85,725 3.3 <i>75</i>	68,262 2.6875	3,5 0.14	3,3 0.13	80	341	339	405	428	428	9	17	3,5	3,3	0,33	1,8	1
333,375 13.125	399	90,488 3.5625	71,438 2.1825	6,4 0.25	3,3 0.13	85	362	365	428	453	452	6	19	6	3,1	0,33	1,8	1
342,9 13.5	393	66,675 2.625	52,388 2.0625	8,5 <i>0</i> .33	3,5 <i>0.14</i>	75	365	385	417	433	434	9	14	7,5	3,3	0,35	1,7	0,9
343,154 13.51	393	66,675 2.625	52,388 2.0625	8,5 <i>0</i> .33	3,5 <i>0.14</i>	75	365	385	417	433	434	9	14	7,5	3,3	0,35	1,7	0,9
346,075 13.625	413	95,25 3. <i>75</i>	74,612 2.9375	6,4 0.25	3,3 0.13	88	379	378	442	472	467	8	21	6	3,1	0,33	1,8	1
381 15	430	47,625 1.875	34,925 1.375	6,4 0.25	3,3 <i>0.13</i>	92	406	413	448	462	463	6	14	6	3,1	0,5	1,2	0,7
406,4 16	473	84,138 3.3125	61,612 2.4257	6,4 0.25	3,3 0.13	100	434	438	502	532	526	9	23,5	6	3,1	0,4	1,5	0,8
431,8 <i>17</i>	500	74,612 2.9375	52,388 2.0625	3,3 <i>0.13</i>	3,3 <i>0.13</i>	120	462	455	520	550	549	8	22	3,3	3,3	0,54	1,1	0,6
457,2 18	516	74,612 2.9375	57,15 2.25	6,4 0.25	6,4 0.25	101	482	489	534	541	556	9	17	6	6	0,4	1,5	0,8



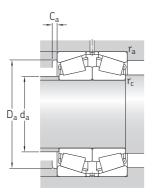
Princip	al dimens	ions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designation
d	D	Т	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	_
35	80	22,75	88,9	73,5	8,3	7 500	9 000	0,53	30307 R
40	68 80	19 19,75	64,7 75,8	71 68	7,65 7,65	7 500 7 000	9 500 8 500	0,29 0,44	32008 XR 30208 R
45	100	38,25	166	176	20	5 000	6 700	1,55	32309 BR
55	120	45,5	233	260	30	4 300	5 600	2,55	32311 BR
65	110 140	34 36	175 240	208 228	24 27,5	4 800 4 000	5 600 4 800	1,3 2,5	33113 R 30313 R


Dimen	sions								Abutme	ent and fill	et dimensions	Calcula	tion facto	rs
d	d ₁ ≈	D_1	В	С	C_1	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _{b.} min.	r _a max.	е	Υ	Y ₀
mm									mm			_		
35	54,5	85	21	18	4,5	2	1,5	16	46	44,5	2	0,31	1,9	1,1
40	54,7 57,5	72 85	19 18	14,5 16	3,5 4	1 1,5	1 1,5	14 16	46 49	47,5 48,5	1 1,5	0,37 0,37	1,6 1,6	0,9 0,9
45	76,1	106	36	30	7	2	1,5	29	56	55	2	0,54	1,1	0,6
55	90,5	127	43	35	8	2,5	2	36	67	67	2,5	0,54	1,1	0,6
65	88,3 98,7	116 147	34 33	26,5 28	5,5 6	1,5 3	1,5 2,5	25 27	74 84	75 78	1,5 3	0,4 0,35	1,5 1,7	0,8 0,9

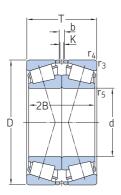
Princi	pal dimen	sions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designation	
d	D	Т	С	C_0	P_{u}	speed	speed			
mm			kN		kN	r/min		kg	-	
25	62	36,5	79,9	80	8,65	6 700	11 000	0,55	► 31305/DF	
30	62 62 72	34,5 42,5 41,5	85,7 106 100	88 116 100	9,65 12,7 11,4	7 500 7 500 5 600	11 000 11 000 9 500	0,48 0,59 0,82	30206/DF 32206/DF ▶ 31306/DF	
	72	41,5	119	112	12,7	6 700	10 000	0,81	30306/DF	
35	62 72 72	36 48,5 56	89,7 139 178	108 156 212	11,6 17 23,6	7 000 6 300 6 300	10 000 9 500 9 500	0,46 0,91 1,1	32007 X/DF 32207/DF 33207/DF	
	80 80	45,5 45,5	129 152	134 150	15,6 16,6	5 000 6 000	8 500 9 000	1,1 1,05	31307/DF 30307/DF	
40	75 80 90	52 39,5 50,5	167 130 156	208 137 163	22,8 15,3 19	6 000 5 600 4 500	9 000 8 500 7 500	1,05 0,87 1,5	33108/DF 30208/DF 31308/DF	
45	75 85 100	40 49,5 54,5	123 169 194	160 196 204	17,6 22 24,5	5 600 5 300 4 000	8 500 8 000 6 700	0,71 1,2 2	32009 X/DF 32209/DF 31309/DF	
	100	54,5	227	240	28,5	4 500	7 000	2	30309/DF	
50	80 80 90	40 48 43,5	129 145 160	176 204 183	19,3 22,8 20,8	5 300 5 300 4 800	8 000 8 000 7 500	0,78 0,92 1,1	32010 X/DF 33010/DF 30210/DF	
	90 90 110	49,5 64 58,5	173 243 224	200 320 240	22,8 36,5 28,5	4 800 4 800 3 600	7 500 7 000 6 000	1,3 1,75 2,55	32210/DF 33210/DF 31310/DF	
55	90 90 100	46 54 45,5	170 191 190	232 270 212	26 30,5 24	4 500 4 500 4 500	7 000 7 000 6 700	1,15 1,35 1,45	32011 X/DF 33011/DF 30211/DF	
	100 120 120	53,5 63 63	222 256 302	260 275 325	30 33,5 39	4 300 3 400 3 800	6 700 5 600 5 600	1,75 3,25 3,25	32211/DF 31311/DF 30311/DF	


Dimer	nsions					Abutm	ent and fi	llet dimen	sions			Calcul	ation fac	tors	
d	2B	b	K	r _{3,4} min.	r ₅ min.	d _a max.	D _a min.	D _a max.	C _a min.	r _a max.	r _c max.	е	Y ₁	Y ₂	Y ₀
mm						mm						_			
25	34	6	4	1,5	0,6	34	47	55	3	1,5	0,6	0,83	0,81	1,2	0,8
30	32	3	3	1	0,3	38	53	56	2	1	0,3	0,37	1,8	2,7	1,8
	40	4	3	1	0,3	37	52	56	3	1	0,3	0,37	1,8	2,7	1,8
	38	8	5,5	1,5	0,6	40	55	65	3	1,5	0,6	0,83	0,81	1,2	0,8
	38	6	3	1,5	0,6	41	62	64	3	1,5	0,6	0,31	2,2	3,3	2,2
35	36	5	3	1	0,3	41	54	56	4	1	0,3	0,46	1,5	2,2	1,4
	46	5	3	1,5	0,6	43	61	64	3	1,5	0,6	0,37	1,8	2,7	1,8
	56	7	4	1,5	0,6	43	61	64	5	1,5	0,6	0,35	1,9	2,9	1,8
	42 42	8 5	6 3	1,5 1,5	0,6 0,6	45 46	62 70	72 72	3	1,5 1,5	0,6 0,6	0,83 0,31	0,81 2,2	1,2 3,3	0,8 2,2
40	52	7	4	1,5	0,6	47	65	67	4	1,5	0,6	0,35	1,9	2,9	1,8
	36	4	3	1,5	0,6	49	69	72	3	1,5	0,6	0,37	1,8	2,7	1,8
	46	11	8	1,5	0,6	51	71	82	3	1,5	0,6	0,83	0,81	1,2	0,8
45	40	5	4,5	1	0,3	52	67	68	4	1	0,3	0,4	1,7	2,5	1,6
	46	7	3	1,5	0,6	54	73	77	3	1,5	0,6	0,4	1,7	2,5	1,6
	50	10	8,5	1,5	0,6	57	79	92	4	1,5	0,6	0,83	0,81	1,2	0,8
	50	6	3	1,5	0,6	59	86	92	3	1,5	0,6	0,35	1,9	2,9	1,8
50	40	5	4,5	1	0,3	57	72	73	4	1	0,3	0,43	1,6	2,3	1,6
	48	6	4	1	0,3	57	72	73	4	1	0,3	0,31	2,2	3,3	2,2
	40	4	3	1,5	0,6	59	79	82	3	1,5	0,6	0,43	1,6	2,3	1,6
	46	7	3	1,5	0,6	58	78	82	3	1,5	0,6	0,43	1,6	2,3	1,6
	64	9	5	1,5	0,6	57	77	82	5	1,5	0,6	0,4	1,7	2,5	1,6
	54	10	7,5	2	0,6	63	87	101	4	2	0,6	0,83	0,81	1,2	0,8
55	46	7	4,5	1,5	0,6	63	81	82	4	1,5	0,6	0,4	1,7	2,5	1,6
	54	7	4,5	1,5	0,6	64	81	82	5	1,5	0,6	0,31	2,2	3,3	2,2
	42	6	3	1,5	0,6	64	88	92	4	1,5	0,6	0,4	1,7	2,5	1,6
	50	7	3	1,5	0,6	64	87	92	4	1,5	0,6	0,4	1,7	2,5	1,6
	58	10	7,5	2	0,6	68	94	111	4	2	0,6	0,83	0,81	1,2	0,8
	58	8	4,5	2	0,6	72	104	110	4	2	0,6	0,35	1,9	2,9	1,8

Princip	al dimens	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designation
d	D	Т	С	C_0	$P_{\rm u}$	speed	speed		
mm			kN		kN	r/min		kg	-
60	95	46	173	245	27	4 300	6 700	1,2	32012 X/DF
	110	47,5	207	228	26,5	4 000	6 000	1,8	30212/DF
	110	59,5	266	320	37,5	4 000	6 000	2,4	32212/DF
	110	76	354	475	53	3 800	6 000	3,15	33212/DF
	130	67	303	335	40,5	3 000	5 300	4,05	31312/DF
	130	67	357	390	47,5	3 600	5 300	4,1	30312/DF
	130	97	483	585	68	3 200	5 300	6,05	32312/DF
65	100	46	176	255	28	4 000	6 000	1,3	32013 X/DF
	100	54	204	310	34,5	4 000	6 300	1,55	33013/DF
	120	49,5	242	270	32,5	3 600	5 600	2,3	30213/DF
	120	65,5	320	390	45,5	3 600	5 600	3,1	32213/DF
	140	72	348	380	47,5	2 800	4 800	5	31313/DF
70	110	50	214	305	34,5	3 800	5 600	1,75	32014 X/DF
	110	62	273	400	45,5	3 800	5 600	2,2	33014/DF
	120	74	361	500	57	3 600	5 300	3,45	33114/DF
	125	66,5	334	415	49	3 400	5 300	3,3	32214/DF
	150	76	393	440	54	2 600	4 500	6,1	31314/DF
75	115	62	286	455	52	3 600	5 300	2,4	33015/DF
	115	62	286	455	52	3 600	5 300	2,4	33015/DFC240
	125	74	370	530	60	3 400	5 000	3,65	33115/DF
	130	54,5	293	355	41,5	3 400	5 000	2,85	30215/DF
	130	66,5	337	425	49	3 200	5 000	3,4	32215/DF
	130	82	436	600	68	3 200	4 800	4,5	33215/DF
	160	80	438	490	58,5	2 400	4 300	7,15	► 31315/DF
	160	116	713	880	102	2 600	4 300	11	32315/DF
80	125	58	288	430	49	3 200	5 000	2,65	32016 X/DF
	130	74	379	560	62	3 200	4 800	3,8	33116/DF
	140	70,5	391	490	57	3 000	4 500	4,25	32216/DF
	140	92	527	750	83	3 000	4 500	5,95	33216/DF
	170	85	473	530	61	2 400	4 000	8,65	31316/DF
	170	123	693	1 000	112	2 600	4 000	13	32316/DF

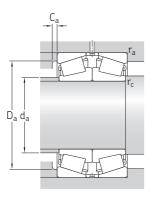

Dimer	sions					Abutm	ent and fi	llet dimen	sions			Calcul	ation fac	tors	
d	2B	b	К	r _{3,4} min.	r ₅ min.	d _a max.	D _a min.	D _a max.	C _a min.	r _a max.	r _c max.	е	Y ₁	Y ₂	Y ₀
mm						mm						_			
60	46	7	4,5	1,5	0,6	67	85	87	4	1,5	0,6	0,43	1,6	2,3	1,6
	44	4	3	1,5	0,6	70	96	101	3	1,5	0,6	0,4	1,7	2,5	1,6
	56	7	3	1,5	0,6	69	95	102	4	1,5	0,6	0,4	1,7	2,5	1,6
	76	10	7,5	1,5	0,6	69	93	102	6	1,5	0,6	0,4	1,7	2,5	1,6
	62	13	10	2,5	1	74	103	119	5	2,5	1	0,83	0,81	1,2	0,8
	62	9	6	2,5	1	77	112	119	5	2,5	1	0,35	1,9	2,9	1,8
	92	15	6	2,5	1	74	107	119	6	2,5	1	0,35	1,9	2,9	1,8
65	46	7	4,5	1,5	0,6	73	90	92	4	1,5	0,6	0,46	1,5	2,2	1,4
	54	7	4,5	1,5	0,6	72	89	92	5	1,5	0,6	0,35	1,9	2,9	1,8
	46	5	3	1,5	0,6	78	106	111	4	1,5	0,6	0,4	1,7	2,5	1,6
	62	7	3	1,5	0,6	76	104	111	4	1,5	0,6	0,4	1,7	2,5	1,6
	66	12	9	2,5	1	80	111	129	5	2,5	1	0,83	0,81	1,2	0,8
70	50	6	4,5	1,5	0,6	78	98	101	5	1,5	0,6	0,43	1,6	2,3	1,6
	62	6	4,5	1,5	0,6	78	99	101	5	1,5	0,6	0,28	2,4	3,6	2,5
	74	9	6	1,5	0,6	80	104	111	6	1,5	0,6	0,37	1,8	2,7	1,8
	62	7	3	1,5	0,6	81	108	116	4	1,5	0,6	0,43	1,6	2,3	1,6
	70	10	7,5	2,5	1	85	118	139	5	2,5	1	0,83	0,81	1,2	0,8
75	62	7	5	1,5	0,6	84	104	106	6	1,5	0,6	0,3	2,3	3,4	2,2
	62	7	5	1,5	0,6	84	104	106	6	1,5	0,6	0,3	2,3	3,4	2,2
	74	9	7	1,5	0,6	84	109	116	6	1,5	0,6	0,4	1,7	2,5	1,6
	50	4	3	1,5	0,6	87	115	121	4	1,5	0,6	0,43	1,6	2,3	1,6
	62	7	3	1,5	0,6	85	114	121	4	1,5	0,6	0,43	1,6	2,3	1,6
	82	11	7,5	1,5	0,6	84	111	121	6	1,5	0,6	0,43	1,6	2,3	1,6
	74 110	15 15	10 7,5	2,5 2,5	1 1	91 92	127 133	149 149	5 7	2,5 2,5	1	0,83 0,35	0,81 1,9	1,2 2,9	0,8 1,8
80	58	5	2	1,5	0,6	90	112	116	6	1,5	0,6	0,43	1,6	2,3	1,6
	74	9	6	1,5	0,6	89	114	121	6	1,5	0,6	0,43	1,6	2,3	1,6
	66	4	4,5	2	0,6	91	122	130	5	2	0,6	0,43	1,6	2,3	1,6
	92	13	7,5	2	0,6	90	119	130	7	2	0,6	0,43	1,6	2,3	1,6
	78	15	10	2,5	1	97	134	159	5	2,5	1	0,83	0,81	1,2	0,8
	116	15	7,5	2,5	1	98	142	159	7	2,5	1	0,35	1,9	2,9	1,8

Princi	oal dimens	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed ra	e Limiting	Mass	Designation
d	D	Т	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	-
85	130	58	293	450	51	3 200	4 800	2,8	32017 X/DF
	130	72	382	620	69,5	3 200	4 800	3,5	33017/DF
	150	61	370	440	51	3 000	4 300	4,25	30217/DF
	150	77	451	570	65,5	2 800	4 300	5,4	32217/DF
	150	98	606	850	96,5	2 800	4 300	7,3	33217/DF
	180	89	510	570	64	2 200	3 800	9,9	31317/DF
90	140	64	356	540	62	3 000	4 300	3,65	32018 X/DF
	140	78	457	710	78	3 000	4 500	4,5	33018/DF
	160	65	411	490	57	2 800	4 000	5,2	▶ 30218/DF
	160	85	529	680	76,5	2 600	4 000	6,85	32218/DF
	190	93	486	630	71	1 900	3 400	11,5	> 31318/DF
	190	135	835	1 220	132	2 200	3 600	17,5	32318/DF
95	145	64	353	540	61	2 800	4 300	3,8	32019 X/DF
	145	78	467	735	81,5	2 800	4 300	4,7	33019/DF
	170	91	597	780	86,5	2 600	3 800	8,4	► 32219/DF
	200	99	539	710	78	1 800	3 400	13,5	▶ 31319/DF
100	140	50	252	405	45	2 800	4 300	2,35	32920/DF
	150	64	359	560	62	2 600	4 000	3,9	32020 X/DF
	180	74	521	640	72	2 400	3 600	7,5	► 30220/DF
	180	98	668	880	96,5	2 400	3 600	10	➤ 32220/DF
	215	103	739	980	106	1 900	3 200	17	30320/DF
	215	113	685	930	102	1 700	3 000	18,5	➤ 31320 X/DF
	215	155	1 057	1 560	166	1 900	3 200	26	32320/DF
105	160	70	426	670	73,5	2 600	3 800	5,05	32021 X/DF
	190	78	571	710	80	2 200	3 400	9	30221/DF
	190	106	760	1 020	110	2 200	3 400	12,5	32221/DF
110	170	76	494	780	80	2 400	3 600	6,3	32022 X/DF
	170	76	494	780	80	2 400	3 600	6,3	32022 X/DFC200
	180	112	781	1 250	132	2 200	3 400	11,5	33122/DF
	200 200 240	82 112 126	561 842 841	800 1 140 1 160	86,5 122 122	2 200 2 200 1 500	3 200 3 200 2 800	10,5 14,5 26	→ 30222/DF→ 32222/DF→ 31322 X/DF
	240	169	1158	1 660	173	1 700	2 800	35	32322/DF

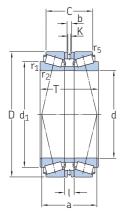


Dimer	sions					Abutm	ent and fi	llet dimen	sions			Calcul	ation fac	tors	
d	2B	b	К	r _{3,4} min.	r ₅ min.	d _a max.	D _a min.	D _a max.	C _a min.	r _a max.	r _c max.	е	Y ₁	Y ₂	Y ₀
mm						mm			,			_			
85	58	8	4,5	1,5	0,6	95	117	121	6	1,5	0,6	0,44	1,5	2,3	1,4
	72	6	4,5	1,5	0,6	95	118	121	6	1,5	0,6	0,3	2,3	3,4	2,2
	56	6	4,5	2	0,6	97	132	140	5	2	0,6	0,43	1,6	2,3	1,6
	72	10	4,5	2	0,6	97	130	140	5	2	0,6	0,43	1,6	2,3	1,6
	98	10	7,5	2	0,6	96	128	140	7	2	0,6	0,43	1,6	2,3	1,6
	82	15	10	3	1	104	143	167	5	3	1	0,83	0,81	1,2	0,8
90	64	8	6	1,5	0,6	100	125	131	6	1,5	0,6	0,43	1,6	2,3	1,6
	78	8	6	1,5	0,6	101	127	131	7	1,5	0,6	0,27	2,5	3,7	2,5
	60	6	4,5	2	0,6	104	140	150	5	2	0,6	0,43	1,6	2,3	1,6
	80	10	4,5	2	0,6	103	138	150	5	2	0,6	0,43	1,6	2,3	1,6
	86	15	10	3	1	110	151	177	5	3	1	0,83	0,81	1,2	0,8
	128	16	7,5	3	1	109	157	177	7	3	1	0,35	1,9	2,9	1,8
95	64	9	6	1,5	0,6	106	130	136	6	1,5	0,6	0,44	1,5	2,3	1,4
	78	8	4,5	1,5	0,6	105	131	136	7	1,5	0,6	0,28	2,4	3,6	2,5
	86	10	6	2,5	1	109	145	158	5	2,5	1	0,43	1,6	2,3	1,6
	90	15	10	3	1	114	157	187	5	3	1	0,83	0,81	1,2	0,8
100	50	6	3	1,5	0,6	110	131	131	5	1,5	0,6	0,33	2	3	2
	64	10	8	1,5	0,6	110	134	141	6	1,5	0,6	0,46	1,5	2,2	1,4
	68	8	6	2,5	1	116	157	168	5	2,5	1	0,43	1,6	2,3	1,6
	92	8	6	2,5	1	115	154	168	5	2,5	1	0,43	1,6	2,3	1,6
	94	14	7	3	1	128	184	202	6	3	1	0,35	1,9	2,9	1,8
	102	13	10	3	1	121	168	202	7	3	1	0,83	0,81	1,2	0,8
	146	18	12	3	1	123	177	202	8	3	1	0,35	1,9	2,9	1,8
105	70	10	7,5	2	0,6	116	143	149	6	2	0,6	0,44	1,5	2,3	1,4
	72	10	4	2,5	1	123	165	178	5	2,5	1	0,43	1,6	2,3	1,6
	100	11	7,5	2,5	1	121	161	178	6	2,5	1	0,43	1,6	2,3	1,6
110	76	10	7,5	2	0,6	123	152	159	7	2	0,6	0,43	1,6	2,3	1,6
	76	10	7,5	2	0,6	123	152	159	7	2	0,6	0,43	1,6	2,3	1,6
	112	15	7,5	2	0,6	122	155	169	9	2	0,6	0,43	1,6	2,3	1,6
	76	10	7,5	2,5	1	129	174	188	6	2,5	1	0,43	1,6	2,3	1,6
	106	11	7,5	2,5	1	127	170	188	6	2,5	1	0,43	1,6	2,3	1,6
	114	13	10	3	1	136	188	227	8	3	1	0,83	0,81	1,2	0,8
	160	11	8	3	1	138	198	227	9	3	1	0,35	1,9	2,9	1,8

Princip	al dimens	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rati Reference	Limiting	Mass	Designation
d	D	Т	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min		kg	-
120	180	76	513	830	85	2 200	3 400	6,75	➤ 32024 X/DF
	180	96	611	1 080	112	2 200	3 400	8,6	33024/DF
	215	87	716	915	98	2 000	3 000	12,5	30224/DF
	215	123	983	1 400	143	2 000	3 000	18,5	► 32224/DF
	260	119	1 031	1 400	146	1 600	2 600	29	30324/DF
	260	136	992	1 400	146	1 400	2 400	32,5	► 31324 X/DF
	260	181	1 466	2 240	220	1 600	2 600	45	32324/DF
130	180	64	420	735	76,5	2 200	3 200	4,95	32926/DF
	230	135,5	1 012	1 660	170	1 600	2 800	23	> 32226/DF
	230	87,5	774	980	102	1 800	2 800	14	30226/DF
	280	127,5	1 165	1 600	163	1 400	2 400	35	30326/DF
	280	144	1 110	1 560	160	1 300	2 400	39,5	► 31326 X/DF
140	190	64	432	780	80	2 000	3 000	5,2	32928/DF
	210	90	692	1 160	116	1 900	2 800	11	► 32028 X/DF
	250	143,5	1 185	2 000	200	1 500	2 600	29,5	► 32228/DF
	250	91,5	773	1 140	116	1 500	2 600	18	30228/DF
	300	154	1 264	1 800	180	1 200	2 200	49	► 31328 X/DF
150	225	96	782	1 320	132	1 800	2 600	13,5	► 32030 X/DF
	270	98	781	1 120	114	1 400	2 400	22	30230/DF
	270	154	1 341	2 280	224	1 400	2 400	37,5	► 32230/DF
	320	144	1 507	2 120	208	1 300	2 000	52	30330/DF
	320	164	1 427	2 040	200	1 100	2 000	58,5	► 31330 X/DF
160	240	102	912	1 560	153	1 600	2 400	16	► 32032 X/DF
	290	104	971	1 460	143	1 300	2 200	27,5	30232/DF
	290	168	1 602	2 800	265	1 300	2 200	48	► 32232/DF
170	260	114	1 071	1 830	176	1 500	2 200	21,5	► 32034 X/DF
	310	114	1 126	1 730	166	1 200	2 000	34,5	30234/DF
	310	182	1 843	3 250	300	1 200	2 000	59,5	► 32234/DF
180	250	90	746	1 460	137	1 500	2 200	14	32936/DF
	280	128	1 360	2 320	220	1 400	2 200	29	➤ 32036 X/DF
	320	114	1 079	1 630	160	1 200	2 000	35,5	30236/DF
	320	182	1 833	3 250	300	1 100	1 900	61	▶ 32236/DF

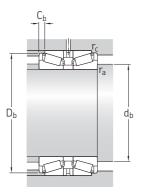


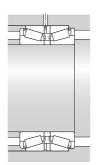
Dimen	sions					Abutm	ent and fi	llet dimen	sions			Calcul	ation fac	tors	
d	2B	b	К	r _{3,4} min.	r ₅ min.	d _a max.	D _a min.	D _a max.	C _a min.	r _a max.	r _c max.	е	Y ₁	Y ₂	Y ₀
mm						mm						_			
120	76	10	7,5	2	0,6	132	161	169	7	2	0,6	0,46	1,5	2,2	1,4
	96	10	7,5	2	0,6	132	160	169	6	2	0,6	0,3	2,3	3,4	2,2
	80	10	7,5	2,5	1	141	187	203	6	2,5	1	0,43	1,6	2,3	1,6
	116	10	7,5	2,5	1	137	181	203	7	2,5	1	0,43	1,6	2,3	1,6
	110	15	8	3	1	153	221	246	8	3	1	0,35	1,9	2,9	1,8
	124	24	14	3	1	146	203	246	9	3	1	0,83	0,81	1,2	0,8
	172	21	7,5	3	1	148	213	246	10	3	1	0,35	1,9	2,9	1,8
130	64	6	4,5	1,5	0,6	141	167	170	6	1,5	0,6	0,33	2	3	2
	128	10	7,5	3	1	146	193	216	7	3	1	0,43	1,6	2,3	1,6
	80	10	7,5	3	1	152	203	216	6	3	1	0,43	1,6	2,3	1,6
	116 132	17 20	10 15	4 4	1,5 1,5	165 157	239 218	264 264	8	4	1,5 1,5	0,35 0,83	1,9 0,81	2,9 1,2	1,8 0,8
140	64	9	6	1,5	0,6	151	177	180	6	1,5	0,6	0,35	1,9	2,9	1,8
	90	13	7,5	2	0,6	153	187	199	8	2	0,6	0,46	1,5	2,2	1,4
	136	10	7,5	3	1	159	210	236	8	3	1	0,43	1,6	2,3	1,6
	84 140	10 20	7,5 15	3 4	1 1,5	164 169	219 235	236 284	8 9	3 4	1 1,5	0,43 0,83	1,6 0,81	2,3 1,2	1,6 0,8
150	96	10	7,5	2,5	1	165	200	212	8	2,5	1	0,46	1,5	2,2	1,4
	90	15	10	3	1	176	234	256	9	3	1	0,43	1,6	2,3	1,6
	146	10	7,5	3	1	171	226	256	8	3	1	0,43	1,6	2,3	1,6
	130	19	10	4	1,5	189	273	303	9	4	1,5	0,35	1,9	2,9	1,8
	150	20	15	4	1,5	181	251	304	9	4	1,5	0,83	0,81	1,2	0,8
160	102	11	9	2,5	1	176	213	227	8	2,5	1	0,46	1,5	2,2	1,4
	96	15	10	3	1	190	252	276	7	3	1	0,43	1,6	2,3	1,6
	160	10	7,5	3	1	183	242	276	10	3	1	0,43	1,6	2,3	1,6
170	114	15	10	2,5	1	188	230	247	10	2,5	1	0,44	1,5	2,3	1,4
	104	16	10	4	1,5	203	269	293	8	4	1,5	0,43	1,6	2,3	1,6
	172	15	10	4	1,5	196	259	293	10	4	1,5	0,43	1,6	2,3	1,6
180	90	10	7,5	2	0,6	194	225	238	8	2	0,6	0,48	1,4	2,1	1,4
	128	15	10	2,5	1	200	247	267	10	2,5	1	0,43	1,6	2,3	1,6
	104	15	10	4	1,5	212	278	303	8	4	1,5	0,46	1,5	2,2	1,4
	172	16	12	4	1,5	205	267	303	10	4	1,5	0,46	1,5	2,2	1,4



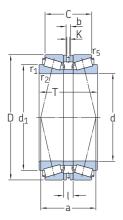
Princip	al dimens	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designation
d	D	Т	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	-
190	260	90	760	1 530	143	1 400	2 200	14,5	32938/DF
	290	128	1 381	2 400	224	1 300	2 000	30,5	► 32038 X/DF
	290	128	1 381	2 400	224	1 300	2 000	30,5	► 32038 X/L4BDF
	340	120	1 308	2 000	190	1 100	1 800	42,5	30238/DF
200	310	140	1 372	2 750	255	1 100	1 900	39	➤ 32040 X/DF
	360	128	1 448	2 240	212	1 000	1 700	52	30240/DF
	360	208	2 229	4 000	360	1 000	1 700	88	► 32240/DF
220	300	102	1 030	2 000	183	1 200	1 900	21	32944/DF
	340	152	1 637	3 350	300	1 000	1 700	51	► 32044 X/DF
	400	144	1 816	2 800	255	950	1 600	72	30244/DF
	400	228	2 949	5 400	465	900	1 500	124	▶ 32244/DF
240	320	102	1 069	2 160	193	1 200	1 700	22,5	32948/DF
	360	152	1 695	3 550	315	950	1 600	54,5	➤ 32048 X/DF
	440	254	3 300	6 550	550	1 000	1 500	172	32248/DF
260	400	174	2 127	4 400	380	850	1 400	79	➤ 32052 X/DF
	480	274	4 013	7 350	600	750	1 200	213	32252/DF
280	420	174	2 208	4 750	400	800	1 300	84	➤ 32056 X/DF
	500	274	2 410	7 800	620	700	1 200	226	32256/DF
300	460	200	2 818	6 000	490	750	1 200	119	32060 X/DF
	540	280	2 935	9 500	735	630	1 100	290	32260/DF
320	440	152	1 982	4 650	390	750	1 200	69	32964/DF
	480	200	2 852	6 200	500	700	1 100	104	32064 X/DF
340	460	152	1 995	4 800	390	700	1 200	73	32968/DF
360	480	152	2 043	5 100	405	670	1 100	302	32972/DF

Dimen	sions					Abutm	ent and fi	llet dimen	sions			Calcul	ation fac	ctors	
d	2B	b	K	r _{3,4} min.	r ₅ min.	d _a max.	D _a min.	D _a max.	C _a min.	r _a max.	r _c max.	е	Y ₁	Y ₂	Y ₀
mm						mm						-			
190	90	10	7,5	2	0,6	205	235	248	8	2	0,6	0,48	1,4	2,1	1,4
	128	15	10	2,5	1	210	257	276	10	2,5	1	0,44	1,5	2,3	1,4
	128	15	10	2,5	1	210	257	276	10	2,5	1	0,44	1,5	2,3	1,4
	110	16	10	4	1,5	225	298	323	8	4	1,5	0,43	1,6	2,3	1,6
200	140	15	10	2,5	1	222	273	296	11	2,5	1	0,43	1,6	2,3	1,6
	116	19	12	4	1,5	237	315	343	9	4	1,5	0,43	1,6	2,3	1,6
	196	15	10	4	1	231	302	343	11	4	1	0,4	1,7	2,5	1,6
220	102	10	7,5	2,5	1	235	275	286	9	2,5	1	0,43	1,6	2,3	1,6
	152	20	15	3	1	244	300	325	12	3	1	0,43	1,6	2,3	1,6
	130	15	10	4	1,5	259	348	382	10	4	1,5	0,43	1,6	2,3	1,6
	216	25	18	4	1,5	253	334	382	13	4	1,5	0,43	1,6	2,3	1,6
240	102	12	7,5	2,5	1	255	294	306	9	2,5	1	0,46	1,5	2,2	1,4
	152	20	15	3	1	262	318	345	12	3	1	0,46	1,5	2,2	1,4
	240	20	16	4	1,5	276	365	420	7	3	1,5	0,43	1,6	2,3	1,6
260	174	25	15	4	1,5	288	352	382	14	4	1,5	0,43	1,6	2,3	1,6
	260	35	16	5	1,5	303	401	458	10	1,5	1,5	0,43	1,6	2,3	1,6
280	174	20	15	4	1,5	306	370	402	14	4	1,5	0,46	1,5	2,2	1,4
	260	20	16	5	1,5	319	418	478	10	4	1,5	0,44	1,5	2,3	1,4
300	200	20	12	4	1,5	330	404	440	10	1,5	1,5	0,43	1,6	2,3	1,6
	298	36	18	5	1,5	343	453	518	10	4	1,5	0,43	1,6	2,3	1,6
320	152	17	15	3	1	343	402	424	9	1	1	0,43	1,6	2,3	1,6
	200	20	16	4	1,5	350	424	460	15	1,5	1,5	0,46	1,5	2,2	1,4
340	152	18	16	3	1	361	421	444	10	1	1	0,44	1,5	2,3	1,4
360	152	22	16	3	1	380	439	464	10	2,5	1	0,46	1,5	2,2	1,4



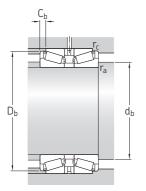


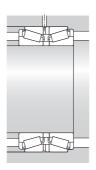
 $l \ge 7 \ mm$


l < 7 mm

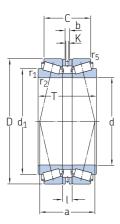
Princip	oal dimens	sions		oad ratings static	Fatigue load limit	Speed ratir Reference	Limiting	Mass	Designation
d	D	Т	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min		kg	-
35	72	64	178	212	23,6	6 300	9 500	1,15	33207T64/DB
40	68	41,5	111	143	15,3	6 300	9 500	0,58	32008T41.5 X/DB
	90	72	182	190	21,6	5 300	8 000	1,9	30308T72/DB
45	100	62,5	194	204	24,5	4 000	6 700	2,1	31309T62.5/DB
50	80	50	129	176	19,3	5 300	8 000	0,86	32010T50 X/DB
	90	67,5	173	200	22,8	4 800	7 500	1,5	32210T67.5/DB
55	90	59	191	270	30,5	4 500	7 000	1,4	33011T59/DB
	95	88	232	310	35,5	4 500	6 700	2,1	33111T88/DB
60	95	65	173	245	27	4 300	6 700	1,45	32012T65 X/DB
	110	53	207	228	26,5	4 000	6 000	1,9	30212T53/DB
65	100	53	176	255	28	4 000	6 000	1,35	32013T53 X/DB
	100	60	204	310	34,5	4 000	6 300	1,6	33013T60/DB
	140	82	411	455	55	3 200	4 800	5,3	30313T82/DB
70	110	63	214	305	34,5	3 800	5 600	1,9	32014T63 X/DB
	110	108,8	273	400	45,5	3 800	5 600	3,05	33014T108.8/DB
	125	59	267	310	36	3 400	5 300	2,7	30214T59/DB
	150	84	465	520	62	3 000	4 500	6,3	30314T84/DB
75	130	70	293	355	41,5	3 400	5 000	3,2	30215T70/DB
	130	78	337	425	49	3 200	5 000	3,7	32215T78/DB
80	140	78	391	490	57	3 000	4 500	4,4	32216T78/DB
85	130	66	293	450	51	3 200	4 800	2,85	32017T66 X/DB
	150	87	451	570	65,5	2 800	4 300	5,65	32217T87/DB
	150	145	606	850	96,5	2 800	4 300	9	33217T145/DB
	180	132	858	1 060	120	2 600	3 800	14,5	32317T132/DB
	180	133,19	510	570	64	2 200	3 800	12	31317T133.19/DB
90	150	104	532	780	85	2 800	4 300	6,7	33118T104/DB

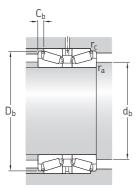
Dime	nsions									Abutn	nent and	d fillet di	mension	ıs	Calcul	ation fa	ctors	
d	d ₁ ≈	С	l	b	K	t	r _{1,2} min.	r ₅ min.	a	d _b min.	D _b min.	C _b min.	r _a max.	r _c max.	е	Y ₁	Y ₂	Y_0
mm						,	,			mm	,	,	,		_	,		
35	53,4	52	8	4	1,5	_	1,5	0,6	44	43,5	68	6	1,5	0,6	0,35	1,9	2,9	1,8
40	54,7 62,5	32,5 61,5	3,5 21,5	- 9	- 6	1,5 -	1 2	0,3 0,6	33 60	47,5 49,5	65 82	4,5 5	1 2	0,3 0,6	0,37 0,35	1,8 1,9	2,7 2,9	1,8 1,8
45	74,7	44	8	5	3	_	2	0,6	70	55	95	9	2	0,6	0,83	0,81	1,2	0,8
50	65,9 68,6	41 56	10 18	6 10	4 2		1 1,5	0,3 0,6	45 60	58 59	77 85	4,5 5,5	1 1,5	0,3 0,6	0,43 0,43	1,6 1,6	2,3 2,3	1,6 1,6
55	73,1 75,1	47 74	5 28	- 16	- 8	2	1,5 1,5	0,6 0,6	43 72	64 64	86 91	6 7	1,5 1,5	0,6 0,6	0,31 0,37	2,2 1,8	3,3 2,7	2,2 1,8
60	77,8 80,9	54 43,5	19 5,5	7	4,5 -	_ 2	1,5 2	0,6 0,6	60 49	69 70	91 103	5,5 4,5	1,5 2	0,6 0,6	0,43 0,4	1,6 1,7	2,3 2,5	1,6 1,6
65	83,3 82,6 98,7	42 48 66	7 6 10	4 - 4	3 - 2	_ 2 _	1,5 1,5 3	0,6 0,6 1	51 48 65	74 74 78	97 96 130	5,5 6 8	1,5 1,5 3	0,6 0,6 1	0,46 0,35 0,35	1,5 1,9 1,9	2,2 2,9 2,9	1,4 1,8 1,8
70	89,9 88,9 94	51 97,8 48,5	13 46,8 6,5	3 10 -	2 4,5 –	- - 2	1,5 1,5 2	0,6 0,6 0,6	60 92 57	80 80 81	105 105 118	6 5,5 5	1,5 1,5 2	0,6 0,6 0,6	0,43 0,28 0,43	1,6 2,4 1,6	2,3 3,6 2,3	1,6 2,5 1,6
	105	68	8	4	3	_	3	1	66	83	140	8	3	1	0,35	1,9	2,9	1,8
75	99,8 100	59,5 65,5	15,5 11,5	8,6 7	5 2		2 2	0,6 0,6	69 70	86 86	124 125	5 6	2 2	0,6 0,6	0,43 0,43	1,6 1,6	2,3 2,3	1,6 1,6
80	106	63,5	7,5	4	3	_	2,5	0,6	68	92	134	7	2,5	0,6	0,43	1,6	2,3	1,6
85	108 113 117	52 70 121	8 10 47	4 6 26	3 3 14	- - -	1,5 2,5 2,5	0,6 0,6 0,6	64 76 120	95 97 97	125 142 144	7 8,5 12	1,5 2,5 2,5	0,6 0,6 0,6	0,44 0,43 0,43	1,5 1,6 1,6	2,3 2,3 2,3	1,4 1,6 1,6
	127 131	103 100,19	5 9 44,19	_ 15	- 10	3 –	4 4	1	88 152	101 101	167 169	16,5 14,5	4 4	1	0,35 0,83	1,9 0,81	2,9 1,2	1,8 0,8
90	120	84	14	8	4	_	2,5	0,6	83	102	144	10	2,5	0,6	0,4	1,7	2,5	1,6




 $l \ge 7 \text{ mm}$

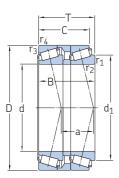
l < 7 mm

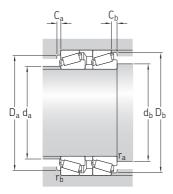

Princi	al dimens	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designation
d	D	Т	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	-
95	170	105	597	780	86,5	2 600	3 800	9	32219T105/DB
100	150	88	477	765	83	2 800	4 000	5	33020T88/DB
	180	100	521	640	72	2 400	3 600	8,85	30220T100/DB
	180	107	668	880	96,5	2 400	3 600	10,5	32220T107/DB
	180	135	912	1 320	140	2 400	3 600	14	33220T135/DB
	215	125	685	930	102	1 700	3 000	19	31320T125 X/DB
105	190	88	571	710	80	2 200	3 400	9,35	30221T88/DB
110	170	84	494	780	80	2 400	3 600	6,5	32022T84 X/DB
	200	122	842	1 140	122	2 200	3 200	15	32222T122/DB
	240	140	841	1 160	122	1 500	2 800	26	31322T140 X/DB
120	215	133	716	915	98	2 000	3 000	16	30224T133/DB
130	180	76	420	735	76,5	2 200	3 200	5,25	32926T76/DB
	200	102	666	1 080	110	2 000	3 000	10,5	32026T102 X/DB
	230	142	1 012	1 660	170	1 600	2 800	23	32226T142/DB
	280	142	1 165	1 600	163	1 400	2 400	36,5	30326T142/DB
	280	164	1 110	1 560	160	1 300	2 400	41	31326T164 X/DB
140	210	130	692	1 160	116	1 900	2 800	13	32028T130 X/DB
	250	102	773	1 140	116	1 500	2 600	18,5	30228T102/DB
	250	106	773	1 140	116	1 500	2 600	19	30228T106/DB
	250	158	1 185	2 000	200	1 500	2 600	30	32228T158/DB
	300	170	1 264	1 800	180	1 200	2 200	49	31328T170 X/DB
150	225	112	782	1 320	132	1 800	2 600	14	32030T112 X/DB
	225	132	836	1 730	170	1 700	2 600	17	33030T132/DB
	270	164	1 341	2 280	224	1 400	2 400	37,5	32230T164/DB
	270	168	781	1 120	114	1 400	2 400	32	30230T168/DB
	320	179	1 427	2 040	200	1 100	2 000	58,5	31330T179 X/DB
160	290	114	971	1 460	143	1 300	2 200	28	30232T114/DB
	290	179	1 602	2 800	265	1 300	2 200	49	32232T179/DB



| С | | ı | | | |
 |
 | | |
 |
 | | | |
 | | |
|-------------------|--|--|---|---|---
--
--
--
--|--|--|--

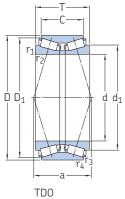
---	---	--
		ι
 | r ₅
min.
 | a | d _b
min. | D _b
min.
 | C _b
min. | r _a
max.
 | r _c
max. | е | Y ₁
 | Y ₂ | Y ₀ |
| | | | | | |
 |
 | | mm |
 |
 | | | - |
 | | |
| 8 8 | 88 | 14 | 4,5 | 3 | - | 3
 | 1
 | 91 | 109 | 161
 | 8,5
 | 3 | 1 | 0,43 | 1,6
 | 2,3 | 1,6 |
| 2 7
4 8
6 8 | 34 | 10
26
9 | 6
9
4 | 3
3
3 | -
-
- | 2
3
3
 | 0,6
1
1
 | 68
97
91 | 111
114
114 | 143
168
171
 | 6,5
8
10
 | 2
3
3 | 0,6
1
1 | 0,28
0,43
0,43 | 2,4
1,6
1,6
 | 3,6
2,3
2,3 | 2,5
1,6
1,6 |
| | | 9
12 | 4
7 | 3 | | 3
4
 | 1
 | 99
142 | 114
116 | 172
202
 | 15
21,5
 | 3
4 | 1 | 0,4
0,83 | 1,7
0,81
 | 2,5
1,2 | 1,6
0,8 |
| 3 7 | 0 | 10 | 5 | 2 | _ | 3
 | 1
 | 85 | 119 | 177
 | 9
 | 3 | 1 | 0,43 | 1,6
 | 2,3 | 1,6 |
| 1 1 | .02 | 8
10
14 | 4,5
5
8 | 3
3
6 | -
-
- | 2,5
3
4
 | 0,6
1
1
 | 80
103
159 | 123
124
127 | 163
190
224
 | 9
10
25
 | 2,5
3
4 | 0,6
1
1 | 0,43
0,43
0,83 | 1,6
1,6
0,81
 | 2,3
2,3
1,2 | 1,6
1,6
0,8 |
| 1 1 | .14 | 46 | 10 | 7,5 | - | 3
 | 1
 | 131 | 134 | 201
 | 9,5
 | 3 | 1 | 0,43 | 1,6
 | 2,3 | 1,6 |
| 5 8 | 80 | 12
12
6,5 | 7
8
- | 3
6
- | -
-
3 | 2
2,5
4
 | 0,6
0,6
1
 | 75
98
118 | 142
143
147 | 173
192
219
 | 7
11
13,5
 | 2
2,5
4 | 0,6
0,6
1 | 0,33
0,43
0,43 | 2
1,6
1,6
 | 3
2,3
2,3 | 2
1,6
1,6 |
| | | 14,5
20 | 6
8 | 3 | -
- | 5
5
 | 1,5
1,5
 | 116
188 | 149
149 | 255
261
 | 14,5
28
 | 5
5 | 1,5
1,5 | 0,35
0,83 | 1,9
0,81
 | 2,9
1,2 | 1,8
0,8 |
| 7 8 | 32,5 | 40
10,5
14,5 | 10,7
5,5
5,5 | 6
4
4 | -
-
- | 2,5
4
4
 | 0,6
1
1
 | 131
105
109 | 154
157
157 | 202
234
234
 | 11
9,5
9,5
 | 2,5
4
4 | 0,6
1
1 | 0,46
0,43
0,43 | 1,5
1,6
1,6
 | 2,2
2,3
2,3 | 1,4
1,6
1,6 |
| | , - | 14,5
16 | 4
7,5 | 3
6 | _ | 4
5
 | 1
1,5
 | 134
196 | 157
160 | 238
280
 | 13,5
30
 | 4
5 | 1
1,5 | 0,43
0,83 | 1,6
0,81
 | 2,3
1,2 | 1,6
0,8 |
| 8 1 | .06 | 16
14
10 | 4
8
5 | 3
3
2 | -
-
- | 3
3
4
 | 1
1
1
 | 114
110
138 | 165
165
167 | 216
217
254
 | 12
13
17
 | 3
3
4 | 1
1
1 | 0,46
0,37
0,43 | 1,5
1,8
1,6
 | 2,2
2,7
2,3 | 1,4
1,8
1,6 |
| | | 70
15 | 6
8 | 4,5
6 | -
- | 4
5
 | 1
1,5
 | 171
207 | 167
170 | 250
300
 | 11
32
 | 4
5 | 1
1,5 | 0,43
0,83 | 1,6
0,81
 | 2,3
1,2 | 1,6
0,8 |
| | | 10
11 | 4,5
6 | 3
4,5 | _ | 4
4
 | 1
 | 118
150 | 177
178 | 269
274
 | 12
17
 | 4
4 | 1 | 0,43
0,43 | 1,6
1,6
 | 2,3
2,3 | 1,6
1,6 |
| | 33 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 3 82
3 70
0 66
1 102
6 90
1 114
3 62
5 80
6 114,5
2 112,5
4 108
6 108
7 86,5
1 130,5
1 110
7 88
8 106
5 130
0 146
4 115
6 90 | 3 82 12 3 70 10 0 66 8 1 102 10 6 90 14 1 114 46 3 62 12 5 80 12 114,5 6,5 2 112,5 14,5 4 108 20 5 108 40 82,5 10,5 7 86,5 14,5 1 130,5 14,5 0 146 70 1 15 15 90 10 | 3 82 12 7 3 70 10 5 0 66 8 4,5 1 102 10 5 6 90 14 8 1 114 46 10 3 62 12 7 5 80 12 8 6 114,5 6,5 - 2 112,5 14,5 6 4 108 20 8 5 108 40 10,7 7 82,5 10,5 5,5 7 86,5 14,5 5,5 1 130,5 14,5 4 0 110 16 7,5 7 88 16 4 8 106 14 8 5 130 10 5 0 146 70 6 4 115 15 8 5 90 10 4,5 | 8 82 12 7 3 3 70 10 5 2 0 66 8 4,5 3 1 102 10 5 3 6 90 14 8 6 1 114 46 10 7,5 3 62 12 7 3 5 80 12 8 6 114,5 6,5 - - 2 112,5 14,5 6 3 4 108 20 8 6 7 82,5 10,5 5,5 4 7 86,5 14,5 5,5 4 1 130,5 14,5 4 3 0 110 16 7,5 6 7 88 16 4 3 3 106 14 8 3 5 130 10 5 2 0 146 70 6 4,5 4 115 15 8 6 6 90 10 4,5 3 | 3 82 12 7 3 - 3 70 10 5 2 - 0 66 8 4,5 3 - 1 102 10 5 3 - 6 90 14 8 6 - 1 114 46 10 7,5 - 3 62 12 7 3 - 5 80 12 8 6 - 6 114,5 6,5 - 3 - 2 112,5 14,5 6 3 - 3 108 40 10,7 6 - 4 108 20 8 6 - 7 86,5 14,5 5,5 4 - 1 130,5 14,5 4 3 - 2 88 16 4 3 - 3 106 14 8 3 - 4 <t< td=""><td>8 82 12 7 3 - 4 3 70 10 5 2 - 3 0 66 8 4,5 3 - 2,5 1 102 10 5 3 - 3 6 90 14 8 6 - 4 1 114 46 10 7,5 - 3 3 62 12 7 3 - 2 2,5 5 80 12 8 6 - 2,5 4 6 114,5 6,5 - - 3 - 5 6 112,5 14,5 6 3 - 5 7 82,5 10,5 5,5 4 - 4 1 130,5 14,5 4 3 - 4 1 130,5 14,5 4 3 - 4 1 130,5 14,5 4 3 - <t< td=""><td>8 82 12 7 3 - 4 1 3 70 10 5 2 - 3 1 0 66 8 4,5 3 - 2,5 0,6 1 102 10 5 3 - 3 1 6 90 14 8 6 - 4 1 1 114 46 10 7,5 - 3 1 1 114 46 10 7,5 - 3 1 3 62 12 7 3 - 2 0,6 5 80 12 8 6 - 2,5 0,6 6 114,5 6,5 - - 3 4 1 2 112,5 14,5 6 3 - 5 1,5 4 108 20 8 6 - 5 1,5 5 10,5 5,5 4 - 4</td><td>8 82 12 7 3 - 4 1 142 3 70 10 5 2 - 3 1 85 0 66 8 4,5 3 - 2,5 0,6 80 1 102 10 5 3 - 3 1 103 6 90 14 8 6 - 4 1 159 1 114 46 10 7,5 - 3 1 131 3 62 12 7 3 - 2 0,6 75 5 80 12 8 6 - 2,5 0,6 98 6 114,5 6,5 - - 3 4 1 118 2 112,5 14,5 6 3 - 5 1,5 116 4 108 20 8 6 - 5 1,5 188 5 10,5 5,5 <</td><td>8 82 12 7 3 - 4 1 142 116 3 70 10 5 2 - 3 1 85 119 0 66 8 4,5 3 - 2,5 0,6 80 123 1 102 10 5 3 - 3 1 103 124 6 90 14 8 6 - 4 1 159 127 1 114 46 10 7,5 - 3 1 131 134 3 62 12 7 3 - 2 0,6 75 142 5 80 12 8 6 - 2,5 0,6 98 143 4 114,5 6,5 - - 3 4 1 118 147 2 112,5 14,5 6 3 - 5 1,5 188 149 4 108 20<td>8 82 12 7 3 - 4 1 142 116 202 3 70 10 5 2 - 3 1 85 119 177 0 66 8 4,5 3 - 2,5 0,6 80 123 163 1 102 10 5 3 - 3 1 103 124 190 6 90 14 8 6 - 4 1 159 127 224 1 114 46 10 7,5 - 3 1 131 134 201 3 62 12 7 3 - 2 0,6 75 142 173 5 80 12 8 6 - 2,5 0,6 98 143 192 6 114,5 6,5 - - 3 4 1 118 147 219 2 12,5 14,5 6 <td< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 8 70 10 5 2 - 3 1 85 119 177 9 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 1 102 10 5 3 - 3 1 103 124 190 10 6 90 14 8 6 - 4 1 159 127 224 25 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 62 12 7 3 - 2 0,6 75 142 173 7 6 114,5 6,5 - - 3 4 1 118 147 219 13,5 1 112,5 14,5 6 3 - 5 1,5 <td< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 8 70 10 5 2 - 3 1 85 119 177 9 3 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 1 102 10 5 3 - 3 1 103 124 190 10 3 6 90 14 8 6 - 4 1 159 127 224 25 4 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 3 62 12 7 3 - 2 0,6 75 142 173 7 2 5 80 12 8 6 - 2,5 0,6 98 143 192 11 2,5 6</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 8 70 10 5 2 - 3 1 85 119 177 9 3 1 1 102 10 5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 1 102 10 5 3 - 3 1 103 124 190 10 3 1 6 90 14 8 6
- 4 1 159 127 224 25 4 1 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 1 114 46 10 7,5 - 3 1</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 3 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 5 90 14 8 6 - 4 1 159 127 224 25 4 1 0,83 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 3 62 12 7 3 - 2 0,6 75 142 173 7 2 0,6 0,33 <t< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 0,81 8 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 1,6 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1,6 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 1,6 6 90 14 8 6 - 4 1 159 127 224 25 4 1 0,43 1,6 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 1 114 46 10 7,5 - 3 1 131 134</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 0,81 1,2 8 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 1,6 2,3 1 102 10 5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1,6 2,3 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 1,6 2,3 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 2,3 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 2,3 1 114,5 6,5</td></t<></td></td<></td></td<></td></td></t<></td></t<> | 8 82 12 7 3 - 4 3 70 10 5 2 - 3 0 66 8 4,5 3 - 2,5 1 102 10 5 3 - 3 6 90 14 8 6 - 4 1 114 46 10 7,5 - 3 3 62 12 7 3 - 2 2,5 5 80 12 8 6 - 2,5 4 6 114,5 6,5 - - 3 - 5 6 112,5 14,5 6 3 - 5 7 82,5 10,5 5,5 4 - 4 1 130,5 14,5 4 3 - 4 1 130,5 14,5 4 3 - 4 1 130,5 14,5 4 3 - <t< td=""><td>8 82 12 7 3 - 4 1 3 70 10 5 2 - 3 1 0 66 8 4,5 3 - 2,5 0,6 1 102 10 5 3 - 3 1 6 90 14 8 6 - 4 1 1 114 46 10 7,5 - 3 1 1 114 46 10 7,5 - 3 1 3 62 12 7 3 - 2 0,6 5 80 12 8 6 - 2,5 0,6 6 114,5 6,5 - - 3 4 1 2 112,5 14,5 6 3 - 5 1,5 4 108 20 8 6 - 5 1,5 5 10,5 5,5 4 - 4</td><td>8 82 12 7 3 - 4 1 142 3 70 10 5 2 - 3 1 85 0 66 8 4,5 3 - 2,5 0,6 80 1 102 10 5 3 - 3 1 103 6 90 14 8 6 - 4 1 159 1 114 46 10 7,5 - 3 1 131 3 62 12 7 3 - 2 0,6 75 5 80 12 8 6 - 2,5 0,6 98 6 114,5 6,5 - - 3 4 1 118 2 112,5 14,5 6 3 - 5 1,5 116 4 108 20 8 6 - 5 1,5 188 5 10,5 5,5 <</td><td>8 82 12 7 3 - 4 1 142 116 3 70 10 5 2 - 3 1 85 119 0 66 8 4,5 3 - 2,5 0,6 80 123 1 102 10 5 3 - 3 1 103 124 6 90 14 8 6 - 4 1 159 127 1 114 46 10 7,5 - 3 1 131 134 3 62 12 7 3 - 2 0,6 75 142 5 80 12 8 6 - 2,5 0,6 98 143 4 114,5 6,5 - - 3 4 1 118 147 2 112,5 14,5 6 3 - 5 1,5 188 149 4 108 20<td>8 82 12 7 3 - 4 1 142 116 202 3 70 10 5 2 - 3 1 85 119 177 0 66 8 4,5 3 - 2,5 0,6 80 123 163 1 102 10 5 3 - 3 1 103 124 190 6 90 14 8 6 - 4 1 159 127 224 1 114 46 10 7,5 - 3 1 131 134 201 3 62 12 7 3 - 2 0,6 75 142 173 5 80 12 8 6 - 2,5 0,6 98 143 192 6 114,5 6,5 - - 3 4 1 118 147 219 2 12,5 14,5 6 <td< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 8 70 10 5 2 - 3 1 85 119 177 9 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 1 102 10 5 3 - 3 1 103 124 190 10 6 90 14 8 6 - 4 1 159 127 224 25 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 62 12 7 3 - 2 0,6 75 142 173 7 6 114,5 6,5 - - 3 4 1 118 147 219 13,5 1 112,5 14,5 6 3 - 5 1,5 <td< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 8 70 10 5 2 - 3 1 85 119 177 9 3 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 1 102 10 5 3 - 3 1 103 124 190 10 3 6 90 14 8 6 - 4 1 159 127 224 25 4 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 3 62 12 7 3 - 2 0,6 75 142 173 7 2 5 80 12 8 6 - 2,5 0,6 98 143 192 11 2,5 6</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4
 1 8 70 10 5 2 - 3 1 85 119 177 9 3 1 1 102 10 5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 1 102 10 5 3 - 3 1 103 124 190 10 3 1 6 90 14 8 6 - 4 1 159 127 224 25 4 1 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 1 114 46 10 7,5 - 3 1</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 3 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 5 90 14 8 6 - 4 1 159 127 224 25 4 1 0,83 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 3 62 12 7 3 - 2 0,6 75 142 173 7 2 0,6 0,33 <t< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 0,81 8 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 1,6 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1,6 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 1,6 6 90 14 8 6 - 4 1 159 127 224 25 4 1 0,43 1,6 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 1 114 46 10 7,5 - 3 1 131 134</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 0,81 1,2 8 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 1,6 2,3 1 102 10 5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1,6 2,3 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 1,6 2,3 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 2,3 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 2,3 1 114,5 6,5</td></t<></td></td<></td></td<></td></td></t<> | 8 82 12 7 3 - 4 1 3 70 10 5 2 - 3 1 0 66 8 4,5 3 - 2,5 0,6 1 102 10 5 3 - 3 1 6 90 14 8 6 - 4 1 1 114 46 10 7,5 - 3 1 1 114 46 10 7,5 - 3 1 3 62 12 7 3 - 2 0,6 5 80 12 8 6 - 2,5 0,6 6 114,5 6,5 - - 3 4 1 2 112,5 14,5 6 3 - 5 1,5 4 108 20 8 6 - 5 1,5 5 10,5 5,5 4 - 4 | 8 82 12 7 3 - 4 1 142 3 70 10 5 2 - 3 1 85 0 66 8 4,5 3 - 2,5 0,6 80 1 102 10 5 3 - 3 1 103 6 90 14 8 6 - 4 1 159 1 114 46 10 7,5 - 3 1 131 3 62 12 7 3 - 2 0,6 75 5 80 12 8 6 - 2,5 0,6 98 6 114,5 6,5 - - 3 4 1 118 2 112,5 14,5 6 3 - 5 1,5 116 4 108 20 8 6 - 5 1,5 188 5 10,5 5,5 < | 8 82 12 7 3 - 4 1 142 116 3 70 10 5 2 - 3 1 85 119 0 66 8 4,5 3 - 2,5 0,6 80 123 1 102 10 5 3 - 3 1 103 124 6 90 14 8 6 - 4 1 159 127 1 114 46 10 7,5 - 3 1 131 134 3 62 12 7 3 - 2 0,6 75 142 5 80 12 8 6 - 2,5 0,6 98 143 4 114,5 6,5 - - 3 4 1 118 147 2 112,5 14,5 6 3 - 5 1,5 188 149 4 108 20 <td>8 82 12 7 3 - 4 1 142 116 202 3 70 10 5 2 - 3 1 85 119 177 0 66 8 4,5 3 - 2,5 0,6 80 123 163 1 102 10 5 3 - 3 1 103 124 190 6 90 14 8 6 - 4 1 159 127 224 1 114 46 10 7,5 - 3 1 131 134 201 3 62 12 7 3 - 2 0,6 75 142 173 5 80 12 8 6 - 2,5 0,6 98 143 192 6 114,5 6,5 - - 3 4 1 118 147 219 2 12,5 14,5 6 <td< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 8 70 10 5 2 - 3 1 85 119 177 9 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 1 102 10 5 3 - 3 1 103 124 190 10 6 90 14 8 6 - 4 1 159 127 224 25 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 62 12 7 3 - 2 0,6 75 142 173 7 6 114,5 6,5 - - 3 4 1 118 147 219 13,5 1 112,5 14,5 6 3 - 5 1,5 <td< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 8 70 10 5 2 - 3 1 85 119 177 9 3 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 1 102 10 5 3 - 3 1 103 124 190 10 3 6 90 14 8 6 - 4 1 159 127 224 25 4 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 3 62 12 7 3 - 2 0,6 75 142 173 7 2 5 80 12 8 6 - 2,5 0,6 98 143 192 11 2,5 6</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 8 70 10 5 2 - 3 1 85 119 177 9 3 1 1 102 10 5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 1 102 10 5 3 - 3 1 103 124 190 10 3 1 6 90 14 8 6 - 4 1 159 127 224 25
 4 1 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 1 114 46 10 7,5 - 3 1</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 3 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 5 90 14 8 6 - 4 1 159 127 224 25 4 1 0,83 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 3 62 12 7 3 - 2 0,6 75 142 173 7 2 0,6 0,33 <t< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 0,81 8 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 1,6 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1,6 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 1,6 6 90 14 8 6 - 4 1 159 127 224 25 4 1 0,43 1,6 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 1 114 46 10 7,5 - 3 1 131 134</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 0,81 1,2 8 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 1,6 2,3 1 102 10 5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1,6 2,3 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 1,6 2,3 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 2,3 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 2,3 1 114,5 6,5</td></t<></td></td<></td></td<></td> | 8 82 12 7 3 - 4 1 142 116 202 3 70 10 5 2 - 3 1 85 119 177 0 66 8 4,5 3 - 2,5 0,6 80 123 163 1 102 10 5 3 - 3 1 103 124 190 6 90 14 8 6 - 4 1 159 127 224 1 114 46 10 7,5 - 3 1 131 134 201 3 62 12 7 3 - 2 0,6 75 142 173 5 80 12 8 6 - 2,5 0,6 98 143 192 6 114,5 6,5 - - 3 4 1 118 147 219 2 12,5 14,5 6 <td< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 8 70 10 5 2 - 3 1 85 119 177 9 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 1 102 10 5 3 - 3 1 103 124 190 10 6 90 14 8 6 - 4 1 159 127 224 25 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 62 12 7 3 - 2 0,6 75 142 173 7 6 114,5 6,5 - - 3 4 1 118 147 219 13,5 1 112,5 14,5 6 3 - 5 1,5 <td< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 8 70 10 5 2 - 3 1 85 119 177 9 3 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 1 102 10 5 3 - 3 1 103 124 190 10 3 6 90 14 8 6 - 4 1 159 127 224 25 4 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 3 62 12 7 3 - 2 0,6 75 142 173 7 2 5 80 12 8 6 - 2,5 0,6 98 143 192 11 2,5 6</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 8 70 10 5 2 - 3 1 85 119 177 9 3 1 1 102 10 5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 1 102 10 5 3 - 3 1 103 124 190 10 3 1 6 90 14 8 6 - 4 1 159 127 224 25 4 1 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 1 114 46 10 7,5 - 3 1</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 3 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 5 90 14 8 6 - 4 1 159 127 224 25 4 1 0,83 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 3 62 12 7 3 - 2 0,6 75 142 173 7 2 0,6 0,33 <t< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 0,81 8 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 1,6 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1,6 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 1,6 6 90 14 8 6 - 4 1 159 127 224 25 4 1 0,43 1,6 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 1 114 46 10 7,5 - 3 1 131 134</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 0,81 1,2 8 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 1,6 2,3 1 102 10 5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1,6 2,3 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 1,6 2,3 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 2,3 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 2,3 1 114,5
6,5</td></t<></td></td<></td></td<> | 8 82 12 7 3 - 4 1 142 116 202 21,5 8 70 10 5 2 - 3 1 85 119 177 9 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 1 102 10 5 3 - 3 1 103 124 190 10 6 90 14 8 6 - 4 1 159 127 224 25 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 62 12 7 3 - 2 0,6 75 142 173 7 6 114,5 6,5 - - 3 4 1 118 147 219 13,5 1 112,5 14,5 6 3 - 5 1,5 <td< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 8 70 10 5 2 - 3 1 85 119 177 9 3 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 1 102 10 5 3 - 3 1 103 124 190 10 3 6 90 14 8 6 - 4 1 159 127 224 25 4 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 3 62 12 7 3 - 2 0,6 75 142 173 7 2 5 80 12 8 6 - 2,5 0,6 98 143 192 11 2,5 6</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 8 70 10 5 2 - 3 1 85 119 177 9 3 1 1 102 10 5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 1 102 10 5 3 - 3 1 103 124 190 10 3 1 6 90 14 8 6 - 4 1 159 127 224 25 4 1 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 1 114 46 10 7,5 - 3 1</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 3 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 5 90 14 8 6 - 4 1 159 127 224 25 4 1 0,83 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 3 62 12 7 3 - 2 0,6 75 142 173 7 2 0,6 0,33 <t< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 0,81 8 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 1,6 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1,6 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 1,6 6 90 14 8 6 - 4 1 159 127 224 25 4 1 0,43 1,6 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 1 114 46 10 7,5 - 3 1 131 134</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 0,81 1,2 8 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 1,6 2,3 1 102 10 5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1,6 2,3 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 1,6 2,3 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 2,3 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 2,3 1 114,5 6,5</td></t<></td></td<> | 8 82 12 7 3 - 4 1 142 116 202 21,5 4 8 70 10 5 2 - 3 1 85 119 177 9 3 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 1 102 10 5 3 - 3 1 103 124 190 10 3 6 90 14 8 6 - 4 1 159 127 224 25 4 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 3 62 12 7 3 - 2 0,6 75 142 173 7 2 5 80 12 8 6 - 2,5 0,6 98 143 192 11 2,5 6 | 8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 8 70 10 5 2 - 3 1 85 119 177 9 3 1 1 102 10 5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 1 102 10 5 3 - 3 1 103 124 190 10 3 1 6 90 14 8 6 - 4 1 159 127 224 25 4 1 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 1 114 46 10 7,5 - 3 1 | 8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 3 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 5 90 14 8 6 - 4 1 159 127 224 25 4 1 0,83 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 3 62 12 7 3 - 2 0,6 75 142 173 7 2 0,6 0,33 <t< td=""><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 0,81 8 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 1,6 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1,6 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 1,6 6 90 14 8 6 - 4 1 159 127 224 25 4 1 0,43 1,6 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 1 114 46 10 7,5 - 3 1 131 134</td><td>8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 0,81 1,2 8 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 1,6 2,3 1 102 10 5 3 - 2,5
 0,6 80 123 163 9 2,5 0,6 0,43 1,6 2,3 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 1,6 2,3 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 2,3 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 2,3 1 114,5 6,5</td></t<> | 8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 0,81 8 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 1,6 0 66 8 4,5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1,6 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 1,6 6 90 14 8 6 - 4 1 159 127 224 25 4 1 0,43 1,6 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 1 114 46 10 7,5 - 3 1 131 134 | 8 82 12 7 3 - 4 1 142 116 202 21,5 4 1 0,83 0,81 1,2 8 70 10 5 2 - 3 1 85 119 177 9 3 1 0,43 1,6 2,3 1 102 10 5 3 - 2,5 0,6 80 123 163 9 2,5 0,6 0,43 1,6 2,3 1 102 10 5 3 - 3 1 103 124 190 10 3 1 0,43 1,6 2,3 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 2,3 1 114 46 10 7,5 - 3 1 131 134 201 9,5 3 1 0,43 1,6 2,3 1 114,5 6,5 |

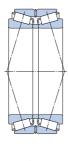

Princip	oal dimens	sions	Basic lo	ad ratings static	Fatigue load limit	Speed rat Reference		Mass	Designation
d	D	Т	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	
170	310	194	1 843	3 250	300	1 200	2 000	60	32234T194/DB
180	250 280 320	103 138 192	746 1 360 1 833	1 460 2 320 3 250	137 220 300	1 500 1 400 1 100	2 200 2 200 1 900	14,5 29,5 61	32936T103/DB 32036T138 X/DB 32236T192/DB
190	260 340	102 136	760 1 308	1 530 2 000	143 190	1 400 1 100	2 200 1 800	15 44,5	32938T102/DB 30238T136/DB
200	360	288	2 229	4 000	360	1 000	1 700	105	32240T228/DB
220	340 400	164 248	1 637 2 949	3 350 5 400	300 465	1 000 900	1 700 1 500	51,5 126	32044T164 X/DB 32244T248/DB
240	320 360	114 164	1 069 1 695	2 160 3 550	193 315	1 200 950	1 700 1 600	23,5 54,5	32948T114/DB 32048T164 X/DB
260	400	189	2 127	4 400	380	850	1 400	79,5	32052T189 X/DB
280	380	170	1 629	3 350	285	950	1 400	47,5	32956T170/DB
320	480	220	2 852	6 200	500	700	1 100	128	32064T220 X/DB

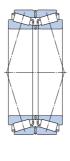

Dimer	nsions									Abutn	nent and	d fillet di	mensior	ıs	Calcul	lation fa	ictors	
d	d ₁ ≈	С	l	b	K	t	r _{1,2} min.	r ₅ min.	a	d _b min.	D _b min.	C _b min.	r _a max.	r _c max.	е	Y ₁	Y ₂	Y_0
mm										mm					_			
170	238	154	12	6	4,5	-	5	1,5	162	190	294	20	5	1,5	0,43	1,6	2,3	1,6
180	216 230 247	81 106 152	13 10 10	7,5 4 5	5 3 2	- - -	2,5 3 5	0,6 1 1,5	120 128 165	194 196 200	241 267 303	11 16 20	2,5 3 5	0,6 1 1,5	0,48 0,43 0,46	1,4 1,6 1,5	2,1 2,3 2,2	1,4 1,6 1,4
190	227 254	80 108	12 16	6,5 9	5 4,5	_ _	2,5 5	0,6 1,5	122 142	204 210	251 318	11 14	2,5 5	0,6 1,5	0,48 0,43	1,4 1,6	2,1 2,3	1,4 1,6
200	274	244	80	13,5	8	_	4	1	245	218	340	22	4	1	0,4	1,7	2,5	1,6
220	280 306	126 200	12 20	6,4 8	5 5	_	4 5	1 1,5	156 210	238 241	326 379	19 24	4 5	1 1,5	0,43 0,43	1,6 1,6	2,3 2,3	1,6 1,6
240	280 300	90 126	12 12	7 6	4,5 4,5		3 4	1	140 167	256 259	311 346	12 19	3 4	1 1	0,46 0,46	1,5 1,5	2,2 2,2	1,4 1,4
260	328	145	15	9	6	-	5	1,5	183	281	383	22	5	1,5	0,43	1,6	2,3	1,6
280	329	139	43	20	10	-	3	1	191	297	368	15,5	3	1	0,43	1,6	2,3	1,6
320	399	168	20	10	6	-	5	1,5	226	342	461	26	4	5	0,46	1,5	2,2	1,4

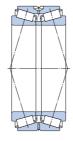
759

d **45 – 80** mm


Princip	al dimens	ions		oad ratings c static	Fatigue load limit	Speed rat Reference	Limiting	Mass	Designation
d	D	Т	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	-
45	95	62	189	224	25,5	4 000	7 000	2,05	T7FC 045T62/DTC10
50	105	69	229	275	31,5	3 600	6 300	2,75	T7FC 050T69/DTC10
55	115	73	266	325	39	3 400	5 600	3,5	T7FC 055T73/DTC10
60	125	80	325	405	49	3 000	5 300	4,55	T7FC 060T80/DTC15
65	130	80	332	430	51	3 000	5 000	4,8	T7FC 065T80/DTC15
80	160	98	480	630	71	2 400	4 000	8,8	T7FC 080T98/DTC20

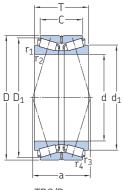


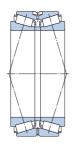

Dime	nsions						Abutn	nent and	d fillet di	mensior	าร					Calcul	ation fa	ctors
d	d ₁ ≈	В	С	r _{1,2} min.	r _{3,4} min.	a	d _a max.	d _b min.	D _a min.	D _a max.	D _b min.	C _a min.	C _b min.	r _a max.	r _b max.	е	Υ	Y ₀
mm							mm									-		
45	73,4	59,5	53	2,5	2,5	33	54	56	71	85	91	3	9	2,5	2,5	0,88	0,68	0,4
50	81,3	66	59	3	3	37	60	62	78	94	100	4	10	3	3	0,88	0,68	0,4
55	89,5	70	62,5	3	3	39	66	68	86	104	109	4	10,5	3	3	0,88	0,68	0,4
60	97,2	76,5	69	3	3	43	72	73	94	113	119	4	11	3	3	0,83	0,72	0,4
65	102	76,5	69	3	3	43	77	78	98	118	124	4	11	3	3	0,88	0,68	0,4
80	125	94	84	3	3	53	94	94	121	148	152	5	14	3	3	0,88	0,68	0,4



4 – 14 in.

TDO/D


TD0/D2

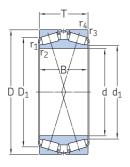

TDO/XDC

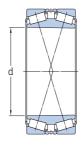
Principal di	mensions			Basic load dynamic	ratings static	Fatigue load limit	Mass	Designation	Design variant/
d	D	T	С	С	C_0	P_{u}			feature
mm/in.				kN		kN	kg	-	-
101,6	146,05 5.75	49,212 1.9375	38,94 1.5331	267	375	40,5	2,45	BT2B 332767 A	TDO/D
155 6.1024	200 7.874	66 2.5984	54 2.126	312	620	60	4,85	BT2B 328957	TDO/D
228,6 9	488,95 19.25	254 10	152,4 6	3 143	4 500	390	205	331945	TDO/D
254 10	422,275	173,038	128,66	2 393	4 050	355	87,5	BT2B 328615	TDO/D
10	16.625 422,275 16.625	6.8125 178,592 7.0312	5.0654 139,7 5.5	2 393	4 050	355	97,5	BT2B 331782	TDO/D
260 10.2362	440 17.3228	144 5.6693	128 5.0394	1 994	3 450	305	86,5	617479 B	TD0/XDC
10.2302	17.3228 480 18.8976	284 11.1811	220 8.6614	4 330	7 350	600	210	BT2B 328130	TD0
300 <i>11.811</i>	500 19.6851	203 7.9921	152 5.9843	2 992	5 100	425	140	BT2B 328383/HA1	TD0/D2
300,038 <i>11.8125</i>	422,275 16.625	174,625 6.875	136,525 5.375	2 177	4 750	400	71,5	BT2B 332504/HA2	TDO/XDC
317,5 <i>12.5</i>	447,675 17.625	180,975 <i>7.125</i>	146,05 5.75	2 521	5 400	440	84	BT2B 332516 A/HA1	TDO/XDC
330,2 13	482,6 19	177,8 7	127 5	1 293	5 000	415	100	BT2B 332845/HA2	TDO/D
333,375 13.125	469,9 18.5	190,5 7.5	152,4 6	2 642	5 700	465	98	331775 B	TDO/XDC
340 <i>13.3858</i>	460 18.1102	160 6.2992	128 5.0394	2 196	4 900	400	71	BT2B 332830	TDO/D
342,9 <i>13.5</i>	533,4 21	174,625 6.875	123,825 4.875	2 540	4 400	365	130	BT2B 332802 A	TDO/D
346,075 <i>13.625</i>	488,95 19.25	200,025 7.875	158,75 6. <i>25</i>	2 835	6 300	510	110	331981	TDO/D
355,6 14	444,5 17.5	136,525 5.375	111,125 4.3 <i>7</i> 5	1 353	3 650	300	46	BT2B 332505/HA2	TD0/XDC
14	501,65 19.75	155,575 6.125	4.375 107,95 4.25	1 976	4 250	345	87	BT2B 332506/HA2	TDO/D

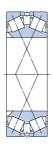
¹⁾ For additional information -> Comparative load ratings for double row tapered roller bearings, page 685

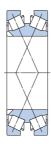
14.1732 - 17 in.

TDO/D TDO/XDC

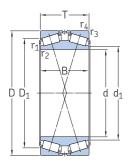

Principal di	imensions			Basic load dynamic	d ratings static	Fatigue load limit	Mass	Designation	Design variant/
d	D	Т	С	С	C_0	P_{u}			feature
mm/in.				kN		kN	kg	-	_,
360 14.1732	480 18.8976	160 6.2992	128 5.0394	2 211	5 000	405	73	BT2B 332831	TDO/D
368,249 14.498	523,875 20.625	214,312 8.4375	169,862 6.6875	3 380	7 500	585	140	BT2B 332603/HA1	TDO/D
368,3 <i>14.5</i>	596,9 23.5	203,2 8	133,35 5.25	3 270	5 850	465	188	BT2B 332754	TDO/XDC
371,475 14.625	501,65 19.75	155,575 6. <i>125</i>	107,95 4.25	1 976	4 250	345	76,5	331606 A	TDO/XDC
380 14.9606	520 20.4725	148 5.8268	112 4.4095	2 289	4 500	365	80	BT2B 328020	TDO/D
384,175 15.125	546,1 21.5	222,25 8. <i>75</i>	177,8 7	3 724	8 300	640	161	331197 A	TDO/D
406,4 16	539,75 21.25	142,875 5.625	101,6 4	1 817	4 400	345	82,5	BT2B 328389	TDO/XDC
415,925 16.375	590,55 23.25	244,475 9.6 <i>25</i>	193,675 7.625	4 175	9 650	720	205	331656	TDO/XDC
431,8	571,5	155,575	111,125	1 145	5 100	405	100	BT2B 332604/HA1	TDO/D
17	22.5 571,5 22.5	6.125 192,088 7.5625	4.375 146,05 5.75	2 847	6 950	530	127	BT2B 332237 A/HA1	TDO/XDC

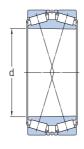


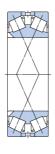

Dimension	ıs					Calcula	ation facto	irs		Comparat Load ratin		Thrust
d	d ₁ ≈	D ₁ ≈	r _{1,2} min.	r _{3,4} min.	a	е	Y ₁	Y ₂	Y ₀	radial C _F	axial C _{Fa}	factor K
mm/in.	mm					_				kN		_
360 14.1732	414	462	3	1	169	0,33	2	3	2	540	175	1,77
368,249 14.498	438	499	6,4	1,5	196	0,33	2	3	2	830	273	1,76
368,3 <i>14.5</i>	469	552	9,7	2,3	220	0,4	1,7	2,5	1,6	800	330	1,41
371,475 14.625	431	481	6,4	1,5	198	0,44	1,5	2,3	1,4	480	207	1,33
380 14.9606	438	497	4	1,5	162	0,3	2,3	3,4	2,2	560	167	1,92
384,175 <i>15.125</i>	457	521	6,4	0,6	205	0,33	2	3	2	915	301	1,76
406,4 16	473	516	6,4	1,5	215	0,48	1,4	2,1	1,4	440	207	1,23
415,925 <i>16.375</i>	497	563	6,4	1,5	225	0,33	2	3	2	1 040	332	1,76
431,8 <i>17</i>	500	547	3,3	1,5	254	0,54	1,25	1,8	1,3	510	280	1,07
1/	500	550	6,4	1,5	234	0,44	1,5	2,3	1,4	695	301	1,33

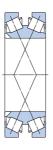

¹⁾ For additional information \rightarrow Comparative load ratings for double row tapered roller bearings, page 685

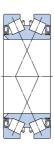

8 – 13.506 in.

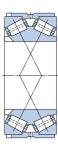

	TDI/Y2		TDIT/Y2		TDIS/N	TDIS	/NY	TDIS/N2Y	
Principal d	imensions			Basic loa dynamic	d ratings static	Fatigue load limit	Mass	Designation	Design variant/
d	D	Т	В	С	C_0	P_{u}			feature
mm/in.				kN		kN	kg	-	_
203,2 8	368,3 14.5	158,75 6. <i>25</i>	152,4 6. <i>25</i>	1 985	3 350	305	75	BT2B 332683/HA1	TDI/WIY2
240 9.4488	480 18.8976	220 8.6614	200 7.874	3 615	5 500	465	183	BT2B 332931	TDI/WIY2
254 10	438,15 <i>17.25</i>	165,1 6.5	165,1 6.5	2 685	4 250	365	100	BT2B 332536/HA1	TDI/WIY2
300 11.811	440 17.3228	105 4.1339	105 4.1339	1 076	2 040	180	48,5	332168	TDIS/NY
300,038 <i>11.8125</i>	422,275 16.625	150,812 5.9375	150,812 5.9375	2 177	4 750	400	70	331951	TDI/GWIY2
303,212 <i>11</i> .9375	495,3 19.5	263,525 10.375	263,525 10.375	4 919	9 800	750	212	BT2B 332685/HA1	TDIT/Y2
305,033 <i>12.0092</i>	560 22.0473	199,263 7.874	200 7.874	1 677	5 300	430	205	BT2B 334087/HA3	TDIS/N2Y
12.0092	560 22.0473	200 7.845	7.874 200 7.874	1 677	5 300	430	200	332068	TDIS/N2Y
305,07 <i>12.0106</i>	500 19.6851	200 7.874	200 7.874	2 734	5 200	425	150	332169 A	TDIS/N
12.0100	500 22.0473	200 7.844	200 7.844	2 734	5 200	425	150	332169 AA	TDIS/NY
	560 19.6851	199,237 7.874	199,237 7.874	3 102	5 300	430	200	331617	TDIS/N2Y
317,5 <i>12.5</i>	422,275 16.625	128,588 5.0625	128,588 5.0625	1 785	4 150	345	51,5	BT2B 328699 G/HA1	TDI/GWIY2
333,375 13.125	469,9 18.5	166,688 6.5625	166,688 6.5625	2 642	5 700	465	92,5	BT2B 328695 A/HA1	TDIT/Y2
3 42,9	533,4	139,7	146,05	1 373	4 400	365	115	331713 A	TDI/WIY2
13.5	21 533,4 21	5.5 139,7 5.5	5.75 146,05 5.75	1 373	4 400	365	115	331713 B	TDI/GWIY2
343,052 <i>13.506</i>	457,098 17.996	122,238 4.8125	122,238 4.8125	1 610	3 400	280	54	332240 A	TDI/GWIY2

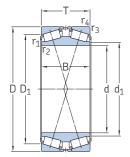

8.8

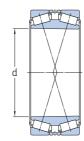

Dimensio	ns				Calculat	ion factors			Load ratin		Thrust
d	d ₁ ≈	D ₁ ≈	r _{1,2} min.	r _{3,4} min	е	Y ₁	Y ₂	Y ₀	radial C _F	axial C _{Fa}	factor K
mm/in.	mm				-				kN		
203,2 8	237	310	3,3	3,3	0,4	1,7	2,5	1,6	490	193	1,45
240 9.4488	284	377	2,5	5	0,72	0,94	1,4	0,9	900	634	0,82
254 <i>10</i>	295	380	3,3	6,4	0,35	1,9	2,9	1,8	670	233	1,63
300 <i>11.811</i>	340	377	4	4	0,88	0,77	1,15	0,8	260	224	0,67
300,038 <i>11.8125</i>	327	375	3,3	3,3	0,33	2	3	2	540	176	1,73
303,212 <i>11.9375</i>	338	417	3,3	6,4	0,33	2	3	2	1 220	403	1,76
305,033	355	450	3,3	6,4	0,88	0,77	1,15	0,8	765	657	0,67
12.0092	369	446	3,3	6	0,88	0,77	1,15	0,8	765	657	0,67
305,07	352	405	6,4	4,8	0,88	0,77	1,15	0,8	680	582	0,67
12.0106	352	405	6,4	4,8	0,88	0,77	1,15	0,8	680	582	0,67
	369	446	3,3	18	0,88	0,77	1,15	0,8	765	657	0,67
317,5 <i>12.5</i>	341	382	1,5	3,3	0,31	2,2	3,3	2,2	440	137	1,83
333,375 13.125	364	419	3,3	3,3	0,33	2	3	2	655	217	1,73
342,9	393	474	3,3	3,3	0,33	2	3	2	620	202	1,76
13.5	393	474	3,3	3,3	0,33	2	3	2	620	202	1,76
343,052 <i>13.506</i>	369	410	1,5	3,3	0,48	1,4	2,1	1,4	390	184	1,24


¹⁾ For additional information -> Comparative load ratings for double row tapered roller bearings, page 685


13.625 – 16.0787 in.







	TDI/Y2		TDIT/Y2		TDIS/N	TDIS	/NY	TDIS/NVY	TDIS.2/N
Principal di	imensions			Basic load dynamic	l ratings static	Fatigue load limit	Mass	Designation	Design variant/ feature
d	D	Т	В	С	C_0	P_{u}			reature
mm/in.				kN		kN	kg	-	_
346,075 13.625	488,95 19.25	104,775 4.125	95,25 3. <i>75</i>	675	2 750	228	62	BT2B 332913/HB1	TDI/Y2
13.023	488,95	174,625	174,625	2 835	6 300	510	110	331527 C	TDI/WIY2
	19.25 488,95 19.25	6.875 174,625 6.875	6.875 174,625 6.875	2 835	6 300	510	113	BT2B 328410 C/HA1	TDIT/Y2
360 14.1732	560 22.0473	160 6.2992	160 6.2992	2 556	4 650	390	140	BT2-8000/HA3	TDIS/N
368,3	523,875	185,738	185,738	3 380	7 500	585	133	BT2B 331836	TDI/Y2
14.5	20.625 523,875 20.625	7.3125 185,738 7.3125	7.3125 185,738 7.3125	3 380	7 500	585	140	BT2B 332468 A/HA1	TDIT/Y2
380 14.9606	560 22.0473	200 7.874	200 7.874	1 617	6 550	520	165	BT2-8009/HA3	TDIS/NY
384,175	546,1	193,675	193,675	3 724	8 300	640	152	331158 A	TDI/GWIY2
15.125	<i>21.5</i> 546,1	7.625 193,675	7.625 193,675	3 724	8 300	640	152	BT2B 331837	TDI/Y2
	21.5 546,1 21.5	7.625 193,675 7.625	7.625 193,675 7.625	3 724	8 300	640	166	BT2B 328580/HA1	TDIT/Y2
386 15.1969	574 22.5984	220 8.6614	220 8.6614	2 967	6 550	510	185	BT2-8010/HA3VA901	TDIS/NVY
390	546,1	141,288	141,288	2 339	5 100	405	102	BT2B 328705/HA1	TDI/Y2
15.3543	22.441 570	7.874 200	7.874 200	2 967	6 550	510	170	BT2B 328896/HA3	TDIS/NY
	21.5 590 23.2284	5.5625 200 7.874	5.5625 200 7.874	2 967	6 550	510	200	BT2B 328934/HA3	TDIS.2/N
406,4 16	546,1 21.5	138,113 5.4375	138,113 5.4375	2 339	5 100	405	89	BT2B 331840 C/HA1	TDI/WIY2
408,4	546,1	120	98	1 603	3 450	285	76,5	BT2B 328874/HA1	TDI/Y2
16.0787	21.5 546,1 21.5	4.7244 150 5.9055	3.8583 125 4.9213	1 963	4 750	375	99	BT2B 328466/HA1	TDI/Y2

¹⁾ For additional information -> Comparative load ratings for double row tapered roller bearings, page 685

16.125 – 17.7165 in.

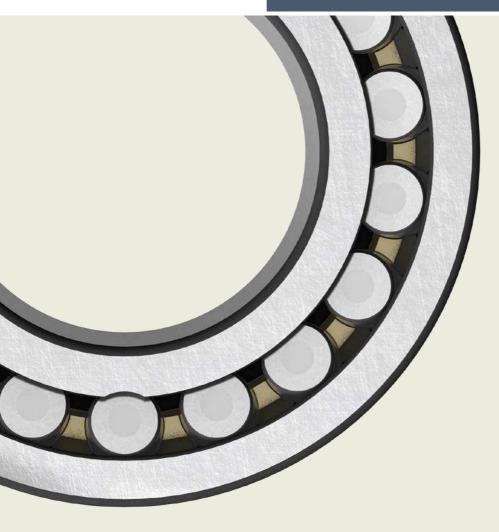
TDI/Y2

TDIT/Y2

Principal dimensions				Basic load dynamic	d ratings static	Fatigue load limit	Mass	Designation	Design variant/
d	D	Т	В	С	C_0	P_{u}			feature
mm/in.				kN		kN	kg	_	_
409,575 16.125	546,1 21.5	161,925 6.375	161,925 6.375	2 669	6 550	500	110	331714 B	TDI/GWIY2
415,925 16.375	590,55 23.25	209,55 8.25	209,55 8.25	4 175	9 650	720	192	331445	TDI/GWIY2
	590,55 23.25	209,55 8.25	209,55 8. <i>25</i>	4 175	9 650	720	192	BT2B 328283/HA1	TDIT/Y2
430 16.9291	535 21.063	84 3.3071	84 3.3071	1 080	3 000	240	44,5	BT2B 334013/HA1	TDI/Y2
450 17.7165	595 23.4252	178 7.0079	178 7.0079	3 169	8 150	610	140	BT2B 328523/HA1	TDI/WIY2

Dimensio	ns				Calculat	ion factors			Comparative data ¹⁾ Load ratings		
d	d ₁ ≈	D ₁ ≈	r _{1,2} min.	r _{3,4} min	е	Y ₁	Y ₂	Y ₀	radial C _F	axial C _{Fa}	Thrust factor K
nm/ <i>in</i> .	mm				-			,	kN		
109,575 16.125	439	496	1,5	6,4	0,43	1,6	2,3	1,6	655	268	1,4
15,925	454	523	3,3	6,4	0,33	2	3	2	1 040	332	1,76
6.375	455	523	3,3	6,4	0,33	2	3	2	1 040	332	1,76
30 6.9291	462	494	1	3	0,54	1,25	1,8	1,3	260	142	1,06
50 7.7165	488	540	3	6	0,33	2	3	2	780	256	1,76

¹⁾ For additional information → Comparative load ratings for double row tapered roller bearings, page 685



9

Spherical roller bearings

9 Spherical roller bearings

CC, C	A and E design bearings	775		
Seale	ed bearings	776		
Bear	ings for vibratory applications	778		
	ings for wind energy applications	780		
Custo	omized bearings	780		
Bear	ings for high-speed applications	780		
(Dim	ring dataension standards, tolerances, internal clearance, nissible misalignment)	781		
(Mini	ls	784		
Tem	perature limits	785		
Pern	nissible speed	785		
Desi	gn considerations	786		
Free	space on both sides of the bearing	786		
Abut	ments for sealed bearings	786		
Bear	ings on sleeves	787		
Appr	opriate bearing housings	788		
Mou	nting	788		
Desi	gnation system	790		
Prod	luct tables			
9.1	Spherical roller bearings	792		
9.2	Spherical roller bearings on an adapter sleeve	824	Other spherical roller bearings	
9.3	Spherical roller bearings on a withdrawal sleeve	832	NoWear coated bearings	1059

775

5KF. 773

9

9 Spherical roller bearings

More information

General bearing knowledge	17
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Seat tolerances for standard	
conditions	148
Selecting internal clearance	182
Sealing, mounting and	
dismounting	193

Mounting instructions for individual bearings → skf.com/mount

SKF Drive-up Method

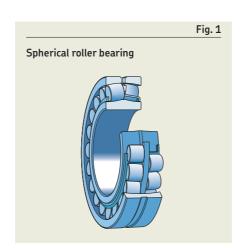
→ skf.com/drive-up

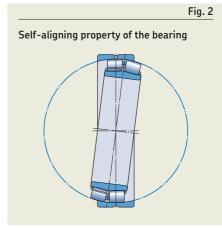
SKF bearing maintenance handbook ISBN 978-91-978966-4-1 Spherical roller bearings have two rows of symmetrical rollers, a common sphered outer ring raceway and two inner ring raceways inclined at an angle to the bearing axis (fig. 1). The centre point of the sphere in the outer ring raceway is at the bearing axis.

Bearing features

- Accommodate misalignment
 Spherical roller bearings are self-aligning like self-aligning ball bearings or CARB bearings (fig. 2).
- High load carrying capacity
 Spherical roller bearings are designed to accommodate both heavy radial loads and axial loads in both directions.

· Long service life


The rollers are manufactured to such tight dimensional and geometrical tolerances that they are practically identical in a roller set. The symmetrical rollers self-adjust (fig. 3), providing optimal load distribution along the roller length and together with the special profile prevent stress peaks at the roller ends (fig. 4).


• Low friction

Self-guiding rollers keep friction and frictional heat at low levels (fig. 5). A floating guide ring guides unloaded rollers so that they enter the load zone in the optimal position.

Robust

All SKF spherical roller bearings contain strong window- or prong-type cages.

Designs and variants

SKF standard assortment

The assortment of SKF spherical roller bearings is the widest available on the market.

The standard assortment includes:

- CC, CA and E design bearings
- · sealed bearings
- bearings for vibratory applications
- bearings for wind energy applications

All SKF spherical roller bearings are SKF Explorer bearings (page 7) and almost all bearings are available with the option of a tapered bore. Depending on the bearing series, the tapered bore has:

- a taper 1:12 (designation suffix K)
- a taper 1:30 (designation suffix K30)

For sizes and variants not listed in the product tables, contact SKF.

CC, CA and E design bearings

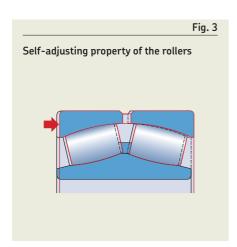
CC design bearings

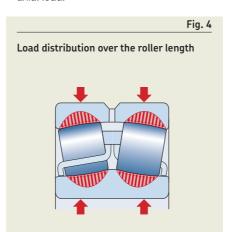
- have two stamped window-type steel cages, an inner ring without flanges and a floating guide ring centred on the inner ring (fig. 6)
- are indicated in the product table by the designation suffix C or CC
- are indicated in the product table by the designation suffix EC or ECC for larger bearings and have an optimized internal design for increased load carrying capacity

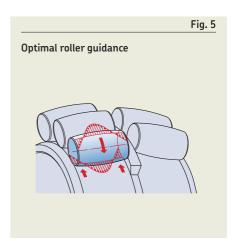
CA design bearings

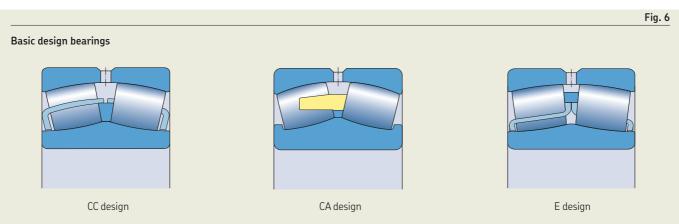
 have a machined double prong-type brass cage, an inner ring with a retaining flange on both sides and a floating guide ring centred on the inner ring (fig. 6)

The flanges on the inner ring are designed to keep the rollers in place when swivelling the bearing during mounting or maintenance and are not designed to guide the rollers or accommodate any axial load.


- are indicated in the product table by the designation suffix CA
- are indicated in the product table by the designation suffix ECA for larger bearings and have an optimized internal design for increased load carrying capacity


E design bearings


- have two stamped window-type steel cages, an inner ring without flanges and a floating guide ring centred on the inner ring (d ≤ 65 mm) or on the cages (d > 65 mm) (fig. 6)
- are indicated in the product table by the designation suffix E
- have an optimized internal design for increased load carrying capacity


Cages

For information about the suitability of cages, refer to *Cages*, page 187.

holes

- CC and CA design bearings are available with an annular groove and three lubrication holes in the outer ring (designation suffix W33) or three lubrication holes in the outer ring (designation suffix W20) (fig. 7).
- E design bearings have an annular groove and three lubrication holes as standard (fig. 6, page 775). This feature is not identified in the bearing designation (no designation suffix).

Sealed bearings

- have the same features and internal design as open spherical roller bearings
- are available with a cylindrical bore as standard
- are supplied grease lubricated and should not be washed
- are equipped with an annular groove and three lubrication holes in the outer ring, except for those with the designation suffix W
- are fitted with a contact seal, on one or both sides, made of one of the following materials:
 - sheet steel reinforced NBR (designation suffix CS or RS)
 - sheet steel reinforced HNBR (designation suffix CS5 or RS5)
 - sheet steel reinforced FKM (designation suffix CS2)

The seals are fitted in a recess on the outer ring and seal against the inner ring (fig. 8). On larger bearings, the seals are fixed by a retaining ring (fig. 9).

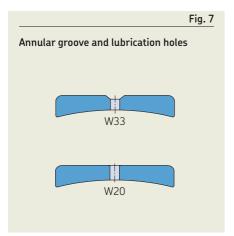
Bearings sealed on both sides are lubricated for the life of the bearing and are virtually maintenance-free (*Grease life for sealed bearings*). They are filled with one of the following greases (table 1):

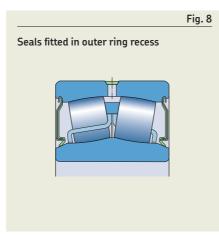
- SKF LGEP 2 grease (designation suffix VT143) as standard
- SKF LGHB 2 grease (designation suffix GEM9) or LGWM 2 grease (designation suffix GLE) on request

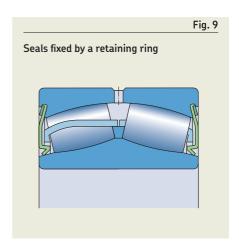
For additional information about greases, refer to *Selecting a suitable SKF grease*, page 116.

Grease life for sealed bearings

The grease life for sealed bearings is presented as L_{10} , i.e. the time period at the end of which 90% of the bearings are still reliably lubricated, and depends on the load, operating temperature and speed value. It can be obtained for bearings with standard SKF LGEP 2 grease (designation suffix VT143) from:


- **diagram 1,** for light load (P ≤ 0,067 C)
- diagram 2, page 778, for normal load (P ≤ 0,125 C)


The grease life is valid under the following operating conditions:


- horizontal shaft
- inner ring rotation
- operating temperature within the green temperature zone of the grease (table 1)
- stationary machine
- low vibration levels
- load ratio F_a/F_r ≤ e (product table, page 792)
- rotational speed below the limiting speed (product table) and below the limits listed in table 2, page 778

For other operating conditions, the grease life can be estimated by multiplying the relubrication interval for open bearings (*Estimating the relubrication interval for grease*, page 111) by a factor of 2,7.

Relubrication of sealed bearings

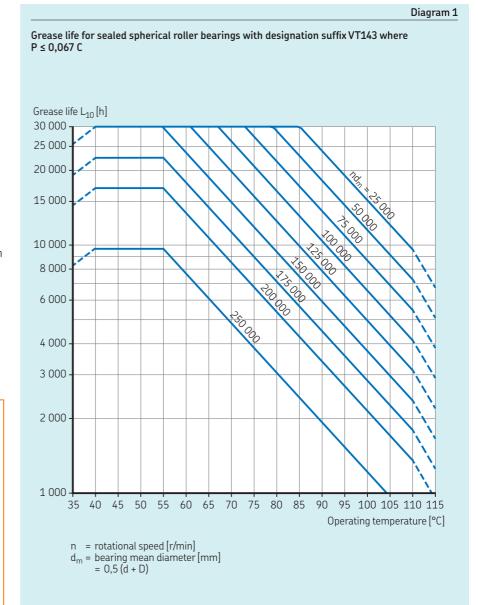
When the required service life is longer than the grease life, the bearings may require relubrication. A suitable grease quantity to relubricate sealed bearings can be obtained using

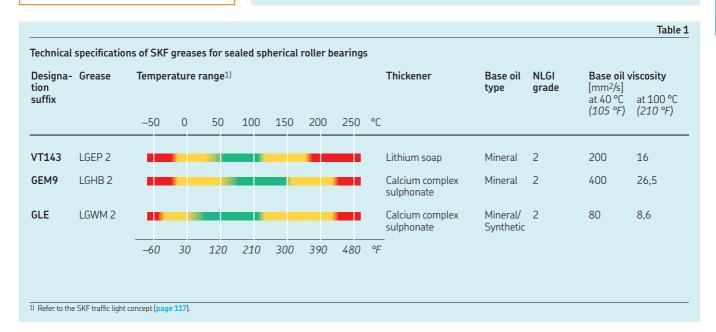
 $G_{\rm p} = 0,0015 \, {\rm D} \, {\rm B}$

where

 G_n = grease quantity [g]

D = bearing outside diameter [mm]

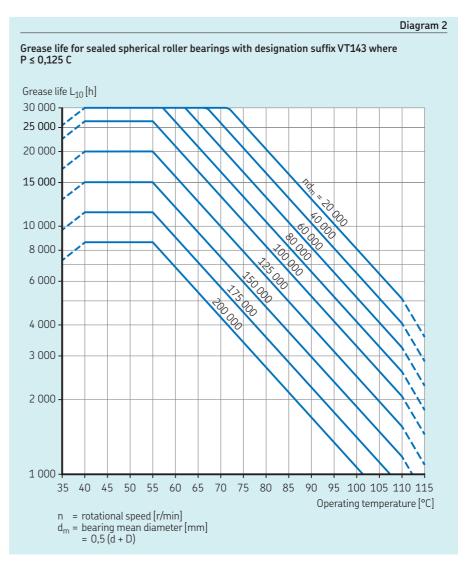

B = bearing width [mm]


The grease should be applied slowly through the lubrication holes in the outer ring, preferably while the bearing is rotating to avoid damaging the seals. SKF recommends relubricating with the same grease as the initial fill.

△ WARNING

Seals made of FKM (fluoro rubber) exposed to an open flame or temperatures above 300 °C (570 °F) are a health and environmental hazard! They remain dangerous even after they have cooled.

Read and follow the safety precautions on page 197.


9

Bearings for vibratory applications

- are available in the 223 series
- are available with a cylindrical or tapered bore
- have C4 radial internal clearance as standard
- are equipped with an annular groove and three lubrication holes in the outer ring
- are available with a PTFE coated cylindrical bore (designation suffix VA406),
 which prevents fretting corrosion between the shaft and the bearing bore, for shaft thermal elongation in non-locating bearing positions that have a rotating outer ring load

Therefore, shafts do not require special heat treatments or coatings.

- are manufactured to one of the following designs (fig. 10):
 - E/VA405 bearings have two surfacehardened stamped window-type steel cages, an inner ring without flanges and a guide ring centred on the inner ring or on the cages.
 - EJA/VA405 and CCJA/W33VA405 bearings have two surface-hardened stamped window-type steel cages, an inner ring without flanges and a guide ring centred on the outer ring raceway.

			Table 2
Speed limits for grease life	calculation for sealed spheri	cal roller bearings	
Bearing series	Maximum nd_m value Light load (P \leq 0,067 C)	Normal load (P ≤ 0,125 C)	
-	mm/min		
222, 239 223, 230, 231, 232, 240 241	250 000 250 000 150 000	200 000 150 000 80 000	

SKF.

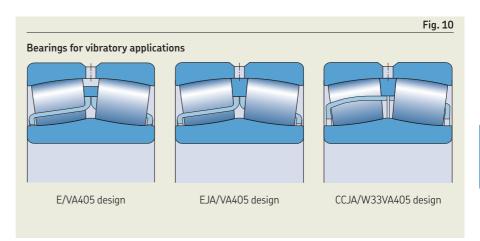
778

Acceleration

Vibratory applications induce accelerations of the rollers and cages in the bearings. This puts extra demands on the bearing design. SKF spherical roller bearings for vibratory applications can withstand considerably higher accelerations than corresponding standard bearings. The permissible acceleration depends on the lubricant and the mode of acceleration.

• Mode 1

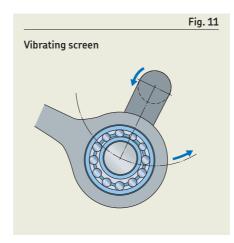
The bearing is subjected to a rotating outer ring load in combination with a rotating acceleration field, or an internally induced angular acceleration field caused by rapid speed variations. These accelerations cause the unloaded rollers to generate cyclic loads on the cages. Examples: vibrating screens (fig. 11), exciters, planetary gears and general arrangements subjected to rapid starts or rapid speed variations.

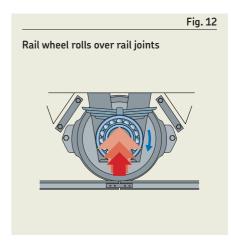

Mode 2

The bearing is subjected to impact loads, which generate a linear acceleration in a constant radial direction, causing the unloaded rollers to "hammer" the cage pockets. Example: acceleration generated when rail wheels roll over rail joints (fig. 12).

Road rollers, where the roller is vibrating against a relatively hard surface, are subjected to a combination of mode 1 and 2 acceleration. Values for the permissible acceleration are listed in the **product table**, **page 792**, and are valid for oil lubricated bearings. The values are expressed in multiples of g, where g is the acceleration of gravity (g = 9.81 m/s^2).

System solutions for vibrating screens


In addition to single bearings for vibrating screens, SKF has developed fault detection and bearing arrangements that can improve performance, reduce maintenance and monitor machine condition in vibratory equipment.



△ WARNING

PTFE coatings exposed to an open flame or temperatures above 300 °C (570 °F) are a health and environmental hazard! They remain dangerous even after they have cooled.

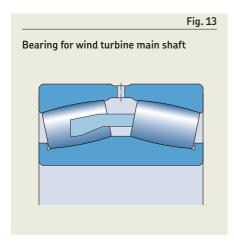
Read and follow the safety precautions on page 197.

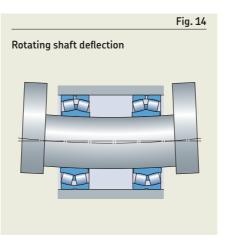
Ŷ

Bearings for wind energy applications

- are available in the 240 series, from d ≥ 530 mm
- are designed explicitly for wind turbine main shafts
- have an optimized internal geometry with large diameter rollers and increased contact angle for increased axial load carrying capacity (fig. 13)
- have a roller-guided cast iron cage for increased robustness
- have no guide ring
- have a wide outer ring lubrication groove and six lubrication holes
- are indicated in the product table, page 792, by the designation suffix BC

Customized bearings


SKF can customize bearings to meet the needs of applications where the bearings are subjected to unique operating conditions. For example, bearings for:


- printing presses, paper mills or highprecision coating systems
- very arduous operating conditions, e.g. continuous casters
- bearings for high-speed applications
- mounting with loose fit on roll necks
- railway vehicles

Bearings for highspeed applications

- have 50% higher limiting speeds than standard bearings
- are available in the 223, 232, 240 and 241 series in a special execution
- are identified by the designation suffix \/\Delta\/\Delt
- address a market need in multi-megawatt industrial gearboxes

For additional information about application-specific spherical roller bearings, contact SKF.

				Table 3
Width tolerances	for SKF Explorer s	spherical roller bearings		
Bore diameter		Width tolerance	S	
u >	≤	t _{∆Bs} U	L	
mm		μm		
18 80 250	80 250 300	0 0 0	-60 -80 -100	

	Table 6
Permissible angula	r misalignment
Bearing series Sizes	Permissible angular misalignment
-	0
Series 213	2
Series 222 Sizes < 52 Sizes ≥ 52	2 1,5
Series 223	3
Series 230 Sizes < 56 Sizes ≥ 56	2 2,5
Series 231 Sizes < 60 Sizes ≥ 60	2 3
Series 232 Sizes < 52 Sizes ≥ 52	2,5 3,5
Series 238	1,5
Series 239	1,5
Series 240	2
Series 241 Sizes < 64 Sizes ≥ 64	2,5 3,5
Series 248	1,5
Series 249	2,5

780 **SKF**

Bearing data

Dimension standards	Boundary dimensions: ISO 15, except for the width of sealed bearings with a BS2- designation prefix
Tolerances	Normal P5 geometrical tolerance on request (designation suffix CO8)
	Except for:
	 Bearings with d ≤ 300 mm: width tolerance at least 50% tighter than ISO standard (table 3) P5 geometrical tolerance
	 Bearings for vibratory applications: P5 bore diameter
For additional information	– P6 outside diameter
→ page 35	Values: ISO 492, (table 2, page 38, to table 4, page 40)
Internal clearance	Normal, C3 Check availability of C2, C4 or C5 clearance classes Bearings for vibratory applications: C4
	Values: • cylindrical bore (table 4, page 782) • tapered bore (table 5, page 783)
For additional information → page 182	Values are in accordance with ISO 5753-1 (as far as standardized) and are valid for unmounted bearing under zero measuring load.
Permissible misalignment	 Guideline values for light to normal loads (P ≤ 0,1 C) and constant position of misalignment relative to the outer ring: table 6 Whether these values can be fully exploited depends on the design of the bearing arrangement, the bearing abutments in the housing, etc. When the position of the misalignment is not constant relative to the outer ring, additional sliding ma occur in the bearing, limiting misalignment to a few tenths of a degree. Examples are: vibrating screens with rotating imbalance and therefore rotating deflection of the shaft (fig. 14) deflection-compensating rolls of paper machines where the stationary shaft is not straight To avoid detrimental effects on sealing performance, misalignment for sealed bearings should not exceed 0,5°.

Radial internal clearance of spherical roller bearings with a cylindrical bore

Bore dia	meter	Radial ir	nternal clear	ance							
d >	≤	C2 min.	max.	Normal min.	max.	C3 min.	max.	C4 min.	max.	C5 min.	max.
mm		μm									
18	24	10	20	20	35	35	45	45	60	60	75
24	30	15	25	25	40	40	55	55	75	75	95
30	40	15	30	30	45	45	60	60	80	80	100
40	50	20	35	35	55	55	75	75	100	100	125
50	65	20	40	40	65	65	90	90	120	120	150
65	80	30	50	50	80	80	110	110	145	145	185
80	100	35	60	60	100	100	135	135	180	180	225
100	100	40	75	75	120	120	160	160	210	210	260
120	140	50	95	95	145	145	190	190	240	240	300
140	160	60	110	110	170	170	220	220	280	280	350
160	180	65	120	120	180	180	240	240	310	310	390
180	200	70	130	130	200	200	260	260	340	340	430
200	225	80	140	140	220	220	290	290	380	380	470
225	250	90	150	150	240	240	320	320	420	420	520
250	280	100	170	170	260	260	350	350	460	460	570
280	315	110	190	190	280	280	370	370	500	500	630
315	355	120	200	200	310	310	410	410	550	550	690
355	400	130	220	220	340	340	450	450	600	600	750
400	450	140	240	240	370	370	500	500	660	660	820
450	500	140	260	260	410	410	550	550	720	720	900
500	560	150	280	280	440	440	600	600	780	780	1 000
560	630	170	310	310	480	480	650	650	850	850	1100
630	710	190	350	350	530	530	700	700	920	920	1190
710	800	210	390	390	580	580	770	770	1 010	1 010	1300
800	900	230	430	430	650	650	860	860	1 120	1 120	1 440
900	1 000	260	480	480	710	710	930	930	1 220	1 220	1 570
1 000	1 120	290	530	530	780	780	1 020	1 020	1 330	1 330	1 720
1 120	1 250	320	580	580	860	860	1 120	1 120	1 460	1 460	1 870
1 250	1 400	350	640	640	950	950	1 240	1 240	1 620	1 620	2 060
1 400	1 600	400	720	720	1 060	1 060	1 380	1 380	1 800	1 800	2 300
1 600	1 800	450	810	810	1180	1180	1 550	1 550	2 000	2 000	2 550

Radial internal clearance of spherical roller bearings with a tapered bore

Bore dia	meter	Radial ir	nternal cleara	ance							
d >	≤	C2 min.	max.	Normal min.	max.	C3 min.	max.	C4 min.	max.	C5 min.	max.
mm		μm									
24	30	20	30	30	40	40	55	55	75	-	-
30	40	25	35	35	50	50	65	65	85	85	105
40	50	30	45	45	60	60	80	80	100	100	130
50	65	40	55	55	75	75	95	95	120	120	160
65	80	50	70	70	95	95	120	120	150	150	200
80	100	55	80	80	110	110	140	140	180	180	230
100	120	65	100	100	135	135	170	170	220	220	280
120	140	80	120	120	160	160	200	200	260	260	330
140	160	90	130	130	180	180	230	230	300	300	380
160	180	100	140	140	200	200	260	260	340	340	430
180	200	110	160	160	220	220	290	290	370	370	470
200	225	120	180	180	250	250	320	320	410	410	520
225	250	140	200	200	270	270	350	350	450	450	570
250	280	150	220	220	300	300	390	390	490	490	620
280	315	170	240	240	330	330	430	430	540	540	680
315	355	190	270	270	360	360	470	470	590	590	740
355	400	210	300	300	400	400	520	520	650	650	820
400	450	230	330	330	440	440	570	570	720	720	910
450	500	260	370	370	490	490	630	630	790	790	1 000
500	560	290	410	410	540	540	680	680	870	870	1 100
560	630	320	460	460	600	600	760	760	980	980	1 230
630	710	350	510	510	670	670	850	850	1 090	1 090	1360
710	800	390	570	570	750	750	960	960	1 220	1 220	1500
800	900	440	640	640	840	840	1 070	1 070	1 370	1 370	1690
900	1 000	490	710	710	930	930	1 190	1 190	1 520	1 520	1 860
1 000	1 120	530	770	770	1 030	1 030	1 300	1 300	1 670	1 670	2 050
1 120	1 250	570	830	830	1 120	1 120	1 420	1 420	1 830	1 830	2 250
1 250	1 400	620	910	910	1 230	1 230	1 560	1 560	2 000	2 000	2 450
1 400	1 600	680	1 000	1 000	1 350	1 350	1 720	1 720	2 200	2 200	2 700
1 600	1 800	750	1 110	1 110	1 500	1 500	1 920	1 920	2 400	2 400	2 950

Inads

Minimum load	$P_{\rm m} = 0.01 C_0$					
	Oil lubricated bearings:					
	$n/n_r \le 0.3$ \rightarrow $P_m = 0.003 C_0$					
For additional information → page 106	$0.3 < n/n_r \le 2 \rightarrow P_m = 0.003 C_0 \left(1 + 2\sqrt{\frac{n}{n_r} - 0.3}\right)$					
Axial load carrying capacity	SKF spherical roller bearings are able to accommodate axial loads and even accommodate purely axial loads.					
	Bearings correctly mounted on an adapter sleeve on plain shafts without fixed abutment:					
	$F_{ap} = 0,003 B d$					
Equivalent dynamic bearing load	$F_a/F_r \le e \rightarrow P = F_r + Y_1 F_a$ $F_a/F_r > e \rightarrow P = 0,67 F_r + Y_2 F_a$					
For additional information → page 91						
Equivalent static bearing load	$P_0 = F_r + Y_0 F_a$					
For additional information → page 105						
	Symbols					
	B bearing width [mm] C ₀ basic static load rating [kN] (product table, page 792) d bearing bore diameter [mm] e calculation factor (product table) F _a axial load [kN] F _{ap} maximum permissible axial load [kN] F _r radial load [kN] P equivalent dynamic bearing load [kN] P ₀ equivalent static bearing load [kN] P _m equivalent minimum load [kN] n rotational speed [r/min] n _r reference speed [r/min] (product table) Y ₀ , Y ₁ , Y ₂ calculation factors (product table)					

Temperature limits

The permissible operating temperature for spherical roller bearings can be limited by:

- the dimensional stability of the bearing rings
- the seals
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings

SKF spherical roller bearings undergo a special heat treatment. The bearings are heat stabilized up to at least 200 °C (390 °F).

Seals

The permissible operating temperature for seals depends on the seal material:

- NBR: -40 to +90 °C (-40 to +195 °F)
 Temperatures up to 120 °C (250 °F) can be tolerated for brief periods.
- HNBR: -40 to +150 °C (-40 to +300 °F)
- FKM: -30 to +200 °C (-20 to +390 °F)

Typically, temperature peaks are at the seal lip.

Lubricants

Temperature limits for the greases used in sealed SKF spherical roller bearings are provided in **table 1**, **page 777**. For temperature limits of other SKF greases, refer to *Selecting a suitable SKF grease*, **page 116**.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Permissible speed

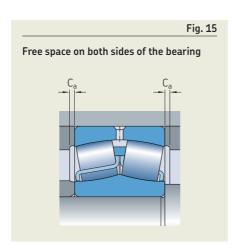
The speed ratings in the **product table** indicate:

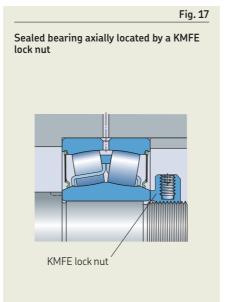
- the reference speed, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the **limiting speed**, which is a mechanical limit that shoud not be exceeded unless the bearing design and the application are adapted for higher speeds

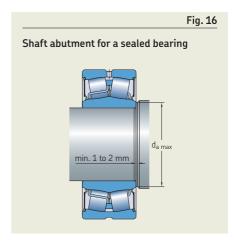
For additional information, refer to *Operating temperature and speed*, **page 130**.

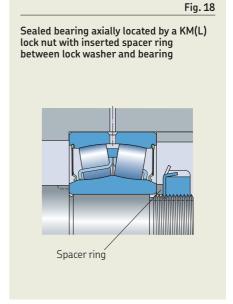
Free space on both sides of the bearing

To prevent interference between rotating bearing parts and stationary machine parts, free space (C_a) should be provided as indicated in fig. 15. The requisite width of the free space depends on:


- the actual misalignment
- lubricant space requirements

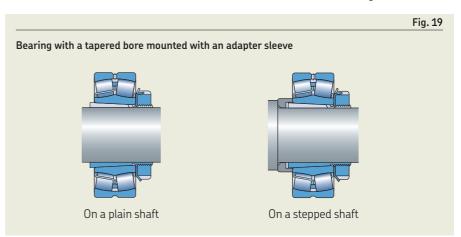

The requisite free space should be at least 20 times the minimum value of the radial internal clearance in the unmounted bearing:


- with a cylindrical bore (table 4, page 782)
- with a tapered bore (table 5, page 783)

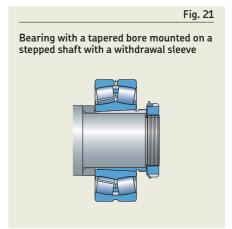

Abutments for sealed bearings

The diameter of the shaft abutment should not exceed d_{a max} (product table, page 792), certainly for the 1 to 2 mm closest to the bearing, to prevent interference with the seal (fig. 16). If the bearings are to be located axially on the shaft by a lock nut, SKF recommends using a KMFE lock nut (fig. 17) or fitting a spacer ring (fig. 18) between the bearing and the lock washer to prevent interference with the seal.

タ 団


786 **SKF**

Bearings on sleeves


Spherical roller bearings with a tapered bore can be mounted with:

- an adapter sleeve on plain or stepped shafts (fig. 19):
 - SKF adapter sleeves are supplied complete with a locking device.
 - Use appropriate SKF adapter sleeve assemblies for sealed bearings (fig. 20) to prevent the locking device interfering with the seal (product table, page 824). Alternatively, a spacer ring can be inserted between the bearing and the lock washer.
- a withdrawal sleeve on stepped shafts (fig. 21)

For additional information about sleeves, refer to *Adapter sleeves*, page 1065, and *Withdrawal sleeves*, page 1087.

Appropriate bearing housings

The combination of a spherical roller bearing, appropriate sleeve (where needed), and an appropriate SKF bearing housing provides a cost-effective, interchangeable and reliable solution that fulfils the demand for easy maintenance.

The comprehensive assortment of SKF bearing housings is provided online at skf.com/housings.

Mounting

During handling, the rings and roller complement of spherical roller bearings may be axially displaced from their normal position. This is especially likely where the bearings are mounted with the shaft or housing in the vertical position:

- The roller complement, together with the inner or outer ring, will move downward and result in no more clearance.
- When the bearing rings expand or contract as a result of an interference fit, preload is likely to result.

Therefore, wherever possible:

- Mount spherical roller bearings with the shaft or housing in the horizontal position.
- Rotate the inner or outer ring to align the rollers during mounting.

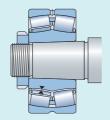
Where this is not feasible, use a bearing handling tool or other device to keep the bearing components arranged centrally.

Mounting sealed bearings

SKF does not recommend heating sealed spherical roller bearings above 80 °C (175 °F) during the mounting process. However, if higher temperatures are necessary, make sure that the temperature does not exceed the permissible temperature of either the seal or grease, whichever is the lowest.

Mounting bearings with a tapered bore

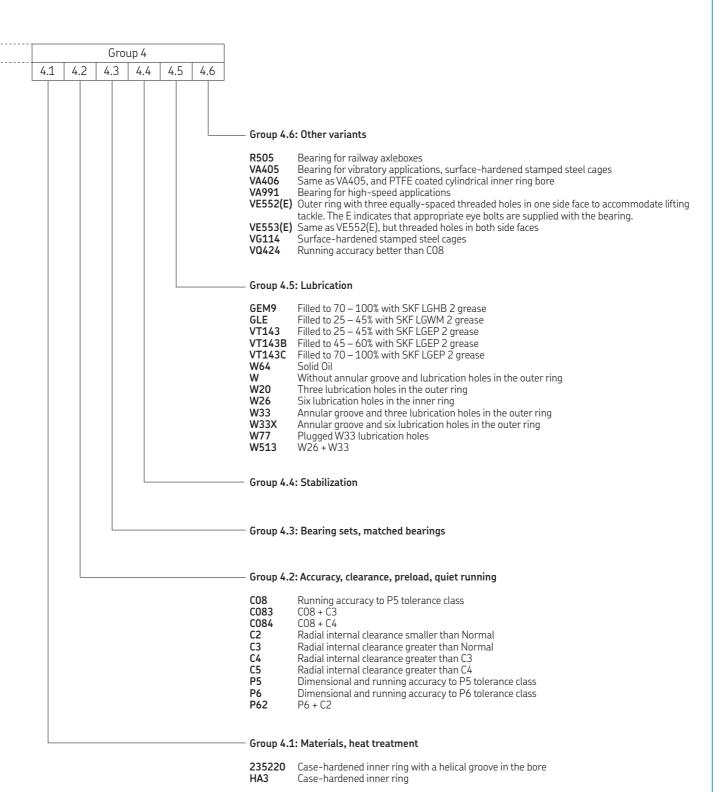
Bearings with a tapered bore are mounted with an interference fit. To obtain the proper degree of interference, one of the following methods can be used:


- 1 Measuring the clearance reduction (table 7)
- 2 Measuring the lock nut tightening angle (table 7)
- 3 Measuring the axial drive-up (table 7)
- 4 Applying the SKF Drive-up Method
 For bearings with d > 100 mm, SKF recommends using the SKF Drive-up
 Method. This is a fast, reliable and safe method to achieve the appropriate interference fit. Additional information is available online at skf.com/drive-up.
- 5 Measuring the inner ring expansion Additional information is available online at skf.com/sensormount.

For additional information about these mounting methods, refer to *Mounting bearings with a tapered bore*, **page 203**, or the *SKF bearing maintenance handbook*.

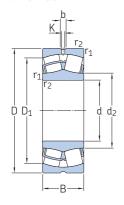
Drive-up data for spherical roller bearings with a tapered bore

Bore diameter			Reduction of radial internal clearance		drive-up ¹) 2)		Lock nut tightening angle ²)
d >	≤	s Taper 1:12		Taper 1	:30 max.	α Taper 1:12			
mm		mm		mm				0	
24 30 40	30 40 50	0,01 0,015 0,02	0,015 0,02 0,025	0,25 0,3 0,37	0,29 0,35 0,44	- - -	- - -	100 115 130	
50 65 80	65 80 100	0,025 0,035 0,04	0,035 0,04 0,05	0,45 0,55 0,66	0,54 0,65 0,79	1,15 1,4 1,65	1,35 1,65 2	115 130 150	
100 120 140	120 140 160	0,05 0,06 0,07	0,06 0,075 0,085	0,79 0,93 1,05	0,95 1,1 1,3	2 2,3 2,65	2,35 2,8 3,2		
160 180 200	180 200 225	0,08 0,09 0,1	0,095 0,105 0,12	1,2 1,3 1,45	1,45 1,6 1,8	3 3,3 3,7	3,6 4 4,45		Applying the recommended
225 250 280	250 280 315	0,11 0,12 0,135	0,13 0,15 0,165	1,6 1,8 2	1,95 2,15 2,4	4 4,5 4,95	4,85 5,4 6		values prevents the inner ring from creeping, but does not ensure correct radial internal clearance in operation. Additional
315 355 400	355 400 450	0,15 0,17 0,195	0,18 0,21 0,235	2,15 2,5 2,8	2,65 3 3,4	5,4 6,2 7	6,6 7,6 8,5		influences from the bearing housing fit and temperature differences between the inner and outer rings must be consid-
450 500 560	500 560 630	0,215 0,245 0,275	0,265 0,3 0,34	3,1 3,4 3,80	3,8 4,1 4,65	7,8 8,4 9,50	9,5 10,3 11,60		ered carefully when selecting the bearing radial internal clearance class (Selecting initial internal clearance, page 183).
630 710 800	710 800 900	0,31 0,35 0,395	0,38 0,425 0,48	4,25 4,75 5,4	5,2 5,8 6,6	10,6 11,9 13,5	13 14,5 16,4		
900 1 000 1 120	1 000 1 120 1 250	0,44 0,49 0,55	0,535 0,6 0,67	6 6,4 7,1	7,3 7,8 8,7	15 16 17,8	18,3 19,5 21,7		
1 250 1 400 1 600	1 400 1 600 1 800	0,61 0,7 0,79	0,75 0,85 0,96	8 9,1 10,2	9,7 11,1 12,5	19,9 22,7 25,6	24,3 27,7 31,2		


¹⁾ Not valid for the SKF Drive-up Method.
2) The listed values are valid only for solid steel shafts and general applications. They are to be used as guideline values only, as it is difficult to establish an exact starting position. Also, the axial drive-up, s, differs slightly between the different bearings series.

Designation system

					Gro	up 1	Grou	2 qı	Grou	тр 3	/
Prefixes ——											
BS2 ZE	Bearing, designated by a drawing number Bearing with SensorMount feature										
Basic designati	on —										
Listed in table 4 Figure with four	, page 30 digits: drawing number identification										
Suffixes											
Group 1: Intern	al design ————————————————————————————————————										
BC CA, CAC	Bearing for wind turbine main shafts with roller-guided cast iron cage Retaining flanges on the inner ring, guide ring centred on the inner rin cage		chined	brass							
CC(J), CJ CCJA, EJA	Flangeless inner ring, guide ring centred on the inner ring, two stamped steel cages Flangeless inner ring, guide ring centred on the outer ring raceway, two stamped steel cages										
E	Optimized internal design for increased load carrying capacity 213, 222 and 223 series: Flangeless inner ring and two stamped steel cages. Annular groove and three lubrication holes in the outer ring. d ≤ 65 mm: Guide ring centred on the inner ring d > 65 mm: Guide ring centred on the cage										
Group 2: Extern	nal design (seals, snap ring groove, etc.) ————————————————————————————————————										
-CS, -2CS -CS2, -2CS2 -CS5, -2CS5 -RS, -2RS -RS5, -2RS5 K	Contact seal, NBR, on one or both sides Contact seal, FKM, on one or both sides Contact seal, HNBR, on one or both sides Contact seal, NBR, on one or both sides Contact seal, HNBR, on one or both sides Tapered bore, taper 1:12 Tapered bore, taper 1:30										
Group 3: Cage o	design —										


F Machined steel cage, inner ring centred
FA Machined steel cage, outer ring centred
J Stamped steel cage, inner ring centred
JA Stamped steel cage, outer ring centred
MA Machined brass cage, outer ring centred

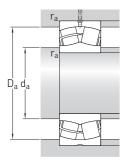
790

5KF 791

9.1 Spherical roller bearings d 20 – 55 mm

Cylindrical bore

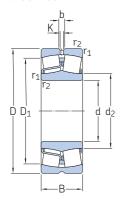
Tapered bore


Sealed (2RS)

Princ	ipal dime	ensions		oad ratings ic static	Fatigue load limit	Speed ra Reference speed	e Limiting speed	Mass	Designations Bearing with cylindrical bore tapered bore
d	D	В	С	C_0	P _u	speeu	speed		cyllilurical bore tapered bore
mm			kN		kN	r/min		kg	-
20	52	18	49,9	44	4,75	13 000	17 000	0,28	22205/20 E –
25	52 52 62	18 23 17	49,9 49,9 49,1	44 44 41,5	4,75 4,75 4,55	13 000 - 9 300	17 000 6 100 12 000	0,26 0,26 0,28	► 22205 E ► BS2-2205-2RS/VT143 – 21305 CC –
30	62 62 72	20 25 19	66,1 66,1 65,7	60 60 61	6,4 6,4 6,8	10 000 - 8 200	14 000 5 100 10 000	0,29 0,34 0,41	► 22206 E ► BS2-2206-2RS/VT143 – 21306 CC –
35	72 72 80	23 28 21	88,8 88,8 79,2	85 85 72	9,3 9,3 8,15	9 000 - 7 300	12 000 4 300 9 500	0,45 0,52 0,55	➤ 22207 E
40	80 80 90	23 28 23	98,5 98,5 107	90 90 108	9,8 9,8 11,8	8 000 - 7 000	11 000 3 900 9 500	0,53 0,57 0,75	 ▶ 22208 E ▶ BS2-2208-2RS/VT143 ▶ 21308 E ▶ 22208 EK ▶ BS2-2208-2RSK/VT14 ≥ 21308 EK
	90 90 90	33 33 38	155 155 155	140 140 140	15 15 15	6 000 6 000 -	8 000 8 000 3 900	1,05 1,05 1,2	 ▶ 22308 E/VA405 ▶ 22308 E ▶ BS2-2308-2RS/VT143
45	85 85 100	23 28 25	104 104 129	98 98 127	10,8 10,8 13,7	7 500 - 6 300	10 000 3 500 8 500	0,58 0,66 0,99	► 22209 E ► BS2-2209-2RS/VT143 21309 E ► 22209 EK ► BS2-2209-2RSK/VT14 ► 21309 EK
	100 100 100	36 36 42	190 190 190	183 183 183	19,6 19,6 19,6	5 300 5 300 -	7 000 7 000 3 400	1,4 1,4 1,6	 ▶ 22309 E/VA405 ▶ 22309 E ▶ BS2-2309-2RS/VT143
50	90 90 110	23 28 27	107 107 159	108 108 166	11,8 11,8 18,6	7 000 - 5 600	9 500 3 200 7 500	0,63 0,7 1,35	 ▶ 22210 E ▶ BS2-2210-2RS/VT143 ▶ 21310 E ▶ 22210 EK ▶ BS2-2210-2RSK/VT14 ▶ 21310 EK
	110 110 110	40 40 45	228 228 228	224 224 224	24 24 24	4 800 4 800 -	6 300 6 300 3 000	1,9 1,9 2,1	 ▶ 22310 E/VA405 ▶ 22310 E ▶ BS2-2310-2RS/VT143
55	100 100 120	25 31 29	129 129 159	127 127 166	13,7 13,7 18,6	6 300 - 5 600	8 500 2 900 7 500	0,84 1 1,7	 ▶ 22211 E ▶ BS2-2211-2RS/VT143 ▶ 21311 E ▶ 22211 EK ▶ BS2-2211-2RSK/VT14 ▶ 21311 EK
	120 120 120	43 43 49	280 280 280	280 280 280	30 30 30	4 300 4 300 -	5 600 5 600 2 800	2,45 2,45 2,8	► 22311 E ► 22311 E/VA405 ► BS2-2311-2RS/VT143 ► 22311 EK 22311 EK/VA405 —

SKF Explorer bearing

Popular item

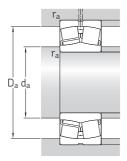


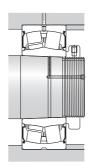
Dimer	mensions					Abutm	ent and	fillet dim	ensions	Calcul	ation fac	tors			ation for
d	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	oil lubr rota- tional	ication ¹⁾ linear
mm						mm				_				m/s ²	
20	31,3	44,2	3,7	2	1	25,6	_	46,4	1	0,35	1,9	2,9	1,8	_	-
25	31,3	44,2	3,7	2	1	30,6	-	46,4	1	0,35	1,9	2,9	1,8	-	-
	30	46,6	4,4	2	1	30	30	46,4	1	0,35	1,9	2,9	1,8	-	-
	35,7	50,7	-	-	1,1	32	-	55	1	0,3	2,3	3,4	2,2	-	-
30	37,6	53	3,7	2	1	35,6	-	56,4	1	0,31	2,2	3,3	2,2	-	-
	35,8	56,4	4,4	2	1	35,5	35,5	56,4	1	0,31	2,2	3,3	2,2	-	-
	43,3	58,8	-	-	1,1	37	-	65	1	0,27	2,5	3,7	2,5	-	-
35	44,5	61,8	3,7	2	1,1	42	-	65	1	0,31	2,2	3,3	2,2	_	-
	42,4	65,3	4,4	2	1,1	42	42	65	1	0,31	2,2	3,3	2,2	_	-
	47,2	65,6	-	-	1,5	44	-	71	1,5	0,28	2,4	3,6	2,5	_	-
40	49,6	69,4	6	3	1,1	47	-	73	1	0,28	2,4	3,6	2,5	-	-
	47,2	72,8	6	3	1,1	47	47	73	1	0,28	2,4	3,6	2,5	-	-
	60	79,8	5,5	3	1,5	49	-	81	1,5	0,24	2,8	4,2	2,8	-	-
	49,9	74,3	6	3	1,5	49	-	81	1,5	0,37	1,8	2,7	1,8	115 g	31 g
	49,9	74,3	6	3	1,5	49	-	81	1,5	0,37	1,8	2,7	1,8	-	-
	47,5	79,3	6	3	1,5	47,5	47,5	81	1,5	0,37	1,8	2,7	1,8	-	-
45	54,4	74,4	5,5	3	1,1	52	-	78	1	0,26	2,6	3,9	2,5	_	-
	52,5	77,8	6	3	1,1	52	52	78	1	0,26	2,6	3,9	2,5	_	-
	65,3	88	6	3	1,5	54	-	91	1,5	0,24	2,8	4,2	2,8	_	-
	57,6	83,4	6	3	1,5	54	-	91	1,5	0,37	1,8	2,7	1,8	97 g	29 g
	57,6	83,4	6	3	1,5	54	-	91	1,5	0,37	1,8	2,7	1,8	-	-
	55	88,5	6	3	1,5	54	55	91	1,5	0,37	1,8	2,7	1,8	-	-
50	60	79	5,5	3	1,1	57	-	83	1	0,24	2,8	4,2	2,8	_	-
	58,1	82,3	6	3	1,1	57	58	83	1	0,24	2,8	4,2	2,8	_	-
	72,7	96,8	6	3	2	61	-	99	2	0,24	2,8	4,2	2,8	_	-
	63,9	91,9	6	3	2	61	-	99	2	0,37	1,8	2,7	1,8	85 g	28 g
	63,9	91,9	6	3	2	61	-	99	2	0,37	1,8	2,7	1,8	-	-
	61,5	96,8	6	3	2	61	61	99	2	0,37	1,8	2,7	1,8	-	-
55	65,3	88	6	3	1,5	64	-	91	1,5	0,24	2,8	4,2	2,8	-	-
	63,5	92	6	3	1,5	63,5	63,5	91	1,5	0,24	2,8	4,2	2,8	-	-
	72,7	96,2	6	3	2	66	-	109	2	0,24	2,8	4,2	2,8	-	-
	70,1	102	5,5	3	2	66	-	109	2	0,35	1,9	2,9	1,8	–	–
	70,1	102	5,5	3	2	66	-	109	2	0,35	1,9	2,9	1,8	78 g	26 g
	67,5	107	6	3	2	66	67	109	2	0,35	1,9	2,9	1,8	–	–

¹⁾ For details about permissible accelerations → page 779

9.1 Spherical roller bearings d 60 – 80 mm

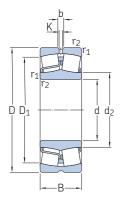
Cylindrical bore


Tapered bore


Sealed (2RS, 2RS5)

Princi	pal dime	ensions		oad ratings ic static	Fatigue load limit	Speed ra Reference speed	tings E Limiting Speed	Mass		Designations Bearing with cylindrical bore	tapered bore
d	D	В	С	C_0	P _u	speed	speeu			Cylindrical bore	tapereu bore
mm			kN		kN	r/min		kg		-	
60	110 110 130	28 34 31	159 159 217	166 166 240	18,6 18,6 26,5	5 600 - 4 800	7 500 2 700 6 300	1,15 1,3 2,1	•	 22212 E BS2-2212-2RS/VT143 21312 E 	 22212 EK B52-2212-2R5K/VT143 21312 EK
	130 130 130	46 46 53	325 325 325	335 335 335	36 36 36	4 000 4 000 -	5 300 5 300 2 500	3,1 3,1 3,4	•	22312 E 22312 E/VA405 BS2-2312-2RS/VT143	➤ 22312 EK 22312 EK/VA405
65	100 100 120	35 35 31	137 137 198	173 173 216	20,4 20,4 24	- 4 300 5 000	2 600 6 300 7 000	0,95 0,95 1,55	,	24013-2RS5W/VT143 24013 CC/W33 • 22213 E	
	120 140 140	38 33 48	198 243 357	216 270 360	24 29 38	- 4 300 3 800	2 400 6 000 5 000	1,6 2,55 3,75	•	BS2-2213-2RS/VT143 21313 E 22313 E	▶ BS2-2213-2RSK/VT14:▶ 21313 EK▶ 22313 EK
	140 140	48 56	357 357	360 360	38 38	3 800 -	5 000 2 400	3,75 4,15		22313 E/VA405 BS2-2313-2RS/VT143	22313 EK/VA405
70	125 125 150	31 38 35	213 213 291	228 228 325	25,5 25,5 34,5	5 000 - 4 000	6 700 2 300 5 600	1,55 1,8 3,1		22214 E BS2-2214-2RS/VT143 21314 E	 22214 EK BS2-2214-2RSK/VT14 21314 EK
	150 150 150	51 51 60	413 413 413	430 430 430	45 45 45	3 400 3 400 -	4 500 4 500 2 100	4,55 4,55 5,1	•	22314 E 22314 E/VA405 BS2-2314-2RS/VT143	► 22314 EK ► 22314 EK/VA405
75	115 115 130	40 40 31	181 181 217	232 232 240	28,5 28,5 26,5	- 3 800 4 800	2 300 5 300 6 300	1,55 1,55 1,7		24015-2RS5/VT143 • 24015 CC/W33 • 22215 E	_ 24015 CCK30/W33 ► 22215 EK
	130 160 160	38 37 55	217 291 462	240 325 475	26,5 34,5 48	- 4 000 3 200	2 200 5 600 4 300	2,1 3,75 5,55	1	BS2-2215-2RS/VT143 21315 E 22315 E	 BS2-2215-2RSK/VT14 21315 EK 22315 EK
	160 160	55 64	462 462	475 475	48 48	3 200 -	4 300 2 100	5,55 6,5		22315 EJA/VA405 BS2-2315-2RS/VT143	22315 EKJA/VA405 ► BS2-2315-2RSK/VT14
80	140 140 170	33 40 39	243 243 331	270 270 375	29 29 39	4 300 - 3 800	6 000 2 000 5 300	2,1 2,4 4,45	•	22216 E BS2-2216-2RS/VT143 21316 E	22216 EKBS2-2216-2RSK/VT1421316 EK
	170 170 170	58 58 67	516 516 516	530 530 530	54 54 54	3 000 3 000 -	4 000 4 000 2 000	6,6 6,6 7,2		22316 E 22316 EJA/VA405 BS2-2316-2RS/VT143	► 22316 EK 22316 EKJA/VA405

SKF Explorer bearing


Popular item

Dimen	nensions				Abutm	nent and	fillet dim	ensions	Calcul	ation fac	tors			ation for	
d	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	oil lubr rota- tional	rication ¹⁾ linear
mm						mm		,		_				m/s ²	
60	72,7	96,5	6	3	1,5	69	-	101	1,5	0,24	2,8	4,2	2,8	-	-
	69,7	101	6	3	1,5	69	69	101	1,5	0,24	2,8	4,2	2,8	-	-
	87,8	115	6	3	2,1	72	-	118	2	0,22	3	4,6	2,8	-	-
	77,9	110	8,3	4,5	2,1	72	-	118	2	0,35	1,9	2,9	1,8	–	–
	77,9	110	8,3	4,5	2,1	72	-	118	2	0,35	1,9	2,9	1,8	70 g	25 g
	75	117	8,3	4,5	2,1	72	75	118	2	0,35	1,9	2,9	1,8	–	–
65	71,6	93,5	-	-	1,1	71	71	94	1	0,27	2,5	3,7	2,5	-	-
	73,9	87,3	3,7	2	1,1	71	-	94	1	0,27	2,5	3,7	2,5	-	-
	80,1	106	6	3	1,5	74	-	111	1,5	0,24	2,8	4,2	2,8	-	-
	76,5	110	6	3	1,5	74	76	111	1,5	0,24	2,8	4,2	2,8	-	-
	94,7	124	6	3	2,1	77	-	128	2	0,22	3	4,6	2,8	-	-
	81,6	118	8,3	4,5	2,1	77	-	128	2	0,35	1,9	2,9	1,8	-	-
	81,6 78,7	118 125	8,3 8,3	4,5 4,5	2,1 2,1	77 77	- 78	128 128	2 2	0,35 0,35	1,9 1,9	2,9 2,9	1,8 1,8	69 g -	24 g -
70	83	111	6	3	1,5	79	-	116	1,5	0,23	2,9	4,4	2,8	-	-
	80,1	116	6	3	1,5	79	80	116	1,5	0,23	2,9	4,4	2,8	-	-
	101	133	6	3	2,1	82	-	138	2	0,22	3	4,6	2,8	-	-
	90,3	128	8,3	4,5	2,1	82	-	138	2	0,33	2	3	2	–	-
	90,3	128	8,3	4,5	2,1	82	-	138	2	0,33	2	3	2	61 g	23 g
	86,7	136	8,3	4,5	2,1	82	86	138	2	0,33	2	3	2	–	-
75	81,8	106	6	3	1,1	81	81	109	1	0,28	2,4	3,6	2,5	-	-
	84,2	100	5,5	3	1,1	81	-	109	1	0,28	2,4	3,6	2,5	-	-
	87,8	115	6	3	1,5	84	-	121	1,5	0,22	3	4,6	2,8	-	-
	84,5	120	6	3	1,5	84	84	121	1,5	0,22	3	4,6	2,8	-	-
	101	133	6	3	2,1	87	-	148	2	0,22	3	4,6	2,8	-	-
	92,8	135	8,3	4,5	2,1	87	-	148	2	0,35	1,9	2,9	1,8	-	-
	92,8 89,9	135 140	8,3 8,3	4,5 4,5	2,1 2,1	87 87	- 89	148 148	2 2	0,35 0,35	1,9 1,9	2,9 2,9	1,8 1,8	88 g -	23 g -
80	94,7	124	6	3	2	91	-	129	2	0,22	3	4,6	2,8	-	-
	91,7	129	6	3	2	91	91	129	2	0,22	3	4,6	2,8	-	-
	106	141	6	3	2,1	92	-	158	2	0,24	2,8	4,2	2,8	-	-
	98,3	143	8,3	4,5	2,1	92	-	158	2	0,35	1,9	2,9	1,8	–	–
	98,3	143	8,3	4,5	2,1	92	-	158	2	0,35	1,9	2,9	1,8	80 g	22 g
	94,2	150	8,3	4,5	2,1	92	94	158	2	0,35	1,9	2,9	1,8	–	–

¹⁾ For details about permissible accelerations → page 779

Cylindrical bore

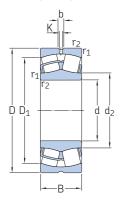
Tapered bore

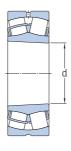
Sealed (2RS, 2RS5)

Princi	pal dime	ensions		oad ratings ic static	Fatigue load limit	Speed ra Reference speed	t ings e Limiting speed	Mass	Designations Bearing with cylindrical bore	tapered bore
d	D	В	С	C_0	Pu	speed	speed		cylinarical bore	tapereu bore
mm			kN		kN	r/min		kg	_	
85	150 150 180	36 44 41	291 291 331	325 325 375	34,5 34,5 39	4 000 - 3 800	5 600 1 900 5 300	2,7 3 5,2	22217 E BS2-2217-2RS/V 21317 E	➤ 22217 EK T143 ➤ BS2-2217-2RSK/VT143 ➤ 21317 EK
	180 180 180	60 60 60	577 577 577	620 620 620	61 61 61	2 800 2 800 2 800	3 800 3 800 3 800	7,65 7,65 7,65	22317 E 22317 EJA/VA405 22317 EJA/VA406	
90	160 160 160	40 48 52,4	331 331 372	375 375 440	39 39 48	3 800 - 2 800	5 300 1 800 3 800	3,4 3,7 4,65	22218 E BS2-2218-2RS/V 23218 CC/W33	➤ 22218 EK T143 ➤ BS2-2218-2RSK/VT143 ➤ 23218 CCK/W33
	190 190 190	43 64 64	393 637 637	450 695 695	45,5 67 67	3 600 2 600 2 600	4 800 3 600 3 600	6,1 9,05 9,05	21318 E 22318 E 22318 EJA/VA40	► 21318 EK ► 22318 EK 22318 EKJA/VA405
	190	73	637	695	67	-	1 700	9,8	BS2-2318-2RS5/	VT143 • BS2-2318-2RS5K/VT143
95	170 170 200	43 51 45	393 393 433	450 450 490	45,5 45,5 49	3 600 - 3 400	4 800 1 700 4 500	4,15 4,65 7,05	22219 E BS2-2219-2RS/V 21319 E	► 22219 EK T143 – 21319 EK
	200 200	67 67	699 699	765 765	73,5 73,5	2 600 2 600	3 400 3 400	10,5 10,5	22319 E 22319 EJA/VA409	► 22319 EK 22319 EKJA/VA405
100	150 150 165	50 50 52	296 296 385	415 415 490	45,5 45,5 53	- 2 800 3 000	1 700 4 000 4 000	3,15 3,15 4,55	24020-2RS5/VT1 24020 CC/W33 23120 CC/W33	43 – 24020 CCK30/W33 ► 23120 CCK/W33
	165 165 165	52 65 65	386 468 470	490 640 640	53 68 68	- 2 400 -	1 700 3 200 1 700	4,55 5,65 5,65	23120-2RS5/VT1 24120 CC/W33 24120-2RS5/VT1	24120 CCK30/W33
	180 180 180	46 55 60,3	433 433 498	490 490 600	49 49 63	3 400 - 2 400	4 500 1 600 3 400	4,9 5,5 6,85	22220 E BS2-2220-2RS5/ 23220 CC/W33	➤ 22220 EK VT143 BS2-2220-2R55K/VT143 ➤ 23220 CCK/W33
	180 180 215	60,3 60,3 47	499 499 433	600 600 490	63 63 49	- - 3 400	1 600 1 600 4 500	6,85 6,85 8,6	23220-2RS/VT14 23220-2RS5/VT1 21320 E	
	215 215 215	73 73 73	847 847 847	950 950 950	88 88 88	2 400 2 400 2 400	3 000 3 000 3 000	13,5 13,5 13,5	22320 E 22320 EJA/VA405 22320 EJA/VA406	

SKF Explorer bearing

Popular item





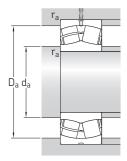
Dimer	sions					Abutment and fillet dimensions				Calcul	ation fac	tors			ation for
d	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	oil lubr rota- tional	rication ¹⁾ linear
mm						mm				_				m/s ²	
85	101	133	6	3	2	96	-	139	2	0,22	3	4,6	2,8	-	-
	98,2	137	6	3	2	96	98	139	2	0,22	3	4,6	2,8	-	-
	106	141	6	3	3	99	-	166	2,5	0,24	2,8	4,2	2,8	-	-
	108	154	8,3	4,5	3	99	-	166	2,5	0,33	2	3	2	–	–
	108	154	8,3	4,5	3	99	-	166	2,5	0,33	2	3	2	74 g	21 g
	108	154	8,3	4,5	3	99	-	166	2,5	0,33	2	3	2	74 g	21 g
90	106	141	6	3	2	101	_	149	2	0,24	2,8	4,2	2,8	-	-
	102	146	6	3	2	101	102	149	2	0,24	2,8	4,2	2,8	-	-
	106	137	5,5	3	2	101	_	149	2	0,31	2,2	3,3	2,2	-	-
	112	150	8,3	4,5	3	104	-	176	2,5	0,24	2,8	4,2	2,8	–	–
	113	161	11,1	6	3	104	-	176	2,5	0,33	2	3	2	–	–
	113	161	11,1	6	3	104	-	176	2,5	0,33	2	3	2	68 g	21 g
	109	165	11,1	6	3	104	109	176	2,5	0,33	2	3	2	-	-
95	112 109 118	150 155 159	8,3 8,3 8,3	4,5 4,5 4,5	2,1 2,1 3	107 107 109	- 109 -	158 158 186	2 2 2,5	0,24 0,24 0,24	2,8 2,8 2,8	4,2 4,2 4,2	2,8 2,8 2,8	 	- - -
	118 118	168 168	11,1 11,1	6 6	3	109 109	- -	186 186	2,5 2,5	0,33 0,33	2 2	3	2 2	– 64 g	– 20 g
100	108	138	6	3	1,5	107	108	143	1,5	0,28	2,4	3,6	2,5	-	-
	111	132	6	3	1,5	107	-	143	1,5	0,28	2,4	3,6	2,5	-	-
	115	144	6	3	2	111	-	154	2	0,3	2,3	3,4	2,2	-	-
	112	149	6	3	2	111	112	154	2	0,27	2,5	3,7	2,5	-	-
	113	141	4,4	2	2	111	-	154	2	0,37	1,8	2,7	1,8	-	-
	110	147	4,4	2	2	110	110	154	2	0,35	1,9	2,9	1,8	-	-
	118	159	8,3	4,5	2,1	112	_	168	2	0,24	2,8	4,2	2,8	-	_
	114	163	8,3	4,5	2,1	112	114	168	2	0,24	2,8	4,2	2,8	-	_
	117	153	8,3	4,5	2,1	112	_	168	2	0,33	2	3	2	-	_
	114	159	8,3	4,5	2,1	112	114	168	2	0,3	2,3	3,4	2,2	_	-
	114	159	8,3	4,5	2,1	112	114	168	2	0,3	2,3	3,4	2,2	_	-
	118	159	8,3	4,5	3	114	-	201	2,5	0,24	2,8	4,2	2,8	_	-
	130	184	11,1	6	3	114	-	201	2,5	0,33	2	3	2	–	–
	130	184	11,1	6	3	114	-	201	2,5	0,33	2	3	2	56 g	20 g
	130	184	11,1	6	3	114	-	201	2,5	0,33	2	3	2	56 g	20 g

¹⁾ For details about permissible accelerations → page 779

9.1 Spherical roller bearings d 110 – 120 mm

Cylindrical bore

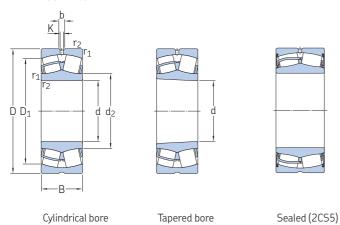
Tapered bore


Sealed (2RS, 2RS5, 2CS5)

Princi	pal dime	nsions		ad ratings static	Fatigue load limit		e Limiting	Mass	Designations Bearing with cylindrical bore tapered bore
d	D	В	С	C_0	P _u	speed	speed		cylindrical bore tapered bore
mm			kN		kN	r/min		kg	-
110	170 170 170	45 45 60	326 326 437	440 440 620	46,5 46,5 67	- 3 400 2 400	1 500 4 300 3 600	3,8 3,8 5	► 23022-2RS/VT143 ► 23022 CC/W33 ► 24022 CC/W33 ► 24022 CCK/W33 24022 CCK30/W33
	170 180 180	60 56 56	438 450 451	620 585 585	67 61 61	- 2 800 -	1 600 3 600 800	5 5,75 5,75	24022-2RS5/VT143
	180 180 200	69 69 53	539 540 572	750 750 640	78 78 63	2 000 - 3 000	3 000 630 4 000	7,1 7,1 7	► 24122 CC/W33
	200 200 200	63 69,8 69,8	572 626 627	640 765 765	63 76,5 76,5	- 2 200 -	1 500 3 200 640	7,6 9,85 9,85	 ▶ BS2-2222-2RS5/VT143 ▶ BS2-2222-2RS5K/VT14 ▶ 23222 CCK/W33 ▶ 23222-2CS5/VT143 ▶ 23222-2CS5K/VT143
	240 240 240	80 80 80	989 989 989	1 120 1 120 1 120	100 100 100	2 000 2 000 2 000	2 800 2 800 2 800	18,5 18,5 18,5	► 22322 E ► 22322 EJA/VA405 22322 EJA/VA406 ► 22322 EKJA/VA405
120	180 180 180	46 46 60	366 367 456	500 500 670	52 52 68	3 200 - 2 400	4 000 1 400 3 400	4,2 4,2 5,45	► 23024 CC/W33 ► 23024-2RS5/VT143 ► 24024 CC/W33 ► 24024 CCK30/W33
	180 200 200	60 62 62	457 534 535	670 695 695	68 71 71	- 2 600 -	670 3 400 720	5,45 8 7,55	► 24024-2CS5/VT143
	200 200 215	80 80 58	679 680 652	950 950 765	95 95 73,5	1 900 - 2 800	2 600 560 3 800	10,5 10,5 8,7	► 24124 CC/W33 24124 CCK30/W33 ► 24124-2CS5/VT143 - 22224 EK
	215 215 215	69 76 76	652 732 734	765 930 930	73,5 93 93	- 2 000 -	1 400 2 800 600	9,75 12 12	 ▶ BS2-2224-2RS5/VT143 ▶ BS2-2224-2RS5K/VT14 ▶ 23224 CCK/W33 ▶ 23224-2CS5/VT143 ▶ 23224-2CS5K/VT143
	260 260 260	86 86 86	1 019 1 019 1 019	1 120 1 120 1 120	100 100 100	2 000 2 000 2 000	2 600 2 600 2 600	23 23 23	 ▶ 22324 CC/W33 ▶ 22324 CCK/W33 ▶ 22324 CCKJA/W33VA405 ▶ 22324 CCKJA/W33VA406
	260	86	1 022	1 120	100	-	600	23	► 22324-2CS5/VT143

SKF Explorer bearing

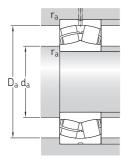
Popular item



Dimer	nsions					Abutm	nent and	fillet dim	ensions	Calcul	ation fac	tors			ration for
d	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	rota- tional	r ication 1) linear
nm						mm				_				m/s ²	
10	122	156	6	3	2	119	122	161	2	0,21	3,2	4,8	3,2	-	-
	125	151	6	3	2	119	-	161	2	0,23	2,9	4,4	2,8	-	-
	122	149	5,5	3	2	119	-	161	2	0,33	2	3	2	-	-
	120	154	6	3	2	119	120	161	2	0,3	2,3	3,4	2,2	-	-
	126	157	8,3	4,5	2	121	-	169	2	0,3	2,3	3,4	2,2	-	-
	122	166	8,3	4,5	2	121	122	169	2	0,27	2,5	3,7	2,5	-	-
	123	153	6	3	2	121	-	169	2	0,37	1,8	2,7	1,8	-	-
	120	163	6	3	2	121	121	169	2	0,35	1,9	2,9	1,8	-	-
	130	178	8,3	4,5	2,1	122	-	188	2	0,25	2,7	4	2,5	-	-
	126	183	8,3	4,5	2,1	122	126	188	2	0,25	2,7	4	2,5	-	-
	130	169	8,3	4,5	2,1	122	-	188	2	0,33	2	3	2	-	-
	126	178	8,3	4,5	2,1	122	126	188	2	0,33	2	3	2	-	-
	143	204	13,9	7,5	3	124	-	226	2,5	0,33	2	3	2	–	–
	143	204	13,9	7,5	3	124	-	226	2,5	0,33	2	3	2	53 g	19 g
	143	204	13,9	7,5	3	124	-	226	2,5	0,33	2	3	2	53 g	19 g
.20	135	163	6	3	2	129	-	171	2	0,22	3	4,6	2,8	-	-
	132	168	6	3	2	129	132	171	2	0,2	3,4	5	3,2	-	-
	132	159	6	3	2	129	-	171	2	0,3	2,3	3,4	2,2	-	-
	130	166	6	3	2	129	130	171	2	0,28	2,4	3,6	2,5	-	-
	139	174	8,3	4,5	2	131	-	189	2	0,28	2,4	3,6	2,5	-	-
	135	183	8,3	4,5	2	131	135	189	2	0,27	2,5	3,7	2,5	-	-
	135	168	6	3	2	131	-	189	2	0,37	1,8	2,7	1,8	-	-
	132	179	6	3	2	131	132	189	2	0,37	1,8	2,7	1,8	-	-
	141	189	11,1	6	2,1	132	-	203	2	0,26	2,6	3,9	2,5	-	-
	136	194	11,1	6	2,1	132	136	203	2	0,26	2,6	3,9	2,5	-	-
	141	182	8,3	4,5	2,1	132	-	203	2	0,35	1,9	2,9	1,8	-	-
	137	193	8,3	4,5	2,1	132	137	203	2	0,33	2	3	2	-	-
	152	216	13,9	7,5	3	134	-	246	2,5	0,35	1,9	2,9	1,8	–	–
	152	216	13,9	7,5	3	134	-	246	2,5	0,35	1,9	2,9	1,8	96 g	21 g
	152	216	13,9	7,5	3	134	-	246	2,5	0,35	1,9	2,9	1,8	96 g	21 g
	147	229	13,9	7,5	3	134	147	246	2,5	0,33	2	3	2	_	_

¹⁾ For details about permissible accelerations → page 779

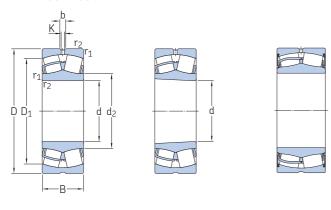
9.1 Spherical roller bearings d 130 – 140 mm



Princi	pal dime	ensions	Basic lo	ad ratings static	Fatigue load		e Limiting	Mass	Designations Bearing with
d	D	В	С	C_0	limit P _u	speed	speed		cylindrical bore tapered bore
mm			kN		kN	r/min		kg	-
130	200 200 200	52 52 69	452 452 569	610 610 815	61 62 81,5	2 800 - 2 000	3 600 800 3 000	6 6 8,05	 ≥ 23026 CC/W33 ≥ 23026 CCK/W33 ≥ 23026-2CS5/VT143 ≥ 24026 CC/W33 ≥ 24026 CCK30/W33
	200 210 210	69 64 80	570 586 699	830 780 1 000	81,5 78 100	- 2 400 1 700	600 3 200 2 400	8,05 8,8 11	► 24026-2CS5/VT143 ► 23126 CC/W33 ► 24126 CC/W33 ► 24126 CCK30/W33
	210 220 230	80 73 64	701 640 758	1 000 930 930	100 93 88	- 1 600 2 600	530 2 400 3 600	11 11,5 11	➤ 24126-2CS5/VT143
	230 230 230	75 80 80	758 826 828	930 1 060 1 060	88 104 104	- 1 900 -	700 2 600 530	11 14,5 14,5	 ▶ BS2-2226-2CS5/VT143 ▶ 23226 CC/W33 ▶ 23226-2CS5/VT143 ▶ 23226-2CS5/VT143 ▶ 23226-2CS5K/VT143
	280 280 280	93 93 93	1 176 1 176 1 176	1 320 1 320 1 320	114 114 114	1 800 1 800 1 800	2 400 2 400 2 400	29 29 29	➤ 22326 CC/W33
	280	93	1178	1 320	114	-	500	29	► 22326-2CS5/VT143
140	210 210 210	53 53 69	485 485 600	680 680 900	68 68 88	- 2 600 2 000	700 3 400 2 800	6,55 6,55 8,55	 ▶ 23028-2C55/VT143 ▶ 23028-2C55K/VT143 ▶ 23028 CCK/W33 ▶ 24028 CC/W33 ▶ 24028 CCK30/W33
	210 225 225	69 68 85	601 659 796	900 900 1 160	88 88 112	- 2 200 1 600	560 2 800 2 200	8,55 10,5 13,5	► 24028-2CS5/VT143
	225 250 250	85 68 68	797 743 744	1 160 900 900	112 86,5 86,5	- 2 400 -	450 3 200 670	13,5 14 14	 ▶ 24128-2CS5/VT143 ▶ 22228 CC/W33 ▶ 22228-2CS5/VT143 ▶ 22228-2CS5/VT143 ▶ 22228-2CS5K/VT143
	250 250 300	88 88 102	962 963 1 357	1 250 1 250 1 560	120 120 132	1 700 - 1 700	2 400 480 2 200	19 19 36,5	 ▶ 23228 CC/W33 ▶ 23228 CCK/W33 ▶ 23228-2C55/VT143 ▶ 22328 CCK/W33 ▶ 22328 CCK/W33
	300 300 300	102 102 102	1 357 1 357 1 359	1 560 1 560 1 560	132 132 132	1 700 1 700 -	2 200 2 200 430	36,5 36,5 36,5	 ▶ 22328 CCJA/W33VA405 22328 CCJA/W33VA406 ▶ 22328 CCKJA/W33VA405 - ▶ 22328-2CS5K/VT143

SKF Explorer bearing

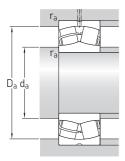
Popular item



Dimen	sions					Abutn	nent and	fillet dim	ensions	Calcul	ation fac	tors			ation for
d	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	rota- tional	ication ¹⁾ linear
nm						mm				_				m/s ²	
130	148	180	8,3	4,5	2	139	-	191	2	0,23	2,9	4,4	2,8	-	-
	145	186	8,3	4,5	2	139	145	191	2	0,21	3,2	4,8	3,2	-	-
	145	175	6	3	2	139	-	191	2	0,31	2,2	3,3	2,2	-	-
	140	183	6	3	2	139	140	191	2	0,3	2,3	3,4	2,2	-	-
	148	184	8,3	4,5	2	141	-	199	2	0,28	2,4	3,6	2,5	-	-
	146	180	6	3	2	141	-	199	2	0,35	1,9	2,9	1,8	-	-
	141	190	6	3	2	141	141	199	2	0,33	2	3	2	-	-
	154	190	-	-	2,1	142	-	208	2	0,31	2,2	3,3	2,2	-	-
	152	201	11,1	6	3	144	-	216	2,5	0,27	2,5	3,7	2,5	-	-
	147	205	11,1	6	3	144	147	216	2,5	0,27	2,5	3,7	2,5	-	-
	151	196	8,3	4,5	3	144	-	216	2,5	0,33	2	3	2	-	-
	147	209	8,3	4,5	3	144	147	216	2,5	0,31	2,2	3,3	2,2	-	-
	164	233	16,7	9	4	147	-	263	3	0,35	1,9	2,9	1,8	–	–
	164	233	16,7	9	4	147	-	263	3	0,35	1,9	2,9	1,8	87 g	20 g
	164	233	16,7	9	4	147	-	263	3	0,35	1,9	2,9	1,8	87 g	20 g
	159	246	16,7	9	4	147	159	263	3	0,33	2	3	2	-	-
L 40	155	197	8,3	4,5	2	149	155	201	2	0,2	3,4	5	3,2	-	-
	158	190	8,3	4,5	2	149	-	201	2	0,22	3	4,6	2,8	-	-
	155	185	6	3	2	149	-	201	2	0,3	2,3	3,4	2,2	-	-
	151 159 156	195 197 193	6 8,3 8,3	3 4,5 4,5	2 2,1 2,1	149 152 152	151 - -	201 213 213	2 2 2	0,28 0,28 0,35	2,4 2,4 1,9	3,6 3,6 2,9	2,5 2,5 1,8	- - -	
	153	203	8,3	4,5	2,1	152	153	213	2	0,35	1,9	2,9	1,8	-	-
	166	216	11,1	6	3	154	-	236	2,5	0,26	2,6	3,9	2,5	-	-
	161	225	11,1	6	3	154	161	236	2,5	0,24	2,8	4,2	2,8	-	-
	165	212	11,1	6	3	154	-	236	2,5	0,33	2	3	2	-	-
	161	225	11,1	6	3	154	161	236	2,5	0,33	2	3	2	-	-
	175	247	16,7	9	4	157	-	283	3	0,35	1,9	2,9	1,8	-	-
	175	247	16,7	9	4	157	-	283	3	0,35	1,9	2,9	1,8	78 g	20 g
	175	247	16,7	9	4	157	-	283	3	0,35	1,9	2,9	1,8	78 g	20 g
	169	261	16,7	9	4	157	169	283	3	0,33	2	3	2	–	-

¹⁾ For details about permissible accelerations → page 779

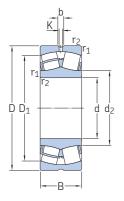
9.1 Spherical roller bearings d 150 – 160 mm


Cylindrical bore Tapered bore Sealed (2CS5)	Cylindrical bore	Tapered bore	Sealed (2CS5)
---	------------------	--------------	---------------

Princi	pal dime	ensions	Basic lo	ad ratings static	Fatigue load limit	Speed ra Reference speed	a tings e Limiting speed	Mass	Designations Bearing with cylindrical bore tapered bore
d	D	В	С	C_0	P _u	speeu	Speed		Cylinurical pore tapered pore
mm			kN		kN	r/min	,	kg	-
150	225 225 225	56 56 75	531 532 680	750 750 1 040	73,5 73,5 100	2 400 - 1 800	3 200 670 2 600	7,95 7,95 10,5	 ≥ 23030 CC/W33 ≥ 23030 CCK/W33 ≥ 23030-2CS5K/VT143 ≥ 24030 CCK/W33 ≥ 24030 CCK30/W33
	225 250 250	75 80 80	681 883 884	1 040 1 200 1 200	100 114 114	- 2 000 -	530 2 600 560	10,5 16 16	 ▶ 24030-2CS5/VT143 ▶ 23130 CC/W33 ▶ 23130-2CS5/VT143 ▶ 23130-2CS5K/VT143
	250 250 270	100 100 73	1 054 1 056 898	1 530 1 530 1 080	146 146 102	1 400 - 2 200	2 000 400 3 000	20 20 18	 ▶ 24130 CC/W33 ▶ 24130 CCK30/W33 ▶ 24130-2CS5K30/VT143 ▶ 22230 CC/W33 ▶ 22230 CCK/W33
	270 270 270	73 96 96	899 1 129 1 132	1 080 1 460 1 460	102 137 137	- 1 600 -	630 2 200 430	18 24,5 24,5	 ▶ 22230-2CS5/VT143 ▶ 22230-2CS5K/VT143 ▶ 23230 CCK/W33 ▶ 23230-2CS5K/VT143 ▶ 23230-2CS5K/VT143
	320 320 320	108 108 108	1 539 1 539 1 539	1 760 1 760 1 760	146 146 146	1 600 1 600 1 600	2 000 2 000 2 000	43,5 43,5 43,5	► 22330 CC/W33 ► 22330 CCJA/W33VA405 22330 CCJA/W33VA406 ► 22330 CCKJA/W33VA406
	320	108	1 541	1 760	146	-	400	43,5	► 22330-2CS5/VT143
160	240 240 240	60 60 80	614 615 783	880 880 1 200	83 83 114	2 400 - 1 700	3 000 670 2 400	9,7 9,7 13	 ≥ 23032 CC/W33 ≥ 23032 CCK/W33 ≥ 23032 CCK/W33 ≥ 23032 CCK/W33 ≥ 24032 CCK30/W33
	240 270 270	80 86 86	784 1 029 1 030	1 200 1 370 1 400	114 129 129	- 1 900 -	450 2 400 530	13 20,5 20,5	 ▶ 24032-2CS5/VT143 ▶ 23132 CC/W33 ▶ 23132-2CS5/VT143 ► 23132-2CS5K/VT143
	270 270 290	109 109 80	1 227 1 229 1 043	1 760 1 760 1 290	163 163 118	1 300 - 2 000	1 900 380 2 800	25 25 22,5	➤ 24132 CC/W33 ➤ 24132-2C55/VT143 ➤ 22232 CC/W33 ➤ 24132 CCK30/W33 - 22232 CCK/W33
	290 290 340	80 104 114	1 044 1 281 1 680	1 290 1 660 1 960	118 153 160	- 1 500 1 500	600 2 200 1 900	22,5 31 52	 ▶ 22232-2C55/VT143 ▶ 22232-2C55K/VT143 ▶ 23232 CC/W33 ▶ 22332 CCK/W33 ▶ 22332 CCK/W33
	340 340 340	114 114 114	1 680 1 680 1 683	1 960 1 960 1 960	160 160 160	1 500 1 500 -	1 900 1 900 380	52 52 52	➤ 22332 CCJA/W33VA405 22332 CCJA/W33VA406 ➤ 22332-2CS5/VT143

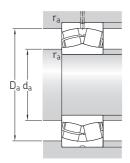
SKF Explorer bearing

Popular item



Dimen	sions					Abutn	nent and	fillet dim	ensions	Calcul	ation fac	tors			sible ation for ication1)
d	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	rota- tional	linear
nm						mm				-				m/s ²	
150	169	203	8,3	4,5	2,1	161	-	214	2	0,22	3	4,6	2,8	-	-
	165	211	8,3	4,5	2,1	161	165	214	2	0,2	3,4	5	3,2	-	-
	165	197	6	3	2,1	161	-	214	2	0,3	2,3	3,4	2,2	-	-
	162	206	6	3	2,1	161	162	214	2	0,28	2,4	3,6	2,5	-	_
	172	216	11,1	6	2,1	162	-	238	2	0,3	2,3	3,4	2,2	-	_
	168	226	11,1	6	2,1	162	168	238	2	0,28	2,4	3,6	2,5	-	_
	169	211	8,3	4,5	2,1	162	-	238	2	0,37	1,8	2,7	1,8	-	-
	163	222	8,3	4,5	2,1	162	163	238	2	0,37	1,8	2,7	1,8	-	-
	178	234	13,9	7,5	3	164	-	256	2,5	0,26	2,6	3,9	2,5	-	-
	174	248	13,9	7,5	3	164	174	256	2,5	0,24	2,8	4,2	2,8	-	-
	175	228	11,1	6	3	164	-	256	2,5	0,35	1,9	2,9	1,8	-	-
	171	243	11,1	6	3	164	171	256	2,5	0,33	2	3	2	-	-
	188	266	16,7	9	4	167	-	303	3	0,35	1,9	2,9	1,8	–	–
	188	266	16,7	9	4	167	-	303	3	0,35	1,9	2,9	1,8	72 g	19 g
	188	266	16,7	9	4	167	-	303	3	0,35	1,9	2,9	1,8	72 g	19 g
	181	281	16,7	9	4	167	181	303	3	0,33	2	3	2	-	-
160	180	217	11,1	6	2,1	171	_	229	2	0,22	3	4,6	2,8	-	-
	177	225	11,1	6	2,1	171	177	229	2	0,2	3,4	5	3,2	-	-
	176	211	8,3	4,5	2,1	171	_	229	2	0,3	2,3	3,4	2,2	-	-
	173	218	8,3	4,5	2,1	171	173	229	2	0,28	2,4	3,6	2,5	-	-
	184	234	13,9	7,5	2,1	172	-	258	2	0,3	2,3	3,4	2,2	-	-
	180	244	13,9	7,5	2,1	172	180	258	2	0,28	2,4	3,6	2,5	-	-
	181	228	8,3	4,5	2,1	172	-	258	2	0,4	1,7	2,5	1,6	-	-
	176	239	8,3	4,5	2,1	172	176	258	2	0,37	1,8	2,7	1,8	-	-
	191	250	13,9	7,5	3	174	-	276	2,5	0,26	2,6	3,9	2,5	-	-
	185	264	13,9	7,5	3	174	185	276	2,5	0,25	2,7	4	2,5	-	-
	188	244	13,9	7,5	3	174	-	276	2,5	0,35	1,9	2,9	1,8	-	-
	200	282	16,7	9	4	177	-	323	3	0,35	1,9	2,9	1,8	-	-
	200	282	16,7	9	4	177	-	323	3	0,35	1,9	2,9	1,8	69 g	18 g
	200	282	16,7	9	4	177	-	323	3	0,35	1,9	2,9	1,8	69 g	18 g
	193	296	16,7	9	4	177	193	323	3	0,33	2	3	2	-	-

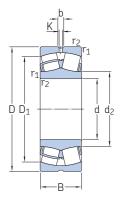
 $[\]overline{\ ^{1)}}$ For details about permissible accelerations ightarrow page 779

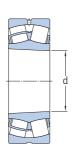


Tapered bore

Sealed (2CS5)

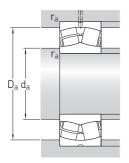
Princi	pal dime	ensions	Basic lo dynamic	ad ratings static	Fatigue load		e Limiting	Mass	Designations Bearing with	
d	D	В	С	C_0	limit P _u	speed	speed		cylindrical bore taper	ed bore
mm			kN		kN	r/min		kg	-	
170	260 260 260	67 67 90	745 746 963	1 060 1 080 1 460	100 100 137	2 200 - 1 600	2 800 630 2 400	13 13 17,5	23034-2CS5/VT143 > 2303	4 CCK/W33 4-2C55K/VT143 4 CCK30/W33
	260 280 280	90 88 88	966 1 086 1 088	1 500 1 500 1 500	137 137 137	- 1 800 -	400 2 400 480	17,5 22 22		4 CCK/W33 4-2CS5K/VT143
	280 280 310	109 109 86	1 270 1 273 1 183	1 860 1 860 1 460	170 170 132	1 200 - 1 900	1 800 360 2 600	27,5 27,5 28,5	24134-2CS5/VT143 -	4 CCK30/W33 4 CCK/W33
	310 310 360	86 110 120	1 185 1 472 1 863	1 460 1 930 2 160	134 173 176	- 1 400 1 400	500 2 000 1 800	28,5 37,5 61	23234 CC/W33 > 2323	4-2CS5K/VT143 4 CCK/W33 4 CCK/W33
	360 360	120 120	1 863 1 863	2160 2160	176 176	1 400 1 400	1 800 1 800	61 61	22334 CCJA/W33VA405 2233 22334 CCJA/W33VA406 –	4 CCKJA/W33VA40
180	250 280 280	52 74 74	519 883 884	830 1 250 1 270	76,5 114 114	2 600 2 000 -	2 800 2 600 560	7,9 17 17	23036 CC/W33 ► 2303	6 CCK/W33 6 CCK/W33 6-2CS5K/VT143
	280 280 300	100 100 96	1 134 1 136 1 263	1 730 1 730 1 760	156 156 160	1 500 - 1 700	2 200 380 2 200	23 23 28	24036-2CS5/VT143 -	6 CCK/W33
	300 300 300	96 118 118	1 264 1 449 1 452	1 800 2 160 2 160	160 196 196	- 1 100 -	430 1 600 360	28 34,5 34,5		6-2CS5K/VT143 6 CCK30/W33
	320 320 320	86 86 112	1 237 1 239 1 557	1 560 1 560 2 120	140 140 186	1 800 - 1 300	2 600 530 1 900	29,5 29 39,5	22236-2CS5/VT143 > 2223	6 CCK/W33 6-2CS5K/VT143 6 CCK/W33
	380 380 380	126 126 126	2 077 2 077 2 077	2 450 2 450 2 450	193 193 193	1 300 1 300 1 300	1 700 1 700 1 700	71,5 71,5 71,5		6 CCK/W33 6 CCKJA/W33VA40





Dimen	sions					Abutm	nent and	fillet dim	ensions	Calcul	ation fac	tors			ation for
d	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	oil lubr rota- tional	rication ¹⁾ linear
mm						mm				_				m/s ²	
170	191	232	11,1	6	2,1	181	-	249	2	0,23	2,9	4,4	2,8	-	-
	188	243	11,1	6	2,1	181	188	249	2	0,22	3	4,6	2,8	-	-
	188	226	8,3	4,5	2,1	181	-	249	2	0,33	2	3	2	-	-
	184	235	8,3	4,5	2,1	181	184	249	2	0,3	2,3	3,4	2,2	-	-
	195	244	13,9	7,5	2,1	182	-	268	2	0,3	2,3	3,4	2,2	-	-
	190	256	13,9	7,5	2,1	182	190	268	2	0,28	2,4	3,6	2,5	-	-
	190	237	8,3	4,5	2,1	182	-	268	2	0,37	1,8	2,7	1,8	-	-
	185	248	8,3	4,5	2,1	182	185	268	2	0,35	1,9	2,9	1,8	-	-
	203	267	16,7	9	4	187	-	293	3	0,27	2,5	3,7	2,5	-	-
	198	282	16,7	9	4	187	198	293	3	0,25	2,7	4	2,5	-	-
	200	261	13,9	7,5	4	187	-	293	3	0,35	1,9	2,9	1,8	-	-
	213	300	16,7	9	4	187	-	343	3	0,33	2	3	2	-	-
	213 213	300 300	16,7 16,7	9 9	4 4	187 187		343 343	3	0,33 0,33	2 2	3	2 2	65 g 65 g	18 g 18 g
180	199	231	6	3	2	189	-	241	2	0,18	3,8	5,6	3,6	-	-
	204	249	13,9	7,5	2,1	191	-	269	2	0,24	2,8	4,2	2,8	-	-
	199	262	13,9	7,5	2,1	191	199	269	2	0,22	3	4,6	2,8	-	-
	201	243	8,3	4,5	2,1	191	-	269	2	0,33	2	3	2	-	-
	194	251	8,3	4,5	2,1	191	194	269	2	0,31	2,2	3,3	2,2	-	-
	207	259	13,9	7,5	3	194	-	286	2,5	0,3	2,3	3,4	2,2	-	-
	202	272	13,9	7,5	3	194	202	286	2,5	0,28	2,4	3,6	2,5	-	-
	203	253	11,1	6	3	194	-	286	2,5	0,37	1,8	2,7	1,8	-	-
	198	266	11,1	6	3	194	198	286	2,5	0,37	1,8	2,7	1,8	-	-
	213	278	16,7	9	4	197	-	303	3	0,26	2,6	3,9	2,5	-	-
	208	289	16,7	9	4	197	208	303	3	0,24	2,8	4,2	2,8	-	-
	211	271	13,9	7,5	4	197	-	303	3	0,35	1,9	2,9	1,8	-	-
	224	317	22,3	12	4	197	-	363	3	0,35	1,9	2,9	1,8	–	–
	224	317	22,3	12	4	197	-	363	3	0,35	1,9	2,9	1,8	59 g	17 g
	224	317	22,3	12	4	197	-	363	3	0,35	1,9	2,9	1,8	59 g	17 g

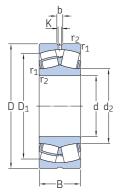
¹⁾ For details about permissible accelerations → page 779

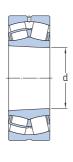

Tapered bore

Sealed (2CS5)

Princi	ipal dime	ensions	Basic lo	ad ratings static	Fatigue load		e Limiting	Mass		Designations Bearing with	
d	D	В	С	C_0	limit P _u	speed	speed			cylindrical bore	tapered bore
mm			kN		kN	r/min		kg		_	
190	260 290 290	52 75 100	499 916 1 164	800 1 340 1 800	76,5 122 163	2 400 1 900 1 400	2 600 2 400 2 000	8,3 18 24,5	•	23938 CC/W33 23038 CC/W33 24038 CC/W33	23938 CCK/W33 > 23038 CCK/W33 24038 CCK30/W33
	320 320 320	104 104 128	1 456 1 458 1 652	2 080 2 080 2 500	183 183 212	1 500 - 1 100	2 000 400 1 500	35 35 43	•	23138 CC/W33 23138-2CS5/VT143 24138 CC/W33	► 23138 CCK/W33 ► 23138-2C55K/VT143 ► 24138 CCK30/W33
	320 340 340	128 92 92	1 655 1 342 1 345	2 500 1 700 1 700	212 150 150	_ 1 700 _	340 2 400 480	43 36,5 35		24138-2CS5/VT143 22238 CC/W33 22238-2CS5/VT143	- ► 22238 CCK/W33 ► 22238-2CS5K/VT143
	340 400 400	120 132 132	1 759 2 232 2 232	2 400 2 650 2 650	208 208 208	1 300 1 200 1 200	1 800 1 600 1 600	48 82,5 82,5	•	23238 CC/W33 22338 CC/W33 22338 CCJA/W33VA405	➤ 23238 CCK/W33 ➤ 22338 CCK/W33 22338 CCKJA/W33VA405
	400 400	132 132	2 232 2 236	2 650 2 650	208 208	1 200 -	1 600 340	82,5 77,5		22338 CCJA/W33VA406 22338-2CS5/VT143	-
200	280 310 310	60 82 82	651 1 058 1 059	1 040 1 530 1 530	93 137 137	2 200 1 800 -	2 400 2 200 480	11,5 23,5 22	•	23940 CC/W33 23040 CC/W33 23040-2CS5/VT143	23940 CCK/W33 ► 23040 CCK/W33 ► 23040-2CS5K/VT143
	310 340 340	109 112 112	1 353 1 665 1 668	2 120 2 360 2 360	186 204 204	1 300 1 500 -	1 900 1 900 380	31 43 43	•	24040 CC/W33 23140 CC/W33 23140-2CS5/VT143	► 24040 CCK30/W33 ► 23140 CCK/W33 ► 23140-2CS5K/VT143
	340 340 360	140 140 98	1 865 1 871 1 526	2 800 2 800 1 930	232 232 166	1 000 - 1 600	1 400 320 2 200	53,5 53,5 43,5	•	24140 CC/W33 24140-2CS5/VT143 22240 CC/W33	➤ 24140 CCK30/W33 - ➤ 22240 CCK/W33
	360 360 360	98 128 128	1 529 1 947 1 950	1 930 2 700 2 700	166 228 232	- 1 200 -	430 1 700 340	42 58 58	•	22240-2CS5/VT143 23240 CC/W33 23240-2CS5/VT143	22240-2C55K/VT14323240 CCK/W3323240-2C55K/VT143
	420 420 420	138 138 138	2 439 2 439 2 439	2 900 2 900 2 900	224 224 224	1 200 1 200 1 200	1 500 1 500 1 500	95 95 95	>	22340 CC/W33 22340 CCJA/W33VA405 22340 CCJA/W33VA406	► 22340 CCK/W33 22340 CCKJA/W33VA405 -

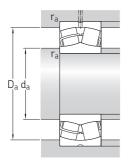
SKF Explorer bearing


Popular item



Dimer	sions					Abutn	nent and	fillet dim	ensions	Calcul	ation fac	tors			ration for
d	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _{a.} min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	oil lub i rota- tional	r ication 1) linear
mm						mm				_				m/s ²	
190	209	240	6	3	2	199	-	251	2	0,16	4,2	6,3	4	-	-
	216	261	13,9	7,5	2,1	201	-	279	2	0,23	2,9	4,4	2,8	-	-
	210	253	8,3	4,5	2,1	201	-	279	2	0,31	2,2	3,3	2,2	-	-
	220	275	13,9	7,5	3	204	_	306	2,5	0,31	2,2	3,3	2,2	-	-
	215	288	13,9	7,5	3	204	215	306	2,5	0,3	2,3	3,4	2,2	-	-
	215	268	11,1	6	3	204	_	306	2,5	0,4	1,7	2,5	1,6	-	-
	210	282	11,1	6	3	204	210	306	2,5	0,37	1,8	2,7	1,8	-	-
	225	294	16,7	9	4	207	-	323	3	0,26	2,6	3,9	2,5	-	-
	220	306	16,7	9	4	207	220	323	3	0,24	2,8	4,2	2,8	-	-
	222	287	16,7	9	4	207	-	323	3	0,35	1,9	2,9	1,8	–	–
	236	333	22,3	12	5	210	-	380	4	0,35	1,9	2,9	1,8	–	–
	236	333	22,3	12	5	210	-	380	4	0,35	1,9	2,9	1,8	57 g	17 g
	236	333	22,3	12	5	210	-	380	4	0,35	1,9	2,9	1,8	57 g	17 g
	228	352	22,3	12	5	210	228	380	4	0,33	2	3	2	-	-
200	222	258	8,3	4,5	2,1	211	-	269	2	0,19	3,6	5,3	3,6	-	-
	228	278	13,9	7,5	2,1	211	-	299	2	0,24	2,8	4,2	2,8	-	-
	223	286	13,9	7,5	2,1	211	223	299	2	0,22	3	4,6	2,8	-	-
	223	268	11,1	6	2,1	211	-	299	2	0,33	2	3	2	-	-
	231	293	16,7	9	3	214	-	326	2,5	0,31	2,2	3,3	2,2	-	-
	227	306	16,7	9	3	214	227	326	2,5	0,3	2,3	3,4	2,2	-	-
	226	284	11,1	6	3	214	-	326	2,5	0,4	1,7	2,5	1,6	-	-
	221	294	11,1	6	3	214	221	326	2,5	0,37	1,8	2,7	1,8	-	-
	238	313	16,7	9	4	217	-	343	3	0,26	2,6	3,9	2,5	-	-
	232	324	16,7	9	4	217	232	343	3	0,24	2,8	4,2	2,8	-	-
	235	304	16,7	9	4	217	-	343	3	0,35	1,9	2,9	1,8	-	-
	230	320	16,7	9	4	217	230	343	3	0,33	2	3	2	-	-
	249	351	22,3	12	5	220	-	400	4	0,33	2	3	2	-	–
	249	351	22,3	12	5	220	-	400	4	0,33	2	3	2	55 g	17 g
	249	351	22,3	12	5	220	-	400	4	0,33	2	3	2	55 g	17 g

¹⁾ For details about permissible accelerations → page 779

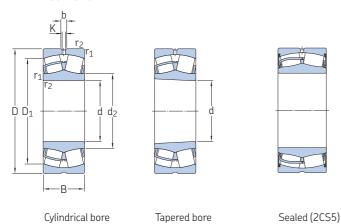

Tapered bore

Sealed (2CS5)

Princ	ipal dime	ensions	Basic lo dynamic	ad ratings static	Fatigue load limit	Speed ra Reference speed	atings e Limiting speed	Mass	Designations Bearing with cylindrical bore tapered bore
d	D	В	С	C_0	P _u	speeu	speeu		cylindrical bore tapered bore
mm			kN		kN	r/min		kg	-
220	300 300 340	60 60 90	661 662 1 261	1 080 1 080 1 860	93 93 163	2 000 - 1 600	2 200 600 2 000	12,5 12,5 30,5	➤ 23944 CC/W33 23944 CCK/W33 23944-2CS/VT143 - 23044 CCK/W33 > 23044 CCK/W33
	340 340 370	90 118 120	1 262 1 628 1 888	1 860 2 600 2 750	163 212 232	- 1 200 1 300	430 1 700 1 700	29 40 53,5	 ▶ 23044-2CS5/VT143 ▶ 24044 CC/W33 ▶ 24044 CCK30/W33 ▶ 23144 CCK/W33 ▶ 23144 CCK/W33
	370 370 400	120 150 108	1 891 2 197 1 835	2 750 3 350 2 360	232 285 196	- 850 1 500	360 1 200 2 000	53,5 67 60,5	 ▶ 23144-2CS5/VT143 ▶ 24144 CC/W33 ▶ 24144 CCK30/W33 ▶ 22244 CCK/W33
	400 400 460	108 144 145	1 839 2 485 2 839	2 360 3 450 3 450	200 285 260	- 1 100 1 000	380 1 500 1 400	58 81,5 120	 ▶ 22244-2C55/VT143 ▶ 22244-2C55K/VT143 ▶ 23244 CCK/W33 ▶ 22344 CCK/W33 ▶ 22344 CCK/W33
	460 460	145 145	2 839 2 844	3 450 3 450	260 260	1 000	1 400 300	120 115	 ▶ 22344 CCJA/W33VA405 ▶ 22344-2CS5/VT143 ▶ 22344-2CS5K/VT143
240	320 360 360	60 92 92	685 1 340 1 341	1 160 2 080 2 080	98 176 176	1 900 1 500 -	2 000 1 900 400	13,5 33,5 32	 ▶ 23948 CC/W33 ▶ 23048 CC/W33 ▶ 23048-2CS5/VT143 ▶ 23048-2CS5K/VT143
	360 400 400	118 128 128	1 663 2 187 2 191	2 700 3 200 3 200	228 255 255	1 100 1 200 -	1 600 1 600 340	43 66,5 66,5	 ▶ 24048 CC/W33 ▶ 23148 CC/W33 ▶ 23148-2CS5/VT143 ▶ 23148-2CS5K/VT143
	400 440 440	160 120 160	2 489 2 258 3 042	3 900 3 000 4 300	320 245 345	750 1 300 950	1 100 1 800 1 300	83 83 110	 ▶ 24148 CC/W33 ▶ 24148 CCK30/W33 ▶ 22248 CCK/W33 ▶ 23248 CCK/W33 ▶ 23248 CCK/W33
	500 500	155 155	3 229 3 229	4 000 4 000	290 290	950 950	1 300 1 300	155 155	► 22348 CC/W33
260	360 400 400	75 104 104	1 055 1 675 1 677	1 800 2 550 2 550	156 212 212	1 700 1 300 -	1 900 1 700 360	23,5 48,5 46	 ▶ 23952 CC/W33 ▶ 23052 CC/W33 ▶ 23052 CCK/W33 ▶ 23052-2CS5/VT143 ▶ 23052-2CS5K/VT143
	400 440 440	140 144 144	2 135 2 664 2 668	3 450 3 900 3 900	285 290 290	1 000 1 100 -	1 400 1 400 320	65,5 90,5 90,5	 ▶ 24052 CC/W33 ▶ 24052 CCK30/W33 ▶ 23152 CCK/W33 ▶ 23152-2CS5/VT143 ▶ 23152-2CS5K/VT143
	440 440 480	180 180 130	3 086 3 092 2 722	4 800 4 900 3 550	380 380 285	670 - 1 200	950 240 1 600	110 109 110	➤ 24152 CC/W33
	480 540	174 165	3 395 3 680	4 750 4 550	360 325	850 850	1 200 1 100	140 190	 ▶ 23252 CC/W33 ▶ 23252 CCK/W33 ▶ 22352 CCK/W33

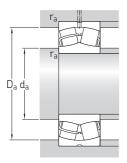
SKF Explorer bearing

Popular item

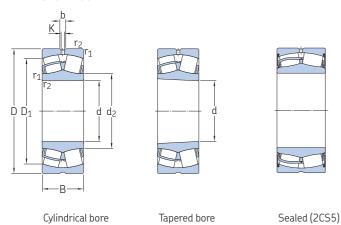


Dimer	nsions					Abutm	ent and	fillet dim	ensions	Calcul	ation fac	tors			ration for
d	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	oil lub i rota- tional	r ication 1) linear
mm						mm				-				m/s ²	
220	241	278	8,3	4,5	2,1	231	-	289	2	0,16	4,2	6,3	4	-	-
	238	284	8,3	4,5	2,1	231	238	289	2	0,15	4,5	6,7	4,5	-	-
	250	306	13,9	7,5	3	233	-	327	2,5	0,24	2,8	4,2	2,8	-	-
	245	314	13,9	7,5	3	233	245	327	2,5	0,22	3	4,6	2,8	-	-
	244	295	11,1	6	3	233	-	327	2,5	0,33	2	3	2	-	-
	255	320	16,7	9	4	237	-	353	3	0,3	2,3	3,4	2,2	-	-
	249	332	16,7	9	4	237	249	353	3	0,28	2,4	3,6	2,5	-	-
	248	310	11,1	6	4	237	-	353	3	0,4	1,7	2,5	1,6	-	-
	263	346	16,7	9	4	237	-	383	3	0,27	2,5	3,7	2,5	-	-
	257	359	16,7	9	4	237	257	383	3	0,25	2,7	4	2,5	-	-
	259	338	16,7	9	4	237	-	383	3	0,35	1,9	2,9	1,8	-	-
	279	389	22,3	12	5	240	-	440	4	0,31	2,2	3,3	2,2	-	-
	279 270	389 406	22,3 22,3	12 12	5 5	240 240	- 270	440 440	4	0,31 0,3	2,2 2,3	3,3 3,4	2,2 2,2	49 g -	16 g -
240	261	298	8,3	4,5	2,1	251	-	309	2	0,15	4,5	6,7	4,5	-	-
	271	326	13,9	7,5	3	253	-	347	2,5	0,23	2,9	4,4	2,8	-	-
	265	333	13,9	7,5	3	253	265	347	2,5	0,21	3,2	4,8	3,2	-	-
	265	316	11,1	6	3	253	-	347	2,5	0,3	2,3	3,4	2,2	-	-
	277	348	16,7	9	4	257	-	383	3	0,3	2,3	3,4	2,2	-	-
	270	360	16,7	9	4	257	270	383	3	0,28	2,4	3,6	2,5	-	-
	271	336	11,1	6	4	257	-	383	3	0,4	1,7	2,5	1,6	-	-
	290	383	22,3	12	4	257	-	423	3	0,27	2,5	3,7	2,5	-	-
	286	374	22,3	12	4	257	-	423	3	0,35	1,9	2,9	1,8	-	-
	303 303	423 423	22,3 22,3	12 12	5 5	260 260		480 480	4	0,31 0,31	2,2 2,2	3,3 3,3	2,2 2,2	– 45 g	– 15 g
260	287	331	8,3	4,5	2,1	271	-	349	2	0,18	3,8	5,6	3,6	-	-
	295	360	16,7	9	4	275	-	385	3	0,23	2,9	4,4	2,8	-	-
	289	369	16,7	9	4	275	289	385	3	0,22	3	4,6	2,8	-	-
	289	347	11,1	6	4	275	-	385	3	0,33	2	3	2	-	-
	301	380	16,7	9	4	277	-	423	3	0,31	2,2	3,3	2,2	-	-
	293	398	16,7	9	4	277	293	423	3	0,3	2,3	3,4	2,2	-	-
	293	368	13,9	7,5	4	277	-	423	3	0,4	1,7	2,5	1,6	-	-
	286	391	13,9	7,5	4	277	286	423	3	0,4	1,7	2,5	1,6	-	-
	312	421	22,3	12	5	280	-	460	4	0,27	2,5	3,7	2,5	-	-
	312 328	408 458	22,3 22,3	12 12	5 6	280 286	_ _	460 514	4 5	0,35 0,31	1,9 2,2	2,9 3,3	1,8 2,2	-	_

¹⁾ For details about permissible accelerations → page 779


9.1 Spherical roller bearings d 280 – 320 mm

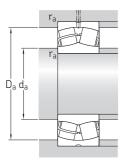
	-										
Princi	ipal dime	ensions		oad ratings static	Fatigue load		e Limiting	Mass		Designations Bearing with	
d	D	В	С	C_0	limit P _u	speed	speed			cylindrical bore	tapered bore
mm	,		kN		kN	r/min	,	kg		-	
280	380 420 420	75 106 140	1 016 1 797 2 248	1 760 2 850 3 800	143 224 285	1 600 1 300 950	1 700 1 600 1 400	25 52,5 69,5	•	23956 CC/W33 23056 CC/W33 24056 CC/W33	23956 CCK/W33 ► 23056 CCK/W33 ► 24056 CCK30/W33
	460 460 460	146 146 180	2 784 2 788 3 183	4 250 4 250 5 100	335 335 415	1 000 - 630	1 300 300 900	97 97 120	•	23156 CC/W33 23156-2CS5/VT143 24156 CC/W33	23156 CCK/W3323156-2CS5K/VT14324156 CCK30/W33
	460 500 500	180 130 176	3 190 2 795 3 425	5 100 3 750 4 900	415 300 365	- 1 100 800	220 1 500 1 100	115 115 150		24156-2CS5/VT143 22256 CC/W33 23256 CC/W33	24156-2CS5K30/VT143 22256 CCK/W33 ▶ 23256 CCK/W33
	580	175	4 158	5 200	365	800	1 100	235	٠	22356 CC/W33	► 22356 CCK/W33
300	420 460 460	90 118 118	1 413 2 219 2 222	2 500 3 450 3 450	200 265 265	1 400 1 200 -	1 600 1 500 320	39,5 71,5 71,5		23960 CC/W33 23060 CC/W33 23060-2CS5/VT143	23960 CCK/W33 ► 23060 CCK/W33 23060-2CS5K/VT143
	460 460 500	160 160 160	2 821 2 827 3 368	4 750 4 750 5 100	355 355 380	850 - 950	1 200 240 1 200	97 95 125		24060 CC/W33 24060-2CS5/VT143 23160 CC/W33	➤ 24060 CCK30/W33 ➤ 23160 CCK/W33
	500 500 500	160 200 200	3 373 3 876 3 881	5 100 6 300 6 300	380 465 465	- 560 -	260 800 212	125 160 156		23160-2CS5/VT143 24160 CC/W33 24160-2CS5/VT143	23160-2CS5K/VT14324160 CCK30/W3324160-2CS5K30/VT143
	540 540	140 192	3 239 4 052	4 250 5 850	325 425	1 000 750	1 400 1 000	135 190	>	22260 CC/W33 23260 CC/W33	22260 CCK/W33 ► 23260 CCK/W33
320	440 480 480	90 121 121	1 480 2 348 2 348	2 700 3 800 3 800	212 285 285	1 400 - 1 100	1 500 320 1 400	42 7,55 78		23964 CC/W33 23064-2CS5/VT143 23064 CC/W33	23964 CCK/W33 23064-2CS5K/VT143 ► 23064 CCK/W33
	480 540 540	160 176 176	2 969 3 923 3 929	5 100 6 000 6 100	400 440 440	800 850 -	1 200 1 100 260	100 165 165	•	24064 CC/W33 23164 CC/W33 23164-2CS5/VT143	24064 CCK30/W33 • 23164 CCK/W33 • 23164-2CS5K/VT143
	540 580 580	218 150 208	4 395 3 708 4 607	7 100 4 900 6 700	510 375 475	500 950 700	700 1 300 950	210 175 240	•	24164 CC/W33 22264 CC/W33 23264 CC/W33	24164 CCK30/W33 22264 CCK/W33 ▶ 23264 CCK/W33



Dimen	sions					Abutn	nent and	fillet dim	ensions	Calcul	ation fac	tors			ration for
b	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	rota- tional	rication ¹⁾ linear
nm						mm				_				m/s ²	
280	308	352	11,1	6	2,1	291	-	369	2	0,16	4,2	6,3	4	-	-
	315	380	16,7	9	4	295	-	405	3	0,23	2,9	4,4	2,8	-	-
	309	368	11,1	6	4	295	-	405	3	0,31	2,2	3,3	2,2	-	-
	321	401	16,7	9	5	300	-	440	4	0,3	2,3	3,4	2,2	-	-
	314	417	16,7	9	5	300	314	440	4	0,28	2,4	3,6	2,5	-	-
	314	390	13,9	7,5	5	300	-	440	4	0,4	1,7	2,5	1,6	-	-
	307	413	13,9	7,5	5	300	307	440	4	0,37	1,8	2,7	1,8	-	-
	333	441	22,3	12	5	300	-	480	4	0,26	2,6	3,9	2,5	-	-
	332	429	22,3	12	5	300	-	480	4	0,35	1,9	2,9	1,8	-	-
	354	492	22,3	12	6	306	-	554	5	0,3	2,3	3,4	2,2	-	-
800	333	385	11,1	6	3	313	-	407	2,5	0,19	3,6	5,3	3,6	-	-
	340	414	16,7	9	4	315	-	445	3	0,23	2,9	4,4	2,8	-	-
	334	433	16,7	9	4	315	334	445	3	0,22	3	4,6	2,8	-	-
	331	400	13,9	7,5	4	315	-	445	3	0,33	2	3	2	-	-
	325	416	13,9	7,5	4	315	325	445	3	0,31	2,2	3,3	2,2	-	-
	345	434	16,7	9	5	320	-	480	4	0,3	2,3	3,4	2,2	-	-
	337	451	16,7	9	5	320	337	480	4	0,28	2,4	3,6	2,5	-	-
	338	422	13,9	7,5	5	320	-	480	4	0,4	1,7	2,5	1,6	-	-
	330	447	13,9	7,5	5	320	330	480	4	0,37	1,8	2,7	1,8	-	-
	354 356	477 461	22,3 22,3	12 12	5 5	311 320		520 520	4 4	0,26 0,35	2,6 1,9	3,9 2,9	2,5 1,8	- -	
320	354	406	11,1	6	3	333	-	427	2,5	0,17	4	5,9	4	-	-
	354	448	16,7	9	4	335	354	465	3	0,23	2,9	4,4	2,8	-	-
	360	434	16,7	9	4	335	-	465	3	0,23	2,9	4,4	2,8	-	-
	354	423	13,9	7,5	4	335	-	465	3	0,31	2,2	3,3	2,2	-	-
	370	465	22,3	12	5	340	-	520	4	0,31	2,2	3,3	2,2	-	-
	361	483	22,3	12	5	340	361	520	4	0,3	2,3	3,4	2,2	-	-
	364	455	16,7	9	5	340	-	520	4	0,4	1,7	2,5	1,6	-	-
	379	513	22,3	12	5	340	-	560	4	0,26	2,6	3,9	2,5	-	-
	382	493	22,3	12	5	340	-	560	4	0,35	1,9	2,9	1,8	-	-

¹⁾ For details about permissible accelerations → page 779

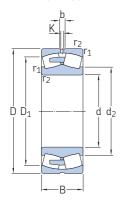
9.1 Spherical roller bearings d 340 – 400 mm



Princi	pal dime	ensions		oad ratings static	Fatigue load limit		e Limiting	Mass	Designations Bearing with	
d	D	В	С	C_0	P _u	speed	speed		cylindrical bore tapered bore	
mm			kN		kN	r/min		kg	-	
340	460 520 520	90 133 180	1 490 2 812 3 621	2 800 4 550 6 200	216 335 475	1 300 1 000 750	1 400 1 300 1 100	45,5 105 140	 ▶ 23968 CC/W33 ▶ 23068 CCK/W33 ▶ 24068 CC/W33 ▶ 24068 CCK/W33 ▶ 24068 CCK30/W33 	
	580 580 580	190 190 243	4 445 4 452 5 487	6 800 6 800 8 650	480 490 630	800 - 430	1 000 240 630	210 210 280	 ▶ 23168 CC/W33 ▶ 23168 CCK/W33 ▶ 23168-2CS5/VT143 ▶ 24168 ECCJ/W33 ▶ 24168 ECCK/W33 	
	620	224	5 362	7 800	550	560	800	295	► 23268 CA/W33	
360	480 540 540	90 134 180	1 456 2 850 3 705	2 750 4 800 6 550	220 345 490	1 200 950 700	1 300 1 200 1 000	46 110 145	 ▶ 23972 CC/W33 ▶ 23072 CC/W33 ▶ 24072 CC/W33 ▶ 24072 CC/W33 24072 CCK30/W33	
	600 600 600	192 192 243	4 515 4 521 5 737	6 950 6 950 9 300	490 490 670	750 - 400	1 000 220 600	220 214 280	► 23172 CC/W33	
	650 650 650	170 232 232	4 430 5 663 5 669	6 200 8 300 8 300	440 570 570	630 530 -	850 750 160	255 335 332	22272 CA/W33	3
380	520 560 560	106 135 180	2 011 2 984 3 786	3 800 5 000 6 800	285 360 475	1 100 900 670	1 200 1 200 950	69 115 150	 ▶ 23976 CC/W33 ▶ 23076 CC/W33 ▶ 24076 CC/W33 ▶ 24076 CC/W33 	
	620 620 620	194 194 243	4 561 4 561 5 936	7 100 7 100 9 800	500 500 710	- 560 360	160 1 000 530	232 230 300	23176-2CS5/VT143	3
	680	240	6 126	9 150	620	500	750	375	► 23276 CA/W33 ► 23276 CAK/W33	
400	540 600 600	106 148 148	2 038 3 511 3 515	3 900 5 850 5 850	290 415 415	1 100 850 -	1 200 1 100 240	71 150 144	► 23980 CC/W33 ► 23080 CC/W33 ≥ 23080 CCK/W33 ≥ 23080 CCK/W33 ≥ 23080 CCK/W33 ≥ 23080 CCK/W33 ≥ 23080 CCK/W33	3
	600 650 650	200 200 200	4 507 4 864 4 864	8 000 7 650 7 650	560 530 530	630 - 530	900 150 950	205 255 265	 ▶ 24080 ECCJ/W33 23180-2CS5/VT143 ▶ 23180 CA/W33 ≥ 23180 CAK/W33 	
	650 720 820	250 256 243	6 331 6 881 7 832	10 600 10 400 10 400	735 680 670	340 480 430	500 670 750	340 450 650	 ▶ 24180 ECA/W33 23280 CA/W33 ▶ 22380 CA/W33 ▶ 22380 CA/W33 	

SKF Explorer bearing

Popular item



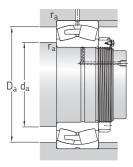
Dimer	sions					Abutn	nent and	fillet dim	ensions	Calcul	ation fac	tors		Permi: accele	ssible ration for
d	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	oil lub rota- tional	rication ¹⁾ linear
mm						mm				_				m/s ²	
340	373	426	11,1	6	3	353	-	447	2,5	0,17	4	5,9	4	-	_
	385	468	22,3	12	5	358	-	502	4	0,24	2,8	4,2	2,8	-	_
	377	453	16,7	9	5	358	-	502	4	0,33	2	3	2	-	_
	394	498	22,3	12	5	360	-	560	4	0,31	2,2	3,3	2,2	-	-
	385	515	22,3	12	5	360	385	560	4	0,3	2,3	3,4	2,2	-	-
	383	491	16,7	9	5	360	-	560	4	0,4	1,7	2,5	1,6	-	-
	427	528	22,3	12	6	366	-	594	5	0,35	1,9	2,9	1,8	-	-
360	394	447	11,1	6	3	373	-	467	2,5	0,15	4,5	6,7	4,5	-	-
	404	483	22,3	12	5	378	-	522	4	0,23	2,9	4,4	2,8	-	-
	397	474	16,7	9	5	378	-	522	4	0,31	2,2	3,3	2,2	-	-
	418	524	22,3	12	5	380	-	580	4	0,3	2,3	3,4	2,2	-	-
	408	541	22,3	12	5	380	408	580	4	0,28	2,4	3,6	2,5	-	-
	404	511	16,7	9	5	380	-	580	4	0,4	1,7	2,5	1,6	-	-
	454	568	22,3	12	6	386	-	624	5	0,26	2,6	3,9	2,5	-	-
	449	552	22,3	12	6	386	-	624	5	0,35	1,9	2,9	1,8	-	-
	429	581	22,3	12	6	386	429	624	5	0,35	1,9	2,9	1,8	-	-
80	419	481	13,9	7,5	4	395	-	505	3	0,17	4	5,9	4	-	-
	426	509	22,3	12	5	398	-	542	4	0,22	3	4,6	2,8	-	-
	419	497	16,7	9	5	398	-	542	4	0,3	2,3	3,4	2,2	-	-
	438	573	22,3	12	5	400	438	600	4	0,3	2,3	3,4	2,2	-	-
	454	541	22,3	12	5	400	-	600	4	0,3	2,3	3,4	2,2	-	-
	444	532	16,7	9	5	400	-	600	4	0,37	1,8	2,7	1,8	-	-
	473	581	22,3	12	6	406	-	654	5	0,35	1,9	2,9	1,8	-	-
400	439 450 443	500 543 557	13,9 22,3 22,3	7,5 12 12	4 5 5	415 418 418	- - 443	525 582 582	3 4 4	0,16 0,23 0,21	4,2 2,9 3,2	6,3 4,4 4,8	4 2,8 3,2	- - -	
	442	527	22,3	12	5	418	-	582	4	0,3	2,3	3,4	2,2	_	-
	458	587	22,3	12	6	426	458	624	5	0,28	2,4	3,6	2,5	_	-
	475	566	22,3	12	6	426	-	624	5	0,28	2,4	3,6	2,5	_	-
	467	559	22,3	12	6	426	-	624	5	0,37	1,8	2,7	1,8	-	-
	500	615	22,3	12	6	426	-	694	5	0,35	1,9	2,9	1,8	-	-
	534	697	22,3	12	7,5	432	-	788	6	0,3	2,3	3,4	2,2	-	-

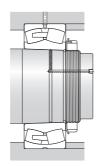
¹⁾ For details about permissible accelerations → page 779

9.1 Spherical roller bearings d 420 – 480 mm

Cylindrical bore

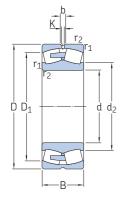
Tapered bore

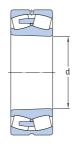

Sealed (2CS5)


Princi	pal dime	ensions		oad ratings c static	Fatigue load limit	Speed rati Reference speed		Mass		Designations Bearing with cylindrical bore	tapered bore
d	D	В	С	C_0	P _u	Speeu	speeu			cyllilarical bore	tapereu nore
nm			kN		kN	r/min		kg		-	
420	560 620 620	106 150 200	2 083 3 541 4 610	4 150 6 000 8 300	300 415 585	1 000 600 530	1 100 1 100 900	74,5 155 210	>	23984 CC/W33 23084 CA/W33 24084 ECA/W33	23984 CCK/W33 23084 CAK/W33 24084 ECAK30/W33
	700 700 700	224 224 280	5 919 5 919 7 577	9 300 9 300 12 500	620 620 850	- 480 320	190 900 480	350 350 445	•	23184-2C55/VT143 23184 CJ/W33 24184 ECA/W33	23184-2C55K/VT143 ► 23184 CKJ/W33 24184 ECAK30/W33
	760 760	272 272	7 677 7 683	11 600 11 600	765 765	450 -	630 128	535 535		23284 CA/W33 23284-2CS5/VT143	23284 CAK/W33 23284-2CS5K/VT143
440	600 650 650	118 157 157	2 506 3 831 3 834	4 900 6 550 6 550	345 450 450	950 560 –	1 000 1 000 190	99,5 180 178		23988 CC/W33 23088 CA/W33 23088-2C55/VT143	23988 CCK/W33 • 23088 CAK/W33
	650 720 720	212 226 226	4 987 6 215 6 220	9 150 10 000 10 000	630 670 670	500 450 -	850 850 180	245 360 360	*	24088 ECA/W33 23188 CA/W33 23188-2CS5/VT143	24088 ECAK30/W33 > 23188 CAK/W33 23188-2CS5K/VT143
	720 790	280 280	7 777 8 150	13 200 12 500	900 800	300 430	450 600	460 590		24188 ECA/W33 23288 CA/W33	24188 ECAK30/W33 23288 CAK/W33
460	580 620 680	118 118 163	2 082 2 558 4 065	4 900 5 000 6 950	345 355 465	630 600 560	1 100 1 000 950	75,5 105 205	>	24892 CAMA/W20 23992 CA/W33 23092 CA/W33	24892 CAK30MA/W20 23992 CAK/W33 23092 CAK/W33
	680 760 760	218 240 240	5 401 6 760 6 765	10 000 10 800 10 800	670 680 680	480 430 -	800 800 128	275 440 427	•	24092 ECA/W33 23192 CA/W33 23192-2CS5/VT143	24092 ECAK30/W33 23192 CAK/W33 23192-2CS5K/VT143
	760 830	300 296	8 608 8 958	14 600 13 700	1 000 880	280 400	430 560	560 695		24192 ECA/W33 23292 CA/W33	24192 ECAK30/W33 23292 CAK/W33
480	650 700 700	128 165 218	2 990 3 996 5 524	5 700 6 800 10 400	405 450 695	560 530 450	1 000 950 750	125 215 285	•	23996 CA/W33 23096 CA/W33 24096 ECA/W33	23996 CAK/W33 23096 CAK/W33 24096 ECAK30/W33
	790 790 790	248 248 308	7 362 7 367 9 198	12 000 12 000 15 600	780 780 1 040	400 - 260	750 170 400	485 485 605		23196 CA/W33 23196-2CS5/VT143 24196 ECA/W33	23196 CAK/W33 23196-2C55K/VT143 24196 ECAK30/W33
	870	310	9 805	15 000	950	380	530	800		23296 CA/W33	23296 CAK/W33

SKF Explorer bearing

Popular item



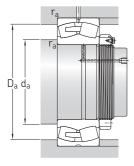


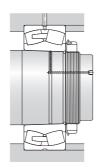
Dimer	nsions					Abutn	nent and	fillet dim	ensions	Calcul	ation fac	tors		accele	issible eration for
d	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	rota- tional	orication ¹⁾ linear
mm						mm				-				m/s ²	
420	459	520	16,7	9	4	435	_	545	3	0,16	4,2	6,3	4	-	-
	487	563	22,3	12	5	438	_	602	4	0,22	3	4,6	2,8	-	-
	477	547	22,3	12	5	438	_	602	4	0,3	2,3	3,4	2,2	-	-
	490	634	22,3	12	6	446	490	674	5	0,3	2,3	3,4	2,2	-	-
	483	607	22,3	12	6	446	-	674	5	0,3	2,3	3,4	2,2	-	-
	494	597	22,3	12	6	446	-	674	5	0,4	1,7	2,5	1,6	-	-
	526	649	22,3	12	7,5	452	-	728	6	0,35	1,9	2,9	1,8	-	_
	500	676	22,3	12	7,5	452	500	728	6	0,35	1,9	2,9	1,8	-	_
440	484	553	16,7	9	4	455	-	585	3	0,16	4,2	6,3	4	-	-
	511	590	22,3	12	6	463	-	627	5	0,22	3	4,6	2,8	-	-
	505	614	22,3	12	6	463	505	627	5	0,21	3,2	4,8	3,2	-	-
	499	572	22,3	12	6	463	-	627	5	0,3	2,3	3,4	2,2	-	-
	529	632	22,3	12	6	466	-	694	5	0,3	2,3	3,4	2,2	-	-
	513	664	22,3	12	6	466	513	694	5	0,28	2,4	3,6	2,5	-	-
	516	618	22,3	12	6	466	-	694	5	0,37	1,8	2,7	1,8	-	_
	549	676	22,3	12	7,5	472	-	758	6	0,35	1,9	2,9	1,8	-	_
460	505	541	-	7,5	3	473	-	567	2,5	0,17	4	5,9	4	-	-
	516	574	16,7	9	4	475	-	605	3	0,16	4,2	6,3	4	-	-
	533	617	22,3	12	6	483	-	657	5	0,22	3	4,6	2,8	-	-
	524	601	22,3	12	6	483	-	657	5	0,28	2,4	3,6	2,5	-	-
	555	666	22,3	12	7,5	492	-	728	6	0,3	2,3	3,4	2,2	-	-
	536	704	22,3	12	7,5	492	536	728	6	0,3	2,3	3,4	2,2	-	-
	543	649	22,3	12	7,5	492	-	728	6	0,37	1,8	2,7	1,8	-	-
	574	706	22,3	12	7,5	492	-	798	6	0,35	1,9	2,9	1,8	-	-
480	537	602	16,7	9	5	498	-	632	4	0,18	3,8	5,6	3,6	-	-
	549	633	22,3	12	6	503	-	677	5	0,21	3,2	4,8	3,2	-	-
	542	619	22,3	12	6	503	-	677	5	0,28	2,4	3,6	2,5	-	-
	579	692	22,3	12	7,5	512	-	758	6	0,3	2,3	3,4	2,2	-	-
	560	723	22,3	12	7,5	512	560	758	6	0,3	2,3	3,4	2,2	-	-
	564	678	22,3	12	7,5	512	-	758	6	0,37	1,8	2,7	1,8	-	-
	602	741	22,3	12	7,5	512	-	838	6	0,35	1,9	2,9	1,8	_	_

¹⁾ For details about permissible accelerations → page 779

9.1 Spherical roller bearings d 500 – 630 mm

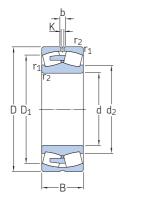
Cylindrical bore

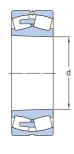

Tapered bore


Princi	pal dimei	nsions	Basic loa dynamic	ad ratings static	Fatigue load limit	Speed rate Reference speed		Mass		Designations Bearing with cylindrical bore	tapered bore
d	D	В	С	C_0	P _u	speeu	speeu			cylinarical bore	tapereu bore
mm			kN		kN	r/min		kg		_	
500	670 720 720	128 167 218	2 967 4 358 5 777	6 000 7 800 11 000	415 510 735	530 500 430	950 900 700	130 225 295	*	239/500 CA/W33 230/500 CA/W33 240/500 ECA/W33	239/500 CAK/W33 230/500 CAK/W33 240/500 ECAK30/W33
	830 830 920	264 325 336	8 037 10 123 11 183	12 900 17 000 17 300	830 1 120 1 060	380 260 360	700 380 500	580 700 985		231/500 CA/W33 241/500 ECA/W33 232/500 CA/W33	231/500 CAK/W33 241/500 ECAK30/W33 232/500 CAK/W33
530	650 710 780	118 136 185	2 124 3 308 5 267	5 300 6 700 9 300	380 465 610	530 500 450	950 900 800	86 155 310		248/530 CAMA/W20 239/530 CA/W33 230/530 CA/W33	248/530 CAK30MA/W20 239/530 CAK/W33 230/530 CAK/W33
	780 870 870	250 272 335	6 973 8 526 10 909	13 200 14 000 19 000	830 880 1 220	400 360 240	670 670 360	410 645 830	٠	240/530 ECA/W33 231/530 CA/W33 241/530 ECA/W33	240/530 ECAK30/W33 231/530 CAK/W33 241/530 ECAK30/W33
	980	355	13 268	20 400	1 220	320	480	1 200		232/530 CA/W33	232/530 CAK/W33
560	750 820 820	140 195 258	3 571 5 779 7 530	7 200 10 200 14 000	500 670 980	450 430 20	850 750 50	175 355 445	٠	239/560 CA/W33 230/560 CA/W33 240/560 BC	239/560 CAK/W33 230/560 CAK/W33
	820 920 920	258 280 355	7 621 9 596 12 366	14 600 16 000 21 600	980 980 1 340	380 340 220	630 630 320	465 740 985		240/560 ECA/W33 231/560 CA/W33 241/560 ECJ/W33	240/560 ECAK30/W33 231/560 CAK/W33 241/560 ECK30J/W33
	1 030	365	13 940	22 000	1 320	280	430	1 350		232/560 CA/W33	232/560 CAK/W33
600	800 870 870	150 200 272	4 022 6 252 8 502	8 300 11 400 16 300	570 735 1 100	430 400 20	750 700 45	220 405 519	٠	239/600 CA/W33 230/600 CA/W33 240/600 BC	> 239/600 CAK/W33 230/600 CAK/W33
	870 980 980	272 300 375	8 580 10 738 13 522	17 000 18 000 23 600	1 080 1 100 1 460	340 320 200	560 560 300	520 895 1 200	٠	240/600 ECA/W33 231/600 CA/W33 241/600 ECA/W33	240/600 ECAK30/W33 231/600 CAK/W33 241/600 ECAK30/W33
	1 090	388	15 652	25 500	1 460	260	400	1 600		232/600 CA/W33	232/600 CAK/W33
630	780 850 920	112 165 212	2 545 4 744 6 898	6 100 9 800 12 500	415 630 780	430 400 380	750 700 670	120 280 485	•	238/630 CAMA/W20 239/630 CA/W33 230/630 CA/W33	- ► 239/630 CAK/W33 230/630 CAK/W33
	920 920	290 290	9 150 9 307	18 000 17 600	1 120 1 180	320 20	530	645 623		240/630 ECJ/W33	240/630 ECK30J/W33
	1 030	315	12 600	20 800	1 220	260	45 530	1 050		240/630 BC 231/630 CA/W33	231/630 CAK/W33
	1 030	400	15 001	27 000	1 630	190	280	1 400		241/630 ECA/W33	241/630 ECAK30/W33

SKF Explorer bearing

Popular item

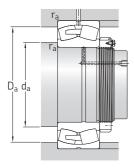


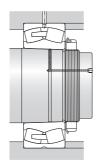


Dimer	sions					Abutm	nent and f	fillet dime	ensions	Calcul	ation fac	tors			ssible ration for rication1)
t	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	rota- tional	linear
mm						mm				_				m/s ²	
500	561	622	22,3	12	5	518	-	652	4	0,17	4	5,9	4	-	-
	573	658	22,3	12	6	523	-	697	5	0,21	3,2	4,8	3,2	-	-
	566	644	22,3	12	6	523	-	697	5	0,26	2,6	3,9	2,5	-	-
	605	726	22,3	12	7,5	532	-	798	6	0,3	2,3	3,4	2,2	-	-
	588	713	22,3	12	7,5	532	-	798	6	0,37	1,8	2,7	1,8	-	-
	633	779	22,3	12	7,5	532	-	888	6	0,35	1,9	2,9	1,8	-	-
30	573	612	-	7,5	3	543	-	637	2,5	0,15	4,5	6,7	4,5	-	-
	594	661	22,3	12	5	548	-	692	4	0,17	4	5,9	4	-	-
	613	710	22,3	12	6	553	-	757	5	0,22	3	4,6	2,8	-	-
	601	687	22,3	12	6	553	-	757	5	0,28	2,4	3,6	2,5	-	-
	638	763	22,3	12	7,5	562	-	838	6	0,3	2,3	3,4	2,2	-	-
	623	748	22,3	12	7,5	562	-	838	6	0,37	1,8	2,7	1,8	-	-
	670	836	22,3	12	9,5	570	-	940	8	0,35	1,9	2,9	1,8	-	-
60	627	697	22,3	12	5	578	-	732	4	0,16	4,2	6,3	4	-	-
	646	746	22,3	12	6	583	-	797	5	0,22	3	4,6	2,8	-	-
	640	739	53,2	15	6	583	-	797	5	0,3	2,3	3,4	2,2	-	-
	637	728	22,3	12	6	583	-	797	5	0,28	2,4	3,6	2,5	-	-
	675	809	22,3	12	7,5	592	-	888	6	0,3	2,3	3,4	2,2	-	-
	634	796	22,3	12	7,5	592	-	888	6	0,35	1,9	2,9	1,8	-	-
	706	878	22,3	12	9,5	600	-	990	8	0,35	1,9	2,9	1,8	-	-
00	671	744	22,3	12	5	618	-	782	4	0,17	4	5,9	4	-	
	685	789	22,3	12	6	623	-	847	5	0,22	3	4,6	2,8	-	-
	682	784	46,1	15	6	623	-	847	5	0,3	2,3	3,4	2,2	-	-
	675	774	22,3	12	6	623	-	847	5	0,3	2,3	3,4	2,2	-	-
	722	863	22,3	12	7,5	632	-	948	6	0,3	2,3	3,4	2,2	-	-
	702	845	22,3	12	7,5	632	-	948	6	0,37	1,8	2,7	1,8	-	-
	754	929	22,3	12	9,5	640	-	1 050	8	0,35	1,9	2,9	1,8	-	_
30	682	738	-	9	4	645	-	765	3	0,12	5,6	8,4	5,6	-	-
	708	787	22,3	12	6	653	-	827	5	0,17	4	5,9	4	-	-
	727	839	22,3	12	7,5	658	-	892	6	0,21	3,2	4,8	3,2	-	-
	697	823	22,3	12	7,5	658	-	892	6	0,28	2,4	3,6	2,5	_	-
	718	828	56,5	15	7,5	658	-	892	6	0,3	2,3	3,4	2,2	_	-
	755	918	22,3	12	7,5	662	-	998	6	0,3	2,3	3,4	2,2	_	-
	738	885	22,3	12	7,5	662	_	998	6	0,37	1,8	2,7	1,8	_	_

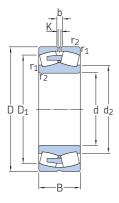
¹⁾ For details about permissible accelerations → page 779

9.1 Spherical roller bearings d 670 – 800 mm


Cylindrical bore

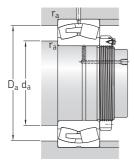

Tapered bore

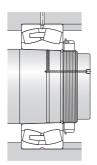
Princi	pal dimei	nsions	Basic lo	ad ratings static	Fatigue load		e Limiting	Mass	Designations Bearing with	
d	D	В	С	C_0	limit P _u	speed	speed		cylindrical bore	tapered bore
mm			kN		kN	r/min		kg	_	
670	820	112	2 643	6 400	430	400	700	130	238/670 CAMA/W20	-
	820	150	3 598	9 500	655	400	700	172	248/670 CAMA/W20	-
	900	170	5 146	10 800	680	360	670	315	239/670 CA/W33	239/670 CAK/W33
	980	230	7 919	14 600	880	340	600	600	230/670 CA/W33	230/670 CAK/W33
	980	308	10 435	20 400	1 290	300	500	790	240/670 ECA/W33	240/670 ECAK30/W33
	1 090	336	13 101	22 400	1 320	240	500	1 250	231/670 CA/W33	231/670 CAK/W33
	1 090	412	16 381	29 000	1 760	180	260	1 600	241/670 ECA/W33	241/670 ECAK30/W33
	1 220	438	18 650	30 500	1 700	220	360	2 270	232/670 CA/W33	232/670 CAK/W33
710	870	118	3 013	7 500	500	360	670	153	238/710 CAMA/W20	_
	950	180	5 702	12 000	750	340	600	365	239/710 CA/W33	239/710 CAK/W33
	950	243	6 860	15 600	930	300	500	495	249/710 CA/W33	249/710 CAK30/W33
	1 030 1 030 1 030	236 315 315	8 669 11 164 11 166	16 300 22 800 22 000	965 1 430 1 430	300 260 20	560 450 40	670 895 843	230/710 CA/W33 • 240/710 ECA/W33 240/710 BC	230/710 CAK/W33 240/710 ECAK30/W33
	1150	345	14 732	26 000	1 530	240	450	1 450	231/710 CA/W33	231/710 CAK/W33
	1150	438	17 935	32 500	1 900	160	240	1 900	241/710 ECA/W33	241/710 ECAK30/W33
	1280	450	21 208	34 500	2 000	200	320	2 610	232/710 CA/W33	232/710 CAK/W33
750	920	128	3 405	8 500	550	340	600	185	238/750 CAMA/W20	_
	1 000	185	6 138	13 200	800	320	560	420	239/750 CA/W33	239/750 CAK/W33
	1 000	250	7 699	18 000	1 100	280	480	560	249/750 CA/W33	249/750 CAK30/W33
	1 090 1 090 1 090	250 335 335	10 061 12 235 12 309	18 600 25 000 24 500	1 100 1 460 1 530	280 240 20	530 430 40	795 1 070 1 010	➤ 230/750 CA/W33 ➤ 240/750 ECA/W33 240/750 BC	230/750 CAK/W33 240/750 ECAK30/W33
	1 220	365	16 518	29 000	1 700	220	430	1 700	231/750 CA/W33	231/750 CAK/W33
	1 220	475	20 434	37 500	2 160	150	220	2 100	241/750 ECA/W33	241/750 ECAK30/W33
300	980	180	4 780	12 900	830	320	560	300	248/800 CAMA/W20	248/800 CAK30MA/W20
	1 060	195	6 595	14 300	865	280	530	470	239/800 CA/W33	239/800 CAK/W33
	1 060	258	8 136	19 300	1 060	240	430	640	249/800 CA/W33	249/800 CAK30/W33
	1150 1150 1150	258 345 345	10 335 13 431 13 447	20 000 28 500 27 500	1160 1660 1700	260 220 20	480 400 40	895 1 200 1 140	► 230/800 CA/W33 240/800 ECA/W33 240/800 BC	230/800 CAK/W33 240/800 ECAK30/W33
	1 280	375	18 033	31 500	1 800	200	400	1 920	231/800 CA/W33	231/800 CAK/W33
	1 280	475	21 587	40 500	2 320	140	200	2 300	241/800 ECA/W33	241/800 ECAK30/W33
	1 420	488	24 973	43 000	2 360	180	280	3 280	232/800 CAF/W33	232/800 CAKF/W33



Dimen	sions					Abutm	ent and f	fillet dime	ensions	Calcul	ation fac	tors		Permis acceler	sible ration for
d	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	oil lub i rota- tional	rication ¹⁾ linear
mm						mm				-				m/s ²	
670	724	778	-	9	4	685	-	805	3	0,11	6,1	9,1	6,3	-	-
	726	772	-	9	4	685	-	805	3	0,16	4,2	6,3	4	-	-
	752	835	22,3	12	6	693	-	877	5	0,17	4	5,9	4	-	-
	772	892	22,3	12	7,5	698	-	952	6	0,21	3,2	4,8	3,2	-	-
	758	866	22,3	12	7,5	698	-	952	6	0,28	2,4	3,6	2,5	-	-
	804	959	22,3	12	7,5	702	-	1 058	6	0,3	2,3	3,4	2,2	-	-
	782 832	942 1 028	22,3 22,3	12 12	7,5 12	702 718	-	1 058 1 172	6 10	0,37 0,35	1,8 1,9	2,7 2,9	1,8 1,8	 _	_
710	766	826	–	12	4	725	-	855	3	0,11	6,1	9,1	6,3	-	-
	794	882	22,3	12	6	733	-	927	5	0,17	4	5,9	4	-	-
	792	868	22,3	12	6	733	-	927	5	0,22	3	4,6	2,8	-	-
	816	941	22,3	12	7,5	738	-	1 002	6	0,21	3,2	4,8	3,2	-	-
	809	918	22,3	12	7,5	738	-	1 002	6	0,27	2,5	3,7	2,5	-	-
	810	931	61,8	15	7,5	738	-	1 002	6	0,3	2,3	3,4	2,2	-	-
	851	1 017	22,3	12	9,5	750	-	1 110	8	0,28	2,4	3,6	2,5	-	-
	826	989	22,3	12	9,5	750	-	1 110	8	0,37	1,8	2,7	1,8	-	-
	875	1 097	22,3	12	12	758	-	1 232	10	0,35	1,9	2,9	1,8	-	-
750	812	873	-	12	5	768	-	902	4	0,11	6,1	9,1	6,3	-	-
	838	930	22,3	12	6	773	-	977	5	0,16	4,2	6,3	4	-	-
	830	916	22,3	12	6	773	-	977	5	0,22	3	4,6	2,8	-	-
	859	998	22,3	12	7,5	778	-	1 062	6	0,21	3,2	4,8	3,2	-	-
	855	970	22,3	12	7,5	778	-	1 062	6	0,28	2,4	3,6	2,5	-	-
	856	984	72,8	15	7,5	778	-	1 062	6	0,3	2,3	3,4	2,2	-	-
	900 875	1 080 1 050	22,3 22,3	12 12	9,5 9,5	790 790	- -	1 180 1 180	8	0,28 0,37	2,4 1,8	3,6 2,7	2,5 1,8	_	_
800	865	921	-	12	5	818	-	962	4	0,15	4,5	6,7	4,5	-	-
	891	986	22,3	12	6	823	-	1 037	5	0,16	4,2	6,3	4	-	-
	887	973	22,3	12	6	823	-	1 037	5	0,21	3,2	4,8	3,2	-	-
	917	1 053	22,3	12	7,5	828	-	1 122	6	0,2	3,4	5	3,2	-	-
	910	1 028	22,3	12	7,5	828	-	1 122	6	0,27	2,5	3,7	2,5	-	-
	911	1 042	66,4	15	7,5	828	-	1 122	6	0,28	2,4	3,6	2,5	-	-
	949	1 141	22,3	12	9,5	840	-	1 240	8	0,28	2,4	3,6	2,5	-	-
	930	1 111	22,3	12	9,5	840	-	1 240	8	0,35	1,9	2,9	1,8	-	-
	995	1 218	22,3	12	15	858	-	1 362	12	0,33	2	3	2	-	-

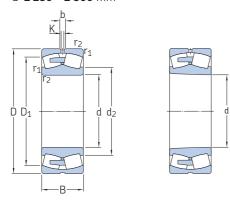
¹⁾ For details about permissible accelerations → page 779


Tapered bore


Princip	oal dimer	nsions	Basic los dynamic	ad ratings static	Fatigue load		e Limiting	Mass		Designations Bearing with	
d	D	В	С	C_0	limit P _u	speed	speed			cylindrical bore	tapered bore
mm			kN		kN	r/min		kg		-	
850	1 030 1 120 1 120	136 200 272	3 882 7 072 9 390	10 000 15 600 22 800	630 930 1 370	260 260 220	530 480 400	240 560 740		238/850 CAMA/W20 239/850 CA/W33 249/850 CA/W33	238/850 CAKMA/W20 239/850 CAK/W33 249/850 CAK30/W33
	1 220 1 220 1 220	272 365 365	11 291 15 078 15 183	21 600 31 000 31 500	1 250 1 900 1 900	240 20 200	450 40 360	1 050 1 360 1 410	•	230/850 CA/W33 240/850 BC 240/850 ECA/W33	230/850 CAK/W33 _ 240/850 ECAK30/W33
	1 360 1 500	500 515	23 827 27 636	45 000 48 000	2 500 2 600	130 160	190 260	2 770 3 940		241/850 ECAF/W33 232/850 CAF/W33	241/850 ECAK30F/W33
900	1 090 1 180 1 280	190 206 280	5 428 7 652 12 002	15 300 17 000 23 200	950 1 000 1 320	240 240 220	480 450 400	370 605 1 200		248/900 CAMA/W20 239/900 CA/W33 230/900 CA/W33	248/900 CAK30MA/W20 239/900 CAK/W33 230/900 CAK/W33
	1 280 1 280 1 420	375 375 515	16 185 16 215 25 310	34 500 34 000 49 000	2 040 2 040 2 700	190 20 120	340 40 180	1 570 1 520 3 350	٠	240/900 ECA/W33 240/900 BC 241/900 ECAF/W33	240/900 ECAK30/W33 241/900 ECAK30F/W33
950	1 250 1 250 1 360	224 300 300	8 606 10 701 14 363	19 600 26 000 28 500	1 120 1 500 1 600	220 180 200	430 340 380	755 1 020 1 450		239/950 CA/W33 249/950 CA/W33 230/950 CA/W33	239/950 CAK/W33 249/950 CAK30/W33 230/950 CAK/W33
	1 360 1 360 1 500	412 412 545	17 847 18 228 27 892	39 000 38 000 55 000	2 240 2 240 3 000	170 20 110	300 35 160	1 990 1 880 3 540		240/950 CAF/W33 240/950 BC 241/950 ECAF/W33	240/950 CAK30F/W33 - 241/950 ECAK30F/W33
1 000	1 220 1 320 1 420	165 315 412	5 405 11 939 18 592	14 300 29 000 40 500	850 1 460 2 240	220 170 160	400 320 280	410 1 200 2 140		238/1000 CAMA/W20 249/1000 CA/W33 240/1000 CAF/W33	238/1000 CAKMA/W20 249/1000 CAK30/W33 240/1000 CAK30F/W33
	1 580 1 580	462 580	25 650 31 174	48 000 62 000	2 550 3 350	140 100	280 150	3 500 4 300		231/1000 CAF/W33 241/1000 ECAF/W33	231/1000 CAKF/W33 241/1000 ECAK30F/W33
1 060	1 280 1 400 1 400	165 250 335	5 555 11 333 13 354	15 000 26 000 32 500	865 1 430 1 800	200 180 160	380 360 280	435 1 100 1 400		238/1060 CAMA/W20 239/1060 CAF/W33 249/1060 CAF/W33	_ 239/1060 CAKF/W33 249/1060 CAK30F/W33
	1 500	438	20 724	45 500	2 450	150	260	2 520		240/1060 CAF/W33	240/1060 CAK30F/W33
1120	1 460 1 580 1 580	335 462 462	13 718 22 364 22 936	34 500 50 000 49 000	1 830 2 700 2 750	140 130 20	260 240 35	1 500 2 930 2 770		249/1120 CAF/W33 240/1120 CAF/W33 240/1120 BC	249/1120 CAK30F/W33 240/1120 CAK30F/W33

SKF Explorer bearing

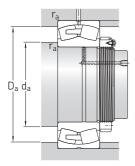
Popular item

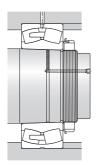


Dimens	sions					Abutm	ent and	fillet dime	ensions	Calcul	ation fac	tors			ssible ration for rication1)
d	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	rota- tional	linear
mm						mm				-				m/s ²	
850	912	981	-	12	5	868	_	1 012	4	0,11	6,1	9,1	6,3	-	_
	946	1 046	22,3	12	6	873	_	1 097	5	0,16	4,2	6,3	4	-	_
	940	1 029	22,3	12	6	873	_	1 097	5	0,22	3	4,6	2,8	-	_
	972	1 117	22,3	12	7,5	878	-	1 192	6	0,2	3,4	5	3,2	_	-
	966	1 105	67,9	15	7,5	878	-	1 192	6	0,28	2,4	3,6	2,5	_	-
	957	1 088	22,3	12	7,5	878	-	1 192	6	0,27	2,5	3,7	2,5	_	-
	988 1 049	1 182 1 284	22,3 22,3	12 12	12 15	898 908	_	1 312 1 442	10 12	0,35 0,33	1,9 2	2,9 3	1,8 2		- -
900	969	1 029	-	12	5	918	-	1 072	4	0,14	4,8	7,2	4,5	_	-
	996	1 101	22,3	12	6	923	-	1 157	5	0,15	4,5	6,7	4,5	_	-
	1 025	1 176	22,3	12	7,5	928	-	1 252	6	0,2	3,4	5	3,2	_	-
	1 015	1 149	22,3	12	7,5	928	-	1 252	6	0,26	2,6	3,9	2,5	-	-
	1 024	1 164	69,1	15	7,5	928	-	1 252	6	0,27	2,5	3,7	2,5	-	-
	1 043	1 235	22,3	12	12	948	-	1 372	10	0,35	1,9	2,9	1,8	-	-
950	1 056	1 164	22,3	12	7,5	978	-	1 222	6	0,15	4,5	6,7	4,5	-	-
	1 051	1 150	22,3	12	7,5	978	-	1 222	6	0,21	3,2	4,8	3,2	-	-
	1 086	1 246	22,3	12	7,5	978	-	1 332	6	0,2	3,4	5	3,2	-	-
	1 077	1 214	22,3	12	7,5	978	-	1 332	6	0,27	2,5	3,7	2,5	-	-
	1 076	1 230	85,9	15	7,5	978	-	1 332	6	0,3	2,3	3,4	2,2	-	-
	1 102	1 305	22,3	12	12	998	-	1 452	10	0,35	1,9	2,9	1,8	-	-
1 000	1 079	1 161	-	12	6	1 023	-	1 197	5	0,12	5,6	8,4	5,6	-	-
	1 109	1 212	22,3	12	7,5	1 028	-	1 292	6	0,21	3,2	4,8	3,2	-	-
	1 136	1 278	22,3	12	7,5	1 028	-	1 392	6	0,26	2,6	3,9	2,5	-	-
	1 185 1 159	1 403 1 373	22,3 22,3	12 12	12 12	1 048 1 048		1 532 1 532	10 10	0,28 0,35	2,4 1,9	3,6 2,9	2,5 1,8	-	
1 060	1 137	1 219	-	12	6	1 083	-	1 257	5	0,11	6,1	9,1	6,3	-	-
	1 171	1 305	22,3	12	7,5	1 088	-	1 372	6	0,16	4,2	6,3	4	-	-
	1 168	1 286	22,3	12	7,5	1 088	-	1 372	6	0,21	3,2	4,8	3,2	-	-
	1199	1349	22,3	12	9,5	1 094	-	1 466	8	0,26	2,6	3,9	2,5	-	-
1 120	1 231	1 350	22,3	12	7,5	1 148	-	1 432	6	0,2	3,4	5	3,2	-	-
	1 268	1 423	22,3	12	9,5	1 154	-	1 546	8	0,26	2,6	3,9	2,5	-	-
	1 259	1 436	104	15	9,5	1 154	-	1 546	8	0,28	2,4	3,6	2,5	-	-

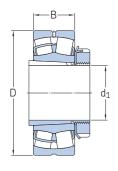
¹⁾ For details about permissible accelerations → page 779

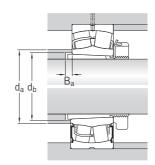
9.1 Spherical roller bearings d 1180 – 1800 mm


Cylindrical bore


Tapered bore

Princip	al dimer	nsions	Basic loa dynamic	ad ratings static	Fatigue load	Speed ra	tings Limiting	Mass	Designations Bearing with	
d	D	В	С	C_0	limit P _u	speed	speed		cylindrical bore	tapered bore
mm			kN		kN	r/min		kg	-	
1180	1 420 1 540 1 540	180 272 355	6 778 13 076 15 751	18 600 31 000 40 500	1 080 1 660 2 160	170 150 130	320 300 240	575 1 400 1 800	238/1180 CAFA/W20 239/1180 CAF/W33 249/1180 CAF/W33	238/1180 CAKFA/W20 239/1180 CAKF/W33 249/1180 CAK30F/W33
	1 660	475	25 471	58 500	3 050	130	220	3 320	240/1180 CAF/W33	240/1180 CAK30F/W33
1 250	1 750	375	21 256	45 000	2 320	130	240	2 840	230/1250 CAF/W33	230/1250 CAKF/W33
1 320	1 720	400	18 714	49 000	2 500	110	200	2 500	249/1320 CAF/W33	249/1320 CAK30F/W33
1 500	1 820	315	14 684	45 000	2 400	110	220	1 710	248/1500 CAFA/W20	248/1500 CAK30FA/W20
1 800	2 180	375	20 274	63 000	3 050	75	140	2 900	248/1800 CAFA/W20	248/1800 CAK30FA/W20


Dimens	sions					Abutm	ent and	fillet dime	ensions	Calcul	ation fac	tors			ration for
d	d ₂ ≈	D ₁ ≈	b	K	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	е	Y ₁	Y ₂	Y ₀	oil lub rota- tional	rication ¹⁾ linear
mm						mm				-				m/s ²	
1 180	1 264 1 305 1 297	1 355 1 439 1 422	- 22,3 22,3	12 12 12	6 7,5 7,5	1 203 1 208 1 208	- - -	1 397 1 512 1 512	5 6 6	0,11 0,16 0,2	6,1 4,2 3,4	9,1 6,3 5	6,3 4 3,2	- - -	- - -
	1 325	1 507	22,3	12	9,5	1 200	-	1 626	8	0,26	2,6	3,9	2,5	-	-
1 250	1 415	1 611	22,3	12	9,5	1 284	-	1 716	8	0,19	3,6	5,3	3,6	-	-
1 320	1 449	1 589	22,3	12	7,5	1 348	-	1 692	6	0,21	3,2	4,8	3,2	-	-
1 500	1 612	1 719	-	12	7,5	1 528	-	1 792	6	0,15	4,5	6,7	4,5	-	-
1 800	1 932	2 060	-	12	9,5	1 834	_	2 146	8	0,15	4,5	6,7	4,5	-	-


¹⁾ For details about permissible accelerations → page 779

$\boldsymbol{9.2} \;\; \textbf{Spherical roller bearings on an adapter sleeve}$

d₁ **20 – 100** mm

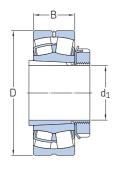
Bearing on an H.. sleeve

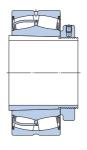
Sealed bearing on an H .. E sleeve

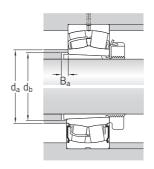
Princip	oal dimensi	ons	Abutmo	ent and fill	et dimensions	Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d ₁	D	В	d _a max.	d _b min.	B _a min.			
mm			mm			kg	_	
20	52	18	31	28	5	0,33	► 22205 EK	H 305
25	62	20	37	33	5	0,39	► 22206 EK	H 306
30	72	23	44	39	5	0,59	► 22207 EK	H 307
35	80 80 90	23 28 23	49 47 60	44 44 44	5 8 5	0,68 0,8 0,92	➤ 22208 EK BS2-2208-2RSK/VT14 21308 EK	H 308 H 2308 E H 308
	90	33	49	45	6	1,25	► 22308 EK	H 2308
40	85 85 100	23 28 25	54 52 65	50 48 50	7 0 5	0,81 0,9 1,2	22209 EKBS2-2209-2RSK/VT1421309 EK	H 309 H 309 E H 309
	100	36	57	50	6	1,7	► 22309 EK	H 2309
45	90 90 110	23 28 27	60 58 72	55 54 55	9 2 6	0,9 1 1,6	22210 EKBS2-2210-2RSK/VT1421310 EK	H 310 H 310 E H 310
	110	40	63	56	5	2,25	► 22310 EK	H 2310
50	100 100 120	25 31 29	65 63 72	60 59 60	10 2 6	1,1 1,3 1,95	22211 EKBS2-2211-2RSK/VT1421311 EK	H 311 H 311 E H 311
	120	43	70	61	6	2,85	► 22311 EK	H 2311
55	110 110 130	28 34 31	72 69 87	65 64 65	9 1 6	1,45 1,7 2,35	22212 EKBS2-2212-2RSK/VT1421312 EK	H 312 H 312 E H 312
	130	46	77	66	6	3,5	► 22312 EK	H 2312

[➤] SKF Explorer bearing

➤ Popular item


1) For additional bearing data → product table, page 792


2) For additional adapter sleeve data → product table, page 1072


Princip	al dimensi	ons	Abutme	ent and fill	et dimensions	Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	d _a max.	d _b min.	B _a min.	sieeve		
mm			mm			kg	_	
60	120 120 125	31 38 31	80 76 83	70 70 75	8 14 9	1,95 2,1 2,15	► 22213 EK BS2-2213-2RSK/VT143 ► 22214 EK	H 313 H 2313 E H 314
	125 140 140	38 33 48	80 94 81	74 70 72	1 6 5	2,4 2,9 4,2	BS2-2214-2RSK/VT143 • 21313 EK • 22313 EK	H 314 E H 313 H 2313
	150 150	35 51	101 90	75 76	6	3,7 5,35	► 21314 EK ► 22314 EK	H 314 H 2314
65	130 130 160	31 38 37	87 84 101	80 80 80	12 3 6	2,45 2,8 4,5	► 22215 EK ► B52-2215-2RSK/VT143 ► 21315 EK	H 315 H 315 E H 315
	160	55	92	82	5	6,5	► 22315 EK	H 2315
70	140 140 170	33 40 39	94 91 106	85 85 85	12 2,5 6	3 3,3 5,3	22216 EKBS2-2216-2RSK/VT14321316 EK	H 316 H 316 E H 316
	170	58	98	88	6	7,65	► 22316 EK	H 2316
75	150 150 180	36 44 41	101 98 106	91 90 91	12 1,5 7	3,7 4,1 6,2	22217 EKBS2-2217-2RSK/VT14321317 EK	H 317 H 317 E H 317
	180	60	108	94	7	8,85	► 22317 EK	H 2317
80	160 160 160	40 48 52,4	106 102 106	96 97 100	10 7,5 18	4,55 5,1 6	▶ 22218 EK▶ BS2-2218-2RSK/VT143▶ 23218 CCK/W33	H 318 H 2318 E/L73 H 2318
	190 190	43 64	112 113	96 100	7 7	7,25 10,5	➤ 21318 EK ➤ 22318 EK	H 318 H 2318
85	170 200 200	43 45 67	112 118 118	102 102 105	9 7 7	5,45 8,25 12	➤ 22219 EK 21319 EK ➤ 22319 EK	H 319 H 319 H 2319
90	165 180 180	52 46 55	115 118 114	107 108 108	6 8 22,5	6,15 6,4 7,4	23120 CCK/W3322220 EK BS2-2220-2RS5K/VT143	H 3120 H 320 H 2320 E
	180 215 215	60,3 47 73	117 118 130	110 108 110	19 7 7	8,75 10,5 15	► 23220 CCK/W33 21320 EK ► 22320 EK	H 2320 H 320 H 2320
100	170 180 180	45 56 56	125 122 126	118 65 117	14 9 7	5,75 7,7 7,7	► 23022 CCK/W33 23122-2C55K/VT143 ► 23122 CCK/W33	H 322 H 3122 E H 3122
	200 200 200	53 63 69,8	130 126 126	118 118 121	6 21,5 17	8,9 10 12,5	► 22222 EK BS2-2222-2R55K/VT143 23222-2C55K/VT143	H 322 H 2322 E H 2322 E
	200 240	69,8 80	130 143	121 121	17 7	12,5 21	➤ 23222 CCK/W33 ➤ 22322 EK	H 2322 H 2322

$\boldsymbol{9.2} \;\; \textbf{Spherical roller bearings on an adapter sleeve}$

d₁ **110 – 170** mm

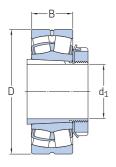
Bearing on an H.. sleeve

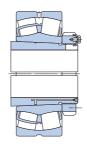
Sealed bearing on an H .. E sleeve

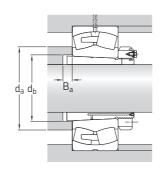
Princip	al dimensi	ons	Abutme	ent and fill	et dimensions	Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d ₁	D	В	d _a max.	d _b min.	B _a min.	Siceve		
mm			mm			kg	_	
110	180	46	135	127	7	5,95	► 23024 CCK/W33	H 3024
	200	62	139	128	7	10	► 23124 CCK/W33	H 3124
	215	58	141	128	11	11	► 22224 EK	H 3124
	215	69	136	129	21,5	12,5	BS2-2224-2RS5K/VT143	H 2324 EH
	215	76	137	131	17	14,5	► 23224-2CS5K/VT143	H 2324 L
	215	76	141	131	17	14,5	► 23224 CCK/W33	H 2324
	260 260	86 86	147 152	131 131	7 7	25,5 25,5	22324-2C55K/VT14322324 CCK/W33	H 2324 H 2324
115	200	52	145	137	8	8,7	23026-2CS5K/VT143	H 3026 E
	200	52	148	137	8	8,6	► 23026 CCK/W33	H 3026
	210	64	148	138	8	12	► 23126 CCK/W33	H 3126
	230	64	152	138	8	14	► 22226 EK	H 3126
	230	75	147	139	23,5	14,5	BS2-2226-2CS5K/VT143	H 2326 L
	230	80	147	142	21	18	23226-2CS5K/VT143	H 2326 L
	230	80	151	142	21	18,5	► 23226 CCK/W33	H 2326
	280	93	159	142	8	33	► 22326-2C55K/VT143	H 2326
	280	93	164	142	8	33	► 22326 CCK/W33	H 2326
125	210	53	155	147	8	9,4	23028-2C55K/VT143	H 3028 E
	210	53	158	147	8	9,4	► 23028 CCK/W33	H 3028
	225	68	159	149	8	14,5	► 23128 CCK/W33	H 3128
	250 250 250	68 68 88	161 166 161	149 149 152	8 8 22	17,5 18 24	▶ 22228-2C55K/VT143▶ 22228 CCK/W33▶ 23228-2C55K/VT143	H 3128 L H 3128 H 2328
	250 300 300	88 102 102	165 169 175	152 152 152	22 8 8	24 41 41	23228 CCK/W3322328-2CS5K/VT14322328 CCK/W33	H 2328 H 2328 H 2328

[➤] SKF Explorer bearing

➤ Popular item


1) For additional bearing data → product table, page 792


2) For additional adapter sleeve data → product table, page 1072


Princip	al dimensi	ons	Abutme	ent and fill	et dimensions	Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d ₁	D	В	d _a max.	d _b min.	B _a min.	5.0070		
mm			mm			kg	_	
135	225	56	165	158	8	11,5	23030-2C55K/VT143	H 3030 E
	225	56	169	158	8	11	• 23030 CCK/W33	H 3030
	250	80	168	160	8	20	23130-2C55K/VT143	H 3130 E
	250	80	172	160	8	21	► 23130 CCK/W33	H 3130
	270	73	174	160	15	23	► 22230-2CS5K/VT143	H 3130
	270	73	178	160	15	23	► 22230 CCK/W33	H 3130
	270	96	171	163	20	30	23230-2CS5K/VT143	H 2330 L
	270	96	175	163	20	30	• 23230 CCK/W33	H 2330
	320	108	181	163	8	49	• 22330-2CS5K/VT143	H 2330
	320	108	188	163	8	47,5	► 22330 CCK/W33	H 2330
140	240	60	177	168	9	14,5	23032-2CS5K/VT143	H 3032 E
	240	60	180	168	9	14,5	► 23032 CCK/W33	H 3032
	270	86	180	170	8	27,5	23132-2CS5K/VT143	H 3132 E
	270	86	184	170	8	27,5	➤ 23132 CCK/W33	H 3132
	290	80	185	170	14	29,5	➤ 22232-2CS5K/VT143	H 3132
	290	80	191	170	14	29,5	➤ 22232 CCK/W33	H 3132
	290	104	188	174	18	39	➤ 23232 CCK/W33	H 2332
	340	114	193	174	8	60	➤ 22332-2CS5K/VT143	H 2332
	340	114	200	174	8	60	➤ 22332 CCK/W33	H 2332
150	260	67	188	179	9	18,5	23034-2CS5K/VT143	H 3034 E
	260	67	191	179	9	18,5	• 23034 CCK/W33	H 3034
	280	88	190	180	8	29,5	23134-2CS5K/VT143	H 3134 E
	280	88	195	180	8	29,5	➤ 23134 CCK/W33	H 3134
	310	86	198	180	10	36	➤ 22234-2CS5K/VT143	H 3134
	310	86	203	180	10	36	➤ 22234 CCK/W33	H 3134
	310	110	200	185	18	46,5	► 23234 CCK/W33	H 2334
	360	120	213	185	8	69,5	► 22334 CCK/W33	H 2334
160	250	52	199	188	9	13,5	23936 CCK/W33	H 3936
	280	74	199	189	9	23	23036-2CS5K/VT143	H 3036 E
	280	74	204	189	9	23	▶ 23036 CCK/W33	H 3036
	300	96	202	191	8	35	23136-2CS5K/VT143	Н 3136 L
	300	96	207	191	8	37	• 23136 CCK/W33	Н 3136
	320	86	208	191	18	37,5	• 22236-2CS5K/VT143	Н 3136
	320 320 380	86 112 126	213 211 224	191 195 195	18 22 8	38 49,5 80	22236 CCK/W3323236 CCK/W3322336 CCK/W33	H 3136 H 2336 H 2336
170	260	52	209	198	10	14,5	23938 CCK/W33	H 3938
	290	75	216	199	10	25	• 23038 CCK/W33	H 3038
	320	104	215	202	9	44,5	• 23138-2CS5K/VT143	H 3138
	320	104	220	202	9	44,5	► 23138 CCK/W33	H 3138
	340	92	220	202	21	44,5	► 22238-2C55K/VT143	H 3138
	340	92	225	202	21	46	► 22238 CCK/W33	H 3138
	340	120	222	206	21	59	➤ 23238 CCK/W33	H 2338
	400	132	236	206	9	93	➤ 22338 CCK/W33	H 2338

$\boldsymbol{9.2} \;\; \textbf{Spherical roller bearings on an adapter sleeve}$

d₁ **180 – 380** mm

Bearing on an H.. sleeve

Bearing on an OH .. H sleeve

Princip	al dimensi	ons	Abutmo	ent and fill	et dimensions	Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	d _a max.	d _b min.	B _a min.	Siceve		
mm			mm			kg	_	
180	280 310 310	60 82 82	222 223 228	208 210 210	10 10 10	19 30 31,5	23940 CCK/W33 • 23040-2CS5K/VT143 • 23040 CCK/W33	H 3940 H 3040 H 3040
	340 340 360	112 112 98	227 231 232	212 212 212	9 9 24	53,5 55,5 53	23140-2CS5K/VT14323140 CCK/W3322240-2CS5K/VT143	H 3140 H 3140 H 3140
	360 360 360	98 128 128	238 229 235	212 216 216	24 19 19	66 69,5 70	► 22240 CCK/W33 23240-2CS5K/VT143 ► 23240 CCK/W33	H 3140 H 2340 L H 2340
	420	138	249	216	9	107	► 22340 CCK/W33	H 2340
200	300 340 340	60 90 90	241 245 250	229 231 231	12 10 10	22,5 38 39,5	23944 CCK/W33 • 23044-2CS5K/VT143 • 23044 CCK/W33	OH 3944 H OH 3044 H OH 3044 H
	370 370 400	120 120 108	249 255 257	233 233 233	10 10 21	66,5 67,5 71,5	23144-2CS5K/VT143 • 23144 CCK/W33 • 22244-2CS5K/VT143	OH 3144 HTL OH 3144 H OH 3144 H
	400 400 460	108 144 145	263 259 270	233 236 236	21 11 10	74 96,5 131	22244 CCK/W3323244 CCK/W3322344-2CS5K/VT143	OH 3144 H OH 2344 H OH 2344 H
	460	145	279	236	10	135	► 22344 CCK/W33	0H 2344 H
220	320 360 360	60 92 92	261 265 271	249 251 251	12 11 11	24,5 42,5 44,5	23948 CCK/W33 23048-2CS5K/VT143 ► 23048 CCK/W33	OH 3948 H OH 3048 HE OH 3048 H
	400 400 440	128 128 120	270 277 290	254 254 254	11 11 19	79,5 80,5 99	23148-2CS5K/VT143 • 23148 CCK/W33 • 22248 CCK/W33	OH 3148 HTL OH 3148 H OH 3148 H
	440 500	160 155	286 303	257 257	6 11	125 170	23248 CCK/W33 22348 CCK/W33	ОН 2348 Н ОН 2348 Н

SKF.

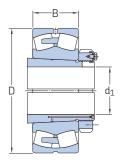
[➤] SKF Explorer bearing

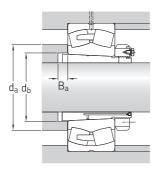
➤ Popular item

1) For additional bearing data → product table, page 792

2) For additional adapter sleeve data → product table, page 1072

Princip	al dimensi	ons	Abutme	ent and fill	et dimensions	Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	d _a max.	d _b min.	B _a min.	Sieeve		
mm			mm			kg	_	
240	360 400 400	75 104 104	287 289 295	270 272 272	12 11 11	35 58 60,5	23952 CCK/W33 23052-2CS5K/VT143 ► 23052 CCK/W33	OH 3952 H OH 3052 HE OH 3052 H
	440 440 480	144 144 130	293 301 312	276 276 276	11 11 25	105 109 130	23152-2C55K/VT14323152 CCK/W3322252 CCK/W33	OH 3152 HTL OH 3152 H OH 3152 H
	480 540	174 165	312 328	278 278	2 11	160 215	≥ 23252 CCK/W33► 22352 CCK/W33	OH 2352 H OH 2352 H
260	380 420 460	75 106 146	308 315 314	290 292 296	12 12 12	40 67 114	23956 CCK/W33 • 23056 CCK/W33 23156-2CS5K/VT143	OH 3956 H OH 3056 H OH 3156 HTL
	460 500 500	146 130 176	321 333 332	296 296 299	12 28 11	115 135 165	23156 CCK/W33 22256 CCK/W3323256 CCK/W33	OH 3156 H OH 3156 H OH 2356 H
	580	175	354	299	12	250	► 22356 CCK/W33	0H 2356 H
280	420 460 500	90 118 160	333 340 337	312 313 318	13 12 12	58,5 90 153	23960 CCK/W33 ► 23060 CCK/W33 23160-2CS5K/VT143	OH 3960 H OH 3060 H OH 3160 HE
	500 540 540	160 140 192	345 354 356	318 318 321	12 32 12	150 170 210	► 23160 CCK/W33 22260 CCK/W33 ► 23260 CCK/W33	OH 3160 H OH 3160 H OH 3260 H
300	440 480 540	90 121 176	354 360 361	332 334 338	13 13 13	61 97 192	23964 CCK/W33 > 23064 CCK/W33 > 23164-2CS5K/VT143	OH 3964 H OH 3064 H OH 3164 H
	540 580 580	176 150 208	370 379 382	338 338 343	13 39 13	185 200 260	► 23164 CCK/W33 22264 CCK/W33 23264 CCK/W33	OH 3164 H OH 3164 H OH 3264 H
320	460 520 580	90 133 190	373 385 385	352 355 360	14 14 14	67,5 130 252	23968 CCK/W33 ➤ 23068 CCK/W33 23168-2CS5K/VT143	OH 3968 H OH 3068 H OH 3168 HE
	580 620	190 224	394 427	360 364	14 14	250 335	≥ 23168 CCK/W33≥ 23268 CAK/W33	ОН 3168 Н ОН 3268 Н
340	480 540 600	90 134 192	394 404 408	372 375 380	14 14 14	70,5 135 265	23972 CCK/W33 ► 23072 CCK/W33 23172-2C55K/VT143	OH 3972 H OH 3072 H OH 3172 HE
	600 650 650	192 170 232	418 454 449	380 380 385	14 36 14	260 375 375	23172 CCK/W33 22272 CAK/W33 23272 CAK/W33	OH 3172 H OH 3172 H OH 3272 H
360	520 560 620	106 135 194	419 426 454	393 396 401	15 15 15	95 145 275	23976 CCK/W33 > 23076 CCK/W33 > 23176 CAK/W33	OH 3976 H OH 3076 H OH 3176 H
	680	240	473	405	15	420	23276 CAK/W33	0H 3276 H
380	540 600 650	106 148 200	439 450 458	413 417 421	15 15 15	100 180 312	23980 CCK/W33 23080 CCK/W33 23180-2CS5K/VT143	OH 3980 H OH 3080 H OH 3180 HE
	650 720 820	200 256 243	475 500 534	421 427 427	15 15 28	325 505 735	► 23180 CAK/W33 23280 CAK/W33 22380 CAK/W33	OH 3180 H OH 3280 H OH 3280 H


SKF Explorer bearing


➤ Popular item

1) For additional bearing data → product table, page 792

2) For additional adapter sleeve data → product table, page 1072

9.2 Spherical roller bearings on an adapter sleeve d_1 400 – 1 000 mm

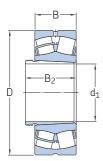
Principa	Principal dimensions		Abutme	Abutment and fillet dimensions			Designations Bearing ¹⁾	Sleeve ²⁾
d ₁	D	В	d _a max.	d _b min.	B _a min.	sleeve		
mm			mm			kg	_	
400	560 620 700	106 150 224	459 487 483	433 437 443	15 16 16	105 190 410	23984 CCK/W33 23084 CAK/W33 ▶ 23184 CKJ/W33	ОН 3984 Н ОН 3084 Н ОН 3184 Н
	760	272	526	446	16	590	23284 CAK/W33	0H 3284 H
410	600 650 720	118 157 226	484 511 529	454 458 463	17 17 17	150 235 430	23988 CCK/W33 23088 CAK/W33 23188 CAK/W33	ОН 3988 Н ОН 3088 Н ОН 3188 Н
	790	280	549	469	17	670	23288 CAK/W33	0H 3288 H
430	620 680 760	118 163 240	516 533 555	474 478 484	17 17 17	160 265 530	23992 CAK/W33 23092 CAK/W33 23192 CAK/W33	ОН 3992 Н ОН 3092 Н ОН 3192 Н
	830	296	574	490	17	790	23292 CAK/W33	0H 3292 H
450	650 700 790	128 165 248	537 549 579	496 499 505	18 18 18	185 275 590	23996 CAK/W33 23096 CAK/W33 23196 CAK/W33	ОН 3996 Н ОН 3096 Н ОН 3196 Н
	870	310	602	512	18	935	23296 CAK/W33	0H 3296 H
470	670 720 830	128 167 264	561 573 605	516 519 527	18 18 18	195 290 690	239/500 CAK/W33 230/500 CAK/W33 231/500 CAK/W33	ОН 39/500 Н ОН 30/500 Н ОН 31/500 Н
	920	336	633	534	18	1 100	232/500 CAK/W33	0H 32/500 H
500	710 780 870	136 185 272	594 613 638	547 551 558	20 20 20	255 405 785	239/530 CAK/W33 230/530 CAK/W33 231/530 CAK/W33	ОН 39/530 Н ОН 30/530 Н ОН 31/530 Н
	980	355	670	566	20	1 360	232/530 CAK/W33	0H 32/530 H
530	750 820 920	140 195 280	627 646 675	577 582 589	20 20 20	260 445 880	239/560 CAK/W33 230/560 CAK/W33 231/560 CAK/W33	ОН 39/560 Н ОН 30/560 Н ОН 31/560 Н
	1 030	365	706	595	20	1 490	232/560 CAK/W33	OH 32/560 H

[➤] SKF Explorer bearing

➤ Popular item

1) For additional bearing data → product table, page 792

2) For additional adapter sleeve data → product table, page 1072


Principa	ıl dimensio	ns	Abutment and fillet dimensions			Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d ₁	D	В	d _a max.	d _b min.	B _a min.	SICEVE		
mm			mm			kg	_	
560	800	150	671	619	22	330	239/600 CAK/W33	ОН 39/600 Н
	870	200	685	623	22	525	230/600 CAK/W33	ОН 30/600 Н
	980	300	722	629	22	1 070	231/600 CAK/W33	ОН 31/600 Н
	1 090	388	754	639	22	1 780	232/600 CAK/W33	0H 32/600 H
600	850	165	708	650	22	385	239/630 CAK/W33	OH 39/630 H
	920	212	727	654	22	595	230/630 CAK/W33	OH 30/630 H
	1 030	315	755	663	22	1 240	231/630 CAK/W33	OH 31/630 H
630	900	170	752	691	22	455	239/670 CAK/W33	OH 39/670 H
	980	230	772	696	22	755	230/670 CAK/W33	OH 30/670 H
	1 090	336	804	705	22	1 510	231/670 CAK/W33	OH 31/670 H
	1 220	438	832	711	22	2 540	232/670 CAK/W33	0H 32/670 H
670	950	180	794	732	26	525	239/710 CAK/W33	0H 39/710 H
	1 030	236	816	736	26	860	230/710 CAK/W33	0H 30/710 H
	1 150	345	851	745	26	1 750	231/710 CAK/W33	0H 31/710 H
	1 280	450	875	753	26	3 000	232/710 CAK/W33	0H 32/710 H
710	1 000	185	838	772	26	605	239/750 CAK/W33	OH 39/750 H
	1 090	250	859	778	26	990	230/750 CAK/W33	OH 30/750 H
	1 220	365	900	787	26	2 050	231/750 CAK/W33	OH 31/750 H
750	1 060	195	891	822	28	730	239/800 CAK/W33	ОН 39/800 Н
	1 150	258	917	829	28	1 200	230/800 CAK/W33	ОН 30/800 Н
	1 280	375	949	838	28	2 430	231/800 CAK/W33	ОН 31/800 Н
800	1 120	200	946	872	28	950	239/850 CAK/W33	ОН 39/850 Н
	1 220	272	972	880	28	1 390	230/850 CAK/W33	ОН 30/850 Н
850	1 180	206	996	924	30	930	239/900 CAK/W33	OH 39/900 H
	1 280	280	1 025	931	30	1 580	230/900 CAK/W33	OH 30/900 H
900	1 250	224	1 056	976	30	1 120	239/950 CAK/W33	ОН 39/950 Н
	1 360	300	1 086	983	30	1 870	230/950 CAK/W33	ОН 30/950 Н
950	1 580	462	1 185	1 047	33	4 340	231/1000 CAKF/W33	0H 31/1000 H
1 000	1 400	250	1 179	1 087	33	1 590	239/1060 CAKF/W33	OH 39/1060 H

SKF Explorer bearing

① For additional bearing data → product table, page 792
② For additional adapter sleeve data → product table, page 1072

$\boldsymbol{9.3} \hspace{0.1cm} \textbf{Spherical roller bearings on a withdrawal sleeve}$

d₁ **35 – 145** mm

Principa	al dimension	s		Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	B ₂ 3) ≈			
mm				kg	-	
35	80 90 90	23 23 33	32 32 43	0,6 0,84 1,2	➤ 22208 EK 21308 EK 22308 EK	AH 308 AH 308 AH 2308
40	85 100 100	23 25 36	34 34 47	0,7 1,1 1,55	► 22209 EK ► 21309 EK ► 22309 EK	AH 309 AH 309 AH 2309
45	90 110 110	23 27 40	38 38 53	0,75 1,45 2,1	22210 EK21310 EK22310 EK	AHX 310 AHX 310 AHX 2310
50	100 120 120	25 29 43	40 40 57	0,95 1,8 2,7	► 22211 EK ► 21311 EK ► 22311 EK	AHX 311 AHX 311 AHX 2311
55	110 130 130	28 31 46	43 43 61	1,3 2,2 3,3	▶ 22212 EK▶ 21312 EK▶ 22312 EK	AHX 312 AHX 312 AHX 2312
60	120 140 140	31 33 48	45 45 64	1,7 2,75 4,1	22213 EK21313 EK22313 EK	AH 313 G AH 313 G AH 2313 G
65	125 150 150	31 35 51	47 47 68	1,8 3,35 4,9	22214 EK21314 EK22314 EK	AH 314 G AH 314 G AHX 2314 G
70	130 160 160	31 37 55	49 49 72	1,95 4,15 6	22215 EK21315 EK22315 EK	AH 315 G AH 315 G AHX 2315 G
75	140 170 170	33 39 58	52 52 75	2,4 4,75 7	➤ 22216 EK ➤ 21316 EK ► 22316 EK	AH 316 AH 316 AHX 2316
80	150 180 180	36 41 60	56 56 78	3,05 5,55 8,15	► 22217 EK ► 21317 EK ► 22317 EK	AHX 317 AHX 317 AHX 2317
85	160 160 190	40 52,4 43	57 67 57	3,7 5 6,4	► 22218 EK ► 23218 CCK/W33 ► 21318 EK	AHX 318 AHX 3218 AHX 318
	190	64	83	9,5	► 22318 EK	AHX 2318

SKF Explorer bearing

► Popular item

1) For additional bearing data → product table, page 792

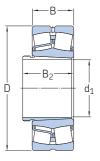
2) For additional withdrawal sleeve data → skf.com/go/17000-24-1

3) Width before the sleeve is driven into the bearing bore

Principa	ıl dimension:	S		Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	B ₂ ³) ≈			
mm				kg		
90	170 200 200	43 45 67	61 61 89	4,6 7,4 11	► 22219 EK 21319 EK ► 22319 EK	AHX 319 AHX 319 AHX 2319
95	165 180 180	52 46 60,3	68 63 77	5 5,4 7,3	► 23120 CCK/W33 ► 22220 EK ► 23220 CCK/W33	AHX 3120 AHX 320 AHX 3220
	215 215	47 73	63 94	9,1 14	21320 EK ► 22320 EK	AHX 320 AHX 2320
105	170 180 180	45 56 69	67 72 91	4,45 6,35 7,7	23022 CCK/W33 ▶ 23122 CCK/W33 24122 CCK30/W33	AHX 322 AHX 3122 AH 24122
	200 200 240	53 69,8 80	72 86 102	7,5 10,5 19,5	► 22222 EK ► 23222 CCK/W33 ► 22322 EK	AHX 3122 AHX 3222 G AHX 2322 G
115	180 180 200	46 60 62	64 82 79	4,8 5,95 8,7	► 23024 CCK/W33 ► 24024 CCK30/W33 ► 23124 CCK/W33	AHX 3024 AH 24024 AHX 3124
	200 215 215	80 58 76	102 79 94	11 9,55 13	24124 CCK30/W33 ► 22224 EK ► 23224 CCK/W33	AH 24124 AHX 3124 AHX 3224 G
	260	86	109	24	► 22324 CCK/W33	AHX 2324 G
125	200 200 210	52 69 64	71 93 82	6,75 8,65 9,6	≥ 23026 CCK/W33> 24026 CCK30/W33> 23126 CCK/W33	AHX 3026 AH 24026 AHX 3126
	210 230 230	80 64 80	104 82 102	11,5 11,5 15,5	24126 CCK30/W33 ► 22226 EK ► 23226 CCK/W33	AH 24126 AHX 3126 AHX 3226 G
	280	93	119	30,5	► 22326 CCK/W33	AHX 2326 G
135	210 210 225	53 69 68	73 93 88	7,35 9,2 11,5	23028 CCK/W3324028 CCK30/W3323128 CCK/W33	AHX 3028 AH 24028 AHX 3128
	225 250 250	85 68 88	109 88 109	14,5 15 20,5	▶ 24128 CCK30/W33▶ 22228 CCK/W33▶ 23228 CCK/W33	AH 24128 AHX 3128 AHX 3228 G
	300	102	130	38	► 22328 CCK/W33	AHX 2328 G
145	225 225 250	56 75 80	77 101 101	8,85 11,5 17	➤ 23030 CCK/W33 24030 CCK30/W33 ➤ 23130 CCK/W33	AHX 3030 AH 24030 AHX 3130 G
	250 270 270	100 73 96	126 101 119	21 19 26	24130 CCK30/W3322230 CCK/W3323230 CCK/W33	AH 24130 AHX 3130 G AHX 3230 G
	320	108	140	45,5	► 22330 CCK/W33	AHX 2330 G

SKF Explorer bearing

► Popular item


1) For additional bearing data → product table, page 792

2) For additional withdrawal sleeve data → skf.com/go/17000-24-1

3) Width before the sleeve is driven into the bearing bore

$\mathbf{9.3}\,$ Spherical roller bearings on a withdrawal sleeve

d₁ **150 – 300** mm

Bearing on an AH sleeve

Bearing on an AOH sleeve

Principa	l dimension:	S		Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	B ₂ ³⁾ ≈			
mm				kg	-	
150	240 240 270	60 80 86	82 106 108	11,5 15 23	► 23032 CCK/W33 ► 24032 CCK30/W33 ► 23132 CCK/W33	AH 3032 AH 24032 AH 3132 G
	270 290 290	109 80 104	135 108 130	28,5 25 34,5	24132 CCK30/W3322232 CCK/W3323232 CCK/W33	AH 24132 AH 3132 G AH 3232 G
	340	114	146	56	22332 CCK/W33	AH 2332 G
160	260 260 280	67 90 88	90 117 109	15 20 25	► 23034 CCK/W33 ► 24034 CCK30/W33 ► 23134 CCK/W33	AH 3034 AH 24034 AH 3134 G
	280 310 310	109 86 110	136 109 140	30 31 41	24134 CCK30/W3322234 CCK/W3323234 CCK/W33	AH 24134 AH 3134 G AH 3234 G
	360	120	152	65	22334 CCK/W33	AH 2334 G
170	280 280 300	74 100 96	98 127 122	19,5 25,5 32	► 23036 CCK/W33 24036 CCK30/W33 ► 23136 CCK/W33	AH 3036 AH 24036 AH 3136 G
	300 320 320	118 86 112	145 110 146	37 32,5 43,5	24136 CCK30/W33 22236 CCK/W33 ▶ 23236 CCK/W33	AH 24136 AH 2236 G AH 3236 G
	380	126	160	76	► 22336 CCK/W33	AH 2336 G
180	290 290 320	75 100 104	102 131 131	21 27,5 38,5	➤ 23038 CCK/W33 24038 CCK30/W33 ➤ 23138 CCK/W33	AH 3038 G AH 24038 AH 3138 G
	320 340 340	128 92 120	159 117 152	46,5 39,5 52,5	24138 CCK30/W33 22238 CCK/W33 ▶ 23238 CCK/W33	AH 24138 AH 2238 G AH 3238 G
	400	132	167	87,5	► 22338 CCK/W33	AH 2338 G

SKF Explorer bearing

▶ Popular item

1) For additional bearing data → product table, page 792

2) For additional withdrawal sleeve data → skf.com/go/17000-24-1

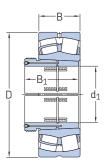
3) Width before the sleeve is driven into the bearing bore

	Ď
ı	

Principa	al dimension:	S		Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	B ₂ ³⁾ ≈			
mm				kg	_	
190	310 310 340	82 109 112	108 140 140	26,5 34,5 48,5	23040 CCK/W3324040 CCK30/W3323140 CCK/W33	AH 3040 G AH 24040 AH 3140
	340	140	171	57,5	► 24140 CCK30/W33	AH 24140
	360	128	160	63	► 23240 CCK/W33	AH 3240
	420	138	177	100	► 22340 CCK/W33	AH 2340
200	340	90	117	36,5	► 23044 CCK/W33	AOH 3044 G
	340	118	152	47,5	► 24044 CCK30/W33	AOH 24044
	370	120	151	61,5	► 23144 CCK/W33	AOH 3144
	370	150	184	76	➤ 24144 CCK30/W33	AOH 24144
	400	108	136	68	22244 CCK/W33	AOH 2244
	400	144	189	93	➤ 23244 CCK/W33	AOH 2344
	460	145	189	130	► 22344 CCK/W33	A0H 2344
220	360	92	123	40,5	➤ 23048 CCK/W33	AOH 3048
	360	118	153	50,5	24048 CCK30/W33	AOH 24048
	400	128	161	76,5	➤ 23148 CCK/W33	AOH 3148
	400	160	195	91,5	► 24148 CCK30/W33	AOH 24148
	440	160	197	120	► 23248 CCK/W33	AOH 2348
	500	155	197	165	► 22348 CCK/W33	AOH 2348
240	400	104	135	56,5	► 23052 CCK/W33	AOH 3052
	400	140	178	75	24052 CCK30/W33	AOH 24052 G
	440	144	179	105	► 23152 CCK/W33	AOH 3152 G
	440	180	218	120	► 24152 CCK30/W33	AOH 24152
	480	130	161	120	22252 CCK/W33	AOH 2252 G
	480	174	213	155	► 23252 CCK/W33	AOH 2352 G
	540	165	213	205	► 22352 CCK/W33	A0H 2352 G
260	420	106	139	62	➤ 23056 CCK/W33	AOH 3056
	420	140	179	79	➤ 24056 CCK30/W33	AOH 24056 G
	460	146	183	110	23156 CCK/W33	AOH 3156 G
	460	180	219	130	► 24156 CCK30/W33	AOH 24156
	500	130	163	125	22256 CCK/W33	AOH 2256 G
	500	176	220	160	23256 CCK/W33	AOH 2356 G
	580	175	220	245	22356 CCK/W33	A0H 2356 G
280	460	118	153	82,5	23060 CCK/W33	AOH 3060
	460	160	202	110	▶ 24060 CCK30/W33	AOH 24060 G
	500	160	200	140	23160 CCK/W33	AOH 3160 G
	500	200	242	180	► 24160 CCK30/W33	AOH 24160
	540	140	178	155	22260 CCK/W33	AOH 2260 G
	540	192	236	200	23260 CCK/W33	AOH 3260 G
300	480	121	157	89	► 23064 CCK/W33	AOH 3064 G
	480	160	202	115	24064 CCK30/W33	AOH 24064 G
	540	176	217	175	► 23164 CCK/W33	AOH 3164 G
	540	218	260	225	24164 CCK30/W33	AOH 24164
	580	150	190	185	22264 CCK/W33	AOH 2264 G
	580	208	254	250	▶ 23264 CCK/W33	AOH 3264 G

SKF Explorer bearing

► Popular item


1) For additional bearing data → product table, page 792

2) For additional withdrawal sleeve data → skf.com/go/17000-24-1

3) Width before the sleeve is driven into the bearing bore

$\boldsymbol{9.3} \hspace{0.1cm} \textbf{Spherical roller bearings on a withdrawal sleeve}$

d₁ **320 – 670** mm

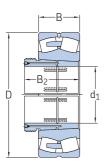
Principal	dimensions	5		Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	B ₂ ³⁾ ≈			
mm				kg	_	
320	520 520 580	133 180 190	171 225 234	120 160 225	≥ 23068 CCK/W33≥ 24068 CCK30/W33≥ 23168 CCK/W33	AOH 3068 G AOH 24068 AOH 3168 G
	580	243	288	295	24168 ECCK30J/W33	AOH 24168
	620	224	273	315	23268 CAK/W33	AOH 3268 G
340	540	134	176	125	23072 CCK/W33	AOH 3072 G
	540	180	226	165	24072 CCK30/W33	AOH 24072
	600	192	238	235	23172 CCK/W33	AOH 3172 G
	600	243	289	295	24172 ECCK30J/W33	AOH 24172
	650	170	238	275	22272 CAK/W33	AOH 3172 G
	650	232	283	345	23272 CAK/W33	AOH 3272 G
360	560	135	180	135	23076 CCK/W33	AOH 3076 G
	560	180	228	170	24076 CCK30/W33	AOH 24076
	620	194	242	250	▶ 23176 CAK/W33	AOH 3176 G
	620	243	291	325	24176 ECAK30/W33	AOH 24176
	680	240	294	390	23276 CAK/W33	AOH 3276 G
380	600	148	193	165	23080 CCK/W33	AOH 3080 G
	600	200	248	220	24080 ECCK30J/W33	AOH 24080
	650	200	250	290	23180 CAK/W33	AOH 3180 G
	650	250	298	365	24180 ECAK30/W33	AOH 24180
	720	256	312	470	23280 CAK/W33	AOH 3280 G
	820	243	312	675	22380 CAK/W33	AOH 3280 G
400	620	150	196	175	23084 CAK/W33	AOH 3084 G
	620	200	252	230	24084 ECAK30/W33	AOH 24084
	700	224	276	375	23184 CKJ/W33	AOH 3184 G
	700	280	332	470	24184 ECAK30/W33	AOH 24184
	760	272	331	550	23284 CAK/W33	AOH 3284 G
420	650	157	205	200	23088 CAK/W33	AOHX 3088 G
	650	212	264	275	24088 ECAK30/W33	AOH 24088
	720	226	281	380	23188 CAK/W33	AOHX 3188 G
	720	280	332	490	24188 ECAK30/W33	AOH 24188
	790	280	341	620	23288 CAK/W33	AOHX 3288 G

SKF Explorer bearing

► Popular item

1) For additional bearing data → product table, page 792

2) For additional withdrawal sleeve data → skf.com/go/17000-24-1


3) Width before the sleeve is driven into the bearing bore

Principa	al dimensions			Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	B ₂ 3) ≈			
mm				kg	_	
440	680	163	213	225	23092 CAK/W33	AOHX 3092 G
	680	218	273	300	24092 ECAK30/W33	AOH 24092
	760	240	296	465	23192 CAK/W33	AOHX 3192 G
	760	300	355	590	24192 ECAK30/W33	AOH 24192
	830	296	360	725	23292 CAK/W33	AOHX 3292 G
460	700	165	217	235	23096 CAK/W33	AOHX 3096 G
	700	218	273	310	24096 ECAK30/W33	AOH 24096
	790	248	307	515	23196 CAK/W33	AOHX 3196 G
	790	308	363	635	24196 ECAK30/W33	AOH 24196
	870	310	376	860	23296 CAK/W33	AOHX 3296 G
480	720	167	221	250	230/500 CAK/W33	AOHX 30/500 G
	720	218	276	325	240/500 ECAK30/W33	AOH 240/500
	830	264	325	610	231/500 CAK/W33	AOHX 31/500 G
	830	325	383	735	241/500 ECAK30/W33	AOH 241/500
	920	336	405	1 020	232/500 CAK/W33	AOHX 32/500 G
500	780	185	242	365	230/530 CAK/W33	AOH 30/530
	780	250	309	455	240/530 ECAK30/W33	AOH 240/530 G
	870	272	337	720	231/530 CAK/W33	AOH 31/530
	870	335	394	885	241/530 ECAK30/W33	AOH 241/530 G
	980	355	424	1 290	232/530 CAK/W33	AOH 32/530 G
530	820	195	252	430	230/560 CAK/W33	AOHX 30/560
	820	258	320	515	240/560 ECAK30/W33	AOH 240/560 G
	920	280	347	850	231/560 CAK/W33	AOH 31/560
	920	355	417	1 060	241/560 ECK30J/W33	AOH 241/560 G
	1 030	365	434	1 500	232/560 CAK/W33	AOHX 32/560
570	870	200	259	480	230/600 CAK/W33	AOHX 30/600
	870	272	336	600	240/600 ECAK30/W33	AOHX 240/600
	980	300	369	1 010	231/600 CAK/W33	AOHX 31/600
	980	375	439	1 290	241/600 ECAK30/W33	AOHX 241/600
	1 090	388	459	1 760	232/600 CAK/W33	AOHX 32/600 G
600	920	212	272	575	230/630 CAK/W33	AOH 30/630
	920	290	356	730	240/630 ECK30J/W33	AOH 240/630 G
	1 030	315	389	1 190	231/630 CAK/W33	AOH 31/630
	1 030	400	466	1 500	241/630 ECAK30/W33	A0H 241/630 G
630	980	230	294	720	230/670 CAK/W33	AOH 30/670
	980	308	374	900	240/670 ECAK30/W33	AOH 240/670 G
	1 090	336	409	1 430	231/670 CAK/W33	AOHX 31/670
	1 090	412	478	1 730	241/670 ECAK30/W33	AOH 241/670
	1 220	438	514	2 500	232/670 CAK/W33	AOH 32/670 G
670	1 030	236	302	800	230/710 CAK/W33	AOHX 30/710
	1 030	315	386	1 010	240/710 ECAK30/W33	AOH 240/710 G
	1 150	345	421	1 650	231/710 CAK/W33	AOHX 31/710
	1 150	438	509	2 040	241/710 ECAK30/W33	AOH 241/710
	1 280	450	531	2 810	232/710 CAK/W33	AOH 32/710 G
	1 200	130	331	2 010		

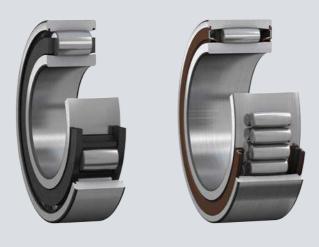
SKF Explorer bearing
1) For additional bearing data → product table, page 792
2) For additional withdrawal sleeve data → skf.com/go/17000-24-1
3) Width before the sleeve is driven into the bearing bore

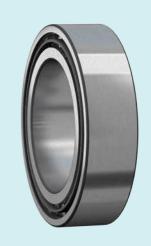
$\mathbf{9.3}\,$ Spherical roller bearings on a withdrawal sleeve

d₁ **710 – 1 000** mm

Principa	al dimensions			Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	B ₂ ³⁾ ≈			
mm				kg	-	
710	1 090 1 090 1 220	250 335 365	316 408 441	950 1 200 1 930	230/750 CAK/W33 240/750 ECAK30/W33 231/750 CAK/W33	AOH 30/750 AOH 240/750 G AOH 31/750
	1 220	475	548	2 280	241/750 ECAK30/W33	A0H 241/750 G
750	1 150 1 150 1 280	258 345 375	326 423 456	1 100 1 380 2 200	230/800 CAK/W33 240/800 ECAK30/W33 231/800 CAK/W33	AOH 30/800 AOH 240/800 G AOH 31/800
	1 280	475	553	2 540	241/800 ECAK30/W33	AOH 241/800 G
800	1 220 1 220 1 360	272 365 500	343 445 600	1 250 1 670 3 050	230/850 CAK/W33 240/850 ECAK30/W33 241/850 ECAK30F/W33	AOH 30/850 AOH 240/850 G AOH 241/850
850	1 280 1 280 1 420	280 375 515	355 475 620	1 450 1 850 3 700	230/900 CAK/W33 240/900 ECAK30/W33 241/900 ECAK30F/W33	AOH 30/900 AOH 240/900 AOH 241/900
900	1 360 1 360 1 500	300 412 545	375 512 650	1 720 2 300 3 950	230/950 CAK/W33 240/950 CAK30F/W33 241/950 ECAK30F/W33	AOH 30/950 AOH 240/950 AOH 241/950
950	1 420 1 580 1 580	412 462 580	519 547 695	2 500 3 950 4 800	240/1000 CAK30F/W33 231/1000 CAKF/W33 241/1000 ECAK30F/W33	AOH 240/1000 AOH 31/1000 AOH 241/1000
1 000	1 500	438	548	2 950	240/1060 CAK30F/W33	A0H 240/1060

SKF Explorer bearing


1) For additional bearing data → product table, page 792


2) For additional withdrawal sleeve data → skf.com/go/17000-24-1

3) Width before the sleeve is driven into the bearing bore

9.3

CARB toroidal roller bearings

10 CARB toroidal roller bearings

Designs and variants Basic design bearings Sealed bearings Cages. Customized bearings	844 844 845 845 845	
Bearing data	846	
Loads (Minimum load, equivalent dynamic bearing load, equivalent static bearing load)	849	
Temperature limits	850	
Permissible speed	850	
Design considerations Verification of axial displacement Free space on both sides of the bearing. Offset mounting Bearings on sleeves Appropriate bearing housings	850 850 852 852 852 852	
Mounting	853 853	
Designation system	855	
Product tables 10.1 CARB toroidal roller bearings	856 868 Other CARB toroidal roller bearin	ngs

10

1059

872 NoWear coated bearings

SKF 841

10

10 CARB toroidal roller bearings

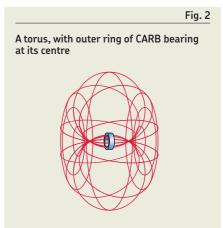
More information

General bearing knowledge	17
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Seat tolerances for standard	
conditions	148
Selecting internal clearance	182
Sealing, mounting and	
dismounting	193

Mounting instructions for individual bearings \rightarrow skf.com/mount

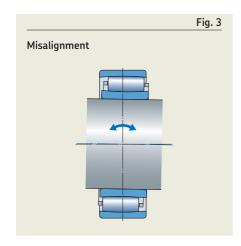
SKF Drive-up Method

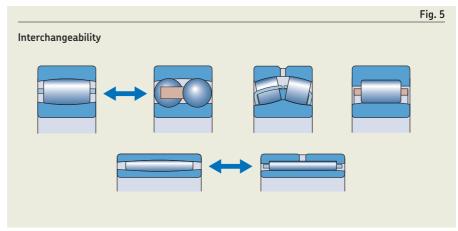
→ skf.com/drive-up

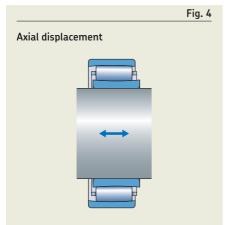

SKF bearing maintenance handbook ISBN 978-91-978966-4-1

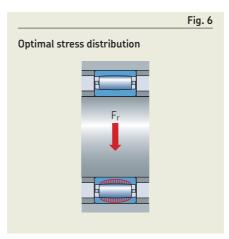
CARB toroidal roller bearings (fig. 1) have one row of long, slightly barrel-shaped symmetrical rollers and torus-shaped raceway profiles (fig. 2). They are non-locating bearings and accommodate exclusively radial loads. CARB bearings are often used to replace the non-locating spherical roller bearing in a locating/non-locating bearing arrangement.

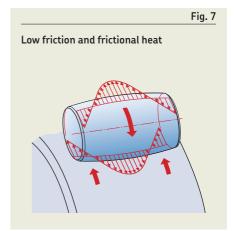
Bearing features

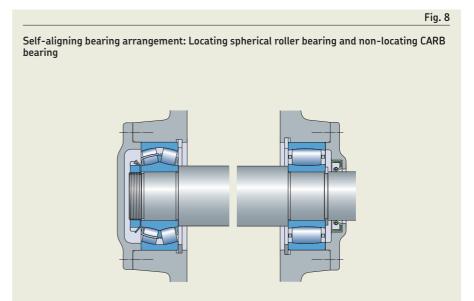

- Accommodate misalignment
 CARB bearings are self-aligning like spherical roller bearings or self-aligning ball bearings (fig. 3).
- Accommodate axial displacement CARB bearings compensate for thermal expansion of the shaft like cylindrical or needle roller bearings (fig. 4).




- Wide assortment of dimension series CARB bearings are available with the same boundary dimensions as corresponding spherical roller bearings, self-aligning ball bearings, cylindrical roller bearings and needle roller bearings (fig. 5).
- Long service life
 The special roller profile prevents stress peaks at the roller ends (fig. 6).
- Low friction
 Self-guiding rollers keep friction and frictional heat at low levels (fig. 7).
- Improved wear resistance
 All CARB bearings are upgraded SKF Explorer bearings (page 7).
- Low noise
 CARB bearings can reduce noise and vibration levels, for example, in paper machines and fans.


SKF.


842



Long bearing system life

CARB bearings provide benefits in self-aligning bearing arrangements (fig. 8). With a CARB bearing in the non-locating position, there are no internally induced axial forces, which results in multiple benefits:

- Less load extends the service life.
- The bearings run cooler, the lubricant lasts longer and maintenance intervals can be extended.
- Noise and vibration levels can be reduced.

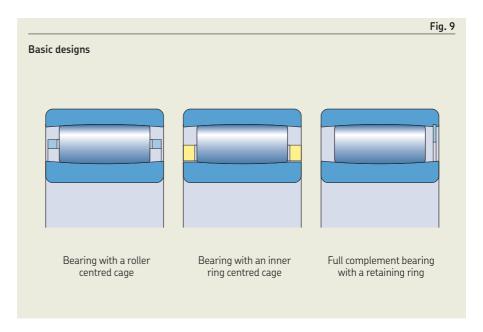
Learn more about the SKF self-aligning bearing arrangement in the video available at skf.com/go/17000-10 (4 min).

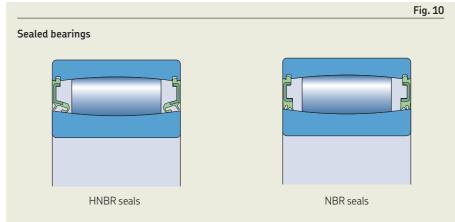
Designs and variants

SKF standard assortment

The SKF standard assortment of CARB toroidal roller bearings matches the assortment of spherical roller bearings. It also includes bearings with a low cross-sectional height to meet requirements for minimum radial space. All CARB bearings are upgraded SKF Explorer bearings and are shown coloured blue in the product tables. The standard assortment includes:

- basic design bearings with cylindrical or tapered bore
 - taper 1:12 (designation suffix K)
 - taper 1:30 (designation suffix K30)
- sealed bearings


For sizes and variants not listed in the product tables, contact SKF.


Basic design bearings

Depending on their series and size the following basic design CARB toroidal roller bearings are available as standard (fig. 9):

- bearings with a roller centred cage
- bearings with an inner ring centred cage
- full complement bearings with a retaining ring

The load carrying capacity of full complement CARB bearings is considerably higher than that of same-sized bearings with a cage.

10

Sealed bearings

- are available, as standard, as small and medium-size full complement bearings with a cylindrical bore
- are typically used for low speeds and very heavy loads
- are suitable for both inner or outer ring rotation
- are fitted with a double-lip contact seal on one or both sides in a recess on the outer ring, sealing against the inner ring raceway
- are available with two different seal materials / designs (fig. 10):
 - sheet steel reinforced HNBR (designation suffix CS5)
 - sheet steel reinforced NBR (designation suffix NS) with enhanced sealing effectiveness – mainly intended for oscillating or very low speed applications

Bearings sealed on both sides are lubricated for the life of the bearing and are virtually maintenance-free. They are filled with one of the following greases (table 1):

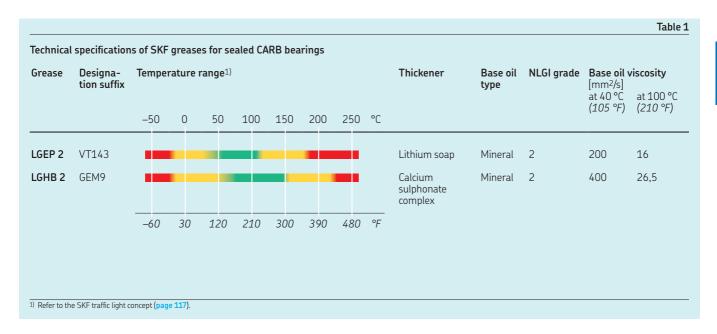
- bearings with HNBR seals → SKF LGHB 2 grease as standard
- bearings with NBR seals → SKF LGEP 2 grease as standard
- other SKF greases on request

For additional information about greases, refer to *Selecting a suitable SKF grease*, page 116.

Cages

CARB bearings, if not a full complement of rollers, are fitted with one of the following cages:

- glass fibre reinforced PA46 cage, window-type, roller centred (designation suffix TN9)
- stamped steel cage, window-type, roller centred (no designation suffix)
- machined brass cage, window-type, roller centred (designation suffix M)
- machined brass cage, inner ring centred (designation suffix MB)

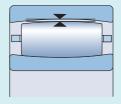

When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For additional information about the suitability of cages, refer to *Cages*, page 187.

Customized bearings

SKF can customize bearings to meet the needs of applications where the bearings are subjected to unique operating conditions. For example, bearings for:

- paper mills or coaters in high precision execution
- very arduous operating conditions, e.g. continuous casters
- high temperature applications

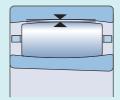
For additional information about application-specific CARB bearings, contact the SKF application engineering service.



Bearing data

Dearing	Jaca
Dimension standards	Boundary dimensions: ISO 15
Tolerances	Normal
	d ≤ 300 mm • width tolerance at least 50% tighter than ISO standard (table 2) • P5 geometrical tolerances
For additional information	 d > 300 mm P5 geometrical tolerances on request (designation suffix CO8)
→ page 35	Values: ISO 492 (table 2, page 38, to table 4, page 40)
Internal clearance	Normal Check availability of C2, C3, C4 or C5 clearance classes
	Values: ISO 5753-1 • cylindrical bore (table 3) • tapered bore (table 4, page 848)
For additional	Values are valid for unmounted bearings under zero measuring load, with no misalignment, no axial displacement between the inner and outer rings, and the rollers centred.
information → page 182	Axial displacement of one bearing ring relative to the other reduces the radial internal clearance. Typical clearance window → diagram 1, page 850.
Permissible misalignment	0,5° For misalignment > 0,5°, contact the SKF application engineering service.
Permissible axial displacement	s _{1 max} , s _{2 max} (product table, page 856)
(fig. 11, page 850)	The actual internal clearance can limit the possible axial displacement. Misalignment reduces the possible axial displacement. For details, refer to <i>Verification of axial displacement</i> , page 850. Free space must be provided on both sides of the bearing (<i>Free space on both sides of the bearing</i> , page 852).

	Table 2
Width tolerand	ces for CARB bearings
Bore diameter d > ≤	$\begin{array}{cc} \textbf{Width tolerances} \\ t_{\text{ABs}} \\ \textbf{U} & \textbf{L} \end{array}$
mm	μm
18 50 50 80 80 250 250 300	0 -40 0 -60 0 -80 0 -100


Radial internal clearance of CARB bearings with a cylindrical bore

Bore dia	ameter	Radial i C2	nternal clear	ance Normal		C3		C4		C5	
>	≤	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
mm		μm									
18	24	15	30	25	40	35	55	50	65	65	85
24	30	15	35	30	50	45	60	60	80	75	95
30	40	20	40	35	55	55	75	70	95	90	120
40	50	25	45	45	65	65	85	85	110	105	140
50	65	30	55	50	80	75	105	100	140	135	175
65	80	40	70	65	100	95	125	120	165	160	210
80	100	50	85	80	120	120	160	155	210	205	260
100	120	60	100	100	145	140	190	185	245	240	310
120	140	75	120	115	170	165	215	215	280	280	350
140	160	85	140	135	195	195	250	250	325	320	400
160	180	95	155	150	220	215	280	280	365	360	450
180	200	105	175	170	240	235	310	305	395	390	495
200	225	115	190	185	265	260	340	335	435	430	545
225	250	125	205	200	285	280	370	365	480	475	605
250	280	135	225	220	310	305	410	405	520	515	655
280	315	150	240	235	330	330	435	430	570	570	715
315	355	160	260	255	360	360	485	480	620	620	790
355	400	175	280	280	395	395	530	525	675	675	850
400	450	190	310	305	435	435	580	575	745	745	930
450	500	205	335	335	475	475	635	630	815	810	1 015
500	560	220	360	360	520	510	690	680	890	890	1 110
560	630	240	400	390	570	560	760	750	980	970	1 220
630	710	260	440	430	620	610	840	830	1 080	1 070	1 340
710	800	300	500	490	680	680	920	920	1 200	1 200	1 480
800	900	320	540	530	760	750	1 020	1 010	1 330	1 320	1 660
900	1 000	370	600	590	830	830	1 120	1 120	1 460	1 460	1 830
1 000	1 120	410	660	660	930	930	1 260	1 260	1 640	1 640	2 040
1 120	1 250	450	720	720	1 020	1 020	1 380	1 380	1 800	1 800	2 240
1 250	1 400	490	800	800	1 130	1 130	1 510	1 510	1 970	1 970	2 460
1 400	1 600	570	890	890	1 250	1 250	1 680	1 680	2 200	2 200	2 740
1 600	1 800	650	1 010	1 010	1390	1390	1870	1870	2 430	2 430	3 000

SKF. 847

Radial internal clearance of CARB bearings with a tapered bore

Bore di	lore diameter Radial internal clearance												
d		C2	memat etean	Normal		C3		C4		C5			
>	≤	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.		
mm		μm											
18	24	15	35	30	45	40	55	55	70	65	85		
24	30	20	40	35	55	50	65	65	85	80	100		
30	40	25	50	45	65	60	80	80	100	100	125		
40	50	30	55	50	75	70	95	90	120	115	145		
50	65	40	65	60	90	85	115	110	150	145	185		
65	80	50	80	75	110	105	140	135	180	175	220		
80	100	60	100	95	135	130	175	170	220	215	275		
100	120	75	115	115	155	155	205	200	255	255	325		
120	140	90	135	135	180	180	235	230	295	290	365		
140	160	100	155	155	215	210	270	265	340	335	415		
160	180	115	175	170	240	235	305	300	385	380	470		
180	200	130	195	190	260	260	330	325	420	415	520		
200	225	140	215	210	290	285	365	360	460	460	575		
225	250	160	235	235	315	315	405	400	515	510	635		
250	280	170	260	255	345	340	445	440	560	555	695		
280	315	195	285	280	380	375	485	480	620	615	765		
315	355	220	320	315	420	415	545	540	680	675	850		
355	400	250	350	350	475	470	600	595	755	755	920		
400	450	280	385	380	525	525	655	650	835	835	1 005		
450	500	305	435	435	575	575	735	730	915	910	1 115		
500	560	330	480	470	640	630	810	800	1 010	1 000	1 230		
560	630	380	530	530	710	700	890	880	1 110	1 110	1 350		
630	710	420	590	590	780	770	990	980	1 230	1 230	1 490		
710	800	480	680	670	860	860	1 100	1 100	1 380	1 380	1 660		
800	900	520	740	730	960	950	1 220	1 210	1 530	1 520	1 860		
900	1 000	580	820	810	1 040	1 040	1 340	1 340	1 670	1 670	2 050		
1 000	1 120	640	900	890	1 170	1 160	1 500	1 490	1 880	1 870	2 280		
1 120	1 250	700	980	970	1 280	1 270	1 640	1 630	2 060	2 050	2 500		
1 250	1 400	770	1 080	1 080	1 410	1 410	1 790	1 780	2 250	2 250	2 740		
1 400	1 600	870	1 200	1 200	1 550	1 550	1 990	1 990	2 500	2 500	3 050		
1 600	1 800	950	1320	1 320	1690	1 690	2 180	2 180	2 730	2 730	3 310		

848 **SKF**.

Loads

	Bearings with a cage	Full complement bearings
Minimum load	$F_{rm} = 0,007 C_0$	F _{rm} = 0,01 C ₀
	Oil lubricated bearings:	
	$n/n_r \le 0.3$ \rightarrow $F_{rm} = 0.002 C_0$	
	$0.3 < n/n_r \le 2 \rightarrow F_{rm} = 0.002 C_0 (1 + 2 \sqrt{\frac{n}{n_r} - 0.3})$	
For additional information → page 106	When starting up at low temperatures or when the lubricant is high $F_{rm} = 0,007 C_0$ and $0,01 C_0$, respectively, may be required.	y viscous, greater minimum loads than
Equivalent dynamic bearing load	P = F _r	
For additional information → page 91		
Equivalent static bearing load	$P_0 = F_r$	
For additional information → page 105		
	Symbols	
	C ₀ basic static load rating [kN] (product table, page 856) F _r radial load [kN] F _{rm} minimum radial load [kN] P equivalent dynamic bearing load [kN] P ₀ equivalent static bearing load [kN] n rotational speed [r/min] n _r reference speed [r/min] (product table)	

The permissible operating temperature for CARB bearings can be limited by:

- the dimensional stability of the bearing rings
- the cage
- the seals
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings

The rings of CARB bearings are heat stabilized up to 200 °C (390 °F).

Cages

Steel or brass cages can be used at the same operating temperatures as the bearing rings. For temperature limits of polymer cages, refer to *Polymer cages*, page 188.

Seals

The permissible operating temperature for seals depends on the seal material:

- HNBR: -40 to +150 °C (-40 to +300 °F)
- NBR: -40 to +90 °C (-40 to +195 °F)
 Temperatures up to 120 °C (250 °F) can be tolerated for brief periods.

Typically, temperature peaks are at the seal lip.

Lubricants

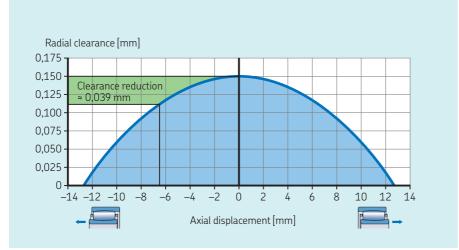
Temperature limits for greases used in sealed CARB bearings are provided in **table 1**, **page 845**. For temperature limits of other SKF greases, refer to *Selecting a suitable SKF grease*, **page 116**.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Permissible speed

The speed ratings in the **product table** indicate:

- the **reference speed**, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the limiting speed, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds


For additional information, refer to *Operating temperature and speed*, **page 130**.

Open bearing with a cage Open bearing with a cage Open full complement bearing

Diagram 1

Fig. 11

The clearance window for a C 3052 CARB bearing with a maximum operating clearance of 0,150 mm

Design considerations

Verification of axial displacement

The actual internal clearance can limit the possible axial displacement. Misalignment reduces the possible axial displacement. Therefore, the actual axial displacement should be verified.

1 Determine the required axial displacement

- Thermal expansion of the shaft can be estimated using
 - $s_{ren} = \alpha L \Delta T$
- Where additional effects need to be considered, advanced simulation or tests may be required.

2 Determine the maximum misalignment

- Estimate the misalignment β of the housing seats based on specified tolerances.
- Where additional effects need to be considered, advanced simulation or tests may be required.

3 Check the permissible axial displacement

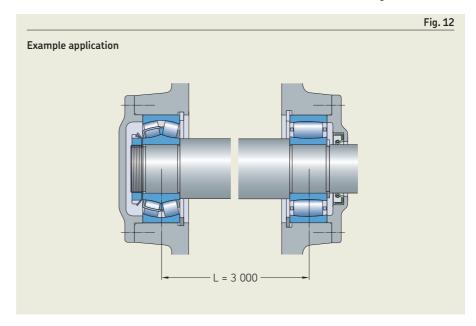
Check the permissible axial displacement in both directions, depending on the bearing used (fig. 11):

- open bearing with a cage
- full complement bearing with a retaining ring
- sealed bearing

$$s_{req} < s_1 - \beta k_1 B$$

or

$$s_{req} < s_2 - \beta k_1 B$$


Where s_{req} is too large, consider *Offset* mounting, page 852.

4 Check the internal clearance

 Determine the clearance reduction caused by axial displacement.

$$C_{red} = \frac{k_2 s_{req}^2}{B}$$

 Determine the amount of clearance reduction from other effects and evaluate the residual clearance (Selecting initial internal clearance, page 183).

Symbols

B bearing width [mm]

C_{red} reduction of radial clearance as a result of an axial displacement from a centred position [mm]

k₁ misalignment factor (product table, page 856)

- L shaft length between the bearings [mm]
- s₁ axial displacement limit in bearings with a cage or in full complement bearings when displacing away from the retaining ring [mm] (fig. 11)
- s₂ axial displacement limit in sealed and full complement bearings when displacing toward the seal or retaining ring respectively [mm] (fig. 11)

s_{req} required axial displacement from a centred position [mm]

- α thermal coefficient of expansion [°C-1] = 12×10^{-6} for steel
- β misalignment [°]
- ΔT temperature difference [°C]

Calculation example

Application (fig. 12)

- Bearing C 3040
 - d = 200 mm
 - D = 310 mm
 - B = 82 mm
 - Normal clearance: min. 170 μm
 - $s_1 = 15,2 \text{ mm}$
- $-k_1 = 0,123$
- $k_2 = 0.095$
- Shaft length L = 3 000 mm
- Temperature range for the shaft: 20 to 90 °C (70 to 195 °F)
- Max. misalignment: 0,46°

Verification of axial displacement:

- 1 Required axial displacement $s_{req} = \alpha L \Delta T$ $s_{req} = 12 \times 10^{-6} \times 3000 \times (90 - 20)$ = 2,5 mm
- 2 Max. misalignment Input provided: 0,46°
- displacement $s_{req} < s_1 - \beta k_1 B$ $2,5 < 15,2 - 0,46 \times 0,123 \times 82 \approx 10,5$ \Rightarrow okay
- 4 Checking the internal clearance

3 Checking the permissible axial

$$C_{\text{red}} = \frac{k_2 \, s_{\text{req}}^2}{B}$$

$$C_{\text{red}} = \frac{0,095 \times 2,5^2}{82} \approx 0,007$$

Min. internal clearance when the bearing is displaced:

$$170 - 7 = 163 \, \mu m$$

Determine the clearance reduction caused by other effects (e.g. interference fit, temperature difference between inner and outer rings) and evaluate the residual clearance (Selecting initial internal clearance, page 183)

To enable axial displacement of the shaft relative to the housing, free space must be provided on both sides of the bearing as indicated in fig. 13. The value for the width of this free space is based on:

- the value C_a (product table, page 856)
- the expected axial displacement of the bearing rings from the central position during operation
- the displacement of the rings caused by misalignment

Calculating the free space required on both sides of the bearing

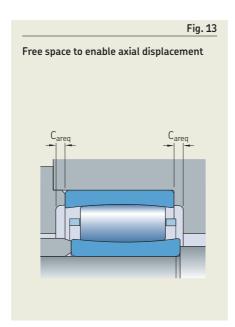
$$C_{areg} = C_a + 0.5 (s + \beta k_1 B)$$

where

B = bearing width [mm]

C_a = minimum width of space required on both sides of the bearing [mm] (product table)

C_{areq} = width of space required on both sides of the bearing [mm]

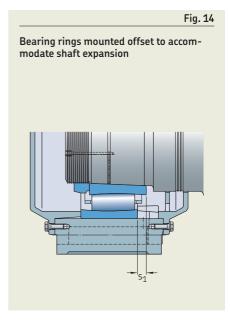

k₁ = misalignment factor (product table)

s = relative axial displacement of rings, e.g. thermal shaft expansion [mm]

β = misaligment [°]

Offset mounting

Where considerable thermal changes in shaft length are a possibility, the inner ring can be mounted offset, relative to the outer ring, up to the axial displacement limit \mathbf{s}_1 or \mathbf{s}_2 (fig. 11, page 850) in the direction opposite to the expected axial displacement (fig. 14). The extended permissible axial displacement is used, for example, in the self-aligning bearing arrangements of drying cylinders in paper machines.


Bearings on sleeves

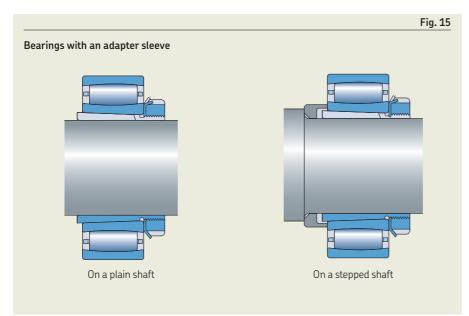
CARB bearings with a tapered bore can be mounted with:

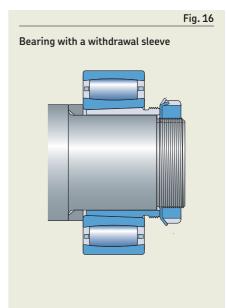
- an adapter sleeve on plain or stepped shafts (fig. 15):
 - Adapter sleeves are supplied complete with a locking device.
 - Use appropriate SKF adapter sleeve assemblies to prevent the locking device from interfering with the cage (product table, page 868).
- a withdrawal sleeve on stepped shafts (fig. 16)

Check axial displacement carefully, as it could be that s₁ (**product table**, **page 856**) cannot be fully realized.

For additional information about sleeves, refer to *Adapter sleeves*, page 1065, and *Withdrawal sleeves*, page 1087.

Appropriate bearing housings


SKF standard bearing housings are available for most CARB bearings in the C 30, C 31, C 22 and C 23 series.


The two common arrangements when using standard housings are:

- CARB bearings with a tapered bore on an adapter sleeve and a plain shaft
- CARB bearings with a cylindrical bore on a stepped shaft

The comprehensive assortment of SKF bearing housings is provided online at skf.com/housings.

Mounting

During handling, the rings and roller complement of CARB toroidal roller bearings may be axially displaced from their normal position. This is especially likely where CARB bearings are mounted with the shaft or housing in the vertical position:

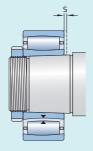
- 1 The roller complement, together with the inner or outer ring, will move downward and result in no more clearance.
- 2 When the bearing rings expand or contract as a result of an interference fit, preload is likely to result.

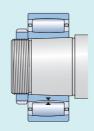
Therefore, wherever possible:

- Mount CARB bearings with the shaft or housing in the horizontal position.
- Rotate the inner or outer ring to align the rollers during mounting.

Where this is not feasible, use a bearing handling tool or other device to keep the bearing components arranged centrally.

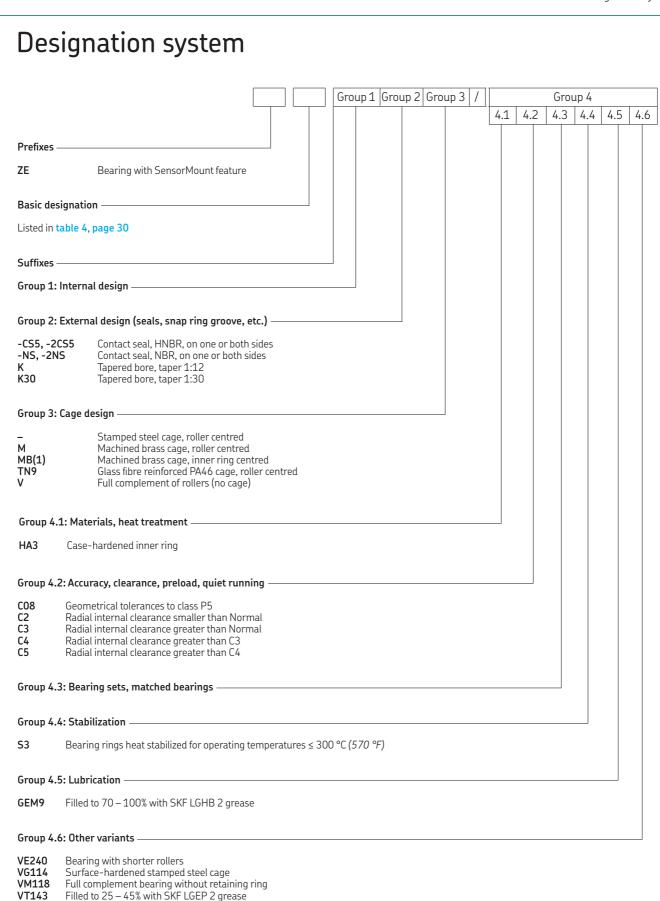
Mounting bearings with a tapered bore


Bearings with a tapered bore are mounted with an interference fit, by using one of the following methods:

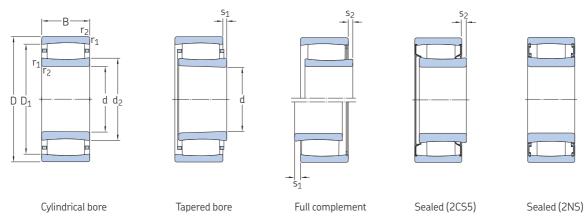

- 1 Measuring the clearance reduction (table 5, page 854)
- 2 Measuring the lock nut tightening angle (table 5)
- 3 Measuring the axial drive-up (table 5)
- 4 Applying the SKF Drive-up Method For bearings with d > 100 mm, SKF recommends using the SKF Drive-up Method. This is a fast, reliable and safe method to achieve the appropriate interference fit. Additional information is available online at skf.com/drive-up.
- 5 Measuring the inner ring expansion Additional information is available online at skf.com/sensormount.

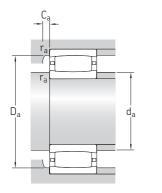
For additional information about these mounting methods, refer to Mounting bearings with a tapered bore, page 203, or the SKF bearing maintenance handbook.

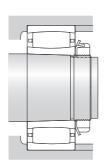
Drive-up data for CARB bearings with a tapered bore



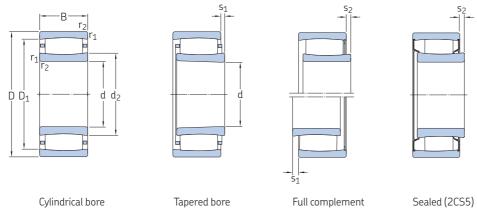
Bore dia	ameter		on of radial clearance	Axial dr	rive-up ¹⁾²⁾			Lock nut tightening a	angle ²⁾
d >	≤	min.	max.	s Taper 1 min.	:12 max.	Taper 1 min.	:30 max.	α Taper 1:12	
mm		mm		mm				0	
24 30 40	30 40 50	0,01 0,015 0,02	0,015 0,02 0,025	0,25 0,3 0,37	0,29 0,35 0,44	- 0,75 0,95	_ 0,9 1,1	100 115 130	
50 65 80	65 80 100	0,025 0,035 0,04	0,035 0,04 0,05	0,45 0,55 0,66	0,54 0,65 0,79	1,15 1,4 1,65	1,35 1,65 2	115 130 150	
100 120 140	120 140 160	0,05 0,06 0,07	0,06 0,075 0,085	0,79 0,93 1,05	0,95 1,1 1,3	2 2,3 2,65	2,35 2,8 3,2		
160 180 200	180 200 225	0,08 0,09 0,1	0,095 0,105 0,12	1,2 1,3 1,45	1,45 1,6 1,8	3 3,3 3,7	3,6 4 4,45		the recommended values the inner ring from
225 250 280	250 280 315	0,11 0,12 0,135	0,13 0,15 0,165	1,6 1,8 2	1,95 2,15 2,4	4 4,5 4,95	4,85 5,4 6	creeping rect radia operation	, but does not ensure cor- al internal clearance in n. Additional influences bearing housing fit and
315 355 400	355 400 450	0,15 0,17 0,195	0,18 0,21 0,235	2,15 2,5 2,8	2,65 3 3,4	5,4 6,2 7	6,6 7,6 8,5	the inner considere the beari	ture differences between and outer rings must be ed carefully when selectin ng radial internal clear-
450 500 560	500 560 630	0,215 0,245 0,275	0,265 0,3 0,34	3,1 3,4 3,8	3,8 4,1 4,65	7,8 8,4 9,5	9,5 10,3 11,6		s (Selecting initial internal e, page 183).
630 710 800	710 800 900	0,31 0,35 0,395	0,38 0,425 0,48	4,25 4,75 5,4	5,2 5,8 6,6	10,6 11,9 13,5	13 14,5 16,4		
900 1 000 1 120	1 000 1 120 1 250	0,44 0,49 0,55	0,535 0,6 0,67	6 6,4 7,1	7,3 7,8 8,7	15 16 17,8	18,3 19,5 21,7		
1 250 1 400 1 600	1 400 1 600 1 800	0,61 0,7 0,79	0,75 0,85 0,96	8 9,1 10,2	9,7 11,1 12,5	19,9 22,7 25,6	24,3 27,7 31,2		


¹⁾ Not valid for the SKF Drive-up Method.
2) The listed values are valid only for solid steel shafts and general applications. They are to be used as guideline values only, as it is difficult to establish an exact starting position. Also, the axial drive-up, s, differs slightly between the different bearings series.


10.1 CARB toroidal roller bearings

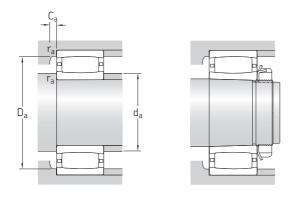

d **30 – 70** mm

		•					·		• •	, ,
Principal dimensions		nsions		Basic load ratings Fatique dynamic static load limit			tings e Limiting speed	Mass	Designations Bearing with cylindrical bore	tapered bore
d	D	В	C C_0		P_{u}	speed speed			cylinurical bore	tapered bore
mm			kN		kN	r/min		kg	_	
30	55 62 62	45 20 20	134 69,5 76,5	180 62 71	21,2 7,2 8,3	- 11 000 -	3 200 15 000 6 000	0,49 0,28 0,29	► C 6006 V ► C 2206 TN9 C 2206 V	_ C 2206 KTN9 _
35	72 72	23 23	83 95	80 96	9,3 11,2	9 500 -	13 000 5 300	0,44 0,46	► C 2207 TN9 C 2207 V	C 2207 KTN9
40	62 80 80	22 23 23	76,5 90 102	100 86,5 104	11,8 10,2 12,2	- 8 000 -	4 300 11 000 4 500	0,25 0,51 0,53	► C 4908 V ► C 2208 TN9 ► C 2208 V	_ C 2208 KTN9 _
45	68 85 85	40 23 23	132 93 106	200 93 110	23,6 10,8 12,9	- 7 500 -	2 600 11 000 4 300	0,53 0,56 0,58	C 6909 V ► C 2209 TN9 C 2209 V	_ ► C 2209 KTN9 —
50	72 72 80	22 40 30	86,5 140 116	125 224 140	14,6 26 16,3	- - 5 600	3 600 2 400 7 500	0,29 0,54 0,55	C 4910 V • C 6910 V • C 4010 TN9	- - -
	80 90 90	30 23 23	137 98 114	176 100 122	20,8 11,8 14,3	- 7 000 -	3 000 9 500 3 800	0,58 0,6 0,63	C 4010 V C 2210 TN9 C 2210 V	_ ► C 2210 KTN9 —
55	80 100 100	45 25 25	180 116 132	300 114 134	35,5 13,4 15,6	- 6 300 -	2 200 9 000 3 400	0,78 0,8 0,82	C 6911 V C 2211 TN9 C 2211 V	_ ► C 2211 KTN9 C 2211 KV
60	85 85 110	45 45 28	190 190 143	335 335 156	39 39 18,3	- - 5 600	- 1 900 7 500	0,83 0,83 1,1	C 6912-2NSVC 6912 VC 2212 TN9	- - - C 2212 KTN9
	110	28	166	190	22,4	-	2 800	1,15	C 2212 V	C 2212 KV
65	100 120 120	35 31 31	102 180 204	173 180 216	20,4 21,2 25,5	- 5 300 -	150 7 500 2 400	1,05 1,45 1,5	C 4013-2C55V/GEN ► C 2213 TN9 C 2213 V	19 – ► C 2213 KTN9 C 2213 KV
70	125 125 150	31 31 51	186 212 405	196 228 430	22,8 26,5 49	5 000 - 3 800	7 000 2 400 5 000	1,5 1,55 4,3	► C 2214 TN9 C 2214 V ► C 2314	C 2214 KTN9 - C 2314 K



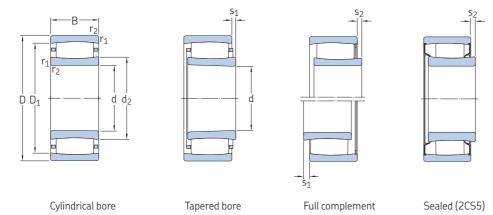
Dimensions						Abutm	ent and fi	Calculation factors					
d	d ₂ ≈	D ₁ ≈	r _{1,2} min.	s ₁ 1) max.	s ₂ 1) max.	d _a min.	d _a max.	D _a min.	D _a max.	C _a ²⁾ min.	r _a max.	k ₁	k ₂
mm						mm						-	
30	38,5	47,3	1	7,9	4,9	34,6	43	-	50,4	-	1	0,102	0,096
	37,4	53,1	1	4,5	-	35,6	37,4	50,6	56,4	0,3	1	0,101	0,111
	37,4	53,1	1	4,5	1,5	35,6	49	-	56,4	-	1	0,101	0,111
35	44,8 44,8	60,7 60,7	1,1 1,1	5,7 5,7	- 2,7	42 42	44,8 57	58,5 -	65 65	0,1 -	1	0,094 0,094	0,121 0,121
40	46,1	55,3	0,6	4,7	1,7	43,2	52	-	58,8	-	0,6	0,099	0,114
	52,4	69,9	1,1	7,1	-	47	52,4	67,1	73	0,3	1	0,093	0,128
	52,4	69,9	1,1	7,1	4,1	47	66	-	73	-	1	0,093	0,128
45	52	59,5	0,6	9,4	6,4	48,2	55	-	64,8	-	0,6	0,091	0,113
	55,6	73,1	1,1	7,1	-	52	55,6	70,4	78	0,3	1	0,095	0,128
	55,6	73,1	1,1	7,1	4,1	52	69	-	78	-	1	0,095	0,128
50	56,9	66,1	0,6	4,7	1,7	53,2	62	-	68,8	-	0,6	0,103	0,114
	57,5	65	0,6	9,4	6,4	53,2	61	-	68,8	-	0,6	0,093	0,113
	57,6	70,8	1	6	-	54,6	57,6	69,7	75,4	0,1	1	0,103	0,107
	57,6	70,8	1	6	3	54,6	67	-	75,4	-	1	0,103	0,107
	61,9	79,4	1,1	7,1	-	57	61,9	76,7	83	-0,8	1	0,097	0,128
	61,9	79,4	1,1	7,1	3,9	57	73	-	83	-	1	0,097	0,128
55	62,7	71,5	1	7,9	4,9	59,6	67	-	75,4	-	1	0,107	0,096
	65,8	86,7	1,5	8,6	-	64	65,8	83,1	91	0,3	1,5	0,094	0,133
	65,8	86,7	1,5	8,6	5,4	64	80	-	91	-	1,5	0,094	0,133
60	68,7	77,5	1	-	0,5	64,6	68,7	-	80,4	-	1	0,108	0,096
	68,7	77,5	1	7,9	4,7	64,6	72	-	80,4	-	1	0,108	0,096
	77,1	97,9	1,5	8,5	-	69	77,1	94,7	101	0,3	1,5	0,1	0,123
	77,1	97,9	1,5	8,5	5,3	69	91	-	101	-	1,5	0,1	0,123
65	78,6	87,5	1,1	-	5,9	71	78,6	-	94	-	1	0,071	0,181
	79	106	1,5	9,6	-	74	79	102	111	0,2	1,5	0,097	0,127
	79	106	1,5	9,6	5,3	74	97	-	111	-	1,5	0,097	0,127
70	83,7	111	1,5	9,6	-	79	83,7	107	116	0,4	1,5	0,098	0,127
	83,7	111	1,5	9,6	5,3	79	102	-	116	-	1,5	0,098	0,127
	91,4	130	2,1	9,1	-	82	106	119	138	2,2	2	0,11	0,099

^{1) →} Verification of axial displacement, page 850
2) → Free space on both sides of the bearing, page 852, negative values used only for calculation

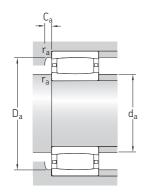

10.1 CARB toroidal roller bearings

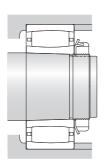
d **75 – 110** mm

Princip	oal dime	nsions		oad ratings c static	Fatique load limit		Limiting	Mass		Designations Bearing with		
l	D	В	С	C_0	P_{u}	speed	speed			cylindrical bore	tapered bore	
nm			kN		kN	r/min		kg		-		
5	105 105 105	40 40 54	166 204 204	232 325 325	30 38 37,5	- - -	130 1 900 140	3,9 1,1 1,4		C 5915-2CS5V/GEM9 C 5915 V C 6915-2CS5V/GEM9	- - -	
	105 115 130	54 40 31	204 208 196	325 345 208	37,5 40,5 24	- - 4 800	1 900 2 000 6 700	1,4 1,6 1,6	•	C 6915 V/VE240 C 4015 V C 2215	- - ► C 2215 K	
	130 160	31 55	220 425	240 465	28 52	- 3 600	2 200 4 800	1,65 5,3	•	C 2215 V C 2315	C 2215 KV ► C 2315 K	
0	140 140 170	33 33 58	220 255 510	250 305 550	28,5 34,5 60	4 300 - 3 400	6 000 2 000 4 500	2,05 2,15 6,3		C 2216 C 2216 V C 2316	► C 2216 K C 2216 KV ► C 2316 K	
35	150 180	36 60	275 540	320 600	35,5 64	4 000 3 200	5 600 4 300	2,65 7,4		C 2217 C 2317	► C 2217 K ► C 2317 K	
0	125 125 125	46 46 46	193 224 224	325 400 400	37,5 44 45,5	2 600 - -	4 000 110 1 600	1,75 1,75 1,75	•	C 5918 MB C 5918-2CS5V/GEM9 C 5918 V	- - -	
	160 190	40 64	325 610	380 695	41,5 73,5	3 800 2 800	5 300 4 000	3,3 8,65		C 2218 C 2318	C 2218 K C 2318 K	
5	200	67	610	695	73,5	2 800	4 000	10		C 2319	C 2319 K	
00	150 150 165	50 67 52	355 510 475	530 865 655	58,5 95 71	- - -	1 400 1 100 1 300	3,05 4,3 4,45	•	C 4020 V C 5020 V C 3120 V	- -	
	165 165 180	65 65 46	475 475 415	655 655 465	69,5 71 49	- - 3 600	90 1 300 4 800	5,2 5,3 4,95	•	C 4120-2CS5V/GEM9 C 4120 V/VE240 C 2220	- - ► C 2220 K	
	215	73	800	880	90	2 600	3 600	12,5	٠	C 2320	► C 2320 K	
.10	170 170 170	60 60 60	415 430 500	585 655 800	63 69,5 85	- 2 600 -	85 3 400 1 200	4,6 5,3 5,2		C 4022-2CS5V/GEM9 C 4022 MB C 4022 V	- - -	
	180 180 200	69 69 53	500 670 530	710 1 000 620	75 104 64	- - 3 200	80 900 4 300	6,6 7,1 7		C 4122-2CS5V/GEM9 C 4122 V C 2222	_ _ ► C 2222 K	

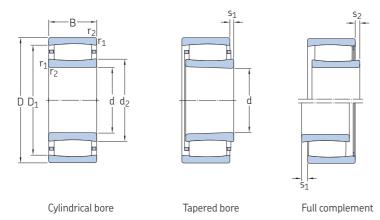


Dimension	S					Abutm	ent and f	Calculation factors					
d	d ₂ ≈	D ₁ ≈	r _{1,2} min.	s ₁ 1) max.	s ₂ 1) max.	d _a min.	d _a max.	D _a min.	D _a max.	C _a 2) min.	r _a max.	k ₁	k ₂
mm						mm						-	
75	82,9	96,1	1	-	5	79,6	84,1	-	100	-	1	0,083	0,142
	83,6	95,5	1	9,4	6,2	79,6	89	-	100	-	1	0,098	0,114
	83,6	95,5	1	-	7,1	79,6	83	-	100	-	1	0,073	0,154
	83,6	95,5	1	9,2	9,2	79,6	88	-	100	-	1	0,073	0,154
	88,7	101	1,1	9,4	5,1	81	94	-	109	-	1	0,099	0,114
	88,5	116	1,5	9,6	-	84	98,3	106	121	1,2	1,5	0,099	0,127
	88,5	116	1,5	9,6	5,3	84	107	-	121	-	1,5	0,099	0,127
	98,5	137	2,1	13,1	-	87	113	126	148	2,2	2	0,103	0,107
80	98,1	125	2	9,1	-	91	107	116	129	1,2	2	0,104	0,121
	98,1	125	2	9,1	4,8	91	116	-	129	-	2	0,104	0,121
	102	146	2,1	10,1	-	92	119	133	158	2,4	2	0,107	0,101
85	103 110	133 153	2	7,1 12,1		96 99	114 126	123 141	139 166	1,3 2,4	2 2,5	0,114 0,105	0,105 0,105
90	100	113	1,1	2,9	-	96	99	113	119	-0,9	1	0	0,131
	102	113	1,1	-	4,5	96	101	-	119	-	1	0,089	0,131
	102	113	1,1	15,4	11,1	96	106	-	119	-	1	0,089	0,131
	111 119	144 166	2	9,5 9,6		101 104	124 138	133 154	149 176	1,4 2	2 2,5	0,104 0,108	0,117 0,101
95	119	166	3	12,6	-	109	138	154	186	2,1	2,5	0,103	0,106
100	113	135	1,5	14	9,7	107	126	-	143	-	1,5	0,098	0,118
	114	136	1,5	9,3	5	107	127	-	143	-	1,5	0,112	0,094
	119	150	2	10,1	4,7	111	136	-	154	-	2	0,112	0,1
	120	148	2	-	7,3	111	119	-	154	-	2	0,09	0,125
	120	148	2	17,7	17,7	111	135	-	154	-	2	0,09	0,125
	118	157	2,1	10,1	-	112	134	146	168	0,9	2	0,108	0,11
	126	185	3	11	-	114	150	168	201	3,2	2,5	0,113	0,096
110	128	155	2	-	7,9	119	127	-	161	-	2	0,142	0,083
	126	150	2	4,8	-	120	125	146	160	1,3	2	0	0,103
	126	150	2	12	6,6	120	136	-	160	-	2	0,107	0,103
	130	161	2	-	8,2	121	130	-	169	-	2	0,086	0,133
	132	163	2	11,4	4,6	121	149	-	169	-	2	0,111	0,097
	132	176	2,1	11,1	-	122	150	161	188	1,9	2	0,113	0,103


^{1) →} Verification of axial displacement, page 850
2) → Free space on both sides of the bearing, page 852, negative values used only for calculation

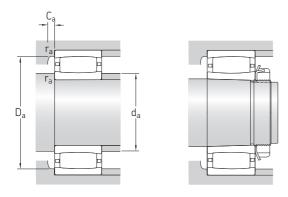

10.1 CARB toroidal roller bearings d 120 – 170 mm

Princi	pal dime	nsions	Basic lo	ad ratings static	Fatique load limit	Speed rain Reference speed	tings E Limiting speed	Mass		Designations Bearing with cylindrical bore	tapered bore
d	D	В	С	C_0	P_u	speeu	speeu			Cylinurical bore	tapered bore
mm			kN		kN	r/min		kg		-	
120	180 180 180	46 60 60	430 430 430	640 640 640	65,5 67 65,5	- - -	1 400 80 1 400	4,1 5,1 5,05		C 3024 V C 4024-2CS5V/GEM9 C 4024 V/VE240	- - C 4024 K30V/VE240
	180 200 215	60 80 76	530 780 750	880 1120 980	91,5 114 98	- - 2 400	1 100 750 3 200	5,55 10 12		C 4024 V C 4124 V C 3224	C 4024 K30V - ► C 3224 K
130	200 200 200	69 69 69	550 620 720	830 930 1 120	85 93 112	_ 2 200 _	70 2 800 850	7,5 7,85 8,15		C 4026-2CS5V/GEM9 C 4026 C 4026 V	- C 4026 K30 C 4026 K30V
	210 230 280	80 64 93	750 735 980	1 100 930 1 220	108 91,5 114	- 2 800 2 400	70 3 800 3 200	10,5 11,5 27	,	C 4126-2CS5V/GEM9 C 2226 C 2326 K/VE240	- C 2226 K
140	210 225 225	69 85 85	750 780 780	1 220 1 200 1 200	120 116 116	_ _ _	800 63 800	8,6 12,5 12,5	,	C 4028 V C 4128-2CS5V/GEM9 C 4128 V/VE240	C 4028 K30V - -
	250	68	830	1 060	102	2 400	3 200	14	•	C 2228	► C 2228 K
150	225 225 225	56 56 75	540 585 585	850 960 965	81,5 93 93	2 400 - -	3 200 1 000 63	8,45 8 10		C 3030 MB C 3030 V C 4030-2CS5V/GEM9	C 3030 KV
	225 250 250	75 80 100	780 880 1 220	1 320 1 290 1 860	127 122 176	_ 2 000 _	750 2 800 450	10,5 15,5 20		C 4030 V C 3130 C 4130 V	C 4030 K30V C 3130 K
	270	73	980	1 220	114	2 400	3 200	18	•	C 2230	C 2230 K
160	240 240 240	80 80 80	765 830 915	1160 1290 1460	110 122 140	1 700 - -	2 400 60 600	12,5 12,5 13		C 4032 C 4032-2CS5V/GEM9 C 4032 V	C 4032 K30 - C 4032 K30V
	270 290	86 104	1 000 1 370	1 400 1 830	129 170	1 900 1 800	2 600 2 400	21,5 29,5		C 3132 C 3232	C 3132 K C 3232 K
170	260 260 310	67 90 86	750 1 140 1 270	1 080 1 860 1 630	100 173 146	2 200 - 1 900	2 800 500 2 600	12,5 17,5 28	,	C 3034 M C 4034 V C 2234	_ C 4034 K30V C 2234 K



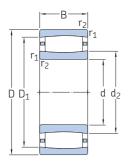
Dimensio	ns					Abutm	ent and f	llet dime	Calculation factors				
d	d ₂ ≈	D ₁ ≈	r _{1,2} min.	s ₁ 1) max.	s ₂ 1) max.	d _a min.	d _a max.	D _a min.	D _a max.	C _a 2) min.	r _a max.	k ₁	k ₂
mm				,		mm	,	,				_	
120	138	166	2	10,6	3,8	130	154	-	170	-	2	0,111	0,109
	140	164	2	-	7,5	129	139	-	171	-	2	0,085	0,142
	139	164	2	17,8	17,8	130	152	-	170	-	2	0,085	0,142
	140	164	2	12	5,2	130	152	-	170	-	2	0,109	0,103
	140	176	2	18	11,2	131	160	-	189	-	2	0,104	0,103
	149	190	2,1	17,1	-	132	162	179	203	2,4	2	0,103	0,108
130	152	182	2	-	8,2	139	151	-	191	-	2	0,089	0,133
	149	181	2	11,4	-	140	157	174	190	1,9	2	0,113	0,097
	149	181	2	11,4	4,6	140	167	-	190	-	2	0,113	0,097
	153	190	2	-	7,5	141	152	-	199	-	2	0,09	0,126
	152	199	3	9,6	-	144	171	185	216	1,1	2,5	0,113	0,101
	179	234	4	31,2	-	-	-	216	263	-7,5	3	0,093	0,122
140	161	193	2	11,4	5,9	150	177	-	200	-	2	0,115	0,097
	167	204	2,1	-	8,9	152	166	-	213	-	2	0,086	0,134
	166	204	2,1	9,7	9,7	152	189	-	213	-	2	0,086	0,134
	173	223	3	13,7	-	154	191	207	236	2,3	2,5	0,109	0,108
150	173	204	2,1	8,7	-	161	172	198	214	1,3	2	0	0,108
	174	204	2,1	14,1	7,3	161	190	-	214	-	2	0,113	0,108
	175	204	2,1	-	10,8	161	174	-	214	-	2	0,084	0,144
	173	204	2,1	17,4	10,6	161	189	-	214	-	2	0,107	0,106
	182	226	2,1	13,9	-	162	196	214	238	2,3	2	0,12	0,092
	179	222	2,1	20	10,1	162	204	-	238	-	2	0,105	0,103
	177	236	3	11,2	-	164	202	215	256	2,5	2,5	0,119	0,096
160	181	217	2,1	18,1	-	171	190	209	229	2,2	2	0,109	0,103
	180	218	2,1	-	7,7	171	180	-	229	-	2	0,093	0,126
	181	217	2,1	18,1	8,2	171	199	-	229	-	2	0,109	0,103
	191	240	2,1	10,3	-	172	208	229	258	2,4	2	0,112	0,099
	194	256	3	19,3	-	174	218	242	276	2,6	2,5	0,112	0,096
170	195	236	2,1	19	-	181	210	226	249	1,2	2	0,105	0,117
	195	236	2,1	17,1	7,2	181	218	-	249	-	2	0,108	0,103
	209	274	4	16,4	-	187	233	254	293	3	3	0,114	0,1

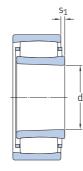
^{1) →} Verification of axial displacement, page 850
2) → Free space on both sides of the bearing, page 852, negative values used only for calculation


10.1 CARB toroidal roller bearings

d **180 – 360** mm

Principal dimensions		Basic lo dynamic	ad ratings static	Fatique load limit	Reference	Speed ratings Reference Limiting speed speed			Designations Bearing with cylindrical bore	tapered bore	
d	D	В	С	C_0	P_{u}	speeu	speed			cylinarical bore	tapereu bore
mm			kN		kN	r/min		kg		-	
180	280 280 300	74 100 96	880 1 320 1 250	1 340 2 120 1 730	122 196 156	2 000 - 1 700	2 600 430 2 400	17 23,5 26,5	•	C 3036 C 4036 V C 3136	C 3036 K - ► C 3136 K
	300 320	118 112	1 760 1 530	2 700 2 200	240 193	- 1 500	220 2 000	34,5 38		C 4136 V C 3236	_ C 3236 K
190	290 320 340	75 104 92	930 1 700 1 370	1 460 2 550 1 730	132 224 153	1 800 - 1 800	2 400 190 2 400	17,5 34 34,5	•	C 3038 C 3138 V C 2238	C 3038 K C 3138 KV C 2238 K
200	310 310 340	82 109 112	1 120 1 630 1 600	1 730 2 650 2 320	153 236 200	1 700 - 1 500	2 400 260 2 000	22,5 30,5 41		C 3040 C 4040 V C 3140	C 3040 K ► C 3140 K
220	340 340 370	90 118 120	1 320 1 930 1 900	2 040 3 250 2 900	176 280 245	1 600 - 1 400	2 200 200 1 800	29,5 40 52		C 3044 C 4044 V C 3144	► C 3044 K C 4044 K30V ► C 3144 K
	400	108	2 000	2 500	208	1 500	2 000	57,5		C 2244	C 2244 K
240	360 400	92 128	1 340 2 320	2 160 3 450	183 285	1 500 1 300	2 000 1 700	32 64	•	C 3048 C 3148	C 3048 K ► C 3148 K
260	400 440	104 144	1 760 2 650	2 850 4 050	232 325	1 300 1 100	1 800 1 500	47 88	•	C 3052 C 3152	C 3052 K ► C 3152 K
280	420 460	106 146	1 860 2 850	3 100 4 500	250 355	1 200 1 100	1 600 1 400	50,5 94,5		C 3056 C 3156	C 3056 K C 3156 K
300	460 460 500	118 160 160	2 160 2 900 3 250	3 750 4 900 5 200	290 390 400	1 100 900 950	1 500 1 200 1 300	72 95,5 125		C 3060 M C 4060 M C 3160	C 3060 KM C 4060 K30M C 3160 K
320	480 540	121 176	2 280 4 150	4 000 6 300	305 480	1 000 900	1 400 1 300	78 164	•	C 3064 M C 3164 M	C 3064 KM C 3164 KM
340	520 580 580	133 190 243	2 900 4 900 5 600	5 000 7 500 9 150	375 560 680	950 850 670	1 300 1 100 900	100 205 271		C 3068 M C 3168 M C 4168 K30MB	C 3068 KM C 3168 KM
360	480 540 600	90 134 192	1 760 2 900 5 000	3 250 5 000 8 000	245 375 585	1 000 900 800	1 400 1 300 1 100	45 106 220		C 3972 M C 3072 M C 3172 M	C 3972 KM C 3072 KM C 3172 KM

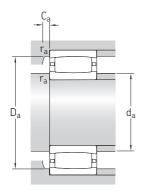


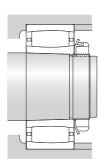

Dimensions	nsions					Abutm	ent and fi	llet dime		Calculation factors			
d	d ₂ ≈	D ₁ ≈	r _{1,2} min.	s ₁ 1) max.	s ₂ 1) max.	d _a min.	d _a max.	D _a min.	D _a max.	C _a ²⁾ min.	r _a max.	k ₁	k ₂
mm						mm						_	
180	209	251	2,1	15,1	-	191	223	239	269	2	2	0,112	0,105
	203	247	2,1	20,1	10,2	191	229	-	269	-	2	0,107	0,103
	210	266	3	23,2	-	194	231	252	286	2,2	2,5	0,102	0,111
	211	265	3	20	10,1	194	223	-	286	-	2,5	0,1	0,108
	228	289	4	27,3	-	197	249	271	303	3,2	3	0,107	0,104
190	225	266	2,1	16,1	-	201	238	254	279	1,9	2	0,113	0,107
	228	289	3	19	9,1	204	267	-	306	-	2,5	0,115	0,096
	224	296	4	22,5	-	207	254	275	323	1,6	3	0,108	0,108
200	235	285	2,1	15,2	_	211	250	272	299	2,9	2	0,123	0,095
	228	280	2,1	21	11,1	211	263	-	299	-	2	0,11	0,101
	244	305	3	27,3	_	214	264	288	326	-0,6	2,5	0,108	0,104
220	257	310	3	17,2	_	233	274	295	327	3,1	2,5	0,114	0,104
	251	306	3	20	10,1	233	284	-	327	-	2,5	0,115	0,095
	268	333	4	22,3	_	237	290	315	353	3,5	3	0,114	0,097
	259	350	4	20,5	-	237	298	321	383	1,7	3	0,113	0,101
240	276 281	329 357	3 4	19,2 20,4	-	253 257	293 309	312 334	347 383	1,3 3,7	2,5 3	0,113 0,116	0,106 0,095
260	305 314	367 394	4	19,3 26,4	- -	275 277	326 341	349 371	385 423	3,4 4,1	3	0,122 0,115	0,096 0,096
280	328 336	389 416	4 5	21,3 28,4	-	295 300	352 363	373 392	405 440	1,8 4,1	3 4	0,121 0,115	0,098 0,097
300	351	417	4	20	-	315	376	402	445	1,7	3	0,123	0,095
	338	410	4	30,4	-	315	362	396	445	2,8	3	0,105	0,106
	362	448	5	30,5	-	320	392	422	480	4,9	4	0,106	0,106
320	375 371	441 477	4 5	23,3 26,7	_	335 340	398 411	426 452	465 520	1,8 4,2	3 4	0,121 0,114	0,098 0,096
340	394	475	5	25	-	358	430	454	502	2,1	4	0,12	0,099
	402	517	5	25,9	-	360	446	489	560	4,2	4	0,118	0,093
	403	514	5	20,2	-	-	-	487	560	10,7	4	0	0,096
360	394	450	3	17,2	_	373	409	435	467	1,6	2,5	0,127	0,104
	416	497	5	26,4	_	378	448	476	522	2	4	0,12	0,099
	423	537	5	27,9	_	380	464	507	580	3,9	4	0,117	0,094

^{1) →} Verification of axial displacement, page 850
2) → Free space on both sides of the bearing, page 852, negative values used only for calculation

10.1 CARB toroidal roller bearings

d **380 – 630** mm

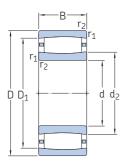

Cylindrical bore

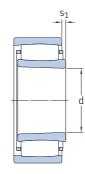

Tapered bore

Princi	pal dimer	nsions	Basic loa dynamic	ad ratings static	Fatique load limit	Speed rati Reference speed		Mass	Designations Bearing with cylindrical bore	tapered bore
i	D	В	С	C_0	P_u	speeu	speed		cyllilarical bore	tapered bore
nm			kN		kN	r/min		kg	_	
380	560	135	3 000	5 200	380	900	1 200	110	C 3076 M	C 3076 KM
	620	194	4 400	7 200	520	750	1 000	243	C 3176 MB	C 3176 KMB
00	540 600 650	106 148 200	2 120 3 650 4 800	4 000 6 200 8 300	290 450 585	900 800 700	1 300 1 100 950	66,5 145 258	C 3980 KM C 3080 M C 3180 M	– C 3080 KM C 3180 KM
20	560	106	2 160	4 250	310	850	1 200	72	C 3984 M	C 3984 KM
	620	150	3 800	6 400	455	800	1 100	150	C 3084 M	C 3084 KM
	700	224	6 000	10 400	720	670	900	355	C 3184 M	C 3184 KM
40	650	157	3 750	6 400	450	750	1 000	190	C 3088 MB	C 3088 KMB
	720	226	6 700	11 400	780	630	850	385	C 3188 MB	C 3188 KMB
	720	280	7 500	12 900	900	500	670	471	C 4188 MB	C 4188 K30MB
60	680	163	4 000	7 500	520	700	950	205	C 3092 M	C 3092 KM
	760	240	6 800	12 000	815	600	800	435	C 3192 M	C 3192 KM
	760	300	8 650	15 000	1 020	480	630	571	C 4192 MB	C 4192 K30MB
	830	296	9 300	15 000	1 000	530	750	735	C 3292 MB	C 3292 KMB
80	650	128	3 100	6 100	425	750	1 000	120	C 3996 M	–
	700	165	4 050	7 800	530	670	900	215	C 3096 M	C 3096 KM
	790	248	6 950	12 500	830	560	750	523	C 3196 MB	C 3196 KMB
00	670	128	3 150	6 300	430	700	950	125	C 39/500 M	C 39/500 KM
	720	167	4 250	8 300	560	630	900	225	C 30/500 M	-
	830	264	7 500	12 700	850	530	750	560	C 31/500 M	C 31/500 KM
	830	325	9 800	17 600	1 160	430	560	710	C 41/500 M	C 41/500 K30M
30	780	185	5 100	9 500	630	600	800	300	C 30/530 M	► C 30/530 KM
	870	272	8 800	15 600	1 020	500	670	636	C 31/530 M	C 31/530 KM
60	750 820 920	140 195 355	3 600 5 600 10 400	7 350 11 000 19 600	490 720 1 270	600 530 380	850 750 500	175 350 989	C 39/560 M C 30/560 M C 41/560 K30MB	C 39/560 KM C 30/560 KM
500	870	200	6 300	12 200	780	500	700	395	C 30/600 M	C 30/600 KM
	980	300	10 200	18 000	1 140	430	600	929	C 31/600 MB	C 31/600 KMB
	980	375	12 900	23 200	1 460	340	450	1 150	C 41/600 MB	C 41/600 K30M
30	850	165	4 650	10 000	640	530	700	275	C 39/630 M	C 39/630 KM
	920	212	6 800	12 900	815	480	670	470	C 30/630 M	C 30/630 KM
	1 030	315	11 800	20 800	1 290	400	560	1 090	C 31/630 MB	C 31/630 KMB

SKF Explorer bearing

Popular item



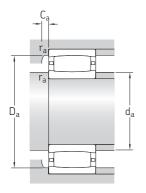


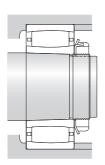
Dimension	nensions					Abutm	ent and fi		Calculation factors				
d	d ₂ ≈	D ₁ ≈	r _{1,2} min.	s ₁ 1) max.	s ₂ 1) max.	d _a min.	d _a max.	D _a min.	D _a max.	C _a ²⁾ min.	r _a max.	k ₁	k ₂
mm						mm						-	
380	431 446	512 551	5 5	27 25,4	<u>-</u>	398 400	462 445	491 526	542 600	2 7,3	4 4	0,12 0	0,1 0,106
400	439	501	4	21	-	-	-	487	525	1,8	3	0,13	0,098
	457	554	5	30,6	-	418	486	523	582	2,1	4	0,121	0,099
	488	589	6	50,7	-	426	525	566	624	4	5	0,106	0,109
420	461	523	4	21,3	-	435	484	510	545	1,8	3	0,132	0,098
	475	571	5	32,6	-	438	513	544	602	2,2	4	0,12	0,1
	507	618	6	34,8	-	446	544	592	674	3,8	5	0,113	0,098
440	490	587	6	24,6	-	463	489	563	627	1,7	5	0	0,105
	522	647	6	16	-	466	521	613	694	7,5	5	0	0,099
	510	637	6	27,8	-	466	509	606	694	7,3	5	0	0,1
460	539	624	6	33,5	-	483	570	604	657	2,3	5	0,114	0,108
	559	679	7,5	51	-	492	603	651	728	4,2	6	0,108	0,105
	537	671	7,5	23,3	-	477	536	638	728	12,6	6	0	0,097
	555	720	7,5	32,4	_	492	554	676	798	11	6	0	0,106
480	528	604	5	20,4	-	498	552	585	632	2	4	0,133	0,095
	555	640	6	35,5	-	503	586	620	677	2,3	5	0,113	0,11
	578	701	7,5	35,1	-	512	577	673	758	8,7	6	0	0,109
500	555	632	5	20,4	-	518	580	614	652	2	4	0,135	0,095
	571	656	6	37,5	-	523	600	637	697	2,3	5	0,113	0,111
	605	738	7,5	75,3	-	532	654	706	798	-11,7	6	0,099	0,116
	600	740	7,5	46,3	_	532	637	721	798	5,9	6	0,115	0,093
530	601 635	705 781	6 7,5	35,7 44,4	<u>-</u>	553 562	638 685	681 745	757 838	2,5 5,4	5 6	0,12 0,115	0,101 0,097
560	621	701	5	32,4	-	578	648	682	732	2,3	4	0,128	0,104
	659	761	6	45,7	-	583	696	736	797	2,7	5	0,116	0,106
	664	802	7,5	23	-	-	-	770	888	13,8	6	0	0,101
600	692	805	6	35,9	-	623	728	776	847	2,7	5	0,125	0,098
	705	871	7,5	26,1	-	632	704	827	948	5,1	6	0	0,107
	697	869	7,5	24,6	-	632	696	823	948	5,5	6	0	0,097
630	699	785	6	35,5	-	653	723	766	827	2,4	5	0,121	0,11
	716	840	7,5	48,1	-	658	759	807	892	2,9	6	0,118	0,104
	741	916	7,5	23,8	-	662	740	868	998	5,7	6	0	0,102

^{1) →} Verification of axial displacement, page 850
2) → Free space on both sides of the bearing, page 852, negative values used only for calculation

$\begin{array}{cc} \textbf{10.1} & \textbf{CARB toroidal roller bearings} \\ & \textbf{d} & \textbf{670} - \textbf{1700} \ \text{mm} \end{array}$

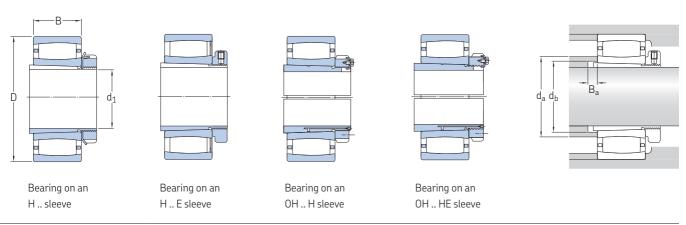
Cylindrical bore


Tapered bore


Principa	al dimen	sions	Basic loa dynamic	d ratings static	Fatique load limit	Speed rat Reference	Limiting	Mass	Designations Bearing with	
d	D	В	С	C_0	P_{u}	speed	speed		cylindrical bore	tapered bore
mm			kN		kN	r/min		kg	_	
670	980 1 090 1 090	230 336 412	8 150 11 800 16 000	16 300 21 200 29 000	1 000 1 290 1 760	430 380 300	600 500 400	590 1 300 1 570	C 30/670 M C 31/670 MB C 41/670 MB	C 30/670 KM C 31/670 KMB C 41/670 K30MB
710	950 1 030 1 030	180 236 315	6 000 8 800 10 600	12 500 17 300 21 600	780 1 060 1 320	450 400 320	630 560 430	360 655 865	C 39/710 M C 30/710 M C 40/710 M	C 39/710 KM C 30/710 KM C 40/710 K30M
	1150	345	13 400	25 500	1 530	340	480	1 470	C 31/710 MB	C 31/710 KMB
750	1 000 1 090 1 220	185 250 365	6 100 9 500 16 000	13 400 19 300 30 500	815 1 160 1 800	430 380 320	560 530 450	410 838 1 800	C 39/750 M C 30/750 MB C 31/750 MB	C 39/750 KM ► C 30/750 KMB C 31/750 KMB
800	1 060 1 150	195 258	6 400 9 300	14 600 19 300	880 1 140	380 360	530 480	480 941	C 39/800 M C 30/800 MB	– C 30/800 KMB
850	1 120 1 220	200 272	7 350 11 600	16 300 24 500	960 1 430	360 320	480 450	540 1 110	C 39/850 M C 30/850 MB	C 39/850 KM C 30/850 KMB
900	1 280	280	12 700	26 500	1 530	300	400	1 200	C 30/900 MB	C 30/900 KMB
950	1 360	300	13 200	28 500	1 600	280	380	1 480	C 30/950 MB	-
1 000	1 420 1 580	308 462	13 700 20 400	30 500 45 500	1 700 2 500	260 220	360 300	1 680 3 800	C 30/1000 MB C 31/1000 MB	_ C 31/1000 KMB
1 060	1 400	250	11 000	26 000	1 430	260	360	1 120	C 39/1060 MB	C 39/1060 KMB
1 120	1 460	335	13 200	31 500	1 700	200	260	1 630	C 49/1120 MB1	-
1 180	1 540	272	13 400	33 500	1 800	220	300	1 400	► C 39/1180 MB	-
1 500	1 950	335	19 600	48 000	2 400	140	200	2 710	► C 39/1500 MB	-
1 700	2 180	355	24 000	62 000	3 000	110	150	3 510	C 39/1700 MB	-

SKF Explorer bearing

Popular item



Dimensions						Abutme	ent and fil	let dimen	sions			Calculation factors		
d	d ₂ ≈	D ₁ ≈	r _{1,2} min.	s ₁ 1) max.	s ₂ 1) max.	d _a min.	d _a max.	D _a min.	D _a max.	C _a ²⁾ min.	r _a max.	k ₁	k ₂	
mm						mm						-		
670	775 792 779	905 964 967	7,5 7,5 7,5	41,1 41 37,2	- - -	698 702 702	820 791 778	874 922 920	952 1 058 1 058	2,9 11,4 16,7	6 6 6	0,121 0 0	0,101 0,109 0,097	
710	772 806 803	877 946 935	6 7,5 7,5	30,7 47,3 51,2	- - -	733 738 738	797 853 843	847 908 911	927 1 002 1 002	2,7 3,2 4,4	5 6 6	0,131 0,119 0,113	0,098 0,104 0,101	
	842	1 013	9,5	47,8	-	750	841	973	1 110	11,1	8	0	0,111	
750	830 854 884	934 993 1 077	6 7,5 9,5	35,7 28,6 33	- - -	773 778 790	856 852 883	908 961 1 025	977 1 062 1 180	2,7 7,4 9,3	5 6 8	0,131 0 0	0,101 0,11 0,094	
800	888 908	990 1 048	6 7,5	45,7 45,9	- -	823 828	917 905	967 1 020	1 037 1 122	2,9 7,2	5 6	0,126 0	0,106 0,114	
850	940 964	1 053 1 113	6 7,5	35,9 24	-	873 878	963 963	1 025 1 077	1 097 1 192	2,9 7,7	5 6	0,135 0	0,098 0,097	
900	1 005	1 173	7,5	24,8	-	928	1 003	1 126	1 252	9	6	0	0,1	
950	1 075	1 241	7,5	37,8	-	978	1 073	1 204	1 332	8,7	6	0	0,107	
1 000	1130 1191	1 295 1 372	7,5 12	44,9 70,1	- -	1 028 1 048	1 128 1 189	1 260 1 338	1 392 1 532	8,5 15	6 10	0	0,11 0,108	
1 060	1168	1 308	7,5	38,4	-	1 088	1 164	1 282	1 372	6	6	0	0,11	
1 120	1 225	1362	7,5	76,1	-	1 148	1 220	1344	1 432	47,6	6	0	0,12	
1 180	1 291	1 439	7,5	19,6	-	1 208	1 289	1 405	1 512	6,2	6	0	0,097	
1 500	1 636	1 831	9,5	35	-	1 534	1 633	1 788	1 916	9,3	8	0	0,096	
1 700	1841	2 053	9,5	40,6	_	1 734	1 837	2 008	2 146	8,4	8	0	0,103	

^{1) →} Verification of axial displacement, page 850
2) → Free space on both sides of the bearing, page 852, negative values used only for calculation

$10.2\,\,$ CARB toroidal roller bearings on an adapter sleeve

d₁ **25 – 410** mm

Princip	al dimens	sions	Abutme	ent and fill	et dimensions	Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d ₁	D	В	d _a max.	d _b min.	B _a min.	Siceve		
mm			mm			kg	_	
25	62	20	37,4	33	5	0,37	C 2206 KTN9	H 306 E
30	72	23	44,8	39	5	0,59	C 2207 KTN9	H 307 E
35	80	23	52,4	44	5	0,69	C 2208 KTN9	H 308 E
40	85	23	55,6	50	7	0,76	► C 2209 KTN9	H 309 E
45	90	23	61,9	55	9	0,85	► C 2210 KTN9	H 310 E
50	100 100	25 25	65,8 80	60 60	10 10	1,1 1,15	C 2211 KTN9 C 2211 KV	H 311 E H 311 E
55	110 110	28 28	77,1 91	65 65	9 9	1,45 1,5	► C 2212 KTN9 C 2212 KV	H 312 E H 312
60	120 120 125	31 31 31	79 97 83,7	70 70 75	8 8 9	1,8 1,9 2,1	C 2213 KTN9 C 2213 KV C 2214 KTN9	H 313 E H 313 H 314 E
	150	51	106	76	6	5,1	C 2314 K	H 2314
65	130 130 160	31 31 55	98,3 107 113	80 80 82	12 12 6	2,3 2,4 6,2	► C 2215 K C 2215 KV ► C 2315 K	H 315 E H 315 H 2315
70	140 140 170	33 33 58	107 116 119	85 85 88	12 12 6	2,9 3 7,4	► C 2216 K C 2216 KV ► C 2316 K	H 316 E H 316 H 2316
75	150 180	36 60	114 126	91 94	12 7	3,7 8,5	► C 2217 K ► C 2317 K	H 317 E H 2317
80	160 190	40 64	124 138	96 100	10 7	4,5 10	C 2218 K C 2318 K	H 318 E H 2318
85	200	67	138	105	7	11,5	C 2319 K	H 2319
90	180 215	46 73	134 150	108 110	8 7	6,3 14,5	► C 2220 K ► C 2320 K	H 320 E H 2320
100	200	53	150	118	6	8,8	► C 2222 K	H 322 E
110	215	76	162	131	17	14	► C 3224 K	H 2324 L

SKF Explorer bearing

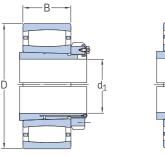
➤ Popular item

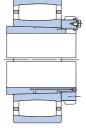
1) For additional bearing data → product table, page 856

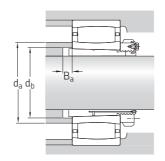
2) For additional adapter sleeve data → product table, page 1072

Princip	oal dimens	sions	Abutme	ent and fill	et dimensions	Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d ₁	D	В	d _a max.	d _b min.	B _a min.	SICCAC		
mm			mm			kg	_	
115	230 280	64 93	171 201	138 142	8	14 31,5	C 2226 K C 2326 K/VE240	H 3126 L H 2326
125	250	68	191	149	8	17,5	► C 2228 K	H 3128 L
135	225	56	190	158	8	11,5	C 3030 KV	H 3030
	250	80	196	160	8	20	C 3130 K	H 3130 L
	270	73	202	160	15	23	C 2230 K	H 3130 L
140	270	86	208	170	8	27	C 3132 K	H 3132 L
	290	104	218	174	18	36,5	C 3232 K	H 2332 L
150	310	86	233	180	10	35	C 2234 K	H 3134 L
160	280	74	223	189	9	23	C 3036 K	H 3036
	300	96	231	191	8	34	C 3136 K	H 3136 L
	320	112	249	195	22	47	C 3236 K	H 2336
170	290	75	238	199	10	24	C 3038 K	H 3038
	320	104	267	202	9	45	C 3138 KV	H 3138
	340	92	254	202	21	43	C 2238 K	H 3138
180	310	82	250	210	10	30	C 3040 K	H 3040
	340	112	264	212	9	50,5	► C 3140 K	H 3140
200	340	90	274	231	10	37	C 3044 K	OH 3044 H
	370	120	290	233	10	64	C 3144 K	OH 3144 HTL
	400	108	298	233	22	69	C 2244 K	OH 3144 H
220	360	92	293	251	11	42,5	C 3048 K	OH 3048 H
	400	128	309	254	11	77	C 3148 K	OH 3148 HTL
240	400	104	326	272	11	59	C 3052 K	ОН 3052 H
	440	144	341	276	11	105	► C 3152 K	ОН 3152 HTL
260	420	106	352	292	12	65	C 3056 K	ОН 3056 H
	460	146	363	296	12	115	C 3156 K	ОН 3156 HTL
280	460	118	376	313	12	91	C 3060 KM	ОН 3060 Н
	500	160	392	318	12	150	C 3160 K	ОН 3160 Н
300	480	121	398	334	13	95	C 3064 KM	ОН 3064 Н
	540	176	411	338	13	190	C 3164 KM	ОН 3164 Н
320	520	133	425	355	14	125	C 3068 KM	ОН 3068 Н
	580	190	446	360	14	235	C 3168 KM	ОН 3168 Н
340	480	90	409	372	14	73	C 3972 KM	OH 3972 HE
	540	134	448	375	14	135	C 3072 KM	OH 3072 H
	600	192	464	380	14	250	C 3172 KM	OH 3172 H
360	560	135	462	396	15	145	C 3076 KM	ОН 3076 Н
	620	194	445	401	15	290	C 3176 KMB	ОН 3176 НЕ
380	540	106	461	413	15	105	C 3980 KM	OH 3980 HE
	600	148	486	417	15	175	C 3080 KM	OH 3080 H
	650	200	525	421	15	345	C 3180 KM	OH 3180 H
400	560	106	484	433	15	106	C 3984 KM	OH 3984 HE
	620	150	513	437	16	180	C 3084 KM	OH 3084 H
	700	224	544	443	16	395	C 3184 KM	OH 3184 H
410	650	157	489	458	17	250	C 3088 KMB	OH 3088 HE
	720	226	521	463	17	475	C 3188 KMB	OH 3188 HE

SKF Explorer bearing

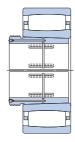

➤ Popular item


1) For additional bearing data → product table, page 856


2) For additional adapter sleeve data → product table, page 1072

$10.2\,\,$ CARB toroidal roller bearings on an adapter sleeve

d₁ **430 – 1 000** mm


Bearing on an OH .. H sleeve

Bearing on an OH .. HE sleeve

Principa	al dimensi	ons	Abutme	nt and fille	t dimensions	Mass Bearing + sleeve	Designations Bearing ¹⁾	Sleeve ²⁾
d ₁	D	В	d _a max.	d _b min.	B _a min.	Siceve		
mm			mm			kg	_	
430	680	163	570	478	17	270	C 3092 KM	ОН 3092 Н
	760	240	603	484	17	540	C 3192 KM	ОН 3192 Н
450	700	165	586	499	18	275	C 3096 KM	OH 3096 H
	790	248	577	505	18	620	C 3196 KMB	OH 3196 HE
470	670	128	580	516	18	195	C 39/500 KM	ОН 39/500 НЕ
	830	264	654	527	18	690	C 31/500 KM	ОН 31/500 Н
500	780	185	638	551	20	390	C 30/530 KM	ОН 30/530 Н
	870	272	685	558	20	770	C 31/530 KM	ОН 31/530 Н
530	750	140	648	577	20	260	C 39/560 KM	OH 39/560 HE
	820	195	696	582	20	440	C 30/560 KM	OH 30/560 H
	980	300	704	629	22	1 100	C 31/600 KMB	OH 31/600 HE
560	870	200	728	623	22	520	C 30/600 KM	0H 30/600 H
600	850	165	723	650	22	420	C 39/630 KM	ОН 39/630 НЕ
	920	212	759	654	22	635	C 30/630 KM	ОН 30/630 Н
	1 030	315	740	663	22	1 280	C 31/630 KMB	ОН 31/630 НЕ
630	980	230	820	696	22	750	C 30/670 KM	ОН 30/670 Н
	1 090	336	791	705	22	1 550	C 31/670 KMB	ОН 31/670 НЕ
670	950	180	797	732	26	520	C 39/710 KM	OH 39/710 HE
	1 030	236	853	736	26	865	C 30/710 KM	OH 30/710 H
	1 150	345	841	745	26	1 800	C 31/710 KMB	OH 31/710 HE
710	1 000	185	856	772	26	590	C 39/750 KM	ОН 39/750 НЕ
	1 090	250	852	778	26	1 000	C 30/750 KMB	ОН 30/750 НЕ
	1 220	365	883	787	26	2 150	C 31/750 KMB	ОН 31/750 НЕ
750	1150	258	905	829	28	1 150	C 30/800 KMB	OH 30/800 HE
800	1 120	200	963	872	28	785	C 39/850 KM	OH 39/850 HE
	1 220	272	963	880	28	1 050	C 30/850 KMB	OH 30/850 HE
850	1 280	280	1 003	931	30	1 520	C 30/900 KMB	OH 30/900 HE
950	1 580	462	1189	1 047	33	4 300	C 31/1000 KMB	OH 31/1000 HE
1 000	1 400	250	1164	1 087	33	1 610	C 39/1060 KMB	0H 39/1060 HE

10.2

Bearing on an AH sleeve

Bearing on an AOH sleeve

Princip	oal dimensi	ons		Mass Bearing +		Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	B ₂ 3) ≈	sleeve			
mm				kg		-	
35	80	23	32	0,59		C 2208 KTN9	AH 308
40	85	23	34	0,67	•	C 2209 KTN9	AH 309
45	90	23	38	0,72	•	C 2210 KTN9	AHX 310
50	100 100	25 25	40 40	0,95 0,97	•	C 2211 KTN9 C 2211 KV	AHX 311 AHX 311
55	110 110	28 28	43 43	1,3 1,35	٠	C 2212 KTN9 C 2212 KV	AHX 312 AHX 312
60	120 120	31 31	45 45	1,6 1,7	٠	C 2213 KTN9 C 2213 KV	AH 313 G AH 313 G
65	125 150	31 51	47 68	1,7 4,65		C 2214 KTN9 C 2314 K	AH 314 G AHX 2314 G
70	130 130 160	31 31 55	49 49 72	1,9 1,95 5,65		C 2215 K C 2215 KV C 2315 K	AH 315 G AH 315 G AHX 2315 G
75	140 140 170	33 33 58	52 52 75	2,35 2,45 6,75		C 2216 K C 2216 KV C 2316 K	AH 316 AH 316 AHX 2316
80	150 180	36 60	56 78	3 7,9		C 2217 K C 2317 K	AHX 317 AHX 2317
85	160 190	40 64	57 83	3,75 9	٠	C 2218 K C 2318 K	AHX 318 AHX 2318
90	200	67	89	11		C 2319 K	AHX 2319
95	180 215	46 73	63 94	5,3 13,5		C 2220 K C 2320 K	AHX 320 AHX 2320
105	200	53	72	7,65	•	C 2222 K	AHX 3122
115	180 180 215	60 60 76	82 82 94	5,65 6,2 13	•	C 4024 K30V/VE240 C 4024 K30V C 3224 K	AH 24024 AH 24024 AHX 3224 G

SKF Explorer bearing

➤ Popular item

1) For additional bearing data → product table, page 856

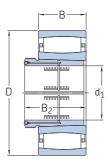
2) For additional withdrawal sleeve data → skf.com/go/17000-24-1

3) Width before the sleeve is driven into the bearing bore

Princip	al dimensi	ons		Mass Bearing +	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	B ₂ 3) ≈	sleeve		
mm				kg	_	
125	200	69	93	8,7	C 4026 K30	AH 24026
	200	69	93	8,9	C 4026 K30V	AH 24026
	230	64	82	12	► C 2226 K	AHX 3126
	280	93	119	29	C 2326 K/VE240	AHX 2326 G
135	210	69	93	9,5	C 4028 K30V	AH 24028
	250	68	88	15,5	► C 2228 K	AHX 3128
145	225	56	77	8,9	C 3030 KV	AHX 3030
	225	75	101	11,5	C 4030 K30V	AH 24030
	250	80	101	16,5	C 3130 K	AHX 3130 G
	270	73	101	19	C 2230 K	AHX 3130 G
150	240	80	106	14,5	C 4032 K30	AH 24032
	240	80	106	15	C 4032 K30V	AH 24032
	270	86	108	23	C 3132 K	AH 3132 G
	290	104	130	31	C 3232 K	AH 3232 G
160	260	90	117	20	C 4034 K30V	AH 24034
	310	86	109	31	C 2234 K	AH 3134 G
170	280 300 320	74 96 112	98 122 146	19 30 41,5	C 3036 K C 3136 K C 3236 K	AH 3036 AH 3136 G AH 3236 G
180	290	75	102	20,5	C 3038 K	AH 3038 G
	320	104	131	39	C 3138 KV	AH 3138 G
	340	92	117	38	C 2238 K	AH 2238 G
190	310	82	108	25,5	C 3040 K	AH 3040 G
	340	112	140	45,5	► C 3140 K	AH 3140
200	340	90	117	36	► C 3044 K	AOH 3044 G
	340	118	152	48	C 4044 K30V	AOH 24044
	370	120	151	60	► C 3144 K	AOH 3144
	400	108	136	65,5	C 2244 K	A0H 2244
220	360	92	123	39,5	C 3048 K	AOH 3048
	400	128	161	75	► C 3148 K	AOH 3148
240	400	104	135	55,5	C 3052 K	AOH 3052
	440	144	179	102	► C 3152 K	AOH 3152 G
260	420	106	139	61	C 3056 K	AOH 3056
	460	146	183	110	C 3156 K	AOH 3156 G
280	460	118	153	84	C 3060 KM	AOH 3060
	460	160	202	110	C 4060 K30M	AOH 24060 G
	500	160	200	140	C 3160 K	AOH 3160 G
300	480	121	157	93	C 3064 KM	AOH 3064 G
	540	176	217	185	C 3164 KM	AOH 3164 G
320	520	133	171	120	C 3068 KM	AOH 3068 G
	580	190	234	230	C 3168 KM	AOH 3168 G
340	540	134	176	125	C 3072 KM	AOH 3072 G
	600	192	238	245	C 3172 KM	AOH 3172 G

SKF Explorer bearing

► Popular item


1) For additional bearing data → product table, page 856

2) For additional withdrawal sleeve data → skf.com/go/17000-24-1

3) Width before the sleeve is driven into the bearing bore

10.3 CARB toroidal roller bearings on a withdrawal sleeve

d₁ **360 – 950** mm

Principa	al dimensio	ns		Mass Bearing +	Designations Bearing ¹⁾	Sleeve ²⁾
d_1	D	В	B ₂ 3) ≈	sleeve		
mm				kg	_	
360	560	135	180	130	C 3076 KM	AOH 3076 G
	620	194	242	260	C 3176 KMB	AOH 3176 G
380	600	148	193	165	C 3080 KM	AOH 3080 G
	650	200	250	310	C 3180 KM	AOH 3180 G
400	620	150	196	175	C 3084 KM	AOH 3084 G
	700	224	276	380	C 3184 KM	AOH 3184 G
420	650	157	205	215	C 3088 KMB	AOHX 3088 G
	720	226	281	405	C 3188 KMB	AOHX 3188 G
	720	280	332	510	C 4188 K30MB	AOH 24188
440	680	163	213	230	C 3092 KM	A0HX 3092 G
	760	240	296	480	C 3192 KM	A0HX 3192 G
	760	300	355	621	C 4192 K30MB	A0H 24192
460	700	165	217	245	C 3096 KM	A0HX 3096 G
	790	248	307	545	C 3196 KMB	A0HX 3196 G
480	830	264	325	615	C 31/500 KM	A0HX 31/500 G
500	780	185	242	355	C 30/530 KM	A0H 30/530
	870	272	337	720	C 31/530 KM	A0H 31/530
530	820	195	252	415	C 30/560 KM	AOHX 30/560
	920	355	417	989	C 41/560 K30MB	AOH 241/560 G
570	870	200	259	460	C 30/600 KM	AOHX 30/600
	980	300	369	990	C 31/600 KMB	AOHX 31/600
	980	375	439	1 270	C 41/600 K30MB	AOHX 241/600
600	920	212	272	555	C 30/630 KM	AOH 30/630
	1 030	315	389	1 180	C 31/630 KMB	AOH 31/630
630	980	230	294	705	C 30/670 KM	AOH 30/670
	1 090	336	409	1 410	C 31/670 KMB	AOHX 31/670
670	1 030	236	302	780	C 30/710 KM	A0HX 30/710
	1 030	315	386	1 010	C 40/710 K30M	A0H 240/710 G
	1 150	345	421	1 600	C 31/710 KMB	A0HX 31/710
710	1 090	250	316	920	C 30/750 KMB	AOH 30/750
	1 220	365	441	1 930	C 31/750 KMB	AOH 31/750

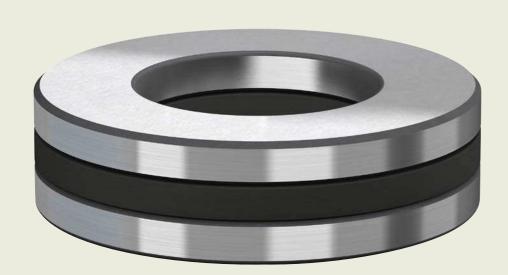
SKF Explorer bearing
1) For additional bearing data → product table, page 856
2) For additional withdrawal sleeve data → skf.com/go/17000-24-1
3) Width before the sleeve is driven into the bearing bore

Principa	al dimensio	ns		Mass Bearing +	Designations Bearing ¹⁾	Sleeve ²⁾	
d_1	D	В	B ₂ 3) ≈	sleeve			
mm				kg	_		
750	1150	258	326	1 060	C 30/800 KMB	A0H 30/800	
800	1 220	272	343	1 280	C 30/850 KMB	AOH 30/850	
850	1 280	280	355	1 400	C 30/900 KMB	A0H 30/900	
950	1 580	462	547	3 950	C 31/1000 KMB	AOH 31/1000	

SKF Explorer bearing

1) For additional bearing data → product table, page 856

2) For additional withdrawal sleeve data → skf.com/go/17000-24-1


3) Width before the sleeve is driven into the bearing bore

Cylindrical roller thrust bearings

11 Cylindrical roller thrust bearings

Designs and variants	879
Single direction bearings	879
Double direction bearings	879
Cylindrical roller and cage thrust assemblies	880
Bearing washers	880
Cages	882
Bearing data	881
Dimension standards, tolerances, permissible misalignment)	
Loads	884
Minimum load, equivalent dynamic bearing load,	
equivalent static bearing load)	
Temperature limits	884
Permissible speed	884
Design considerations	88
Abutment dimensions	885
Raceways on shafts and in housings	885
Designation system	886
5 1	
Product table	000
11.1 Cylindrical roller thrust bearings	888

5KF. 877

11 Cylindrical roller thrust bearings

More information

17
59
109
139
193

SKF bearing maintenance handbook ISBN 978-91-978966-4-1

SKF cylindrical roller thrust bearings (fig. 1) are designed to accommodate heavy axial loads and impact loads. They must not be subjected to any radial load. The bearings are very stiff and require little axial space.

Bearing features

• Separable design

Shaft washer, housing washer, cylindrical roller and cage thrust assembly can be mounted separately.

• Extended bearing service life

To prevent stress peaks, the roller ends are relieved slightly to modify the line contact between the raceway and rollers.

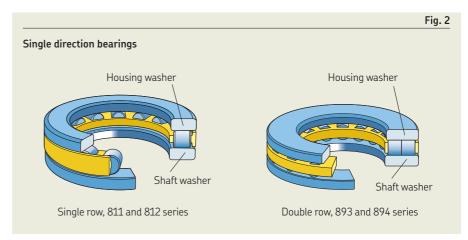
Designs and variants

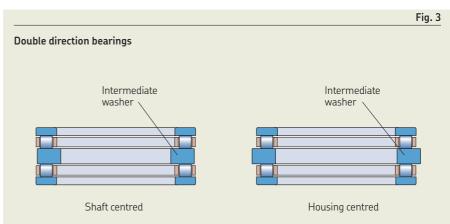
SKF supplies cylindrical roller thrust bearings in different series (fig. 2):

- 811 and 812 series bearings with one row of rollers
 - They are mainly used in applications where thrust ball bearings do not have sufficient load carrying capacity.
- 893 and 894 series bearings with two rows of rollers

Single direction bearings

As standard, cylindrical roller thrust bearings are available as single direction bearings (fig. 2) and can accommodate axial loads in one direction only.


Double direction bearings


- can accommodate axial loads in both directions
- can be created by combining two cylindrical roller and cage thrust assemblies and two bearing washers with an intermediate washer

Depending on the design, an intermediate washer can be shaft or housing centred (fig. 3).

Intermediate washers must have the same surface finish and hardness as bearing washers. SKF does not supply intermediate washers, but provides material specifications and dimensional data on request.

For additional information, refer to *Design* considerations, page 885.

Cylindrical roller and cage thrust assemblies

- are identified by the prefix K (fig. 4)
- can accommodate axial loads in one direction only
- can be combined with washers in the WS,
 GS and LS series (Bearing washers)
- can be used without washers in applications where:
 - adjacent components can serve as raceways
 - bearing arrangements with a low axial section height are required

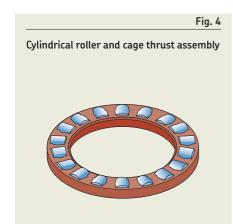
Bearing washers

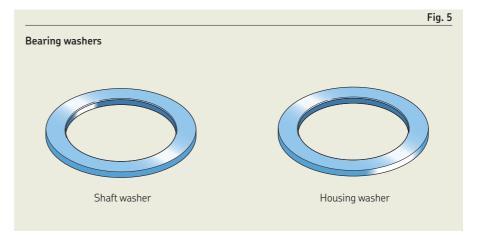
SKF can also supply the components of cylindrical roller thrust bearings also separately. Additional to cylindrical roller and cage thrust assemblies the included bearing washers (fig. 5) are listed in the product table, page 888).

Shaft washers

- are identified by the prefix WS
- are made of hardened carbon chromium bearing steel
- have a precision-ground raceway surface
- have a ground bore

Housing washers

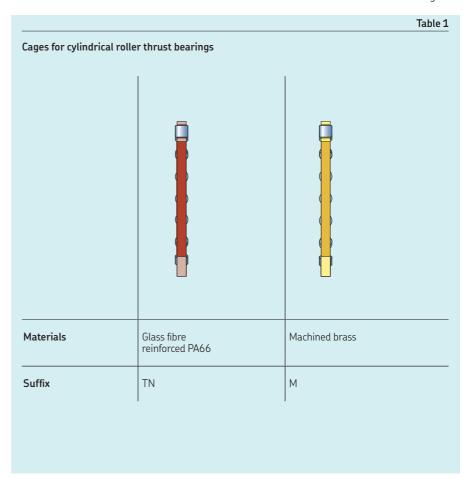

- are identified by the prefix GS
- are made of hardened carbon chromium bearing steel
- have a precision-ground raceway surface
- have a ground outside surface


SKF recommends using both of these washers in high-speed applications where accurate centring of the bearing washers is required.

LS series universal washers

- can be used as both shaft or housing washers for bearings in the 811 series
- are used for applications where accurate centring of the bearing washers is not necessary
- are used where low speeds are involved

For additional information about LS series washers, refer to *Needle roller thrust bearings*, page 895.



Cages

SKF cylindrical roller thrust bearings are fitted with one of the cages shown in **table 1**.

When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For additional information about the suitability of cages, refer to *Cages*, page 187.

Bearing data **Dimension** Boundary dimensions: ISO 104 standards **Tolerances** Check availability of P5 tolerance class for larger bearings Values: ISO 199 (table 10, page 46) For additional Except for components (table 2, page 882): information Values (table 3, page 883) → page 35 • Variation of gauge lot diameter of the rollers: ISO 12297 Permissible Cannot tolerate any misalignment. misalignment

Tolerances for cylindrical roller thrust bearing components

WS

GS

Bearing component Dimensions

Tolerance, tolerance class¹⁾, standard

Cylindrical roller and cage thrust asse Bore diameter Outside diameter Roller diameter	mblies, K d D D _w	E11 a13 ISO 12297
Shaft washers, WS Bore diameter Outside diameter Thickness Axial run-out	d d ₁ B s _i	Normal, ISO 199 - h11 Normal, ISO 199
Housing washers, GS Outside diameter Bore diameter Thickness Axial run-out	D D ₁ B s _e	Normal, ISO 199 - h11 Normal, ISO 199
Universal washers, LS Bore diameter Outside diameter Thickness Axial run-out	d D B s _i	E12 a12 h11 Normal, ISO 199

¹⁾ The envelope requirement (symbol © from ISO 14405-1) is not shown but applies to all tolerance classes.

											Table 3
ISO tole	erance classes										
Nomina dimens >		a12© Deviation U	ons L	a13 © Deviatio U	ns L	E11 © Deviation U	ons L	E12 Deviation U	ins L	h11 © Deviati U	ons L
mm		μm		μm		μm		μm		μm	
-	3	-	-	-	-	-	-	-	-	0	-60
3	6	-	-	-	-	-	-	-	-	0	-75
6	10	-	-	-	-	-	-	-	-	0	-90
10	18	-	-	-	-	+142	+32	+212	+32	0	-110
18	30	-300	-510	-300	-630	+170	+40	+250	+40	0	-130
30	40	-310	-560	-310	-700	+210	+50	+300	+50	-	-
40	50	-320	-570	-320	-710	+210	+50	+300	+50	-	-
50	65	-340	-640	-340	-800	+250	+60	+360	+60	-	-
65	80	-360	-660	-360	-820	+250	+60	+360	+60	-	-
80 100 120	100 120 140	-380 -410 -460	-730 -760 -860	-380 -410 -460	-920 -950 -1 090	+292 +292 +335	+72 +72 +85	+422 +422 +485	+72 +72 +85	- -	- -
140	160	-520	-920	-520	-1 150	+335	+85	+485	+85	-	-
160	180	-580	-980	-580	-1 210	+335	+85	-	-	-	-
180	200	-660	-1 120	-660	-1 380	+390	+100	-	-	-	-
200	225	-	-	-740	-1 460	+390	+100	-	-	-	-
225	250	-	-	-820	-1 540	+390	+100	-	-	-	-
250	280	-	-	-920	-1 730	+430	+110	-	-	-	-
280	315	-	-	-1 050	-1 860	+430	+110	-	-	-	-
315	355	-	-	-1 200	-2 090	+485	+125	-	-	-	-
355	400	-	-	-1 350	-2 240	+485	+125	-	-	-	-
400 450 500 630	450 500 630 800	- - - -	- - - -	-1 500 -1 650 -1 900 -2 100	-2 470 -2 620 -3 000 -3 350	+535 +535 +585 -	+135 +135 +145 -	- - -	- - - -	- - - -	- - - -

5KF. 883

立

Loads

Minimum load	$F_{am} = 0,0005 C_0 + A \left(\frac{n}{1000} \right)^2$	Symbols A minimum load factor (page 888)
For additional information → page 106		C ₀ basic static load rating [kN] (page 888) F _a axial load [kN] F _{am} minimum axial load [kN] n rotational speed [r/min]
Equivalent dynamic bearing load	P = F _a	P equivalent dynamic bearing load [kN] P ₀ equivalent static bearing load [kN]
For additional information → page 91		
Equivalent static bearing load	$P_0 = F_a$	
For additional information → page 105		

Temperature limits

The permissible operating temperature for cylindrical roller thrust bearings can be limited by:

- the dimensional stability of the bearing washers and rollers
- the cage
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing washers and rollers

The bearings are heat stabilized up to at least $120 \,^{\circ}\text{C}$ (250 °F).

Cages

Brass cages can be used at the same operating temperatures as the bearing washers and rollers. For temperature limits of polymer cages, refer to *Polymer cages*, page 188.

Lubricants

For temperature limits of SKF greases, refer to Selecting a suitable SKF grease, page 116.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept, page 117.

Permissible speed

The speed ratings in the **product table**, **page 888** indicate:

- the **reference speed**, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the **limiting speed**, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds

For additional information, refer to *Operating temperature and speed*, **page 130**.

884

Design considerations

Abutment dimensions

Abutment dimensions should fulfil the following:

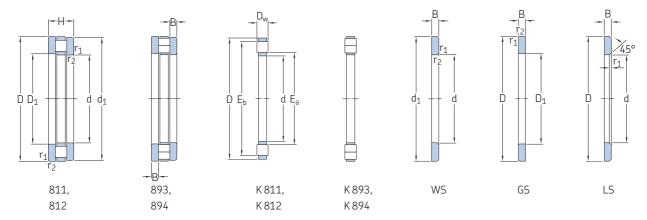
- Support surfaces in housings and on shafts should be at right angles to the shaft axis and provide uninterrupted support over the entire washer face.
- The abutment diameter on the shaft should be ≥ d_{a min} and in the housing
 ≤ D_{a max} (fig. 6). Values for d_{a min} and D_{a max} are listed in the product table, page 888
- Shafts and housings should be manufactured to suitable tolerance classes
 (table 4) to provide satisfactory radial guidance for the individual thrust bearing components.
 - Housing centred washers require a radial gap between the shaft and washer bore.
 - Shaft centred washers require a radial gap between the washer and the housing bore.

Cylindrical roller and cage thrust assemblies are generally centred radially by the shaft to reduce the circumferential speed at which the cage slides against the guiding surface. This is particularly important for higherspeed applications. The guiding surface should be ground.

Abutment diameters ≥ d_{a min} ≤ D_{a max}

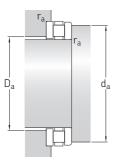
Raceways on shafts and in housings

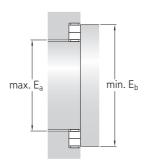
- should have the same hardness, surface finish and axial run-out as a bearing washer, if the load carrying capacity of a cylindrical roller and cage thrust assembly is to be fully exploited
- should be designed using the dimensions
 E_a and E_b (product table, page 888),
 which take radial displacement of the roller set into consideration


For additional information, refer to *Raceways* on shafts and in housings, page 179.

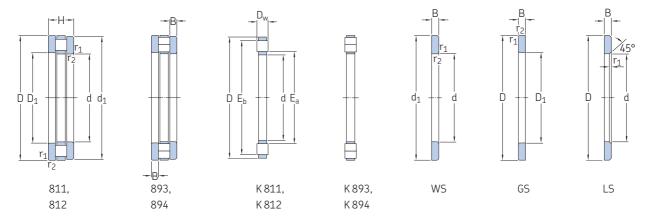
Bearing component	Prefix	Tolerance class ¹⁾ Shaft centred	Housing centred
ylindrical roller and cage hrust assemblies	К	h8	-
Shaft washers	WS	h8	-
Housing washers	GS	_	Н9

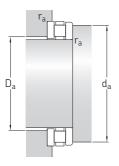
Designation system Group 1 Group 2 Group 3 Group 4 4.3 4.4 4.5 4.6 Prefixes -Housing washer Cylindrical roller and cage thrust assembly Shaft washer Basic designation Listed in table 4, page 30 LS.. Universal washer, the number following identifies the bore and outside diameter Suffixes -Group 1: Internal design -Group 2: External design (seals, snap ring groove, etc.) -Group 3: Cage design Machined brass cage Glass fibre reinforced PA66 cage Group 4.1: Materials, heat treatment Case-hardened shaft and housing washers **HB1** Bainite-hardened shaft and housing washers Group 4.2: Accuracy, clearance, preload, quiet running Dimensional and geometrical tolerances to class P5 Group 4.3: Bearing sets, matched bearings -Group 4.4: Stabilization -Group 4.5: Lubrication Group 4.6: Other variants

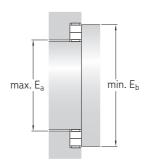



11.1 Cylindrical roller thrust bearings d 15 – 75 mm

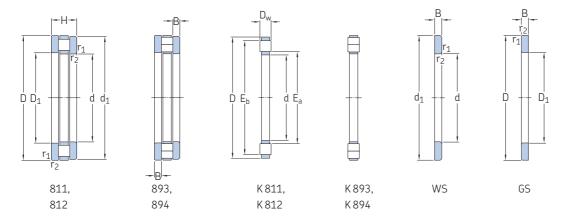
Princip a	al dimens D	sions			Rasic I				C	. •	M	
d	D					oad ratings ic static	Fatigue load limit	Minimum load factor	Speed ra Reference speed	atings ce Limiting speed	Mass	Designation
	D	Н	E_a	E_b	С	C_0	P_{u}	А	speeu	speed		
mm					kN		kN	_	r/min		kg	_
15	28	9	16	27	11,2	27	2,45	0,000 058	4 300	8 500	0,024	▶ 81102 TN
17	30	9	18	29	12,2	31,5	2,85	0,000 079	4 300	8 500	0,027	► 81103 TN
20	35	10	21	34	18,6	48	4,65	0,00018	3 800	7 500	0,037	► 81104TN
25	42	11	26	41	25	69,5	6,8	0,00039	3 200	6 300	0,053	► 81105 TN
30	47	11	31	46	27	78	7,65	0,00049	3 000	6 000	0,057	► 81106 TN
	52	16	31	50	50	134	13,4	0,0014	2 400	4 800	0,12	► 81206 TN
35	52	12	36	51	29	93	9,15	0,00069	2 800	5 600	0,073	► 81107 TN
	62	18	39	58	62	190	19,3	0,0029	2 000	4 000	0,21	► 81207 TN
40	60	13	42	58	43	137	13,7	0,0015	2 400	5 000	0,11	► 81108 TN
	68	19	43	66	83	255	26,5	0,0052	1 900	3 800	0,25	► 81208 TN
	78	22	44	77	95	365	36,5	0,011	2 000	4 000	0,48	89308 TN
45	65	14	47	63	45	153	15,3	0,0019	2 200	4 500	0,13	► 81109 TN
	73	20	48	70	83	255	26,5	0,0052	1 800	3 600	0,29	► 81209 TN
50	70	14	52	68	47,5	166	16,6	0,0022	2 200	4 300	0,14	► 81110 TN
	78	22	53	75	91,5	300	31	0,0072	1 700	3 400	0,36	► 81210 TN
55	78	16	57	77	69,5	285	29	0,0065	1 900	3 800	0,23	► 81111 TN
	90	25	59	85	122	390	40	0,012	1 400	2 800	0,57	► 81211 TN
60	85	17	62	82	80	300	30,5	0,0072	1 800	3 600	0,27	► 81112 TN
	95	26	64	91	137	465	47,5	0,017	1 400	2 800	0,65	► 81212 TN
	110	30	66	108	153	640	65,5	0,033	1 400	2 800	1,25	89312 TN
65	90	18	67	87	83	320	32,5	0,0082	1 700	3 400	0,31	► 81113 TN
	100	27	69	96	140	490	50	0,019	1 300	2 600	0,72	► 81213 TN
	115	30	71	113	153	640	65,5	0,033	1 400	2 800	1,35	89313 TN
70	95	18	72	92	86,5	345	34,5	0,0095	1 700	3 400	0,33	► 81114 TN
	105	27	74	102	146	530	55	0,022	1 300	2 600	0,77	► 81214 TN
	125	34	76	123	186	800	81,5	0,05	1 300	2 600	1,8	89314 TN
75	100	19	78	97	83	335	34	0,009	1 600	3 200	0,39	► 81115 TN
	110	27	79	106	137	490	50	0,019	1 200	2 400	0,8	► 81215 TN




Dimer	nsions					Abutn dimen	nent and i	fillet	Designation of Cylindrical roller		Housing	Universal
d	d ₁ ≈	D ₁ ≈	В	D_w	r _{1,2} min.	d _a min.	D _a max.	r _a max.	and cage thrust assembly		washer	washer
mm						mm	,		_			,
15	28	16	2,75	3,5	0,3	27	16	0,3	K 81102 TN	WS 81102	GS 81102	LS 1528
17	30	18	2,75	3,5	0,3	29	18	0,3	K 81103 TN	WS 81103	GS 81103	LS 1730
20	35	21	2,75	4,5	0,3	34	21	0,3	K 81104 TN	WS 81104	GS 81104	LS 2035
25	42	26	3	5	0,6	41	26	0,6	K 81105 TN	WS 81105	GS 81105	LS 2542
30	47	32	3	5	0,6	46	31	0,6	K 81106 TN	WS 81106	GS 81106	LS 3047
	52	32	4,25	7,5	0,6	50	31	0,6	K 81206 TN	WS 81206	GS 81206	-
35	52	37	3,5	5	0,6	51	36	0,6	K 81107 TN	WS 81107	GS 81107	LS 3552
	62	37	5,25	7,5	1	58	39	1	K 81207 TN	WS 81207	GS 81207	-
40	60	42	3,5	6	0,6	58	42	0,6	K 81108 TN	WS 81108	GS 81108	LS 4060
	68	42	5	9	1	66	43	1	K 81208 TN	WS 81208	GS 81208	-
	78	42	7,5	7	1	77	44	1	K 89308 TN	WS 89308	GS 89308	-
45	65	47	4	6	0,6	63	47	0,6	K 81109 TN	WS 81109	GS 81109	LS 4565
	73	47	5,5	9	1	70	48	1	K 81209 TN	WS 81209	GS 81209	-
50	70	52	4	6	0,6	68	52	0,6	K 81110 TN	WS 81110	GS 81110	LS 5070
	78	52	6,5	9	1	75	53	1	K 81210 TN	WS 81210	GS 81210	-
55	78	57	5	6	0,6	77	56	0,6	K 81111 TN	WS 81111	GS 81111	LS 5578
	90	57	7	11	1	85	59	1	K 81211 TN	WS 81211	GS 81211	-
60	85	62	4,75	7,5	1	82	62	1	K 81112 TN	WS 81112	GS 81112	LS 6085
	95	62	7,5	11	1	91	64	1	K 81212 TN	WS 81212	GS 81212	-
	110	62	10,5	9	1,1	108	67	1,1	K 89312 TN	WS 89312	GS 89312	-
65	90	67	5,25	7,5	1	87	67	1	K 81113 TN	WS 81113	GS 81113	LS 6590
	100	67	8	11	1	96	69	1	K 81213 TN	WS 81213	GS 81213	-
	115	67	10,5	9	1,1	113	72	1,1	K 89313 TN	WS 89313	GS 89313	-
70	95	72	5,25	7,5	1	92	72	1	K 81114 TN	WS 81114	GS 81114	LS 7095
	105	72	8	11	1	102	74	1	K 81214 TN	WS 81214	GS 81214	-
	125	72	12	10	1,1	123	78	1,1	K 89314 TN	WS 89314	GS 89314	-
75	100 110	77 77	5,75 8	7,5 11	1 1	97 106	78 79	1 1	K 81115 TN K 81215 TN	WS 81115 WS 81215	GS 81115 GS 81215	LS 75100

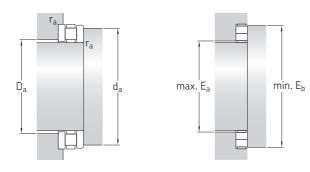

11.1 Cylindrical roller thrust bearings d 80 – 180 mm

Princip	al dimens	sions				oad ratings static	Fatigue load limit	Minimum load factor	Speed re Reference speed	atings ce Limiting speed	Mass	Designation
d	D	Н	Ea	E_b	С	C_0	P_{u}	А	speeu	Speed		
mm					kN	,	kN	_	r/min		kg	_
80	105	19	83	102	81,5	335	34	0,009	1 500	3 000	0,4	► 81116 TN
	115	28	84	112	160	610	63	0,03	1 200	2 400	0,9	► 81216 TN
	140	36	86	137	240	1 060	108	0,09	1 200	2 400	2,35	89316 TN
	170	54	88	165	440	1 730	173	0,24	900	1 800	7,05	89416 M
85	110	19	87	108	88	365	37,5	0,011	1 500	3 000	0,42	► 81117 TN
	125	31	90	119	170	640	67	0,033	1 100	2 200	1,2	► 81217 TN
90	120	22	93	117	110	450	45,5	0,016	1 300	2 600	0,62	► 81118 TN
	135	35	95	129	232	865	90	0,06	1 000	2 000	1,75	► 81218 TN
100	135	25	104	131	156	630	62	0,032	1 200	2 400	0,95	► 81120 TN
	150	38	107	142	270	1 060	104	0,09	900	1 800	2,2	► 81220 TN
	170	42	109	166	300	1 370	132	0,15	950	1 900	4,55	89320 M
110	145	25	114	141	163	680	65,5	0,037	1 100	2 200	1,05	81122 TN
	160	38	117	152	260	1 000	98	0,08	850	1 700	2,3	• 81222 TN
	190	48	120	185	400	1 830	173	0,27	850	1 700	6,7	89322 M
120	155	25	124	151	170	735	68	0,043	1 100	2 200	1,1	► 81124 TN
	170	39	127	162	255	1 000	96,5	0,08	800	1 600	2,55	► 81224 TN
	210	54	132	205	510	2 360	216	0,45	750	1 500	9,45	89324 M
130	170	30	135	165	200	880	81,5	0,062	950	1 900	1,65	81126 TN
	190	45	137	181	380	1 460	137	0,17	700	1 400	4	▶ 81226 TN
140	180	31	145	175	208	930	85	0,069	900	1 800	1,9	► 81128 TN
	200	46	150	191	360	1 400	129	0,16	700	1 400	5,05	81228 M
150	190	31	155	185	212	1 000	88	0,08	850	1 700	2,2	► 81130 TN
	215	50	162	210	465	1 900	170	0,29	630	1 300	7,2	► 81230 M
160	200	31	165	195	216	1 020	90	0,083	850	1 700	2,1	► 81132 TN
	225	51	171	219	480	2 000	176	0,32	600	1 200	7,6	► 81232 M
	320	95	179	313	1 430	6 400	540	3,3	480	950	42	89432 M
170	215	34	176	209	285	1 340	118	0,14	800	1 600	2,4	► 81134 TN
	240	55	184	233	540	2 280	200	0,42	560	1 100	9,3	► 81234 M
	340	103	191	333	1 600	7 200	600	4,15	430	850	52	89434 M
180	225	34	185	219	270	1 270	110	0,13	750	1 500	3,7	► 81136 M
	250	56	194	243	550	2 400	204	0,46	560	1 100	9,95	81236 M
	360	109	200	351	1 760	8 000	655	5,1	400	800	60	89436 M


[►] Popular item

Dimer	sions					Abutn dimen	nent and sions	fillet	Designation of con Cylindrical roller	mponents Shaft washer	Housing	Universal
d	d ₁ ≈	D ₁ ≈	В	D_w	r _{1,2} min.	d _a min.	D _a max.	r _a max.	and cage thrust assembly		washer	washer
mm						mm			_			
80	105	82	5,75	7,5	1	102	83	1	K 81116 TN	WS 81116	GS 81116	LS 80105
	115	82	8,5	11	1	112	84	1	K 81216 TN	WS 81216	GS 81216	-
	140	82	12,5	11	1,5	137	88	1,5	K 89316 TN	WS 89316	GS 89316	-
	170	83	18	18	2,1	166	89	2,1	K 89416 M	WS 89416	GS 89416	-
35	110	87	5,75	7,5	1	108	87	1	K 81117 TN	WS 81117	GS 81117	LS 85110
	125	88	9,5	12	1	119	90	1	K 81217 TN	WS 81217	GS 81217	-
90	120	92	6,5	9	1	117	93	1	K 81118 TN	WS 81118	GS 81118	LS 90120
	135	93	10,5	14	1,1	129	95	1,1	K 81218 TN	WS 81218	GS 81218	-
100	135	102	7	11	1	131	104	1	K 81120 TN	WS 81120	GS 81120	LS 10013
	150	103	11,5	15	1,1	142	107	1,1	K 81220 TN	WS 81220	GS 81220	-
	170	103	14,5	13	1,5	167	109	1,5	K 89320 M	WS 89320	GS 89320	-
110	145	112	7	11	1	141	114	1	K 81122 TN	WS 81122	GS 81122	LS 11014
	160	113	11,5	15	1,1	152	117	1,1	K 81222 TN	WS 81222	GS 81222	-
	190	113	16,5	15	2	186	120	2	K 89322 M	WS 89322	GS 89322	-
120	155	122	7	11	1	151	124	1	K 81124 TN	WS 81124	GS 81124	LS 12015
	170	123	12	15	1,1	162	127	1,1	K 81224 TN	WS 81224	GS 81224	-
	210	123	18,5	17	2,1	206	130	2,1	K 89324 M	WS 89324	GS 89324	-
130	170 187	132 133	9 13	12 19	1 1,5	165 181	135 137	1 1,5	K 81126 TN K 81226 TN	WS 81126 WS 81226	GS 81126 GS 81226	LS 13017
140	178	142	9,5	12	1	175	145	1	K 81128 TN	WS 81128	GS 81128	LS 14018
	197	143	13,5	19	1,5	191	147	1,5	K 81228 M	WS 81228	GS 81228	-
150	188 212	152 153	9,5 14,5	12 21	1 1,5	185 211	155 158	1 1,5	K 81130 TN K 81230 M	WS 81130 WS 81230	GS 81130 GS 81230	LS 15019
160	198	162	9,5	12	1	195	165	1	K 81132 TN	WS 81132	GS 81132	LS 16020
	222	163	15	21	1,5	220	168	1,5	K 81232 M	WS 81232	GS 81232	-
	320	164	31,5	32	5	315	179	5	K 89432 M	WS 89432	GS 89432	-
170	213	172	10	14	1,1	209	176	1,1	K 81134 TN	WS 81134	GS 81134	-
	237	173	16,5	22	1,5	235	180	1,5	K 81234 M	WS 81234	GS 81234	-
	340	174	34,5	34	5	335	191	5	K 89434 M	WS 89434	GS 89434	-
180	222	183	10	14	1,1	219	185	1,1	K 81136 M	WS 81136	GS 81136	-
	247	183	17	22	1,5	245	190	1,5	K 81236 M	WS 81236	GS 81236	-
	360	184	36,5	36	5	353	203	5	K 89436 M	WS 89436	GS 89436	-

11.1 Cylindrical roller thrust bearings d 190 – 320 mm



Princip	al dimens	sions				ad ratings static	Fatigue load limit	Minimum load factor		e Limiting	Mass	Designation
d	D	Н	Ea	E_b	С	C_0	P_{u}	А	speed	speed		
mm					kN		kN	-	r/min		kg	-
190	240	37	197	233	310	1 460	125	0,17	700	1 400	4,75	► 81138 M
	270	62	205	263	695	2 900	250	0,67	500	1 000	12	81238 M
	380	115	212	371	1 960	9 000	720	6,5	380	750	65,5	89438 M
200	250	37	206	243	310	1 500	125	0,18	700	1 400	4,95	► 81140 M
	280	62	215	273	720	3 100	255	0,77	500	1 000	13,5	81240 M
	400	122	224	391	2 160	10 000	800	8	360	700	75	89440 M
220	270	37	226	263	335	1 700	137	0,23	670	1 300	5,2	► 81144 M
	300	63	236	294	750	3 350	275	0,9	480	950	15	► 81244 M
	420	122	244	411	2 320	11 200	880	10	340	700	84,5	89444 M
240	300	45	248	296	475	2 450	196	0,48	560	1 100	8,45	► 81148 M
	340	78	263	333	1 100	4 900	390	1,92	400	800	22	► 81248 M
260	320	45	268	316	490	2 600	200	0,54	530	1 100	9,1	► 81152 M
	360	79	281	351	1 140	5 300	415	2,25	380	750	27	81252 M
280	350	53	288	346	680	3 550	275	1	480	950	12,5	81156 M
300	380	62	315	373	850	4 400	335	1,55	430	850	19,5	81160 M
	420	95	329	412	1 530	7 200	540	4,1	320	630	43	81260 M
320	400	63	334	394	880	4 650	345	1,73	400	800	20,5	81164 M

SKF. 892

[►] Popular item

Dimer	sions					Abutm dimen	nent and i	fillet	Designation of c Cylindrical roller and cage thrust	omponents Shaft washer	Housing washer	Universal washer
d	d ₁ ≈	D ₁ ≈	В	D_w	r _{1,2} min.	d _a min.	D _a max.	r _a max.	assembly		wasilei	wasilei
mm						mm			_			
190	237 267 380	193 194 195	11 18 38,5	15 26 38	1,1 2 5	233 265 373	197 200 214	1,1 2 5	K 81138 M K 81238 M K 89438 M	WS 81138 WS 81238 WS 89438	GS 81138 GS 81238 GS 89438	- - -
200	247 277 400	203 204 205	11 18 41	15 26 40	1,1 2 5	243 275 393	206 210 226	1,1 2 5	K 81140 M K 81240 M K 89440 M	WS 81140 WS 81240 WS 89440	GS 81140 GS 81240 GS 89440	- - -
220	267 297 420	223 224 225	11 18,5 41	15 26 40	1,1 2 6	263 296 413	226 230 246	1,1 2 6	K 81144 M K 81244 M K 89444 M	WS 81144 WS 81244 WS 89444	GS 81144 GS 81244 GS 89444	- - -
240	297 335	243 244	13,5 23	18 32	1,5 2,1	296 335	248 261	1,5 2,1	K 81148 M K 81248 M	WS 81148 WS 81248	GS 81148 GS 81248	-
260	317 355	263 264	13,5 23,5	18 32	1,5 2,1	316 353	268 280	1,5 2,1	K 81152 M K 81252 M	WS 81152 WS 81252	GS 81152 GS 81252	<u>-</u>
280	347	283	15,5	22	1,5	346	288	1,5	K 81156 M	WS 81156	GS 81156	-
300	376 415	304 304	18,5 28,5	25 38	2 3	373 413	315 328	2	K 81160 M K 81260 M	WS 81160 WS 81260	GS 81160 GS 81260	<u>-</u>
320	396	324	19	25	2	394	334	2	K 81164 M	WS 81164	GS 81164	-

Needle roller thrust bearings

12 Needle roller thrust bearings

Designs and variants	070
Needle roller and cage thrust assemblies	897
Double direction bearings	897
Needle roller thrust bearings with a centring flange	897
Combined needle roller bearing arrangements	897
Bearing washers	898
Cages	898
Bearing data Dimension standards, tolerances, permissible misalignment)	899
Loads	902
Temperature limits	902
Permissible speed	902
Design considerations	903
Abutment dimensions	903
Raceways on shafts and in housings	903
Designation system	904
Product tables	
2.1 Needle roller and cage thrust assemblies	906
2.2 Needle roller thrust bearings with a centring	
flange	910

12

SKF 895

12 Needle roller thrust bearings

More information

General bearing knowledge	17
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Sealing, mounting and	
dismounting	193

SKF bearing maintenance handbook ISBN 978-91-978966-4-1 SKF needle roller thrust bearings are fitted with a form-stable cage to reliably retain and guide a large number of needle rollers.

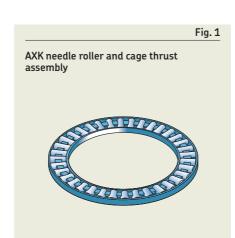
Needle roller thrust bearings provide a high degree of stiffness within a minimum axial space. In applications where the faces of adjacent machine components can serve as raceways, needle roller thrust bearings take up no more space than a conventional thrust washer.

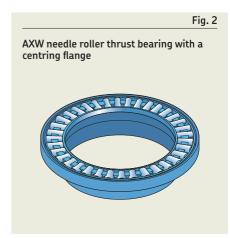
Bearing features

Accommodate heavy axial loads and peak loads

The very small diameter deviation of the rollers within one assembly enables these bearings to accommodate heavy axial loads and peak loads.

• Extended bearing service life


To prevent stress peaks, the roller ends are relieved slightly to modify the line contact between the raceway and rollers.


Designs and variants

SKF supplies needle roller thrust bearings in two designs:

- needle roller and cage thrust assemblies, AXK series (fig. 1)
- needle roller thrust bearings with a centring flange, AXW series (fig. 2)

In applications where adjacent components cannot serve as raceways, the assemblies can be combined with bearing washers in different series (*Bearing washers*, page 898).

12

896

Needle roller and cage thrust assemblies

AXK series needle roller and cage thrust assemblies (fig. 1):

- are available for $4 \le d \le 160 \text{ mm}$
- can accommodate axial loads in one direction only
- can be combined with washers in the LS, AS, GS 811 or WS 811 series (*Bearing* washers, page 898) in applications where adjacent components cannot serve as raceways

Double direction bearings

Double direction bearings:

- can accommodate axial loads in both directions
- can be created by combining two needle roller and cage thrust assemblies and two bearing washers with an intermediate washer

Depending on the design, an intermediate washer can be shaft or housing centred (fig. 3 and fig. 4).

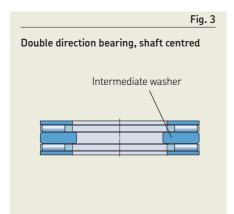
Intermediate washers must have the same hardness and surface finish as bearing washers. SKF does not supply intermediate washers, but provides material specifications and dimensional data on request.

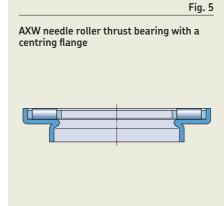
For additional information, refer to *Design* considerations, page 903.

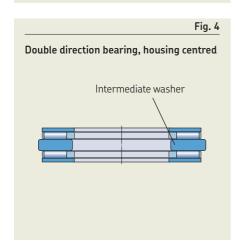
Needle roller thrust bearings with a centring flange

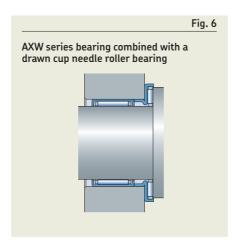
AXW series needle roller thrust bearings with a centring flange (fig. 2 and fig. 5):

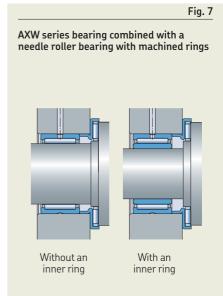
- are available for 10 ≤ d ≤ 50 mm
- accommodate axial loads in one direction only
- consist of a needle roller and cage thrust assembly and a thrust washer with a centring flange


The flange facilitates mounting and accurately centres the housing washer radially (fig. 6 and fig. 7).


Combined needle roller bearing arrangements


To accommodate combined radial and axial loads, needle roller thrust bearings in the AXW series can be combined with the following radial needle roller bearings:


- drawn cup needle roller bearings with a closed end or with open ends (fig. 6)
- needle roller bearings with machined rings (fig. 7)


These arrangements provide a costeffective and compact solution for combined loads.

12

Bearing washers

Bearing washers are required in applications where adjacent machine components cannot serve as raceways.

Appropriate washers are listed in the product tables, page 906 and must be ordered separately, because of the number of possible combinations.

The following series can be combined with needle roller thrust bearings:

LS series universal washers

(fig. 8)

- are made of hardened carbon chromium bearing steel
- can be used as shaft or housing washers for needle roller thrust bearings in the AXK
- can be used as shaft washers for bearings in the AXW series
- are available for $6 \le d \le 160 \text{ mm}$
- raceway surface is ground, while all other surfaces are turned
- are used for applications where accurate centring of the washers is not necessary or where low speeds are involved
- washer face opposite the side with the chamfers is the raceway surface and should face the rollers

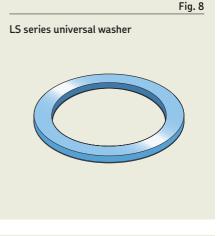
AS series thin universal washers

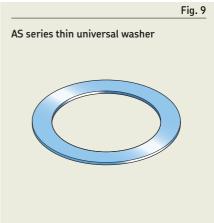
(fig. 9)

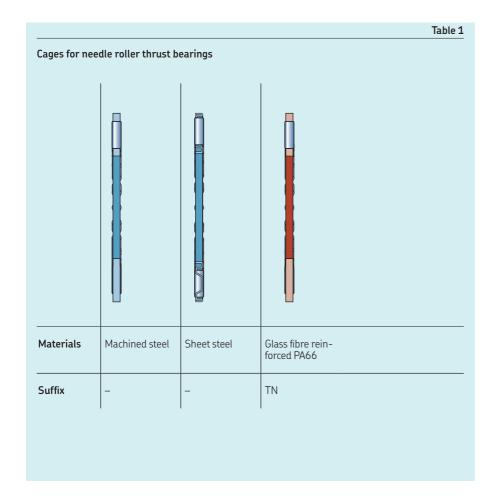
- are 1 mm thick
- are made of spring steel and hardened
- can be used as shaft or housing washers for needle roller thrust bearings in the AXK
- can be used as shaft washers for bearings in the AXW series
- are available for $4 \le d \le 160 \text{ mm}$
- can be used to provide a cost-effective bearing solution, if adjacent machine components are not hardened, but have adequate stiffness and the requirements to geometrical tolerances are moderate

Both faces of the washers are polished and can be used as raceways.

811 series shaft (prefix WS) and housing washers (prefix GS)

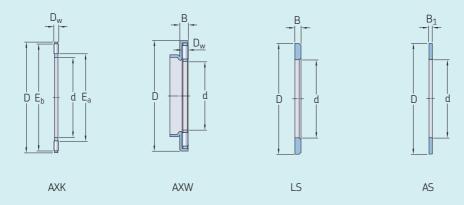

- are used primarily with cylindrical roller and cage thrust assemblies
- can also be combined with needle roller and cage thrust assemblies
- can be used in high-speed applications where accurate centring of the bearing washers is required


For additional information about 811 series washers, refer to Cylindrical roller thrust bearings, page 877.


Cages

SKF needle roller thrust bearings are fitted with one of the cages shown in table 1. Bearings in the AXW series are fitted exclusively with steel cages.

When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For additional information about the suitability of cages, refer to Cages, page 187.



Bearing, component

Thin universal washers, AS Bore diameter

Outside diameter Thickness (1 mm) Table 2

Tolerances for needle roller thrust bearings

Dimensions			
Needle velley and core through cores	mhliae AVV		
Needle roller and cage thrust asse		F4.2	
Bore diameter	d	E12	
Outside diameter	D	c13	
Roller diameter	D_{w}	Grade 2, ISO 3096	
Needle roller thrust bearings with	a contring flange AVM		
	a centing nange, AAW	E12	
Bore diameter	α	E1Z	
Outside diameter	D	-	
Thickness	В	0/–0,2 mm	
Roller diameter	D_{w}	Grade 2, ISO 3096	
Universal washers, LS		540	
Bore diameter	d	E12	
Outside diameter	D	a12	
Thickness	В	h11	
Axial run-out	Si	Normal, ISO 199	

E13

±0,05 mm

Tolerance, tolerance class1), standard

¹⁾ The envelope requirement (symbol (©) from ISO 14405-1) is not shown but applies to all tolerance classes.

12

													Table 3	
ISO tole	50 tolerance classes													
	Nominal a12 © Deviations > ≤ U L			c13© Deviations U L		e13 © Deviation U	Deviations		ons L	E12 © Deviatio U	Deviations		ns L	
mm	μm	μm		μm		μm		μm		μm		μm		
- 3 6 10	3 6 10 18	- - - -	- - - -	- - - -95	- - - -365	- - - -32	- - - -302	0 0 0 -	-60 -75 -90 -	- +140 +175 +212	- +20 +25 +32	- +200 +245 +302	- +20 +25 +32	
18 30 40	30 40 50	-300 -310 -320	-510 -560 -570	-110 -120 -130	-440 -510 -520	-40 -50 -50	-370 -440 -440	- - -	- - -	+250 +300 +300	+40 +50 +50	+370 +440 +440	+40 +50 +50	
50 65 80	65 80 100	-340 -360 -380	-640 -660 -730	-140 -150 -170	-600 -610 -710	-60 -60 -72	-520 -520 -612	- - -	- - -	+360 +360 +422	+60 +60 +72	+520 +520 +612	+60 +60 +72	
100 120 140	120 140 160	-410 -460 -520	-760 -860 -920	-180 -200 -210	-720 -830 -840	-72 -85 -85	-612 -715 -715	- - -	- - -	+422 +485 +485	+72 +85 +85	+612 +715 +715	+72 +85 +85	
160 180	180 200	-580 -660	-980 -1120	-230 -240	-860 -960	-85 -100	-715 -820	- -	_ _	- -	_	- -	-	

5KF. 901

Minimum load	$F_{am} = 0,0005 C_0$	Symbols
For additional information → page 106		C ₀ basic static load rating [kN] (product tables, page 906) F _a axial load [kN] F _{am} minimum axial load [kN]
Equivalent dynamic bearing load	P = F _a	P equivalent dynamic bearing load [kN] P0 equivalent static bearing load [kN]
For additional information → page 91		
Equivalent static bearing load	$P_0 = F_a$	
For additional information → page 105		

Temperature limits

The permissible operating temperature for needle roller thrust bearings can be limited by:

- the dimensional stability of the bearing washers and rollers
- the cage
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing washers and rollers

The bearings are heat stabilized up to at least 120 °C (250 °F).

Cages

Steel cages can be used at the same operating temperatures as the bearing washers and rollers. For temperature limits of polymer cages, refer to *Polymer cages*, page 188.

Lubricants

For temperature limits of SKF greases, refer to Selecting a suitable SKF grease, page 116.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Permissible speed

The speed ratings in the **product tables**, page 906 indicate:

- the **reference speed**, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the limiting speed, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds

For additional information, refer to *Operating temperature and speed*, **page 130**.

12

Design considerations

Abutment dimensions

Abutment dimensions should fulfil the following:

- Support surfaces on shafts and in housings should be at right angles to the shaft or housing axis and should provide uninterrupted support over the entire washer face.
- The abutment diameter on the shaft should be ≤ E_a and in the housing ≥ E_b.
 Values for E_a and E_b (product tables, page 906) take the movement and position of the roller set into consideration.
- Shafts and housings should be manufactured to suitable tolerance classes
 (table 4) to provide satisfactory radial guidance for the individual thrust bearing components:
 - Housing centred washers → radial space between the shaft and washer bore required
 - Shaft centred washers → radial space between the washer and the housing bore required

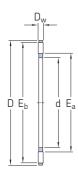
Needle roller and cage thrust assemblies in the AXW series are generally combined with drawn cup needle roller bearings (fig. 6, page 897) or needle roller bearings with machined rings (fig. 7, page 897). The same housing tolerance must be selected for the centring flange as for the radial bearing.

Needle roller and cage thrust assemblies are generally shaft centred, to reduce the circumferential speed at which the cage slides against the guiding surface. This is particularly important for higher-speed applications. The guiding surface should be ground.

Raceways on shafts and in housings

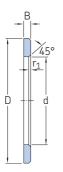
- should have the same hardness, surface finish and axial run-out as a bearing washer, if the load carrying capacity of a needle roller and cage thrust assembly is to be fully exploited
- should be designed using the dimensions
 E_a and E_b (product tables, page 906),
 which take radial displacement of the roller set into consideration

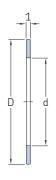
For additional information, refer to *Raceways* on shafts and in housings, page 179.

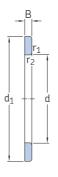

Bearing component	Series	Tolerance class ¹⁾ Shaft centred	Housing centred
Needle roller and cage thrust issemblies	AXK	h8	-
Jniversal washers	LS	h8 radial space	radial space H9
Thin universal washers	AS	h8 radial space	radial space H9
Shaft washers	WS 811	h8	-
lousing washers	GS 811	-	Н9

12

Group 4.6: Other variants


12.1 Needle roller and cage thrust assemblies


d **4 – 85** mm

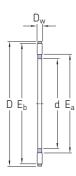


Princi	pal dimei	nsions				oad ratings ic static	Fatigue load limit	Speed ration Reference speed	ngs Limiting speed	Mass	Designation
d	D	D_w	E _a min.	E _b max.	С	C_0	P_{u}	speeu	speeu		
mm					kN		kN	r/min		g	-
4	14	2	5	13	4,15	8,3	0,95	7 500	15 000	0,7	AXK 0414 TN
5	15	2	6	14	4,5	9,5	1,08	6 700	14 000	0,8	► AXK 0515 TN
6	19	2	7	18	6,3	16	1,86	6 000	12 000	1	AXK 0619 TN
8	21	2	9	20	7,2	20	2,32	5 600	11 000	2	► AXK 0821 TN
10	24	2	12	23	8,5	26	3	5 300	10 000	3	► AXK 1024
12	26	2	14	25	9,15	30	3,45	5 000	10 000	3	► AXK 1226
15	28	2	17	27	10,4	37,5	4,3	4 800	9 500	4	► AXK 1528
17	30	2	19	29	11	40,5	4,75	4 500	9 500	3,65	► AXK 1730
20	35	2	22	34	12	47,5	5,6	4 300	8 500	5	► AXK 2035
25	42	2	29	41	13,4	60	6,95	3 800	7 500	7	► AXK 2542
30	47	2	34	46	15	72	8,3	3 600	7 000	8	► AXK 3047
35	52	2	39	51	16,6	83	9,8	3 200	6 300	10	► AXK 3552
40	60	3	45	58	25	114	13,7	2 800	5 600	16	► AXK 4060
45	65	3	50	63	27	127	15,3	2 600	5 300	18	► AXK 4565
50	70	3	55	68	28,5	143	17	2 400	5 000	20	► AXK 5070
55	78	3	60	76	34,5	186	22,4	2 200	4 300	28	► AXK 5578
60	85	3	65	83	37,5	232	28,5	2 200	4 300	33	► AXK 6085
65	90	3	70	88	39	255	31	2 000	4 000	35	► AXK 6590
70	95	4	74	93	49	255	31	1 800	3 600	60	► AXK 7095
75	100	4	79	98	50	265	32,5	1 700	3 400	61	► AXK 75100
80	105	4	84	103	51	280	34	1 700	3 400	63	► AXK 80105
85	110	4	89	108	52	290	35,5	1 700	3 400	67	► AXK 85110


► Popular item

WS 811

LS AS

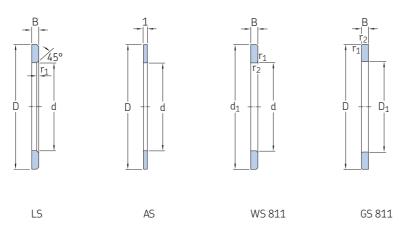

GS 811

Dimer	nsions					Masse Washe		Designations Universal	Thin universal	Shaft washer	Housing washer
d	d_1	D	D_1	В	r _{1,2} min.	LS, WS, GS	AS	washer	washer		
mm						g		_			
4	_	14	_	_	_	_	1	-	AS 0414	-	_
5	_	15	_	-	_	_	1	-	AS 0515	-	-
6	_	19	-	2,75	0,3	6	2	LS 0619	AS 0619	-	-
8	-	21	-	2,75	0,3	6	2	LS 0821	AS 0821	-	-
10	-	24	-	2,75	0,3	8	3	LS 1024	AS 1024	-	-
12	-	26	-	2,75	0,3	9	3	LS 1226	AS 1226	-	-
15	28	28	16	2,75	0,3	9	3	LS 1528	AS 1528	WS 81102	GS 81102
17	30	30	18	2,75	0,3	9	4	LS 1730	AS 1730	WS 81103	GS 81103
20	35	35	21	2,75	0,3	13	5	LS 2035	AS 2035	WS 81104	GS 81104
25	42	42	26	3	0,6	19	7	LS 2542	AS 2542	WS 81105	GS 81105
30	47	47	32	3	0,6	22	8	LS 3047	AS 3047	WS 81106	GS 81106
35	52	52	37	3,5	0,6	29	9	LS 3552	AS 3552	WS 81107	GS 81107
40	60	60	42	3,5	0,6	40	12	LS 4060	AS 4060	WS 81108	GS 81108
45	65	65	47	4	0,6	50	13	LS 4565	AS 4565	WS 81109	GS 81109
50	70	70	52	4	0,6	55	14	LS 5070	AS 5070	WS 81110	GS 81110
55	78	78	57	5	0,6	88	18	LS 5578	AS 5578	WS 81111	GS 81111
60	85	85	62	4,75	1	97	22	LS 6085	AS 6085	WS 81112	GS 81112
65	90	90	67	5,25	1	115	24	LS 6590	AS 6590	WS 81113	GS 81113
70	95	95	72	5,25	1	123	25	LS 7095	AS 7095	WS 81114	GS 81114
75	100	100	77	5,75	1	142	27	LS 75100	AS 75100	WS 81115	GS 81115
80	105	105	82	5,75	1	151	28	LS 80105	AS 80105	WS 81116	GS 81116
85	110	110	87	5,75	1	159	29	LS 85110	AS 85110	WS 81117	GS 81117

12.1

12.1 Needle roller and cage thrust assemblies

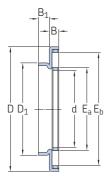
d **90 – 160** mm



Princip	pal dimer	nsions				oad ratings c static	Fatigue load limit	Speed ration Reference	Limiting	Mass	Designation
d	D	D_w	E _a min.	E _b max.	С	C_0	P_{u}	speed	speed		
mm					kN		kN	r/min		g	_
90	120	4	94	118	65,5	405	49	1 500	3 000	86	► AXK 90120
100	135	4	105	133	76,5	560	65,5	1 400	2 800	104	► AXK 100135
110	145	4	115	143	81,5	620	72	1 300	2 600	122	► AXK 110145
120	155	4	125	153	86,5	680	76,5	1 300	2 600	131	► AXK 120155
130	170	5	136	167	112	830	93	1 100	2 200	205	AXK 130170
140	180	5	146	177	116	900	96,5	1 000	2 000	219	► AXK 140180
150	190	5	156	187	120	950	102	1 000	2 000	232	AXK 150190
160	200	5	166	197	125	1 000	106	950	1 900	246	► AXK 160200

► Popular item

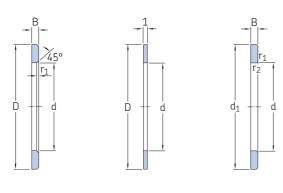
908 **SKF**:



Dimen	sions ${ m d}_1$	D	D_1	В	r _{1,2} min.	Masse Washe LS, WS, GS		Designations Universal washer	Thin universal washer	Shaft washer	Housing washer
mm						g		-			
90	120	120	92	6,5	1	234	39	LS 90120	AS 90120	WS 81118	GS 81118
100	135	135	102	7	1	350	50	LS 100135	AS 100135	WS 81120	GS 81120
110	145	145	112	7	1	385	55	LS 110145	AS 110145	WS 81122	GS 81122
120	155	155	122	7	1	415	59	LS 120155	AS 120155	WS 81124	GS 81124
130	170	170	132	9	1	663	65	LS 130170	AS 130170	WS 81126	GS 81126
140	178	180	142	9,5	1	749	79	LS 140180	AS 140180	WS 81128	GS 81128
150	188	190	152	9,5	1	796	84	LS 150190	AS 150190	WS 81130	GS 81130
160	198	200	162	9,5	1	842	89	LS 160200	AS 160200	WS 81132	GS 81132

12.2 Needle roller thrust bearings with a centring flange

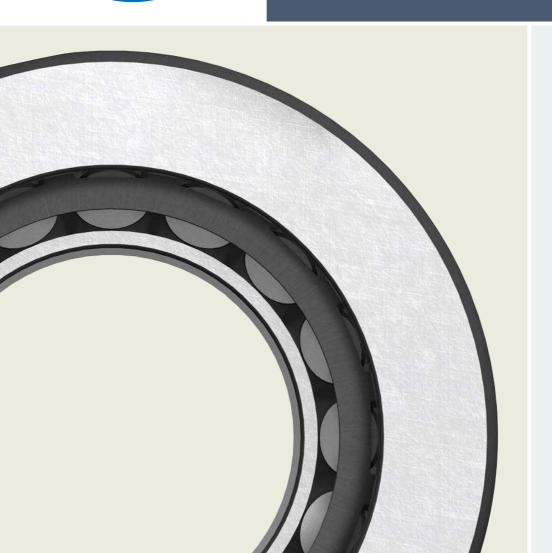
d **10 – 45** mm



Princi	rincipal dimensions $D \qquad D_1 \qquad B \qquad B_1 \qquad E_a \qquad E_b$							Basic load ratings dynamic static		Speed r Referend speed	atings ce Limiting speed	Mass	Designation	
d	D	D_1	В	B ₁	E _a min.	E _b max.	С			.,				
mm							kN		kN	r/min		g	_	
10	27	14	3,2	3	12	23	8,5	26	3	5 300	10 000	8,3	AXW 10	
12	29	16	3,2	3	14	25	9,15	30	3,45	5 000	10 000	9,1	AXW 12	
15	31	21	3,2	3,5	17	27	10,4	37,5	4,3	4 800	9 500	10	AXW 15	
20	38	26	3,2	3,5	22	34	12	47,5	5,6	4 300	8 500	14	AXW 20	
25	45	32	3,2	4	29	41	13,4	60	6,95	3 800	7 500	20	AXW 25	
30	50	37	3,2	4	34	46	15	72	8,3	3 600	7 000	22	AXW 30	
35	55	42	3,2	4	39	51	16,6	83	9,8	3 200	6 300	27	AXW 35	
40	63	47	4,2	4	45	58	25	114	13,7	2 800	5 600	39	AXW 40	
45	68	52	4,2	4	50	63	27	127	15,3	2 600	5 300	43	AXW 45	



LS AS WS 811


Dimens	d ₁ , D	В	r _{1,2} min.	Masses Washer LS, WS	S	Designations Universal washer	Thin universal washer	Shaft washer
mm				g		-		
10	24	2,75	0,3	8	3	LS 1024	AS 1024	-
12	26	2,75	0,3	9	3	LS 1226	AS 1226	_
15	28	2,75	0,3	9	3	LS 1528	AS 1528	WS 81102
20	35	2,75	0,3	13	5	LS 2035	AS 2035	WS 81104
25	42	3	0,6	19	7	LS 2542	AS 2542	WS 81105
30	47	3	0,6	22	8	LS 3047	AS 3047	WS 81106
35	52	3,5	0,6	29	9	LS 3552	AS 3552	WS 81107
40	60	3,5	0,6	40	12	LS 4060	AS 4060	WS 81108
45	65	4	0,6	50	13	LS 4565	AS 4565	WS 81109

13

Spherical roller thrust bearings

13 Spherical roller thrust bearings

915

Designs and variants

Basic design bearings	915 915		
Cages	915		
Bearing data	916		
_oads	917		
Temperature limits	918		
Permissible speed	918		
Design considerations Abutment dimensions	918 918		
Recessed housing bore for bearings with a stamped steel cage	918 918		
_ubrication	919		
Pumping effect in oil lubricated applications	919		
Mounting	920		
Designation system	921		
Product table 13.1 Spherical roller thrust bearings	922	Other spherical roller thrust bearings NoWear coated bearings	1059

5KF. 913

13 Spherical roller thrust bearings

More information

General bearing knowledge	17
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Seat tolerances for standard	
conditions	148
Sealing, mounting and	
dismounting	193
Mounting instructions for	

SKF bearing maintenance handbook ISBN 978-91-978966-4-1

individual bearings → skf.com/mount

SKF spherical roller thrust bearings have specially designed raceways and asymmetrical rollers. The bearings can accommodate axial loads acting in one direction and simultaneously acting radial loads. The load is transmitted between the raceways via the rollers at an angle to the bearing axis, while the flange guides the rollers (fig. 1).

Bearing features

· High load carrying capacity

The large number of rollers, which have an optimum conformity with the washer raceways, enables the bearings to accommodate heavy axial and simultaneously acting radial loads.

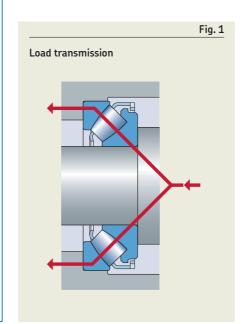
· Accommodate misalignment

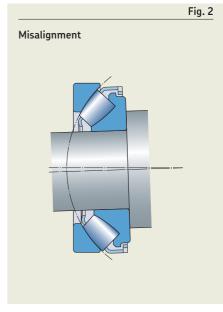
SKF spherical roller thrust bearings are self-aligning and can accommodate misalignment (fig. 2).

• Separable design

SKF spherical roller thrust bearings are separable, making it possible to mount and dismount the housing washer separately from the shaft washer and roller and cage assembly. In addition this facilitates maintenance inspections.

· High speed capability


The cage designs and the optimum conformity of the rollers with the washer raceways make the bearings suitable for relatively high speeds.


· Long service life

The special roller profile reduces edge stresses at the roller/raceway contact.

• Low friction

The optimized roller end / flange contact keeps frictional heat at low level, even at high speeds.

914 **SKF**

Designs and variants

Basic design bearings

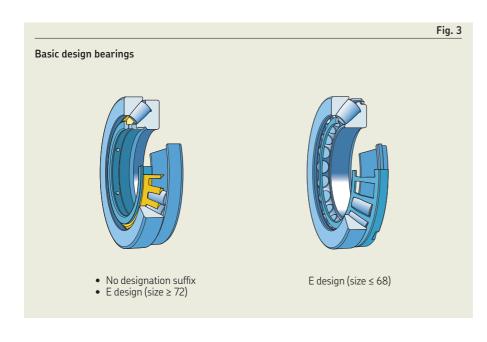
Depending on their series and size, SKF spherical roller thrust bearings are manufactured to two basic designs (fig. 3). Their cage forms a non-separable unit with the shaft washer and rollers.

Bearings with no designation suffix (e.g. 29272)

 are fitted with a machined brass prongtype cage as standard

E design bearings (designation suffix E)

- have larger rollers and an optimized internal design for increased load carrying capacity
- are fitted with one of the following cages, depending on bearing size:
 - size ≤ 68 → stamped steel window-type cage
 - size ≥ 72 → machined metal prong-type cage


SKF Explorer bearings

For information, refer to page 7.

Cages

Cages in SKF spherical roller thrust bearings are an integral part of the bearing internal design. All SKF spherical roller thrust bearings contain a strong metal cage. This enables them to tolerate high temperatures and operate with all lubricants.

For additional information about the suitability of cages, refer to *Cages*, page 187.

Bearing data

Dimension standards	Boundary dimensions: ISO 104
Tolerances	Normal Total height H:
For additional information	 for basic design bearings, tolerance at least 50% tighter than ISO standard for SKF Explorer bearings, tolerance 75% tighter than ISO standard
→ page 35	Values: ISO 199 (table 10, page 46)
Permissible misalignment	The permissible misalignment is reduced as the load increases. Guideline values for rotating shaft applications: table 1. Whether these values can be fully exploited depends on the design of the bearing arrangement, the external sealing design, etc. For applications with a rotating housing washer, or where the direction of misalignment is not constant relative to the housing washer, additional sliding may occur in the bearing and misalignment should be < 0,1°.
Friction, starting torque, power loss	\Rightarrow skf.com/bearingcalculator For temperature and/or cooling requirement calculations for large bearings (d _m > 400 mm) ¹), vertical shafts and fully submerged conditions, contact the SKF application engineering service.

1) $d_m = \text{bearing mean diameter [mm]}$ = 0,5 (d + D)

Bearing series	Permissible m where bearing < 0,05 C ₀	> 0,3 C ₀		
_	0			
292(E)	2	1,5	1	
293(E)	2,5	1,5	0,3	
294(E)	3	1,5	0,3	

Loads

Minimum load	The minimum load requirements can be ignored for bearings operat-	Symbols
	ing at the relatively low speeds shown within the green area in	A minimum load factor
	diagram 1, page 919.	(product table, page 922)
	For operating speeds outside the green area use:	C _r load factor
	- 0 - 1/ n \2 -	= 1,8 for 292 series
	$F_{am} = C_r F_r + A \left(\frac{n}{1,000}\right)^2 + F_{lub}$	= 2,0 for 293 series
	(= 333)	= 2,2 for 294 series
	$2 \times 10^{-9} f_0 (v n)^{2/3} [0,5 (d + D)]^3$	D bearing outside diameter [mm]
	$v n \ge 2 000 \rightarrow F_{lub} = \frac{2 \times 10^{-9} f_0 (v n)^{2/3} [0,5 (d + D)]^3}{d}$	d bearing bore diameter [mm]
		f_0 factor for lubrication method
	$3.2 \times 10^{-7} f_0 [0.5 (d + D)]^3$	For oil bath lubrication with a
For additional	$v n < 2000 \rightarrow F_{lub} = \frac{3.2 \times 10^{-7} f_0 [0.5 (d + D)]^3}{d}$	horizontal shaft and for grease
information		lubrication:
→ page 106		= 3 for 292 series
	5 0555	= 3,5 for 293 series
Equivalent dynamic bearing	$F_r \le 0,55 F_a$ and:	= 4 for 294 series
	• if run-out in the bearing arrangement does not affect the load dis-	For oil bath lubrication with a ver
load	tribution in the spherical roller thrust bearing	cal shaft and for oil jet lubrication
	$\Rightarrow P = 0.88 (F_a + XF_r)$	= 6 for 292 series
	• if run-out in the bearing arrangement affects the load distribution	= 7 for 293 series
	in the spherical roller thrust bearing (e.g. the run-out of another	= 8 for 294 series
	bearing that induces radial forces) $\Rightarrow P = F_a + X F_r$	F _{am} minimum axial load [kN]
For additional	¬Γ - I a+ Λ I r	F _{lub} axial load required to overcome
information	$F_r > 0.55 F_a \rightarrow Use an additional bearing, which accommodates$	lubricant drag [kN]
→ page 91	the radial load.	F _r radial load [kN]
page 71	the radial load.	n rotational speed [r/min]
Equivalent static	$F_r \le 0.55 F_a \rightarrow P_0 = F_a + X_0 F_r$	P equivalent dynamic bearing load
bearing load	$F_r > 0.55 F_a \rightarrow Use$ an additional bearing, which accommodates	[kN]
scarring roda	the radial load.	P ₀ equivalent static bearing load [kN
For additional	the radiational	X calculation factor
information		= 1,1 for 292 series
→ page 105		= 1,2 for 293 series
,		= 1,3 for 294 series
		X ₀ calculation factor
		= 2,5 for 292 series
		= 2,7 for 293 series
		= 2,9 for 294 series
		v actual operating viscosity of the
		lubricant [mm²/s]

Temperature limits

The permissible operating temperature for spherical roller thrust bearings can be limited by:

- the dimensional stability of the bearing washers
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing washers

The washers of SKF spherical roller thrust bearings are heat stabilized up to 200 °C (390 °F).

Lubricants

For temperature limits of SKF greases, refer to Selecting a suitable SKF grease, page 116.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Permissible speed

The speed ratings in the **product table**, page 922, indicate:

- the reference speed, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the limiting speed, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds

For additional information, refer to *Operating temperature and speed*, **page 130**.

Design considerations

Abutment dimensions

The abutment dimensions $d_{a \text{ min}}$ and $D_{a \text{ max}}$ listed in the **product table**, **page 922**, apply for axial bearing loads $F_a \le 0.1 C_0$.

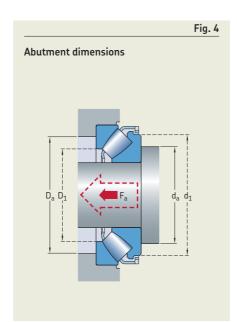
For heavier bearing loads, it may be necessary to support the shaft and housing washers over their entire side faces ($d_a = d_1$ and $D_a = D_1$).

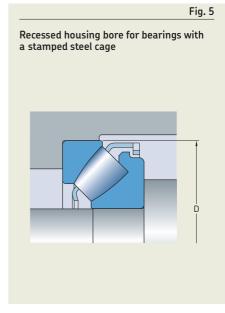
For heavy loads, where P > $0.1 \, C_0$, the shaft washer bore must be fully supported by the shaft, preferably by an interference fit. Even the housing washer should be radially supported (fig. 4).

For additional information about dimensioning washer supports, contact the SKF application engineering service.

Recessed housing bore for bearings with a stamped steel cage

For bearings fitted with a stamped steel window-type cage, the housing bore must be recessed (fig. 5) to prevent the cage from


contacting the housing during possible misalignment. SKF recommends the following guideline values for the recess diameter:


- D + 15 mm for bearings with an outside diameter D ≤ 380 mm
- D + 20 mm for bearings with an outside diameter D > 380 mm

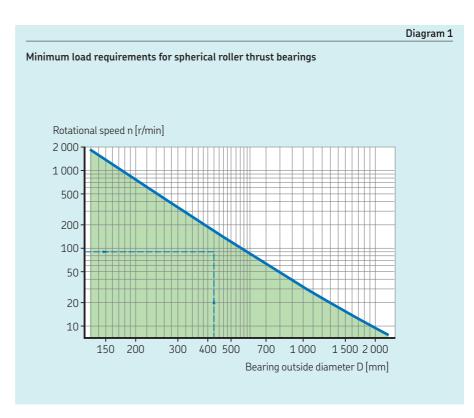
Axial clearance in bearing arrangements

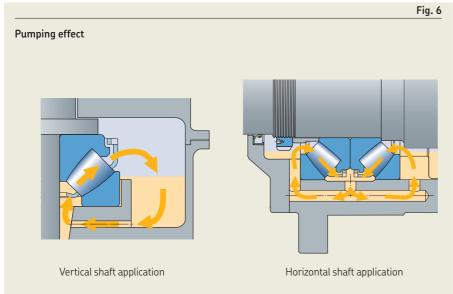
SKF spherical roller thrust bearings in face-to-face or back-to-back arrangements should be preloaded. However, at the relatively low speeds shown within the green area in diagram 1, the application can be designed to operate with a small axial clearance. For these applications, bearings with a modified shaft washer (designation suffix VU029) should be used. Small axial clearance enables simple and cost-effective bearing arrangements to be used, e.g. for horizontal shaft applications at relatively low speeds, as no external preload is necessary.

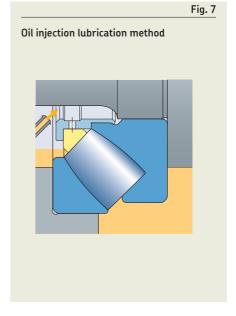
For additional information about bearing arrangements with axial clearance, contact the SKF application engineering service.

Lubrication

Generally, SKF spherical roller thrust bearings can be lubricated with oil or grease containing EP additives.

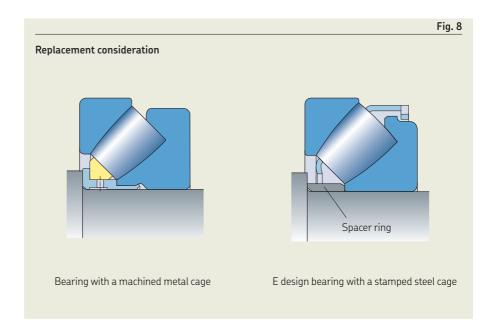

Where lubricating with grease, the roller end / flange contacts must be supplied with an adequate amount of grease. Make sure to use a grease with high oil bleeding, such as SKF LGWM 1, LGWM 2 or LGEP 2 (Selecting a suitable SKF grease, page 116).


Pumping effect in oil lubricated applications


The internal design of spherical roller thrust bearings creates a pumping action, which produces a flow from the small to the large roller end face, that can be taken advantage of in oil lubricated applications. This pumping action occurs in applications where the shaft is vertical or horizontal (fig. 6) and should be considered when selecting the type of lubricant and sealing arrangement.

For bearings with a machined cage used in high-speed applications, SKF recommends the oil injection lubrication method (fig. 7).

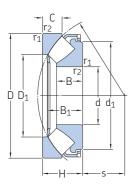
For additional information about lubricating spherical roller thrust bearings, contact the SKF application engineering service.



Mounting

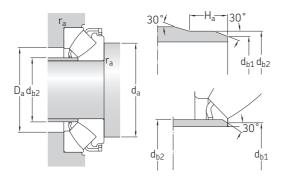
SKF spherical roller thrust bearings are separable, making it possible to mount and dismount the housing washer separately from the shaft washer and roller and cage assembly.

Where a spherical roller thrust bearing with a machined metal cage is to be replaced by an E design bearing with a stamped steel window-type cage, and axial forces are transmitted via the cage guiding sleeve, a spacer ring must be inserted between the shaft abutment and the shaft washer (fig. 8).

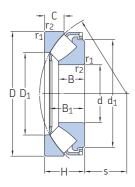

The spacer ring must be hardened and its side faces should be ground. Appropriate spacer ring dimensions for SKF spherical roller thrust bearings are listed in the product table, page 922.

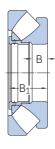
Designation system Group 1 Group 2 Group 3 Group 4 4.2 | 4.3 | 4.4 | 4.5 | 4.6 Prefixes -Basic designation — Listed in table 4, page 30 Suffixes -Group 1: Internal design — Optimized internal design Group 2: External design (seals, snap ring groove, etc.) -One locating slot in the housing washer N2 Two locating slots in the housing washer, 180° apart Group 3: Cage design -• Stamped steel cage, roller centred, for E design bearings size ≤ 68 · Machined brass cage, shaft washer centred, for bearings without any designation suffix Machined steel cage, shaft washer centred Machined spheroidal cast iron cage, shaft washer centred F3 Machined brass cage, shaft washer centred Group 4.1: Materials, heat treatment -Group 4.2: Accuracy, clearance, preload, quiet running -Group 4.3: Bearing sets, matched bearings -Group 4.4: Stabilization -Group 4.5: Lubrication -Group 4.6: Other variants -VE447(E) Shaft washer with three equally-spaced threaded holes to accommodate hoisting tackle The E indicates that appropriate eye bolts are supplied with the bearing. VE710(E) Housing washer with three equally-spaced threaded holes to accommodate hoisting tackle The E indicates that appropriate eye bolts are supplied with the bearing. VU029 Shaft washer modified for applications with small axial clearance

13.1 Spherical roller thrust bearings d 60 – 180 mm



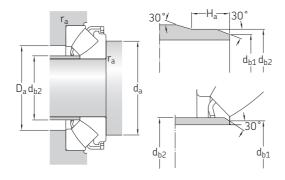
Princi	pal dimen	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Minimum load factor	Speed rati Reference speed	ngs Limiting speed	Mass	Designation
d	D	Н	С	C_0	P_u	Α	specu	speed		
mm			kN		kN	_	r/min		kg	-
60	130	42	390	915	114	0,08	2 800	5 000	2,6	► 29412 E
65	140	45	455	1 080	137	0,11	2 600	4 800	3,2	► 29413 E
70	150	48	520	1 250	153	0,15	2 400	4 300	3,9	► 29414 E
75	160	51	600	1 430	173	0,19	2 400	4 000	4,7	► 29415 E
80	170	54	670	1 630	193	0,25	2 200	3 800	5,6	► 29416 E
85	150	39	380	1 060	129	0,11	2 400	4 000	2,75	► 29317 E
	180	58	735	1 800	212	0,31	2 000	3 600	6,75	► 29417 E
90	155	39	400	1 080	132	0,11	2 400	4 000	2,85	► 29318 E
	190	60	815	2 000	232	0,38	1 900	3 400	7,75	► 29418 E
100	170	42	465	1 290	156	0,16	2 200	3 600	3,65	► 29320 E
	210	67	980	2 500	275	0,59	1 700	3 000	10,5	► 29420 E
110	190	48	610	1 730	204	0,28	1 900	3 200	5,3	► 29322 E
	230	73	1 180	3 000	325	0,86	1 600	2 800	13,5	► 29422 E
120	210	54	765	2 120	245	0,43	1 700	2 800	7,35	► 29324 E
	250	78	1 370	3 450	375	1,1	1 500	2 600	17,5	► 29424 E
130	225	58	865	2 500	280	0,59	1 600	2 600	9	➤ 29326 E
	270	85	1 560	4 050	430	1,6	1 300	2 400	22	➤ 29426 E
140	240	60	980	2 850	315	0,77	1 500	2 600	10,5	► 29328 E
	280	85	1 630	4 300	455	1,8	1 300	2 400	23	► 29428 E
150	215	39	408	1 600	180	0,24	1 800	2 800	4,3	► 29230 E
	250	60	1 000	2 850	315	0,77	1 500	2 400	11	► 29330 E
	300	90	1 860	5 100	520	2,5	1 200	2 200	28	► 29430 E
160	270	67	1 180	3 450	375	1,1	1 300	2 200	14,5	➤ 29332 E
	320	95	2 080	5 600	570	3	1 100	2 000	32	➤ 29432 E
170	280	67	1 200	3 550	365	1,2	1 300	2 200	15	► 29334 E
	340	103	2 360	6 550	640	4,1	1 100	1 900	44,5	► 29434 E
180	250	42	495	2 040	212	0,4	1 600	2 600	5,8	► 29236 E
	300	73	1 430	4 300	440	1,8	1 200	2 000	19,5	► 29336 E
	360	109	2 600	7 350	710	5,1	1 000	1 800	52,5	► 29436 E

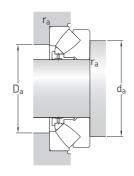

SKF Explorer bearing


• Popular item

Dimens	sions							Abutment and fillet dimensions					
d	d ₁ ≈	D ₁ ≈	В	В ₁	С	r _{1,2} min.	S	d _a min.	d _{b1} max.	d _{b2} max.	H _a min.	D _a max.	r _a max.
mm								mm					
60	112	85,5	27	36,7	21	1,5	38	90	67	67	_	107	1,5
65	120	91,5	29,5	39,8	22	2	42	100	72	72	-	117	2
70	129	99	31	41	23,8	2	44,8	105	77	77	-	125	2
75	138	106	33,5	45,7	24,5	2	47	115	82	82	-	133	2
80	147	113	35	48,1	26,5	2,1	50	120	88	88	-	141	2
85	134 155	110 121	24,5 37	33,8 51,1	20 28	1,5 2,1	50 54	115 130	90 94	90 94	- -	129 151	1,5 2
90	138 164	115 128	24,5 39	34,5 54	19,5 28,5	1,5 2,1	53 56	120 135	95 99	95 99	- -	134 158	1,5 2
100	152 182	128 142	26,2 43	36,3 57,3	20,5 32	1,5 3	58 62	130 150	107 110	107 110	- -	147 175	1,5 2,5
110	171 199	140 156	30,3 47	41,7 64,7	24,8 34,7	2 3	63,8 69	145 165	117 120	117 129	_	164 193	2 2,5
120	188 216	155 171	34 50,5	48,2 70,3	27 36,5	2,1 4	70 74	160 180	128 132	128 142	-	181 209	2 3
130	203 234	166 185	36,7 54	50,6 76	30,1 40,9	2,1 4	75,6 81	175 195	138 142	143 153	-	194 227	2 3
140	216 245	177 195	38,5 54	54 75,6	30 41	2,1 4	82 86	185 205	148 153	154 162	-	208 236	2 3
150	200 223 262	176 190 208	24 38 58	34,3 54,9 80,8	20,5 28 43,4	1,5 2,1 4	82 87 92	180 195 220	154 158 163	154 163 175	14 - -	193 219 253	1,5 2 3
160	243 279	203 224	42 60,5	60 84,3	33 45,5	3 5	92 99	210 235	169 175	176 189	- -	235 270	2,5 4
170	251 297	215 236	42,2 65,5	61,1 91,2	30,5 50	3 5	96 104	220 250	178 185	188 199	-	245 286	2,5 4
180	234 270 315	208 227 250	26 46 69,5	36,9 66,2 96,4	22 35,5 53	1,5 3 5	97 103 110	210 235 265	187 189 196	187 195 210	14 - -	226 262 304	1,5 2,5 4

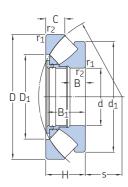
13.1 Spherical roller thrust bearings d 190 – 380 mm




E design

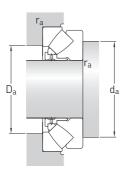
Princi	pal dimen	sions	Basic loa dynamic	ad ratings static	Fatigue load limit	Minimum load factor	Speed ratin Reference speed	gs Limiting speed	Mass	Designation
b	D	Н	С	C_0	P_u	Α	speed	speeu		
nm			kN		kN	_	r/min		kg	-
190	320	78	1 630	4 750	490	2,1	1 100	1 900	23,5	► 29338 E
	380	115	2 850	8 000	765	6,1	950	1 700	60,5	► 29438 E
200	280	48	656	2 650	285	0,67	1 400	2 200	9,3	► 29240 E
	340	85	1 860	5 500	550	2,9	1 000	1 700	28,5	► 29340 E
	400	122	3 200	9 000	850	7,7	850	1 600	72	► 29440 E
220	300	48	690	3 000	310	0,86	1 300	2 200	10	► 29244 E
	360	85	2 000	6 300	610	3,8	1 000	1 700	31	► 29344 E
	420	122	3 350	9 650	900	8,8	850	1 500	75	► 29444 E
240	340	60	799	3 450	335	1,1	1 100	1 800	16,5	► 29248
	380	85	2 040	6 550	630	4,1	1 000	1 600	35,5	► 29348 E
	440	122	3 400	10 200	930	9,9	850	1 500	80	► 29448 E
260	360	60	817	3 650	345	1,3	1 100	1 700	18,5	► 29252
	420	95	2 550	8 300	780	6,5	850	1 400	49	► 29352 E
	480	132	4 050	12 900	1 080	16	750	1 300	105	► 29452 E
280	380	60	863	4 000	375	1,5	1 000	1 700	19,5	► 29256
	440	95	2 550	8 650	800	7,1	850	1 400	53	► 29356 E
	520	145	4 900	15 300	1 320	22	670	1 200	135	► 29456 E
800	420	73	1 070	4 800	465	2,2	900	1 400	30,5	► 29260
	480	109	3 100	10 600	930	11	750	1 200	75	► 29360 E
	540	145	5 000	16 600	1 340	24	670	1 200	140	► 29460 E
320	440	73	1 110	5 100	465	2,5	850	1 400	33	29264
	500	109	3 350	11 200	1 000	12	750	1 200	78	► 29364 E
	580	155	5 700	19 000	1 530	32	600	1 100	175	► 29464 E
340	460	73	1 130	5 400	480	2,8	850	1 300	33,5	29268
	540	122	2 710	11 000	950	11	600	1 100	105	29368
	620	170	6 700	22 400	1 760	46	560	1 000	220	▶ 29468 E
360	500	85	1 460	6 800	585	4,4	750	1 200	52	29272
	560	122	2 760	11 600	980	13	600	1 100	110	► 29372
	640	170	6 200	21 200	1 630	41	560	950	230	► 29472 EM
380	520	85	1 580	7 650	655	5,6	700	1 100	53	29276
	600	132	3 340	14 000	1 160	19	530	1 000	140	► 29376
	670	175	6 800	24 000	1 860	53	530	900	260	► 29476 EM

SKF Explorer bearing


Popular item

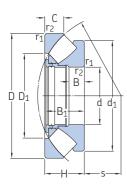
Dimen	sions							Abutment and fillet dimensions					
d	d ₁ ≈	D ₁ ≈	В	B ₁	С	r _{1,2} min.	S	d _a min.	d _{b1} max.	d _{b2} max.	H _a min.	D _a max.	r _a max.
mm								mm					
190	285 332	244 265	49 73	71,3 101	36 55,5	4 5	110 117	250 280	200 207	211 223	_ _	280 321	3 4
200	260	233	30	43,4	24	2	108	235	206	207	17	253	2
	304	257	53,5	76,7	40	4	116	265	211	224	-	297	3
	350	278	77	107,1	59,4	5	122	295	217	234	-	337	4
220	280	252	30	43,4	24,5	2	117	255	224,5	227	17	271	2
	326	274	55	77,7	41	4	125	285	229	240	-	316	3
	371	300	77	107,4	58,5	6	132	315	238	254	-	358	5
240	330	283	19	57	30	2,1	130	290	-	-	-	308	2
	345	296	54	77,8	40,5	4	135	305	249	259	-	336	3
	391	322	76	107,1	59	6	142	335	258	276	-	378	5
260	350	302	19	57	30	2,1	139	310	-	-	-	326	2
	382	324	61	86,6	46	5	148	335	273	286	-	370	4
	427	346	86	119	63	6	154	365	278	296	-	412	5
280	370	323	19	57	30,5	2,1	150	325	-	-	-	347	2
	401	343	62	86,7	45,5	5	158	355	293	305	-	390	4
	464	372	95	129,9	70	6	166	395	300	320	-	446	5
300	405	353	21	69	38	3	162	360	-	-	-	380	2,5
	434	372	70	98,9	51	5	168	385	313	329	-	423	4
	485	392	95	130,3	70,5	6	175	415	319	340	-	465	5
320	430	372	21	69	38	3	172	380	-	-	-	400	2,5
	454	391	68	97,8	53	5	180	405	332	347	-	442	4
	520	422	102	139,4	74,5	7,5	191	450	344	367	-	500	6
340	445	395	21	69	37,5	3	183	400	-	-	-	422	2,5
	520	428	40,6	117	59,5	5	192	440	-	-	-	479	4
	557	445	112	151,4	84	7,5	201	475	363	386	-	530	6
360	485	423	25	81	44	4	195	430	-	-	-	453	3
	540	448	40,5	117	59,5	5	202	460	-	-	-	500	4
	580	474	63	164	83,5	7,5	210	495	-	-	-	550	6
380	505	441	27	81	42	4	202	450	-	-	-	473	3
	580	477	45	127	63,5	6	216	495	-	-	-	535	5
	610	494	67	168	87,5	7,5	222	525	-	-	-	580	6

13.1 Spherical roller thrust bearings d 400 – 750 mm

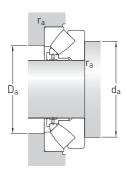


Princi	pal dimens	sions	Basic loa dynamic	d ratings static	Fatigue load limit	Minimum load factor	Speed ratir Reference speed	i gs Limiting speed	Mass	Designation	
d	D	Н	С	C_0	P_{u}	Α	speed	speed			
mm			kN		kN	_	r/min		kg	_	
400	540	85	1 610	8 000	695	6,1	700	1 100	55,5	29280	
	620	132	3 450	14 600	1 200	20	530	950	150	29380	
	710	185	7 650	26 500	1 960	62	480	850	310	▶ 29480 EM	
420	580	95	1 990	9 800	815	9,1	630	1 000	75,5	29284	
	650	140	3 740	16 000	1 290	24	500	900	170	29384	
	730	185	7 800	27 500	2 080	69	480	850	325	▶ 29484 EM	
440	600	95	2 070	10 400	850	10	630	1 000	78	29288	
	680	145	5 200	19 300	1 560	34	530	850	180	29388 EM	
	780	206	9 000	32 000	2 320	91	430	750	410	▶ 29488 EM	
460	620	95	2 070	10 600	865	11	600	950	81	29292	
	710	150	4 310	19 000	1 500	34	450	800	215	29392	
	800	206	9 300	33 500	2 450	100	430	750	425	29492 EM	
480	650	103	2 350	11 800	950	13	560	900	98	29296	
	850	224	9 550	39 000	2 800	140	340	670	550	► 29496 EM	
500	670	103	2 390	12 500	1 000	15	560	900	100	292/500	
	750	150	4 490	20 400	1 560	40	430	800	235	293/500	
	870	224	9 370	40 000	2 850	150	340	670	560	▶ 294/500 EM	
530	710	109	3 110	15 300	1 220	22	530	850	115	292/530 EM	
	800	160	5 870	26 500	2 080	67	400	750	265	293/530 EM	
	920	236	10 500	44 000	3 100	180	320	630	650	▶ 294/530 EM	
560	750	115	2 990	16 000	1 220	24	480	800	140	292/560	
	980	250	12 000	51 000	3 550	250	300	560	810	294/560 EM	
500	800	122	3 740	18 600	1 460	33	450	700	170	292/600 EM	
	1 030	258	13 100	56 000	4 000	300	280	530	845	294/600 EM	
630	850	132	4 770	23 600	1 800	53	400	670	210	292/630 EM	
	950	190	8 450	38 000	2 900	140	320	600	485	293/630 EM	
	1 090	280	14 400	62 000	4 150	370	260	500	1 040	▶ 294/630 EM	
670	1150	290	15 400	68 000	4 500	440	240	450	1 210	▶ 294/670 EM	
710	1 060	212	9 950	45 500	3 400	200	280	500	610	► 293/710 EM	
	1 220	308	17 600	76 500	5 000	560	220	430	1 500	► 294/710 EF	
750	1 280	315	18 700	85 000	5 500	690	200	400	1 650	► 294/750 EF	

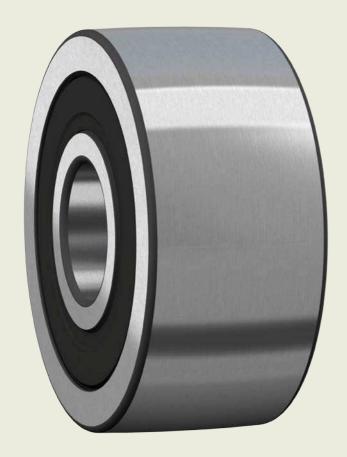
SKF Explorer bearing


Popular item

Dimen	sions							Abutment and fillet dimensions					
d	d ₁ ≈	D ₁ ≈	В	B ₁	С	r _{1,2} min.	S	d _a min.	d _{b1} max.	d _{b2} max.	H _a min.	D _a max.	r _a max.
mm								mm					
400	526	460	27	81	42,2	4	212	470	-	-	-	493	3
	596	494	43	127	64	6	225	510	-	-	-	550	5
	645	525	69	178	89,5	7,5	234	550	-	-	-	615	6
420	564	489	30	91	46	5	225	500	-	-	-	525	4
	626	520	49	135	67,5	6	235	535	-	-	-	580	5
	665	545	70	178	90,5	7,5	244	575	-	-	-	635	6
440	585	508	30	91	46,5	5	235	520	-	-	-	545	4
	626	540	49	140	70,5	6	249	560	-	-	-	605	5
	710	577	77	199	101	9,5	257	605	-	-	-	675	8
460	605	530	30	91	46	5	245	540	-	-	-	565	4
	685	567	50	144	72,5	6	257	585	-	-	-	630	5
	730	596	77	199	101,5	9,5	268	630	-	-	-	695	8
480	635 770	556 625	33 88	99 216	53,5 108	5 9,5	259 280	570 660	_	- -	- -	595 735	4 8
500	654	574	33	99	53,5	5	268	585	-	-	-	615	4
	725	611	50	144	74	6	280	630	-	-	-	675	5
	795	648	86	216	110	9,5	290	685	-	-	-	755	8
530	675	608	32	105	56	5	285	620	-	-	-	655	4
	741	641	55	154	81	7,5	295	665	-	-	-	715	6
	840	686	89	228	116	9,5	308	725	-	-	-	800	8
560	732 890	644 727	37 99	111 241	61 122	5 12	302 328	655 770		- -	- -	685 850	4 10
600	760	688	39	117	60	5	321	700	-	-	-	735	4
	940	769	99	249	128	12	349	815	-	-	-	900	10
630	810	723	50	127	62	6	338	740	-	-	-	780	5
	880	761	68	183	92	9,5	359	795	-	-	-	860	8
	995	815	107	270	137	12	365	860	-	-	-	950	10
670	1 045	864	110	280	141	15	387	905	-	-	-	1 000	12
710	985	855	74	205	103	9,5	404	890	-	-	-	960	8
	1 110	917	117	298	149	15	415	965	-	-	-	1 070	12
7 50	1170	964	121	305	153	15	436	1 015	-	-	-	1 120	12

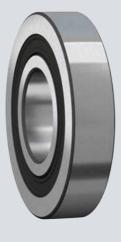


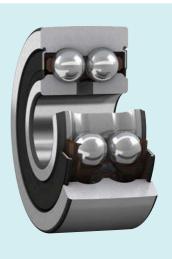
13.1 Spherical roller thrust bearings d 800 – 1060 mm



Principal dimensions		Basic loa d dynamic	Basic load ratings dynamic static		Minimum load factor	Speed ratir Reference	Limiting	Mass	Designation	
d	D	Н	С	C_0	P_u	А	speed	speed		
mm			kN		kN	_	r/min		kg	-
800	1 060 1 180 1 360	155 230 335	6 560 11 300 20 200	34 500 55 000 93 000	2 550 3 900 5 850	110 290 820	320 240 190	530 450 360	380 810 2 030	292/800 EM 293/800 EM ▶ 294/800 EF
850	1 440	354	23 900	108 000	7 100	1 100	170	340	2 390	► 294/850 EF
900	1 520	372	26 700	122 000	7 200	1 400	160	300	2 650	► 294/900 EF
950	1 600	390	28 200	132 000	7 800	1 700	140	280	3 070	294/950 EF
1 000	1 670	402	31 100	140 000	8 650	1 900	130	260	3 390	► 294/1000 EF
1060	1 770	426	33 400	156 000	8 500	2 300	120	240	4 280	294/1060 EF

► Popular item


Dimens	ions							Abutme	Abutment and fillet dimensions					
d	d ₁ ≈	D ₁ ≈	В	B ₁	С	r _{1,2} min.	S	d _a min.	d _{b1} max.	d _{b2} max.	H _a min.	D _a max.	r _a max.	
mm								mm						
800	1 010 1 099 1 250	911 958 1 034	52 78 123	149 222 324	77 117 165	7,5 9,5 15	434 440 462	935 985 1 080	- - -	- - -	- - -	980 1 060 1 185	6 8 12	
850	1 315	1 077	142	342	172	15	507	1 160	_	_	_	1 270	12	
900	1394	1 137	147	360	186	15	518	1 215	-	-	_	1 320	12	
950	1 470	1 209	153	377	191	15	546	1 275	-	-	-	1 400	12	
1 000	1 531	1 270	154,9	389	190	15	599	1 350	-	-	-	1 490	12	
1 060	1 615	1349	192	412	207	15	610	1 410	_	_	_	1 555	12	



Cam rollers

14 Cam rollers

Designs and variants Single row cam rollers Double row cam rollers. Cages.	933 933 933 934
Bearing data(Dimension standards, profile of the outer ring running surface, tolerances, internal clearance, defect frequencies)	934
Loads	935
Temperature limits	936
Speed limits	936
Design considerations Pins Support surfaces Guide flanges	936 936 936 936
Designation system	937
Product tables	
14.1 Single row cam rollers	938
14.2 Double row cam rollers	940

5KF. 931

14 Cam rollers

More information

General bearing knowledge	17
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Sealing, mounting and	
dismounting	193

SKF cam rollers (yoke-type track rollers based on ball bearings) are designed to run on all types of tracks and to be used in cam drives, conveyor systems, etc.

The outer ring running surface is crowned as standard. Double row cam rollers are also available with a cylindrical (flat) outer ring running surface.

SKF supplies cam rollers greased, sealed and ready-to-mount. They are available in two main designs and also as variants of these:

- single row cam rollers based on deep groove ball bearings in the 62 series (fig. 1)
- double row cam rollers based on double row angular contact ball bearings in the 32 dimension series (fig. 2)

Cam roller features

· Accommodate high radial loads

The thick-walled outer ring enables high radial loads, while reducing distortion and bending stresses.

· Accommodate tilting moments

Double row cam rollers accommodate higher tilting moments than single row cam rollers.

• Long service life

The crowned outer ring running surface is beneficial for applications where outer ring tilting relative to the track may occur or where edge stresses need to be minimized.

· Relatively high speed capability

14

Designs and variants

Single row cam rollers

- are based on deep groove ball bearings in the 62 series (fig. 1)
- have a thick-walled outer ring with its running surface crowned
- are capped with a sheet steel reinforced NBR contact seal on both sides
- are greased for the life of the bearing and cannot be relubricated (table 1)

When capped bearings must operate under certain conditions, such as very high speeds or high temperatures, some grease may leak. For bearing arrangements where this would be detrimental, appropriate actions should be taken.

Double row cam rollers

- are based on double row angular contact ball bearings in the 32 dimension series (fig. 2)
- have a thick-walled outer ring with its running surface available in two designs:
 - crowned as standard (series designation 3058.. C)
 - cylindrical (flat) (series designation 3057.. C)
- have a 30° contact angle, enabling, together with the two ball sets, tilting moments to be accommodated
- are supplied capped in two variants:
 - with a sheet steel shield on both sides that extends into a recess on the inner ring (designation suffix -2Z)
 - with an NBR contact seal on both sides (designation suffix -2RS1)
 These cam rollers are not listed in this catalogue, but can be found online at skf.com/go/17000-14-2.
- are greased for the life of the bearing under normal operating conditions (table 1)

- should be relubricated, if:
 - subjected to moisture or solid contaminants
 - they run for long periods at temperatures above 70 °C (160 °F)
- have a lubrication hole in the inner ring
 - Where suitable ducts are provided in the pin, the bearings are easy to relubricate.
 - The grease should be applied slowly to avoid damaging the shields or seals.

When capped bearings must operate under certain conditions, such as very high speeds or high temperatures, grease may appear between the inner ring and capping device. For bearing arrangements where this would be detrimental, appropriate actions should be taken.

Cages

SKF cam rollers are fitted with one of the cages shown in table 2. Double row cam rollers are equipped with two cages.

When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For additional information about the suitability of cages, refer to *Cages*, page 187.

			Table 2			
Cages for cam rollers						
	Single row cam rollers		Double row cam rollers			
Cage type	Riveted, ball centred	Ribbon-type, ball centred	Snap-type, ball centred			
Material	Stamped steel	Stamped steel	PA66, glass fibre reinforced			
Suffix	_	_	-			

Bearing data Double row cam rollers Single row cam rollers Dimension ISO 15, dimension series 02, except for the out-ISO 15, dimension series 32, except for the outside diameter standards side diameter Profile of the Radius = 400 mm • 3058.. C design Radius = 400 mm outer ring run-• 3057.. C design ning surface Cylindrical (flat) **Tolerances** Normal, except: • diameter of the crowned running surface: For additional twice the Normal tolerance information Values for Normal tolerance class: ISO 492 (table 2, page 38) **→ page 35** Internal C3 Normal clearance Values: ISO 5753-1 (table 6, page 252) Values 32 A series: (table 8, page 396) For additional Values are valid for unmounted bearings under zero measuring load. information → page 182 Defect → skf.com/bearingcalculator frequencies

934 **SKF**

Loads

Dynamic loads	As track rollers are not supported in a housing, the outer rings deform, leading to an altered load distribution and bending stresses in	Symbo	ls
	the outer ring. The basic load ratings listed in the product tables , page 938 , take into account the altered load distribution, while the maximum radial loads F_{rmax} (product tables) are based on the bending stresses.	C_0 F_r $F_{r max}$	basic static load rating [kN] (product tables, page 938) radial load [kN] maximum permissible dynamic radial load [kN] (product tables)
Static loads	Permissible static load is the lower value of F_{0rmax} or C_0 (product tables).	F _{0r max}	maximum permissible static radi load [kN] (product tables) minimum radial load [kN]
Axial loads	Cam rollers are intended for predominantly radial loads. However, axial loads can occur because of skew or tilting or when the outer ring runs against flanges for brief periods. Axial loads acting continuously on the outer ring may reduce the cam roller service life. To evaluate these influences, contact the SKF application engineering service.	P P ₀	equivalent dynamic bearing load [kN] equivalent static bearing load [kN
Minimum load	$F_{rm} = 0.0167 C_0$		
For additional information → page 106			
Equivalent dynamic bear- ing load	P = F _r		
For additional information → page 91			
Equivalent static bearing load	$P_0 = F_r$		
For additional information → page 105			

5KF. 935

Temperature limits

The permissible operating temperature for cam rollers can be limited by:

- the dimensional stability of the bearing rings and balls
- the cage
- the seals
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings and balls

SKF cam rollers are heat stabilized up to at least:

- 120 °C (250 °F) for single row cam rollers
- 150 °C (300 °F) for double row cam rollers

Cages

Steel cages can be used at the same operating temperatures as the bearing rings and balls. For temperature limits of PA66 cages, refer to Polymer cages, page 188.

Seals

The permissible operating temperature for NBR seals is -40 to +100 °C (-40 to +210 °F). Temperatures up to 120 °C (250 °F) can be tolerated for brief periods.

Typically, temperature peaks are at the seal lip.

Lubricants

Temperature limits for greases used in SKF cam rollers are provided in table 1, page 933. For temperature limits of other SKF greases, refer to Selecting a suitable SKF grease, page 116.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Speed limits

The limiting speed listed in the **product tables** is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds.

ating temperature and speed, page 130.

For additional information, refer to Oper-

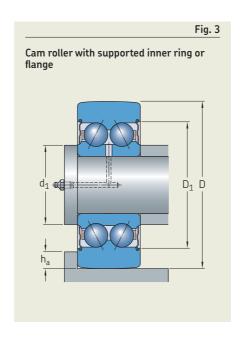
Guide flanges

For rails or cams with guide flanges, the recommended flange height ha (fig. 3) should be:

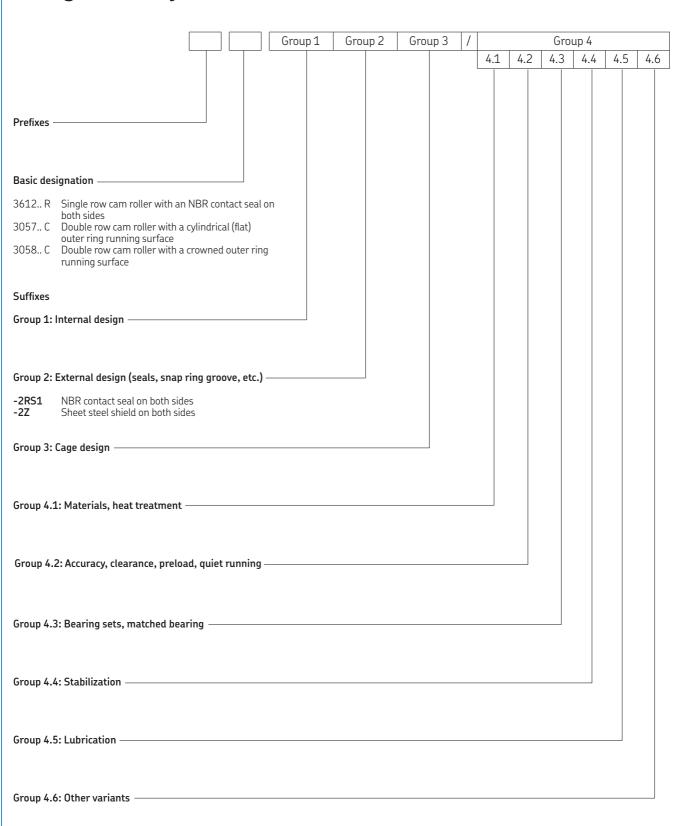
 $h_a \le 0.5 (D - D_1)$

The values for the outer ring diameters D and D_1 are listed in the product tables.

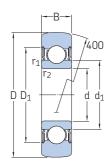
Design considerations


Pins

Pins or shafts should be machined to tolerance class g6(E):

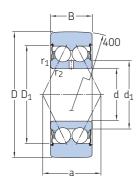

- for normal operating conditions, such as stationary inner ring load
- where easy displacement of the inner ring is required

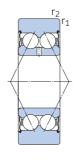
Support surfaces


Continuously axial loaded cam rollers should be supported over the entire inner ring side face (fig. 3) and the support surface should be dimensioned according to diameter d₁ (product tables, page 938).

Designation system

Principal dimensions		Basic loa dynamic	d ratings static	Fatigue load limit	Maximur dynamic	n radial loads static	Limiting speed	Mass	Designation	
D	d	В	С	C_0	P_u	F _r max.	F _{0r} max.			
mm			kN		kN	kN		r/min	kg	_
32	10	9	4,68	2,04	0,085	3,45	5	12 000	0,04	▶ 361200 R
35	12	10	6,24	2,6	0,11	3,35	4,75	11 000	0,051	▶ 361201 R
40	15	11	7,02	3,2	0,137	5,1	7,35	9 500	0,072	▶ 361202 R
47	17	12	8,84	4,25	0,18	8,15	11,6	8 500	0,11	► 361203 R
52	20	14	11,4	5,5	0,232	7,5	10,6	7 000	0,15	▶ 361204 R
62	25	15	13	6,8	0,29	12,9	18,6	6 300	0,24	► 361205 R
72	30	16	17,4	9,5	0,4	14,6	20,8	5 300	0,34	► 361206 R
80	35	17	22,1	11,8	0,5	12,9	18,3	4 500	0,42	► 361207 R


[►] Popular item


Dimen	sions			Calculation factor
d	d ₁ ≈	D ₁ ≈	r _{1,2} min.	f_0
mm				-
32	17	24,8	0,6	13
35	18,4	27,4	0,6	12
40	21,7	30,4	0,6	13
47	24,5	35	0,6	13
52	28,8	40,6	1	13
62	34,3	46,3	1	14
72	40,3	54,1	1	14
80	46,9	62,7	1,1	14

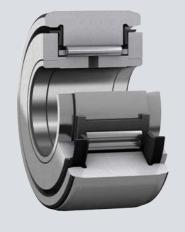
14.2 Double row cam rollers

D **32 – 80** mm

3058.. C-2Z

3057.. C-2Z

D d B C C ₀ P _u F _r F _{0r} F _{0r} surface mm												
32 10 14 6,76 3,6 0,153 4,4 6,3 11 000 0,062 ► 305800 C-2Z 35 12 15,9 9,04 4,555 0,193 3,8 5,4 9 500 0,078 ► 305801 C-2Z ► 3 40 15 15,9 10,1 5,5 0,263 5,85 8,5 9 000 0,1 ► 305802 C-2Z ► 3 47 17 17,5 13 7,35 0,315 9,3 13,4 8 000 0,16 ► 305803 C-2Z ► 3 52 20 20,6 16,5 9,5 0,4 8,3 12 7 000 0,22 ► 305804 C-2Z ► 3 62 25 20,6 18,6 11,8 0,5 15,3 21,6 6 000 0,32 ► 305805 C-2Z ► 3 72 30 23,8 25,1 16,3 0,695 17 24 5 000 0,49 ► 305806 C-2Z ► 3		•		dynamic	static	load limit	loads dynamic F _r	static F _{0r}		Mass	Cam roller with crowned running	cylindrical running surface
35 12 15,9 9,04 4,555 0,193 3,8 5,4 9 500 0,078 ▶ 305801 C-2Z ▶ 3 40 15 15,9 10,1 5,5 0,263 5,85 8,5 9 000 0,1 ▶ 305802 C-2Z ▶ 3 47 17 17,5 13 7,35 0,315 9,3 13,4 8 000 0,16 ▶ 305803 C-2Z ▶ 3 52 20 20,6 16,5 9,5 0,4 8,3 12 7 000 0,22 ▶ 305804 C-2Z ▶ 3 62 25 20,6 18,6 11,8 0,5 15,3 21,6 6 000 0,32 ▶ 305805 C-2Z ▶ 3 72 30 23,8 25,1 16,3 0,695 17 24 5 000 0,49 ▶ 305806 C-2Z ▶ 3	mm			kN		kN	kN		r/min	kg	_	
40 15 15,9 10,1 5,5 0,263 5,85 8,5 9 000 0,1 ▶ 305802 C-2Z ▶ 3 47 17 17,5 13 7,35 0,315 9,3 13,4 8 000 0,16 ▶ 305803 C-2Z ▶ 3 52 20 20,6 16,5 9,5 0,4 8,3 12 7 000 0,22 ▶ 305804 C-2Z ▶ 3 62 25 20,6 18,6 11,8 0,5 15,3 21,6 6 000 0,32 ▶ 305805 C-2Z ▶ 3 72 30 23,8 25,1 16,3 0,695 17 24 5 000 0,49 ▶ 305806 C-2Z ▶ 3	32	10	14	6,76	3,6	0,153	4,4	6,3	11 000	0,062	► 305800 C-2Z	
47 17 17,5 13 7,35 0,315 9,3 13,4 8 000 0,16 ▶ 305803 C-2Z ▶ 3 52 20 20,6 16,5 9,5 0,4 8,3 12 7 000 0,22 ▶ 305804 C-2Z ▶ 3 62 25 20,6 18,6 11,8 0,5 15,3 21,6 6 000 0,32 ▶ 305805 C-2Z ▶ 3 72 30 23,8 25,1 16,3 0,695 17 24 5 000 0,49 ▶ 305806 C-2Z ▶ 3	35	12	15,9	9,04	4,555	0,193	3,8	5,4	9 500	0,078	► 305801 C-2Z	► 305701 C-2Z
52 20 20,6 16,5 9,5 0,4 8,3 12 7 000 0,22 ► 305804 C-2Z ► 3 62 25 20,6 18,6 11,8 0,5 15,3 21,6 6 000 0,32 ► 305805 C-2Z ► 3 72 30 23,8 25,1 16,3 0,695 17 24 5 000 0,49 ► 305806 C-2Z ► 3	40	15	15,9	10,1	5,5	0,263	5,85	8,5	9 000	0,1	▶ 305802 C-2Z	► 305702 C-2Z
62 25 20,6 18,6 11,8 0,5 15,3 21,6 6 000 0,32 ► 305805 C-2Z ► 3 72 30 23,8 25,1 16,3 0,695 17 24 5 000 0,49 ► 305806 C-2Z ► 3	47	17	17,5	13	7,35	0,315	9,3	13,4	8 000	0,16	▶ 305803 C-2Z	► 305703 C-2Z
72 30 23,8 25,1 16,3 0,695 17 24 5 000 0,49 ► 305806 C-2Z ► 3	52	20	20,6	16,5	9,5	0,4	8,3	12	7 000	0,22	▶ 305804 C-2Z	► 305704 C-2Z
	62	25	20,6	18,6	11,8	0,5	15,3	21,6	6 000	0,32	▶ 305805 C-2Z	► 305705 C-2Z
80 35 27 31,9 20,4 0,865 15,6 22,4 4300 0,65 ▶ 305807 C-2Z ▶ 3	72	30	23,8	25,1	16,3	0,695	17	24	5 000	0,49	▶ 305806 C-2Z	► 305706 C-2Z
	80	35	27	31,9	20,4	0,865	15,6	22,4	4 300	0,65	▶ 305807 C-2Z	► 305707 C-2Z


[►] Popular item

Dimen	sions			
d	d_1	D_1	Γ ₁₋₂	a
	≈	≈	r _{1,2} min.	_
mm				
32	15,8	25	0,6	16,5
35	17,7	27,7	0,6	19
40	20,2	30,7	0,6	21
47	23,3	35	0,6	23
52	27,7	40,9	1	28
62	32,7	45,9	1	30
72	38,7	55,2	1	36
80	45,4	63,9	1,1	42

Support rollers

15

Designs and variants	94!
Support rollers without flange rings	94!
(R)STO design support rollers	94!
(R)NA 222RS design support rollers	94!
Support rollers with flange rings	
NATR and NATV design support rollers	
NUTR A design support rollers	
PWTR2RS design support rollers	
NNTR2ZL design support rollers	
Cages	
Lubrication	94
Relubrication requirements	
Relubrication features	94
Bearing data	948
(Dimension standards, profile of the outer ring running	
surface, tolerances, internal clearance, defect frequenci	es)
Loads	
(Dynamic loads, static loads, axial loads, minimum load	,
equivalent dynamic bearing load, equivalent static	
bearing load)	
Temperature limits	950
Speed limits	950
Design considerations	
Pins	
Support surfaces	
Axial gap	951
Mounting	95:
Designation system	95
Product tables	
15.1 Support rollers without flange rings, with an inne	er
ring	
15.2 Support rollers with flange rings, with an inner	
ring	950

15 Support rollers

5KF. 943

15 Support rollers

More information

General bearing knowledge	17
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Sealing, mounting and	
dismounting	193

SKF support rollers (yoke-type track rollers based on roller bearings) are designed to run on all types of tracks and to be used in cam drives, conveyor systems, etc.

SKF support rollers are based on needle or cylindrical roller bearings.

SKF supplies them ready-to-mount. To meet the requirements of different applications, they are available in several designs and variants (fig. 1):

- with or without a cage
- with or without flange rings
- with or without an inner ring
- with or without seals (sealed or open)
- with the outer ring running surface profile:
 - crowned as standard
 - cylindrical (flat)

Support roller features

· Accommodate high radial loads

The thick-walled outer ring enables high radial loads, while reducing distortion and bending stresses.

· Long service life

The crowned outer ring running surface is beneficial for applications where outer ring tilting relative to the track may occur or where edge stresses need to be minimized.

Fig. 1

Support rollers

- based on needle roller bearings
- with a cage
- with flange rings
- with an inner ring

- based on cylindrical roller bearings
- without a cage
- with flange rings
- with an inner ring

- based on needle roller bearings
- with a cage
- without flange rings
- · without an inner ring

Designs and variants

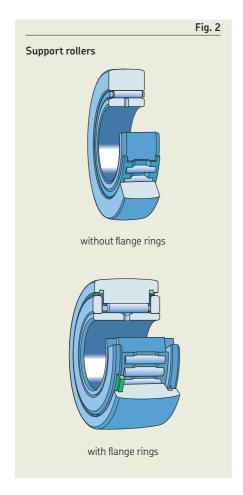
SKF support rollers are available without or with flange rings (fig. 2). They have a thick-walled outer ring with its running surface crowned as standard. However, support rollers with a cylindrical (flat) running surface are also available (designation suffix X).

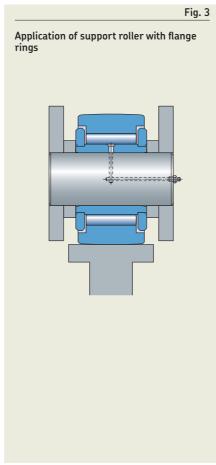
Support rollers without flange rings require adjacent components to guide the outer ring and cage axially.

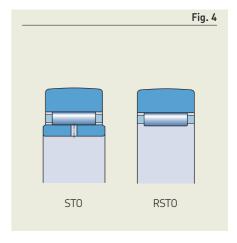
Support rollers with flange rings do not need adjacent components to guide the outer ring and cage axially (fig. 3). Axial loads, which are induced when shafts are not horizontal or aligned properly, are accommodated by the flange rings.

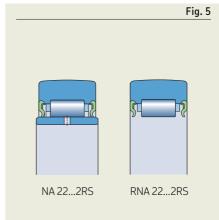
Support rollers without flange rings

- require adjacent components to guide the outer ring and cage axially
- are based on needle roller bearings
- are available:
 - with an inner ring, which is slightly wider than the outer ring to avoid axial clamping of the outer ring
 - without an inner ring (designation prefix R), intended for arrangements where the pin or shaft is hardened and ground

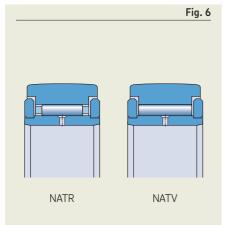

These support rollers are not listed in this catalogue, but can be found online at skf.com/go/17000-15-3.


(R)STO design support rollers


- are available (fig. 4):
 - with an inner ring that can be mounted separately from the outer ring and roller and cage assembly, which must always be kept together as supplied
 - without an inner ring (prefix R)
 - only open (without seals)


(R)NA 22...2RS design support rollers

- are available (fig. 5):
 - with an inner ring that can be mounted separately from the outer ring and roller and cage assembly
 - without an inner ring (prefix R)
 - greased and capped with a sheet steel reinforced NBR contact seal on both sides
- have the needle roller and cage assembly axially guided between two integral flanges in the outer ring to form a non-separable unit

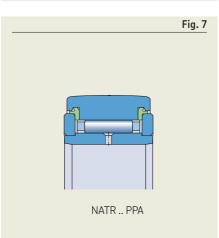


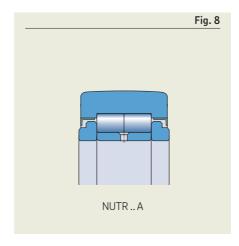
Support rollers with flange rings

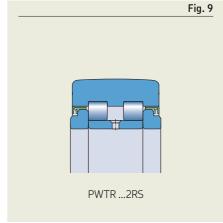
- do not need adjacent components to guide the outer ring and cage axially (fig. 3, page 945)
- are non-separable units
- have different flange designs:
 - pressed-on flange rings (NATR and NATV designs)
 - loose flange rings (NUTR, PWTR and NNTR designs)
- accommode axial loads that can occur because of skew or tilting

NATR and NATV design support rollers

- are based on (fig. 6):
 - a needle roller and cage assembly (NATR design)
 - a full complement of needle rollers (NATV design)
- have the outer ring axially guided by pressed-on flange rings, forming a gap-type seal


- are also available with an axial sliding ring on both sides (designation suffixes PPA, fig. 7, and PPXA):
 - made of PA66
 - forming narrow labyrinth seals with the outer ring in a radial direction, to protect against coarse contaminants
 - serving as contact seals in an axial direction to retain grease reliably in the bearing
 - improving lubrication conditions in the bearing, keeping friction and frictional heat low, and extending grease life


NUTR .. A design support rollers


- are based on double row full complement cylindrical roller bearings without an integral flange between the two roller sets (fig. 8)
- have an outer ring with two integral flanges, which guide the roller sets axially
- have an inner ring with two loose flange rings, which guide the outer ring axially via the roller sets
- have a sheet metal angle ring pressed into the outer ring shoulder on both sides:
 - forming an effective labyrinth seal
 - extending over the flange rings, making the bearing non-separable
- accommodate relatively heavy axial loads that can occur because of skew or tilting
- can be supplied with a reinforced (thicker) outer ring to accommodate heavy peak loads (e.g. NUTR 50 A → NUTR 50110 A)

PWTR ...2RS design support rollers

- are based on double row full complement cylindrical roller bearings (fig. 9)
- have an outer ring with three integral flanges, which guide the roller sets axially
- have an inner ring with two loose flange rings, which guide the outer ring axially via the roller sets
- have a relatively large grease quantity between the two roller sets
- are fitted on both sides with an NBR contact seal, being integral with a sheet metal angle ring that is pressed into the outer ring shoulder:
 - to press against the flange rings
- extending over the flange rings, making the bearing non-separable
- accommodate relatively heavy axial loads that can occur because of skew or tilting
- can be supplied with a reinforced (thicker) outer ring to accommodate heavy peak loads (e.g. PWTR 50.2RS → PWTR 50110.2RS)

NNTR ...2ZL design support rollers

- are based on double row full complement cylindrical roller bearings (fig. 10)
- have an outer ring with three integral flanges, which guide the roller sets axially
- have an inner ring with two loose flange rings, which guide the outer ring axially via the roller sets
- have a relatively large grease quantity between the two roller sets
- are fitted with a lamellar seal on both sides, inserted into recesses in the shoulders of the flange rings and the outer ring, making the bearing non-separable
- accommodate very heavy radial loads and relatively heavy axial loads that can occur because of skew or tilting

Cages

SKF support rollers, if not a full complement of rollers, are fitted with one of the cages shown in **table 1**. The standard cage is not identified in the bearing designation.

When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For additional information about the suitability of cages, refer to *Cages*, page 187.

Lubrication

SKF support rollers are supplied greased (table 1, page 933).

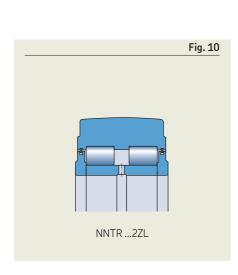
(R)STO design support rollers can be oil or grease lubricated. In applications where oil is used, SKF recommends thoroughly washing the initial grease fill from the bearing prior to operation.

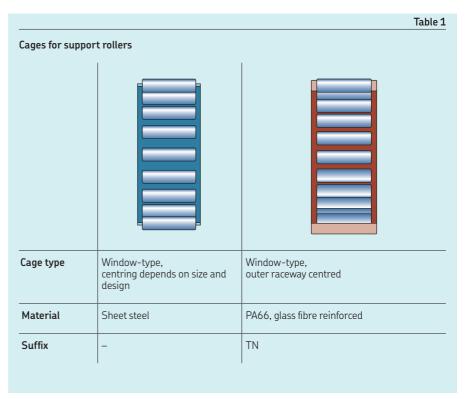
For general information, refer to *Lubrication*, page 109.

Relubrication requirements

Support rollers:

- should be relubricated regularly to achieve their full service life, even if the initial grease fill still has its full lubricating properties
- used in applications where there are light loads, relatively low speeds and clean surroundings can operate for long periods before relubrication is required


- that operate under contaminated and damp conditions at high speeds or at temperatures > 70 °C (160 °F) require more frequent relubrication
- without a cage (full complement of rollers) require more frequent relubrication


Relubrication features

The inner rings of SKF support rollers have one lubrication hole, except:

- NNTR designs with d ≤ 90 mm → three lubrication holes
- NNTR designs with d ≥ 100 mm → six lubrication holes

If suitable ducts are provided in the pin, the bearings are easy to relubricate.

Bearing data

Dimension	• (R)NA 22 designs
standards	ISO 15, dimension series 22, except for the outer ring width
	NATR, NATV, NUTR A, PWTR designs
	ISO 7063 and ANSI/ABMA Standard 18.1 (where standardized)
	• (R)STO designs
	Not standardized
Profile of the	• (R)STO, (R)NA 22, NATR, NATV designs
outer ring running surface	Radius = 500 mm
Surface	NNTR design
	D ≤ 260 mm → Radius = 10 000 mm
	D ≥ 290 mm → Radius = 15 000 mm
	NATR PPA, NATV PPA, NUTR A, PWTR designs
	Improved crowned profile for better load distribution, higher stiffness and reduced wear
Tolerances	Normal, except:
	diameter of the crowned running surface:NNTR design → h10
	- other designs → 0/-0,05 mm
	• width B:
	- NNTR design → 0/-0,5 mm
	 NATR, NATV, NUTR A, PWTR designs → h12 inside diameter F_w:
	- RSTO, RNA 22 designs → F6
For additional	
information	Values for Normal tolerance class: ISO 492 (table 2, page 38) Values for ISO tolerance classes: h10, h12 and F6 (table 2, page 950)
→ page 35	values for 150 tolerance classes. 1110, 1112 and 10 (table 2, page 750)
Internal clearance	STO and NA 22 designs
	Normal
	Other designs
Compaddition - 1	Between C2 and Normal
For additional information	Values: ISO 5753-1 (table 11, page 603)
→ page 182	Values are valid for unmounted bearings under zero measuring load.

Loads

Dynamic loads	As track rollers are not supported in a housing, the outer rings deform, leading to an altered load distribution and bending stresses in the outer ring. The basic load ratings listed in the product tables , page 954 , take into account the altered load distribution, while the maximum radial loads F_{rmax} (product tables) are based on the bending stresses.	Symbols C ₀ basic static load rating [kN]
Static loads	Permissible static load is the lower value of F_{0rmax} or C_0 (product tables). Where requirements for smooth running are below normal, the static load may exceed C_0 , but should never exceed the maximum permissible static radial load F_{0rmax} .	radial load [kN] (product tables) F _{rm} minimum radial load [kN] P equivalent dynamic bearing load [kN] P ₀ equivalent static bearing load [kN]
Axial loads	Support rollers are intended for radial loads. However, support rollers with flange rings can generally accommodate axial loads that can occur because of skew or tilting. The magnitude of permissible load depends on the internal design.	
Minimum load For additional information → page 106	$F_{rm} = 0.0167 C_0$	
Equivalent dynamic bearing load For additional information → page 91	$P = F_r$	
Equivalent static bearing load For additional information → page 105	$P_0 = F_r$	

5KF. 949

Temperature limits

15

The permissible operating temperature for support rollers can be limited by:

- the dimensional stability of the bearing rings and rollers
- the cage
- the seals
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings and rollers

SKF support rollers are heat stabilized up to at least 140 °C (280 °F).

Cages

Steel cages can be used at the same operating temperatures as the bearing rings and rollers. For temperature limits of PA66 cages, refer to *Polymer cages*, page 188.

Seals

The permissible operating temperature for seals depends on the seal material:

- NBR: -40 to +100 °C (-40 to +210 °F)
 Temperatures up to 120 °C (250 °F) can be tolerated for brief periods.
- PA66 sliding rings: -30 to +100 °C (-20 to +210 °F)

Typically, temperature peaks are at the seal lip.

Lubricants

Temperature limits for greases used in SKF support rollers are provided in **table 1**, **page 947**. For temperature limits of other SKF greases, refer to *Selecting a suitable SKF grease*, **page 116**.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Speed limits

The limiting speed listed in the **product tables** is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds.

For additional information, refer to *Operating temperature and speed*, page 130.

Design considerations

Pins

For general information, refer to *Bearing* interfaces, page 139.

For support rollers with an inner ring, the pin/shaft should be machined to tolerance class g6 (a) under the following conditions:

- stationary inner ring load
- where easy displacement of the inner ring is required

Nomina dimens >		h7 © Deviat U	ions	h9 © Deviat U	ions	h10 € Deviat U		h12 © Deviat U		F6 © Deviation U	ons I
mm		μm		μm		μm		μm		μm	
3	6	0	-12	-	-	-	-	-	-	-	-
6	10	0	-15	0	-36	-	-	-	-	+22	+13
10	18	0	-18	0	-43	-	-	0	-180	+27	+16
18	30	0	-21	0	-52	-	-	0	-210	+33	+20
30	50	-	-	0	-62	-	-	0	-250	+41	+25
50	80	-	-	-	-	-	-	-	-	+49	+30
120	180	-	-	-	-	0	-160	-	-	-	-
180	250	-	-	-	-	0	-185	-	-	-	-
250	315	-	-	-	-	0	-210	-	-	-	-

To exploit the full load carrying capacity of support rollers without an inner ring, the pin/shaft should:

- be machined to tolerance class k5(E)
- be machined to a surface finish similar to a bearing raceway
- have the same hardness as a bearing raceway

For additional information about raceways on shafts, refer to *Raceways on shafts and in housings*, page 179.

Axial gap

The following support rollers must be located without any axial gap:

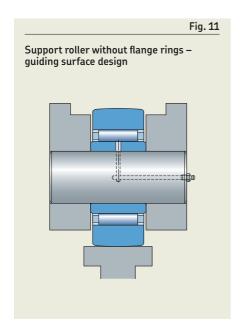
- support rollers without flange rings, with an inner ring (fig. 11)
- support rollers with flange rings (fig. 12)

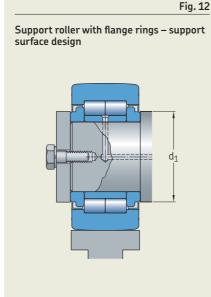
Support rollers without an inner ring must have an axial gap \geq 0,2 mm between the outer ring and the support surfaces (fig. 13).

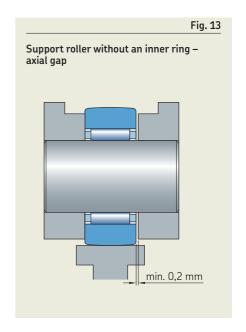
Support surfaces

For support rollers without flange rings, the outer ring support surfaces:

- guide the outer ring and cage during operation
- must be fine turned
- must be free of burrs and clean
- should extend to at least half the outer ring side face (fig. 11), if unhardened – hardened surfaces may be smaller

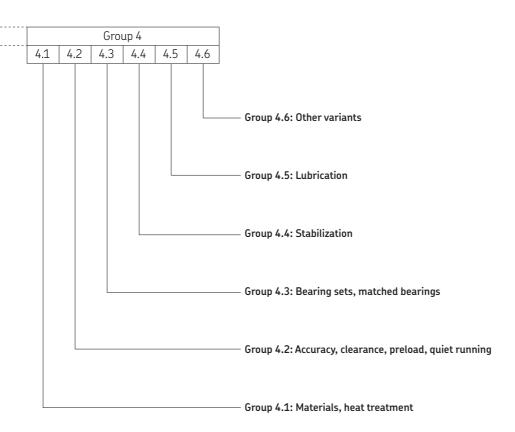

Heavily loaded support rollers with flange rings should be axially supported:


- over the entire flange ring side faces (fig. 12)
- according to diameter d₁ (product table, page 956)

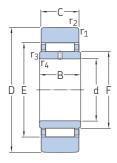

Mounting

SKF recommends positioning the lubrication hole in the unloaded zone of the inner ring. Positioning is not needed for PWTR and NNTR design support rollers, which have the lubrication holes in the empty space between the two roller sets.

Where mounting the outer ring assembly and inner ring separately, care must be taken not to damage the seal lips.



Designation system

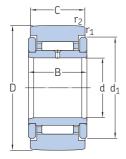

15

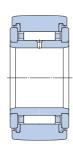

		Gro	up 1	Group 2	Gro	up 3	/	
Prefixes								
R	Support roller without an inner ring							
Basic de	signation ————————————————————————————————————							
NA 22 STO NATR NATV NUTR NNTR PWTR Suffixes Group 1:	Support roller without a flange ring, fitted with a needle roller and cage assembly Support roller without a flange ring, fitted with a needle roller and cage assembly Support roller with two pressed-on flange rings, fitted with a needle roller and cage assembly Support roller with two pressed-on flange rings, fitted with a full complement of needle rollers Support roller based on a double row full complement cylindrical roller bearing with two integral outer ring flanges and a loose flange ring on both sides of the inner ring Support roller based on a double row full complement cylindrical roller bearing with three integral outer ring flanges and a loose flange ring on both sides of the inner ring Support roller based on a double row full complement cylindrical roller bearing with three integral outer ring flanges and a loose flange ring on both sides of the inner ring flanges and a loose flange ring on both sides of the inner ring							
Group 2:	External design (seals, snap ring groove, etc.)							
.2RS .2ZL A PPA PPXA	NBR contact seal on both sides Lamellar seal on both sides Improved crowned profile of the outer ring running surface (NUTR design) PA66 axial sliding and sealing ring on both sides. Improved crowned profile of the outer ring running surface PA66 axial sliding and sealing ring on both sides. Cylindrical (flat) profile of the outer ring running surface Cylindrical (flat) profile of the outer ring running surface							
Group 3:	Cage design —							

TN Glass fibre reinforced PA66 cage

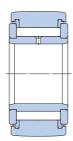
$\begin{array}{ccc} \textbf{15.1} & \textbf{Support rollers without flange rings, with an inner ring} \\ & \textbf{D} & \textbf{19-90} \ \text{mm} \end{array}$

ST0

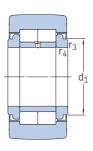

NA 22...2RS

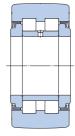

Principal dimensions			Basic loa dynamic	ad ratings static	Fatigue load limit	Maximur dynamic	n radial loads static	Limiting speed	Mass	Designation	
D	d	С	В	С	C_0	P_u	F _r max.	F _{0r} max.			
mm				kN		kN	kN		r/min	kg	_
19	6	9,8	10	3,74	4,5	0,5	4,25	6,1	7 000	0,017	► STO 6 TN
	6	11,8	12	4,02	3,65	0,425	2,55	3,6	7 000	0,022	NA 22/6.2RS
24	8	9,8	10	4,13	5,4	0,6	7,5	10,8	7 000	0,026	ST0 8 TN
	8	11,8	12	4,68	4,55	0,54	5,3	7,5	6 700	0,034	► NA 22/8.2RS
30	10	11,8	12	8,25	8,8	1,04	8,5	12,2	6 000	0,049	► STO 10
	10	13,8	14	6,6	7,5	0,88	12	17,3	6 300	0,06	► NA 2200.2R
32	12	11,8	12	8,8	9,8	1,18	8,3	12	5 600	0,057	► STO 12
	12	13,8	14	7,04	8,5	1	11,6	16,6	6 000	0,067	► NA 2201.2R
35	15	11,8	12	9,13	10,6	1,27	7,1	10	5 000	0,063	ST0 15
	15	13,8	14	7,48	9,3	1,12	9,5	13,7	5 000	0,075	► NA 2202.2R
40	17	15,8	16	9,52	13,2	1,6	15,3	22	4 500	0,11	NA 2203.2R9
	17	15,8	16	14,2	17,6	2,08	12	17,3	4 500	0,11	STO 17
47	20	15,8	16	16,1	21,2	2,5	18,6	26,5	4 000	0,15	ST0 20
	20	17,8	18	16,1	18	2,16	17,6	25,5	4 000	0,18	► NA 2204.2R
52	25	15,8	16	16,5	22,8	2,7	18	26	3 400	0,18	ST0 25
	25	17,8	18	16,8	20	2,4	17,3	24,5	3 400	0,21	► NA 2205.2R
62	30	19,8	20	17,9	25,5	3,05	28,5	40,5	2 800	0,32	NA 2206.2R
	30	19,8	20	22,9	34,5	4,25	23,6	33,5	2 600	0,31	STO 30
72	35	19,8	20	24,6	39	4,8	36	51	2 200	0,44	ST0 35
	35	22,7	23	22,4	35,5	4,3	38	54	2 200	0,51	NA 2207.2R
80	40	19,8	20	23,8	39	4,75	34,5	49	1 900	0,53	ST0 40
	40	22,7	23	27,5	40,5	5	35,5	51	1 900	0,63	► NA 2208.2R
90	50	22,7	23	28,1	43	5,3	34,5	50	1 600	0,69	NA 2210.2R

[►] Popular item



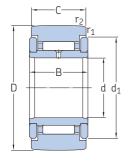
Dimen	sions				
D	D_1	Е	F	r _{1,2} min.	r _{3,4} min.
mm					
19	_	13	10	0,3	0,3
	16	-	10	0,3	0,3
24	-	15	12	0,3	0,3
	18	-	12	0,3	0,3
30	-	20	14	0,3	0,3
	20	-	14	0,6	0,3
32	-	22	16	0,3	0,3
	22	-	16	0,6	0,3
35	-	26	20	0,3	0,3
	26	-	20	0,6	0,3
40	28	-	22	1	0,3
	-	29	22	0,3	0,3
47	-	32	25	0,3	0,3
	33	-	25	1	0,3
52	-	37	30	0,3	0,3
	38	-	30	1	0,3
62	43	-	35	1	0,3
	-	46	38	0,6	0,6
72	-	50	42	0,6	0,6
	50	-	42	1,1	0,6
80	-	58	50	1	1
	57	-	48	1,1	0,6
90	68	_	58	1,1	0,6

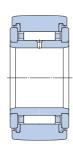


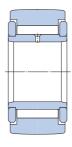


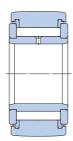
NATR		NATR PPA			NATV		NATV	PPA			
Princi	pal dimen	sions		Basic loa dynamic	ad ratings static	Fatigue load limit	Maximu dynamic	m radial loads static	Limiting speed	Mass	Designation
D	d	С	В	С	C_0	P_u	F _r max.	F _{0r} max.			
mm				kN		kN	kN		r/min	kg	_
16	5 5 5	11 11 11	12 12 12	3,14 3,14 4,73	3,2 3,2 6,55	0,345 0,345 0,72	2,9 2,9 4,05	4,15 4,15 5,7	6 000 6 000 4 300	0,014 0,014 0,015	NATR 5 ► NATR 5 PPA NATV 5
	5	11	12	4,73	6,55	0,72	4,05	5,7	4 300	0,015	► NATV 5 PPA
19	6 6 6	11 11 11	12 12 12	3,47 3,47 5,28	3,8 3,8 8	0,415 0,415 0,88	3,8 3,8 5,1	5,5 5,5 7,35	5 600 5 600 4 000	0,02 0,019 0,021	NATR 6NATR 6 PPA NATV 6
	6	11	12	5,28	8	0,88	5,1	7,35	4 000	0,021	► NATV 6 PPA
24	8 8 8	14 14 14	15 15 15	5,28 7,48 7,48	6,1 11,4 11,4	0,695 1,32 1,32	5,2 7,35 7,35	7,35 10,4 10,4	5 000 3 600 3 600	0,038 0,042 0,041	► NATR 8 PPA NATV 8 ► NATV 8 PPA
30	10 10 10	14 14 14	15 15 15	6,44 6,44 8,97	8 8 14,6	0,88 0,88 1,66	7,8 7,8 11	11,2 11,2 15,6	4 800 4 800 3 200	0,064 0,061 0,065	► NATR 10 ► NATR 10 PPA NATV 10
	10	14	15	8,97	14,6	1,66	11	15,6	3 200	0,064	► NATV 10 PPA
32	12 12 12	14 14 14	15 15 15	6,6 6,6 9,35	8,5 8,5 15,3	0,95 0,95 1,76	7,65 7,65 10,6	10,8 10,8 15	4 500 4 500 3 000	0,071 0,066 0,072	NATR 12 ► NATR 12 PPA ► NATV 12
	12	14	15	9,35	15,3	1,76	10,6	15	3 000	0,069	► NATV 12 PPA
35	15 15 15	18 18 18	19 19 19	9,52 9,52 12,3	13,7 13,7 23,2	1,56 1,56 2,7	11,4 11,4 14,6	16,3 16,3 20,8	4 000 4 000 2 600	0,1 0,095 0,11	NATR 15NATR 15 PPA NATV 15
	15 15 15	18 18 18	19 19 19	12,3 16,8 11,9	23,2 17,6 11,4	2,7 2 1,2	14,6 8,65 8,65	20,8 12,2 12,5	2 600 5 000 5 000	0,1 0,099 0,099	NATV 15 PPANUTR 15 APWTR 15.2RS
40	17 17 17	20 20 20	21 21 21	10,5 10,5 14,2	14,6 14,6 26,5	1,73 1,73 3,1	12,5 12,5 17	18 18 24,5	3 400 3 400 2 200	0,14 0,14 0,15	► NATR 17 ► NATR 17 PPA NATV 17
	17 17 17	20 20 20	21 21 21	14,2 19 13,8	26,5 22 14,3	3,1 2,5 1,5	17 14 13,7	24,5 20 19,6	2 200 4 500 4 500	0,15 0,15 0,15	NATV 17 PPANUTR 17 APWTR 17.2RS

[►] Popular item

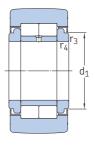


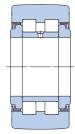

NUTR .. A


PWTR...2RS


_					
D	im	en	SI	or	١S

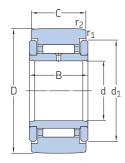
D	d_1	r _{1,2} min.	r _{3,4} min.	
mm				
16	12,5 12,5 12,5	0,15 0,15 0,15	- - -	
	12,5	0,15	-	
19	15 15 15	0,15 0,15 0,15	- - -	
24	15	0,15	-	
24	19 19 19	0,3 0,3 0,3	- - -	
30	23 23 23	0,6 0,6 0,6	- - -	
	23	0,6	-	
32	25 25 25	0,6 0,6 0,6	- - -	
	25	0,6	-	
35	27,6 27,6 27,6	0,6 0,6 0,6	- - -	
	27,6 20 20	0,6 0,6 0,6	_ 0,3 0,3	
40	31,5 31,5 31,5	1 1 1	- - -	
	31,5 22 22	1 1 1	_ 0,5 0,5	

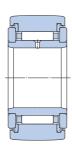


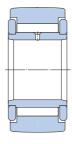


NATR		N	NATR PPA				NATV	PPA			
Princi	pal dimen	sions		Basic loa dynamic	ad ratings static	Fatigue load limit	Maximu dynamic	ım radial loads static	Limiting speed	Mass	Designation
D	d	С	В	С	C_0	P_u	F _r max.	F _{0r} max.			
mm				kN		kN	kN		r/min	kg	-
42	15 15	18 18	19 19	20,1 14,2	23,2 15	2,65 1,6	21,6 22	31 31,5	5 000 5 000	0,16 0,16	► NUTR 1542 A PWTR 1542.2RS
47	17 17 20	20 20 24	21 21 25	22 15,7 14,7	27 17,6 24,5	3,05 1,86 2,9	30 30 23,6	43 42,5 33,5	4 500 4 500 3 000	0,22 0,22 0,25	NUTR 1747 A PWTR 1747.2RSNATR 20
	20 20 20	24 24 24	25 25 25	14,7 19,4 19,4	24,5 41,5 41,5	2,9 5 5	23,6 30,5 30,5	33,5 43 43	3 000 1 900 1 900	0,24 0,25 0,25	► NATR 20 PPA NATV 20 ► NATV 20 PPA
	20 20	24 24	25 25	28,6 22,9	33,5 24,5	3,9 2,8	17,6 18,3	25 26	3 800 3 800	0,25 0,25	NUTR 20 A PWTR 20.2RS
52	20 20 25	24 24 24	25 25 25	31,9 25,5 14,7	39 29 25,5	4,55 3,35 3,1	30 30,5 21,6	42,5 44 31	3 800 3 800 2 400	0,32 0,32 0,28	NUTR 2052 APWTR 2052.2RSNATR 25
	25 25 25	24 24 24	25 25 25	14,7 19,8 19,8	25,5 44 44	3,1 5,3 5,3	21,6 28,5 28,5	31 40,5 40,5	2 400 1 600 1 600	0,27 0,29 0,28	► NATR 25 PPA NATV 25 ► NATV 25 PPA
	25 25	24 24	25 25	29,7 23,8	36 26,5	4,25 3,05	18 18,6	25,5 26,5	3 200 3 200	0,28 0,28	► NUTR 25 A ► PWTR 25.2RS
62	25 25 30	24 24 28	25 25 29	35,8 29,2 22,9	48 36 37,5	5,6 4,05 4,55	44 45 26,5	63 64 38	3 200 3 200 1 800	0,45 0,45 0,47	NUTR 2562 A PWTR 2562.2RSNATR 30
	30 30 30	28 28 28	29 29 29	22,9 29,2 29,2	37,5 62 62	4,55 7,65 7,65	26,5 34,5 34,5	38 49 49	1 800 1 400 1 400	0,44 0,48 0,47	► NATR 30 PPA NATV 30 ► NATV 30 PPA
	30 30	28 28	29 29	41,3 31,9	47,5 32,5	5,85 4,05	24 20,4	34,5 29	2 600 2 600	0,47 0,47	NUTR 30 A PWTR 30.2RS
72	30 30 35	28 28 28	29 29 29	48,4 39,6 24,6	61 45 43	7,5 5,6 5,3	53 47,5 33,5	76,5 68 48	2 600 2 000 1 600	0,7 0,7 0,55	NUTR 3072 A PWTR 3072.2RSNATR 35 PPA
	35 35 35	28 28 28	29 29 29	31,9 45,7 35,8	72 57 40,5	8,8 6,95 5	43 33,5 28	62 47,5 40	1 100 2 000 2 000	0,63 0,63 0,63	NATV 35 PPANUTR 35 A PWTR 35.2RS

[►] Popular item

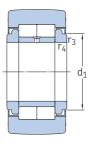


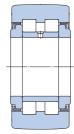

NUTR .. A


PWTR...2RS

Dimensions

D	d_1	r _{1,2} min.	r _{3.4} min.
mm			
42	20	0,6	0,3
	20	0,6	0,3
47	22	1	0,5
	22	1	0,5
	36,5	1	-
	36,5	1	-
	36,5	1	-
	36,5	1	-
	27	1	0,5
	27	1	0,5
52	27	1	0,5
	27	1	0,5
	41,5	1	-
	41,5	1	-
	41,5	1	-
	41,5	1	-
	31	1	0,5
	31	1	0,5
62	31	1	0,5
	31	1	0,5
	51	1	-
	51	1	-
	51	1	-
	51	1	-
	38	1	0,5
	38	1	0,5
72	38	1	0,5
	38	1	0,5
	58	1,1	-
	58	1,1	-
	44	1,1	0,6
	44	1,1	0,6





	١	NATR		N	ATR PPA		NATV		NATV	PPA	
Princip	oal dimen	sions		Basic loa dynamic	ad ratings static	Fatigue load limit	Maximu r dynamic	n radial loads static	Limiting speed	Mass	Designation
D	d	С	В	С	C_0	P_u	F _r max.	F _{0r} max.			
mm				kN		kN	kN		r/min	kg	_
80	35 35 40	28 28 30	29 29 32	51,2 41,8 31,9	68 50 57	8,3 6,3 7,1	57 51 41,5	81,5 72 58,5	2 000 2 000 1 500	0,84 0,84 0,8	NUTR 3580 APWTR 3580.2RSNATR 40 PPA
	40 40 40	30 30 30	32 32 32	39,1 57,2 41,8	88 72 49	11 9 6	51 32 33,5	73,5 45,5 48	950 1 800 1 800	0,83 0,82 0,82	NATV 40 PPANUTR 40 APWTR 40.2RS
85	45 45	30 30	32 32	58,3 42,9	75 50	9,3 6,2	32,5 34	46,5 48	1 700 1 700	0,88 0,88	NUTR 45 A PWTR 45.2RS
90	40 40 50	30 30 30	32 32 32	68,2 49,5 30,8	91,5 62 58,5	11,4 7,65 7,2	63 64 40	90 91,5 57	1 800 1 800 1 200	1,15 1,15 0,87	NUTR 4090 APWTR 4090.2RSNATR 50 PPA
	50 50 50	30 30 30	32 32 32	39,1 58,3 42,9	93 78 52	11,6 9,65 6,55	50 32,5 34,5	72 47,5 49	850 1 600 1 600	0,97 0,95 0,95	NATV 50 PPANUTR 50 A PWTR 50.2RS
100	45 45	30 30	32 32	73,7 53,9	104 69,5	12,7 8,65	80 81,5	114 116	1 700 1 700	1,4 1,4	 NUTR 45100 A PWTR 45100.2RS
110	50 50	30 30	32 32	78,1 57,2	116 78	14,3 9,65	98 100	140 143	1 600 1 600	1,7 1,7	NUTR 50110 APWTR 50110.2RS

NUTR .. A

PWTR...2RS


Dimensions

D	d_1	r _{1,2} min.	r _{3,4} min.			
mm						
80	44 44 66	1,1 1,1 1,1	0,6 0,6 -			
	66 50,5 50,5	1,1 1,1 1,1	- 0,6 0,6			
85	55,2 55,2	1,1 1,1	0,6 0,6			
90	50,5 50,5 76	1,1 1,1 1,1	0,6 0,6 -			
	76 59,8 59,8	1,1 1,1 1,1	- 0,6 0,6			
100	55,2 55,2	1,1 1,1	0,6 0,6			
110	59,8 59,8	1,1 1,1	0,6 0,6			

Cam followers

16

Designs and variants	5
KR design cam followers	_
NUKR A design cam followers	_
PWKR2RS design cam followers	
Cages96	0
Accessories 96	8
Grease fittings96	8
Hexagonal nuts96	8
VD1 plugs	8
AP design adapters	
Lubrication97	1
Bearing data 97	っ
(Dimension standards, profile of the outer ring running	_
surface, tolerances, internal clearance, defect frequencies)	
surface, toterances, internal clearance, defect frequencies)	
Loads 97	3
(Dynamic loads, static loads, axial loads, minimum load,	
equivalent dynamic bearing load, equivalent static	
bearing load)	
T	.,
Temperature limits	4
Speed limits	٧ <u>/</u> .
7/	_
Design considerations	4
Attachment holes for studs	4
Support surfaces	4
Mounting	5
Designation system 97	6
Product table	
16.1 Cam followers	8

16 Cam followers

5KF. 963

16 Cam followers

More information

General bearing knowledge	17
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Sealing, mounting and	
dismounting	193

SKF cam followers (stud-type track rollers) are designed to run on all types of tracks and to be used in cam drives, conveyor systems,

SKF cam followers are based on either needle or cylindrical roller bearings. Instead of an inner ring, they have a threaded solid stud (pin).

SKF supplies them ready-to-mount. To meet the requirements of different applications, they are available in several designs and variants (fig. 1):

- with or without a cage
- with different stud designs:
 - a concentric seat
 - an eccentric collar
- with several sealing solutions
- with the outer ring running surface profile:
 - crowned as standard
 - cylindrical (flat)

In contrast to ball and roller bearings, where the bearing size refers to the bore diameter d, for cam followers the size refers to their outside diameter D.

Cam followers

- · based on needle roller bearings
- · with a cage
- with an eccentric collar

- · based on cylindrical roller bearings
- without a cage
- with an eccentric collar

Fig. 1

Cam follower features

· Accommodate high radial loads

The thick-walled outer ring enables high radial loads, while reducing distortion and bending stresses.

· Accommodate axial loads

The flange rings enable cam followers to accommodate axial loads that can occur because of skew or tilting.

• Long service life

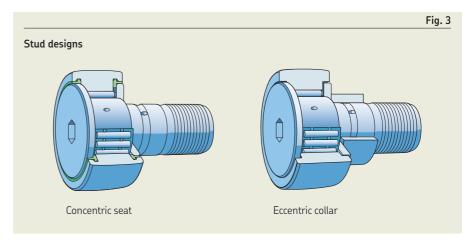
The crowned outer ring running surface is beneficial for applications where outer ring tilting relative to the track may occur or where edge stresses need to be minimized.

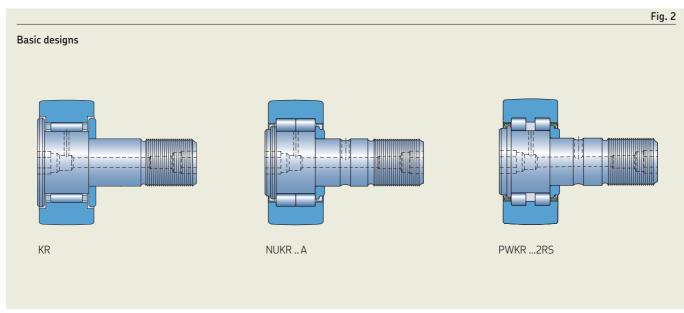
· Easy to mount

The threaded solid stud (pin) of cam followers can be quickly and easily attached to appropriate machine components by means of a hexagonal nut.

Designs and variants

SKF cam followers have a thick-walled outer ring with its running surface crowned as standard. However, cam followers with a cylindrical (flat) running surface are also available (designation suffix X).


SKF cam followers are available in three basic designs (fig. 2):

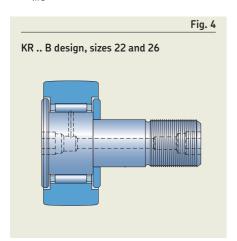

- KR design
- NUKR design
- PWKR design

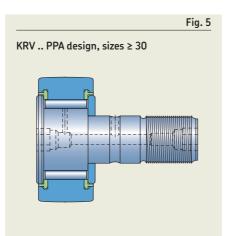
All three designs have the same main dimensions. They are available in different stud designs (fig. 3):

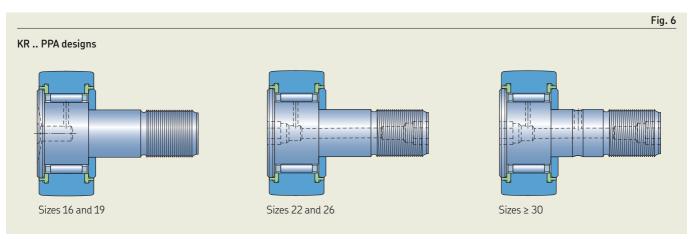
- a concentric seat
- an eccentric collar (E at the end of the basic designation) on the stud

The eccentric collar has a shrink-fit onto the stud, enabling less stringent positioning tolerances to be specified for associated components. The values of the adjustable eccentricity are listed in the **product table**, page 978.

KR design cam followers

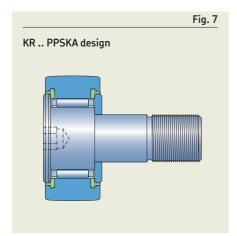

- are available based on:
 - a needle roller and cage assembly (fig. 4)
 - a full complement needle roller set (fig. 5, V in the basic designation)
 Cam followers based on a full complement of needle rollers accommodate higher loads than same-sized cam followers with a cage.
- have the outer ring axially guided by the pressed-on flange ring and the stud head (integral flange), forming a gap-type seal
- are also available with an axial sliding ring on both sides (designation suffixes PPA, fig. 6, or PPSKA, fig. 7, or PPXA):
 - made of PA66
 - forming narrow labyrinth seals with the outer ring in a radial direction, to protect against coarse contaminants
 - serving as contact seals in an axial direction to retain grease reliably in the bearing
 - improving lubrication conditions in the cam follower, keeping friction and frictional heat low, and extending grease life

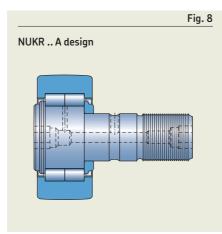

KR design cam followers, sizes 16 and 19

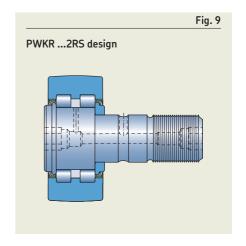

- without a designation suffix or with the designation suffix PPA (fig. 6)
 - have one slot in the head of the stud that enables the stud to be held in place by a screwdriver during mounting
 - have a relubrication hole for a press-in grease fitting or a plug if relubrication is not required in the centre of the slot (Accessories, page 968)
- with the designation suffix PPSKA (fig. 7)
 - have a hexagonal recess in the head of the stud that enables the stud to be held in place by a hexagonal key (Allen wrench) during mounting
 - have no relubrication features

KR design cam followers, designation suffix B, sizes ≥ 22

- have a hexagonal recess at each end of the stud (fig. 4), enabling the cam follower to be held in place by a hexagonal key (Allen wrench) during mounting
- have a relubrication hole for a press-in grease fitting in the centre of each hexagonal recess
- can accommodate adapters from a centralized lubrication system for sizes ≥ 35
 (Accessories, page 968)




NUKR .. A design cam PWKR ... 2RS design followers


- are based on double row full complement cylindrical roller bearings without an integral flange between the two roller sets (fig. 8)
- have the outer ring axially guided by the stud head and pressed-on flange ring via the roller sets
- have a sheet metal angle ring pressed into the outer ring shoulder on both sides, forming an effective labyrinth seal
- have a hexagonal recess at each end of the stud, enabling the cam follower to be held in place by a hexagonal key (Allen wrench) during mounting
- have a relubrication hole for a press-in grease fitting or an adapter from a centralized lubrication system in the centre of each hexagonal recess (Accessories, page 968)
- accommodate relatively heavy axial loads that can occur because of skew or tilting

cam followers

- are based on double row full complement cylindrical roller bearings (fig. 9)
- have the outer ring axially guided by the stud head and pressed-on flange ring via the roller sets
- are fitted on both sides with an NBR contact seal, being integral with a sheet metal angle ring that is pressed into the outer ring shoulder, to press against the flange ring and the stud head
- have a hexagonal recess at each end of the stud, enabling the cam follower to be held in place by a hexagonal key (Allen wrench) during mounting
- have a relubrication hole for a press-in grease fitting or an adapter from a centralized lubrication system in the centre of each hexagonal recess (Accessories, page 968)
- · accommodate relatively heavy axial loads that can occur because of skew or tilting

Cages

Cam followers, if not a full complement of rollers, are fitted with a sheet steel windowtype cage that is roller centred (fig. 10).

For information about the suitability of cages, refer to Cages, page 187.

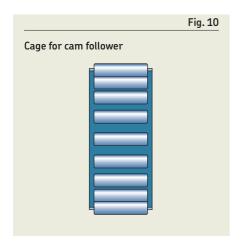
Accessories

SKF supplies accessories to enable reliable lubrication and location of SKF cam followers (table 1). Accessories, other than grease fittings and hexagonal nuts, must be ordered separately.

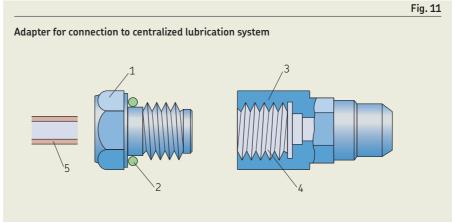
Grease fittings

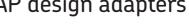
- are supplied with each cam follower as standard (table 1) and are the only ones to
- can be pressed into position
- are listed in table 2, page 970 with their dimensions
- have heads that protrude from the stud head end by 1,5 mm for KR design cam followers of sizes 16 and 19

Hexagonal nuts


- are supplied with each cam follower as standard (table 1)
- are in accordance with ISO 4032 or ISO 8673
- are manufactured to strength class 8.8
- are zinc galvanized in accordance with
- are listed in table 3, page 970 with their dimensions and recommended tightening torques

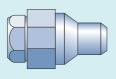
VD1 plugs


- are used to plug the relubrication hole end in the stud of KR design cam followers of sizes 16 and 19 without designation suffix PPSKA, where:
 - relubrication is not required
 - there is no space for the head of the grease fitting
- must be ordered separately (table 1)

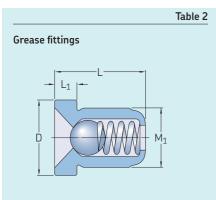

AP design adapters

- enable cam followers to be relubricated via a centralized lubrication system
- have a connection that accommodates, for example, 4 × 0,75 polyamide tubing in accordance with DIN 73378, as shown in fig. 11, in which:
 - 1 Connection
 - **2** 0-ring
 - 3 Adapter connection
 - 4 Female thread M 10x1
 - **5** Polyamide tube
- must be ordered separately (table 1)
- are listed in table 4, page 970 with their dimensions

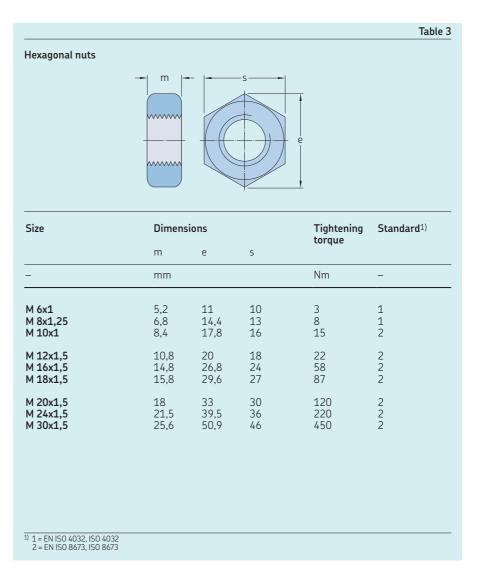
968

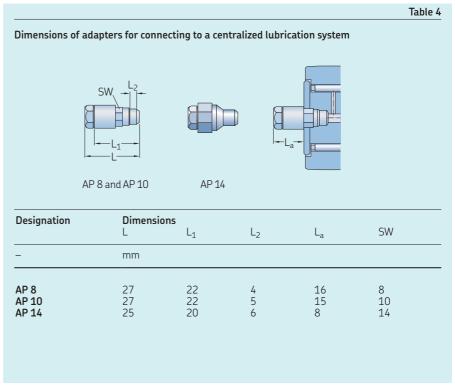


Accessories for cam followers


					g

Plug


Hexagonal nut


Adapter

	Grease IIII	ng Pii	ug He	exagonal nut	Adapter	
Cam follower Design	Size without seals	with seals	Supplied with th Grease fitting	e cam follower Hexagonal nut	To be ord Plug	dered separately Adapter
(R KRE KRV						
	16 - 19	16 PPA 16 PPSKA 19 PPA	NIPA1 - NIPA1	M 6x1 M 6x1 M 8x1,25	VD1 - VD1	- - -
	- 22 B 26 B 30 B	19 PPSKA 22 PPA 26 PPA 30 PPA	- 2 x NIP A1x4,5 2 x NIP A1x4,5 2 x NIP A1x4,5	M 8x1,25 M 10x1 M 10x1 M 12x1,5	- - - -	- - -
	32 B 35 B 40 B	32 PPA 35 PPA 40 PPA	2 x NIP A1x4,5 2 x NIP A2x7,5 2 x NIP A2x7,5	M 12x1,5 M 16x1,5 M 18x1,5	- - -	– AP 8 AP 8
	-	47 PPA 52 PPA 62 PPA	2 x NIP A2x7,5 2 x NIP A2x7,5 2 x NIP A3x9,5	M 20x1,5 M 20x1,5 M 24x1,5	_ _ _	AP 10 AP 10 AP 14
	- - -	72 PPA 80 PPA 90 PPA	2 x NIP A3x9,5 2 x NIP A3x9,5 2 x NIP A3x9,5	M 24x1,5 M 30x1,5 M 30x1,5	_ _ _	AP 14 AP 14 AP 14
NUKR A NUKRE A PWKR2RS PWKRE2RS						
-WRRE2K3	- - -	35 40 47	2 x NIP A2x7,5 2 x NIP A2x7,5 2 x NIP A2x7,5	M 16x1,5 M 18x1,5 M 20x1,5	- - -	AP 8 AP 8 AP 10
	- - -	52 62 72	2 x NIP A2x7,5 2 x NIP A3x9,5 2 x NIP A3x9,5	M 20x1,5 M 24x1,5 M 24x1,5	- - -	AP 10 AP 14 AP 14
	-	80 90	2 x NIP A3x9,5 2 x NIP A3x9,5	M 30x1,5 M 30x1,5	- -	AP 14 AP 14

Designation	$\begin{array}{cccc} \textbf{Dimensions} \\ \textbf{M}_1 & \textbf{D} & \textbf{L} & \textbf{L}_1 \end{array}$			
_	mm			
NIP A1 NIP A1x4,5	4 4	6 4,7	6 4,5	1,5 1
NIP A2x7,5	6	7,5	7,5	2
NIP A3x9,5	8	10	9,5	3

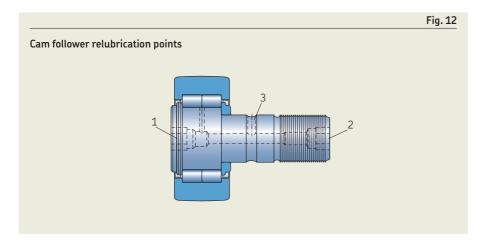
Lubrication

SKF cam followers are supplied greased (table 1, page 933).

For general information, refer to *Lubrication*, page 109.

Relubrication requirements

Cam followers:


- should be relubricated regularly to achieve their full service life, even if the initial grease fill still has its full lubricating properties
- used in applications where there are light loads, relatively low speeds and clean surroundings can operate for long periods before relubrication is required
- that operate under contaminated and damp conditions at high speeds or at temperatures > 70 °C (160 °F) require more frequent relubrication
- without a cage (full complement of rollers) require more frequent relubrication

KR design cam followers of sizes 16 and 19 with designation suffix PPSKA cannot be relubricated.

Relubrication features

Cam followers can be relubricated via ducts inside the stud. Depending on series and size, there are up to three positions for relubrication (fig. 12):

- Positions 1 and 2 can be fitted with the grease fitting supplied with the cam follower.
- Position 3 should be used when relubricating via ducts in the adjacent components.
- For detailed information about the positions, refer to product tables, page 978.
- For cam followers, sizes ≥ 35, positions 1 and 2 can be connected to a centralized lubrication system (Accessories, page 968).
- Positions not used for relubrication should be closed by a grease fitting or a plug (Accessories).

Bearing data

Dimension standards	ISO 7063 and ANSI/ABMA Standard 18.1 (where standardized)
Profile of the outer ring running surface	• KR (B) designs Radius = 500 mm
	Other designs Improved crowned profile for better load distribution, higher stiffness and reduced wear
Tolerances	Normal, except: • KR, KRE, KRV designs: ISO 7063 • diameter of the crowned running surface: 0/–0,05 mm • stud shank diameter: h7 • eccentric collar diameter: h9
For additional information → page 35	Values for Normal tolerance class: ISO 492 (table 2, page 38) Values for ISO tolerance classes: h7 and h9 (table 2, page 970)
Internal clearance	Between C2 and Normal
For additional information → page 182	Values: ISO 5753-1 (table 11, page 603) Values are valid for unmounted bearings under zero measuring load.
Defect frequencies	→ skf.com/bearingcalculator

Loads

Dynamic loads	As track rollers are not supported in a housing, the outer rings deform, leading to an altered load distribution and bending stresses	Symbo	ls
	in the outer ring. The basic load ratings listed in the product table , page 978 , take into account the altered load distribution, while the maximum radial loads F_{rmax} (product table) are based on the bending stresses.	C_0 F_r $F_{r max}$	basic static load rating [kN] (product table, page 978) radial load [kN] maximum permissible dynamic radial load [kN] (product table)
Static loads	Permissible static load is the lower value of F_{0rmax} or C_0 (product table). Where requirements for smooth running are below normal, the static load may exceed C_0 , but should never exceed the maximum permissible static radial load F_{0rmax} .	F _{0r max} F _{rm} P	maximum permissible static radial load [kN] (product table) minimum radial load [kN] equivalent dynamic bearing load [kN] equivalent static bearing load
Axial loads	Cam followers are intended for radial loads. However, their flange rings enable cam followers to accommodate axial loads that can occur because of skew or tilting. The magnitude of permissible load depends on the internal design.		[kN]
Minimum load	$F_{rm} = 0.0167 C_0$		
For additional information → page 106			
Equivalent dynamic bearing load	$P = F_r$	-	
For additional information → page 91			
Equivalent static bearing load	$P_0 = F_r$	-	
For additional information → page 105			

SKF.

The permissible operating temperature for cam followers can be limited by:

- the dimensional stability of the bearing rings and rollers
- the cage
- the seals
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings and rollers

SKF cam followers are heat stabilized up to at least 140 °C (280 °F).

Cages

Steel cages can be used at the same operating temperatures as the bearing rings and rollers.

Seals

The permissible operating temperature for seals depends on the seal material:

- NBR: -40 to +100 °C (-40 to +210 °F)
 Temperatures up to 120 °C (250 °F) can be tolerated for brief periods.
- PA66 sliding rings: -30 to +100 °C (-20 to +210 °F)

Typically, temperature peaks are at the seal lip.

Lubricants

Temperature limits for greases used in SKF cam rollers are provided in **table 1**, **page 933**. For temperature limits of other SKF greases, refer to *Selecting a suitable SKF grease*, **page 116**.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

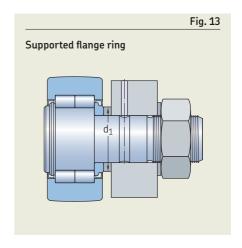
Speed limits

The limiting speed listed in the **product table** is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds.

For additional information, refer to *Operating temperature and speed*, page 130.

Design considerations

Attachment holes for studs

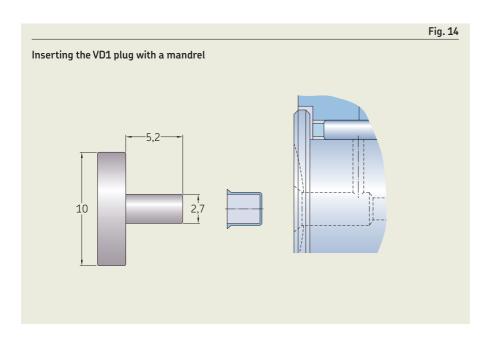

The holes in the adjacent part of machinery that will accommodate the stud or eccentric collar of a cam follower should be machined to tolerance class H7.

If the requisite tightening torque for the hexagonal nut (table 3, page 970) cannot be achieved or the cam followers are subjected to peak loads, the stud or eccentric collar should be mounted with an interference fit. The lead-in chamfer of the holes should be $\leq 0.5 \times 45^{\circ}$.

Support surfaces

The flange ring that is pressed onto the stud shank should be axially supported:

- over its entire side face (fig. 13)
- according to diameter d₁ (product table, page 978)
- with material that has a sufficiently high strength to accommodate the tightening torque (table 3, page 970)

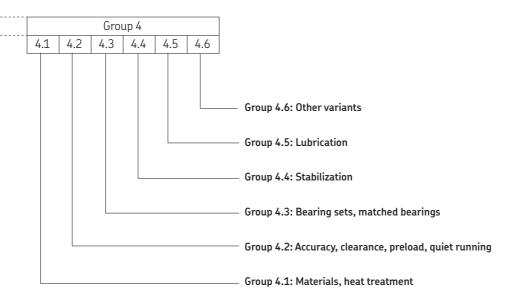


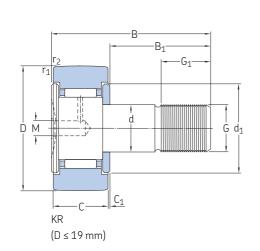
Mounting

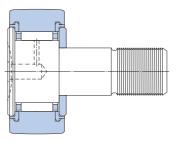
Cam followers can be attached to associated components (fig. 13) using the hexagonal nut (table 3, page 970) supplied with the cam follower. Spring washers, which are not supplied by SKF, serve to secure the nuts.

- To exploit the full load carrying capacity of cam followers, the nuts should be tightened to the recommended torque values (table 3).
- Where heavy vibrations occur, cam followers can be located using:
 - self-locking nuts in accordance with ISO 10511
 - special lock washers
 For self-locking nuts, a higher tightening torque must be applied. Follow the recommendations of the nut manufacturer.
- Cam followers, sizes ≥ 22, have a hexagonal recess in the stud head and can be held in place by a hexagonal key (Allen wrench) while the nut is being tightened.
- Some small cam follower designs (sizes 16 and 19) have a slot in the stud head instead and can be held in place by a screwdriver. For additional information, refer to the illustrations in the product table, page 978.
- Depending on the mounting conditions, cam followers with an eccentric collar can be adjusted to the required eccentricity via the slot or the hexagonal recess.
- Do not hit the head of the stud as damage to the cam follower may result.

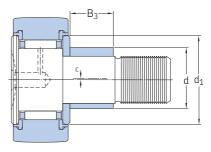
- SKF recommends positioning the lubrication hole in the stud head in the unloaded zone of the cam follower. The position of this hole corresponds to the SKF trademark on the head end of the stud.
- The lubrication hole in position 3 that is parallel and in line with the lubrication hole in the stud head (fig. 12, page 971) may be used to incorporate a locking device to prevent the stud from turning.
- When inserting a plug, it should be pressed into place using a mandrel (fig. 14).

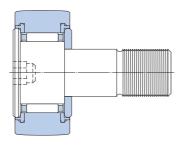


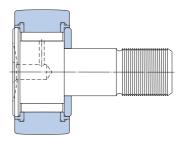

Designation system


				$\neg \lceil$	Gro	up 1	Grou	ıp 2	Grou	ль 3	/
Prefixes											
Basic des	signation —										
KR KRE	Cam follower fitted with a needle roller and cage assembly Cam follower fitted with a needle roller and cage assembly, with an eccentric col pressed onto the stud	lar									
KRV KRVE	Cam follower fitted with a full complement of needle rollers Cam follower fitted with a full complement of needle rollers, with an eccentric copressed onto the stud	llar									
NUKR	Cam follower based on a double row full complement cylindrical roller bearing vintegral outer ring flanges										
NUKRE PWKR	Cam follower based on a double row full complement cylindrical roller bearing vintegral outer ring flanges, with an eccentric collar pressed onto the stud Cam follower based on a double row full complement cylindrical roller bearing v										
PWKRE	integral outer ring flanges Cam follower based on a double row full complement cylindrical roller bearing v integral outer ring flanges, with an eccentric collar pressed onto the stud										
Suffixes											
Group 1:	Internal design										
Group 2:	External design (seals, snap ring groove, etc.)										
.2RS A	NBR contact seal on both sides.										
В	Improved crowned profile of the outer ring running surface (NUTR design) Hexagonal recess on both ends of the stud										
PPA	KR design with a PA66 axial sliding and sealing ring on both sides; improved croprofile of the outer ring running surface • Sizes 16 and 19 have one slot in the head of the stud as standard.	wned									
PPSKA	 Sizes ≥ 22 have a hexagonal recess on both ends. KR design, sizes 16 and 19, with a PA66 axial sliding and sealing ring on both si improved crowned profile of the outer ring running surface and a hexagonal received to the both statement of the stateme	des, ess in t	he								
PPXA X	head of the stud, no relubrication features PPA features except for the outer ring running surface, which has a cylindrical p Cylindrical (flat) profile of the outer ring running surface										
XA XB	Cylindrical (flat) profile of the outer ring running surface (NUKR A or NUKRE A Cylindrical (flat) profile of the outer ring running surface and a hexagonal recess ends of the stud (NUKR design)	A desigi on bot	ո) h								

Group 3: Cage design

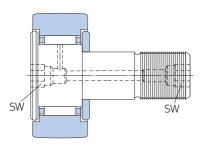




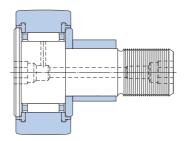

KR .. PPA (D ≤ 19 mm)

KRE .. PPA (D ≤ 19 mm)

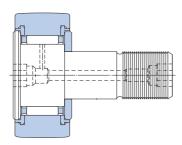
KR .. PPSKA (D ≤ 19 mm)

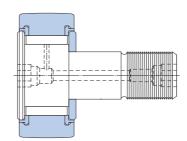


KRV .. PPA (D ≤ 19 mm)

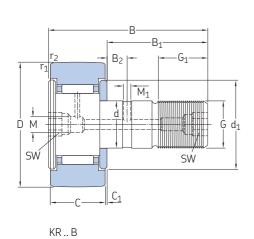

Princi	pal dime	ensions			ad ratings static	Fatigue load limit	Maximu dynamic	m radial loads static	Limiting speed	Mass	Designation
)	d	В	С	С	C_0	P_u	F _r max.	F _{0r} max.			
nm				kN		kN	kN		r/min	kg	_
.6	6 6 6	28 28 28	11 11 11	3,14 3,14 3,14	3,2 3,2 3,2	0,345 0,345 0,345	2,9 2,9 2,9	4,15 4,15 4,15	6 000 6 000 6 000	0,019 0,018 0,019	► KR 16 KR 16 PPA ► KR 16 PPSKA
	6 9	28 28	11 11	4,73 3,14	6,55 3,2	0,72 0,345	4,05 2,9	5,7 4,15	4 300 6 000	0,019 0,02	► KRV 16 PPA ► KRE 16 PPA
.9	8 8 8	32 32 32	11 11 11	3,47 3,47 3,47	3,8 3,8 3,8	0,415 0,415 0,415	3,8 3,8 3,8	5,5 5,5 5,5	5 600 5 600 5 600	0,029 0,029 0,029	► KR 19 ► KR 19 PPA ► KR 19 PPSKA
	8 11	32 32	11 11	5,28 3,47	8 3,8	0,88 0,415	5,1 3,8	7,35 5,5	4 000 5 600	0,031 0,032	► KRV 19 PPA ► KRE 19 PPA
2	10 10 10	36 36 36	12 12 12	4,4 4,4 6,05	5 5 9,15	0,56 0,56 1,04	4,25 4,25 5,7	6 6 8,15	5 300 5 300 3 600	0,045 0,043 0,045	► KR 22 B ► KR 22 PPA ► KRV 22 PPA
	13	36	12	4,4	5	0,56	4,25	6	5 300	0,047	► KRE 22 PPA
6	10 10 10	36 36 36	12 12 12	4,84 4,84 6,82	6 6 11	0,655 0,655 1,25	9,3 9,3 11,4	13,2 13,2 16,3	5 300 5 300 3 600	0,059 0,057 0,059	KR 26 BKR 26 PPAKRV 26 PPA
	13	36	12	4,84	6	0,655	9,3	13,2	5 300	0,062	► KRE 26 PPA

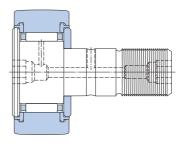
[►] Popular item

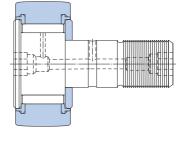

978 **SKF**:


KR..B $(22 \le D \le 26 \text{ mm})$

KRE .. PPA $(22 \le D \le 26 \text{ mm})$

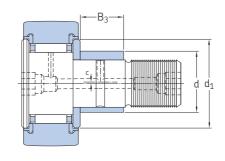

KR .. PPA (22 ≤ D ≤ 26 mm)

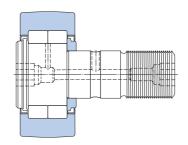



KRV .. PPA (22 ≤ D ≤ 26 mm)

ъ.	
Dim	ensions

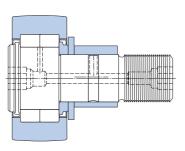
d	В ₁	B ₂	В ₃	C_1	d_1	G	G_1	М	M_1	SW	С	r _{1,2} min.
mm						,						
16	16	-	-	0,6	12,5	M 6	8	4	-	_	-	0,15
	16	-	-	0,6	12,5	M 6	8	4	-	_	-	0,15
	16	-	-	0,6	12,5	M 6	8	-	-	4	-	0,15
	16 16	-	- 7	0,6 0,6	12,5 12,5	M 6 M 6	8	4 4	- -	- -	- 0,5	0,15 0,15
19	20	-	-	0,6	15	M 8	10	4	-	-	-	0,15
	20	-	-	0,6	15	M 8	10	4	-	-	-	0,15
	20	-	-	0,6	15	M 8	10	-	-	4	-	0,15
	20	_	-	0,6	15	M 8	10	4	-	-	-	0,15
	20	_	9	0,6	15	M 8	10	4	-	-	0,5	0,15
22	23	-	-	0,6	17,5	M 10x1	12	4	-	5	-	0,3
	23	-	-	0,6	17,5	M 10x1	12	4	-	5	-	0,3
	23	-	-	0,6	17,5	M 10x1	12	4	-	5	-	0,3
	23	-	10	0,6	17,5	M 10x1	12	4	-	5	0,5	0,3
26	23	-	-	0,6	17,5	M 10x1	12	4	-	5	-	0,3
	23	-	-	0,6	17,5	M 10x1	12	4	-	5	-	0,3
	23	-	-	0,6	17,5	M 10x1	12	4	-	5	-	0,3
	23	-	10	0,6	17,5	M 10x1	12	4	-	5	0,5	0,3



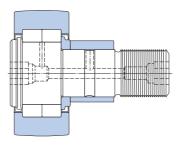


KR .. PPA

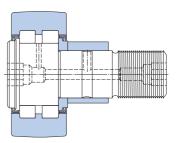
KRE .. PPA

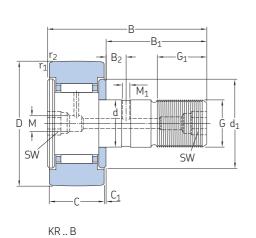

NUKR..A

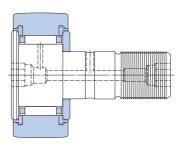
Principal dimensions			Basic lo	ad ratings static	Fatigue load limit				Mass	Designation	
)	d	В	С	С	C_0	P_u	F _r max.	F _{0r} max.			
nm				kN		kN	kN		r/min	kg	_
0	12 12 12	40 40 40	14 14 14	6,44 6,44 8,97	8 8 14,6	0,88 0,88 1,66	7,8 7,8 11	11,2 11,2 15,6	4 800 4 800 3 200	0,092 0,088 0,091	KR 30 BKR 30 PPAKRV 30 PPA
	15	40	14	6,44	8	0,88	7,8	11,2	4 800	0,093	► KRE 30 PPA
2	12 12 12	40 40 40	14 14 14	6,71 6,71 9,35	8,5 8,5 15,3	0,95 0,95 1,76	10,6 10,6 14,3	15 15 20,4	4 800 4 800 3 200	0,1 0,098 0,1	KR 32 BKR 32 PPAKRV 32 PPA
	15	40	14	6,71	8,5	0,95	10,6	15	4 800	0,1	► KRE 32 PPA
5	16 16 16	52 52 52	18 18 18	9,52 9,52 12,3	13,7 13,7 23,2	1,56 1,56 2,7	11,4 11,4 14,6	16,3 16,3 20,8	4 000 4 000 2 600	0,17 0,16 0,17	KR 35 BKR 35 PPAKRV 35 PPA
	16 16 20	52 52 52	18 18 18	16,8 11,9 9,52	17,6 11,4 13,7	2 1,2 1,56	8,65 8,65 11,4	12,2 12,5 16,3	5 000 5 000 4 000	0,16 0,16 0,18	NUKR 35 APWKR 35.2RSKRE 35 PPA
	20	52	18	16,8	17,6	2	8,65	12,2	5 000	0,18	► NUKRE 35 A

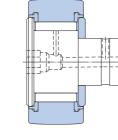

980 **SKF**.

[►] Popular item

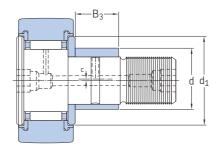


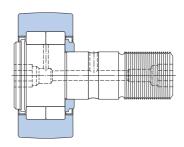



NUKRE .. A $(D \ge 47 \text{ mm})$

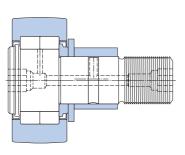


PWKR ...2RS

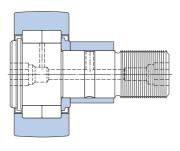

Dimer	nsions											
d	B ₁	B ₂	В ₃	C_1	d_1	G	G_1	М	M_1	SW	С	r _{1,2} min.
mm												
30	25 25 25	6 6 6	- - -	0,6 0,6 0,6	23 23 23	M 12x1,5 M 12x1,5 M 12x1,5	13 13 13	4 4 4	3 3 3	6 6 6	- - -	0,6 0,6 0,6
	25	6	11	0,6	23	M 12x1,5	13	4	3	6	0,5	0,6
32	25 25 25	6 6 6	- - -	0,6 0,6 0,6	23 23 23	M 12x1,5 M 12x1,5 M 12x1,5	13 13 13	4 4 4	3 3 3	6 6 6	- - -	0,6 0,6 0,6
	25	6	11	0,6	23	M 12x1,5	13	4	3	6	0,5	0,6
35	32,5 32,5 32,5	8 8 8	- - -	0,8 0,8 0,8	27,6 27,6 27,6	M 16x1,5 M 16x1,5 M 16x1,5	17 17 17	6 6 6	3 3 3	8 8 8	- - -	0,6 0,6 0,6
	32,5 32,5 32,5	7,8 7,8 8	- - 14	0,8 0,8 0,8	20 20 27,6	M 16x1,5 M 16x1,5 M 16x1,5	17 17 17	6 6 6	3 3 3	8 8 8	- - 1	0,6 0,6 0,6
	29,5	7,8	12	3,8	27,6	M 16x1,5	17	6	3	8	1	0,6



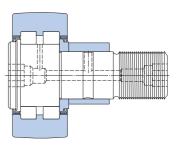
KR .. PPA KRV .. PPA

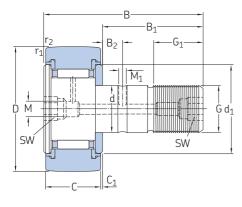

KRE .. PPA NUKR..A

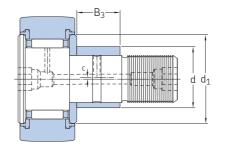
Principal dimensions				Basic load ratings dynamic static		Maximum radial loads dynamic static		Limiting speed	Mass	Designation	
D	d	В	С	С	C_0	P_u	F _r max.	F _{0r} max.			
mm				kN		kN	kN		r/min	kg	_
40	18 18 18	58 58 58	20 20 20	10,5 10,5 14,2	14,6 14,6 26,5	1,73 1,73 3,1	12,5 12,5 17	18 18 24,5	3 400 3 400 2 200	0,25 0,24 0,25	► KR 40 B ► KR 40 PPA ► KRV 40 PPA
	18 18 22	58 58 58	20 20 20	19 13,8 10,5	22 14,3 14,6	2,5 1,5 1,73	14 13,7 12,5	20 19,6 18	4 500 4 500 3 400	0,24 0,24 0,26	► NUKR 40 A PWKR 40.2RS ► KRE 40 PPA
	22	58	20	19	22	2,5	14	20	4 500	0,26	► NUKRE 40 A
47	20 20 20	66 66 66	24 24 24	14,7 19,4 28,6	24,5 41,5 33,5	2,9 5 3,9	23,6 30,5 17,6	33,5 43 25	3 000 1 900 3 800	0,38 0,39 0,38	KR 47 PPAKRV 47 PPANUKR 47 A
	20 24 24	66 66	24 24 24	22,9 14,7 28,6	24,5 24,5 33,5	2,8 2,9 3,9	18,3 23,6 17,6	26 33,5 25	3 800 3 000 3 800	0,38 0,4 0,4	PWKR 47.2RS ► KRE 47 PPA ► NUKRE 47 A

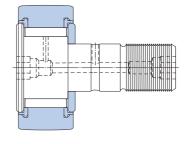

982 SKF.

[►] Popular item






PWKR ...2RS

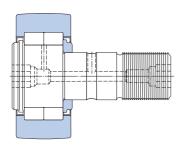

Dime	nsions											
d	B ₁	B ₂	B ₃	C_1	d_1	G	G_1	М	M_1	SW	С	r _{1,2} min.
mm												
40	36,5	8	-	0,8	31,5	M 18x1,5	19	6	3	8	-	1
	36,5	8	-	0,8	31,5	M 18x1,5	19	6	3	8	-	1
	36,5	8	-	0,8	31,5	M 18x1,5	19	6	3	8	-	1
	36,5	8	-	0,8	22	M 18x1,5	19	6	3	8	-	1
	36,5	8	-	0,8	22	M 18x1,5	19	6	3	8	-	1
	36,5	8	16	0,8	31,5	M 18x1,5	19	6	3	8	1	1
	33,5	8	14	3,8	30	M 18x1,5	19	6	3	8	1	1
47	40,5	9	-	0,8	36,5	M 20x1,5	21	6	4	10	-	1
	40,5	9	-	0,8	36,5	M 20x1,5	21	6	4	10	-	1
	40,5	9	-	0,8	27	M 20x1,5	21	6	4	10	-	1
	40,5	9	-	0,8	27	M 20x1,5	21	6	4	10	-	1
	40,5	9	18	0,8	36,5	M 20x1,5	21	6	4	10	1	1
	40,5	9	18	0,8	27	M 20x1,5	21	6	4	10	1	1

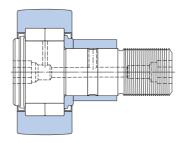
16.1 Cam followers

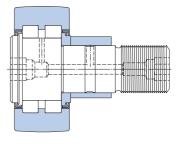
D **52 – 90** mm

KR .. PPA

16.1

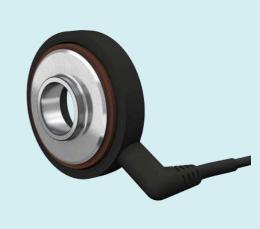

KRE .. PPA


KRV .. PPA

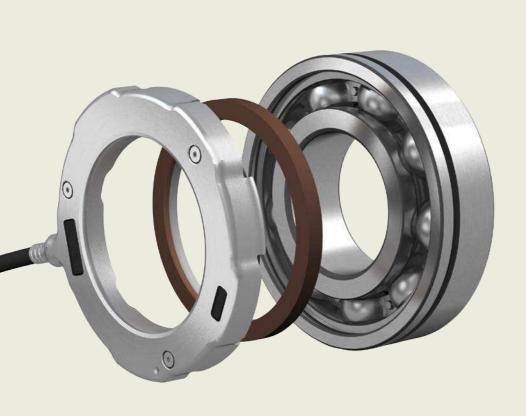

Princi	pal dime	ensions			ad ratings static	Fatigue load limit	Maximu dynamic	m radial loads static	Limiting speed	Mass	Designation
D	d	В	С	С	C_0	P_u	F _r max.	F _{0r} max.			
mm				kN		kN	kN		r/min	kg	-
52	20 20 20	66 66 66	24 24 24	15,7 20,9 29,7	27 46,5 36	3,2 5,6 4,25	36 45 18	51 64 25,5	3 000 1 900 3 200	0,45 0,46 0,45	KR 52 PPAKRV 52 PPANUKR 52 A
	20 24 24	66 66 66	24 24 24	23,8 15,7 29,7	26,5 27 36	3,05 3,2 4,25	18,6 36 18	26,5 51 25,5	3 200 3 000 3 200	0,45 0,47 0,47	PWKR 52.2RSKRE 52 PPANUKRE 52 A
62	24 24 24	80 80 80	29 29 28	24,6 31,4 41,3	44 72 48	5,5 9 5,85	58,5 72 25	85 102 36	2 400 1 700 2 600	0,77 0,79 0,8	KR 62 PPAKRV 62 PPANUKR 62 A
	24 28 28	80 80 80	28 29 28	31,9 24,6 41,3	32,5 44 48	4,05 5,5 5,85	20,4 58,5 25	29 85 36	2 600 2 400 2 600	0,8 0,8 0,82	PWKR 62.2RSKRE 62 PPANUKRE 62 A
72	24 24 24	80 80 80	29 29 28	26 33 45,7	48 80 58,5	6 9,8 7,1	100 118 34,5	143 170 50	2 400 1 700 2 000	1 1,05 1	KR 72 PPAKRV 72 PPANUKR 72 A
	24 28 28	80 80 80	28 29 28	39,6 26 45,7	45 48 58,5	5,6 6 7,1	47,5 100 34,5	68 143 50	2 600 2 400 2 000	1 1,05 1,05	PWKR 72.2RSKRE 72 PPANUKRE 72 A
80	30 30 30	100 100 100	35 35 35	36,9 45,7 69,3	72 114 86,5	9 14 10,8	106 122 48	150 176 69,5	1 800 1 400 1 900	1,6 1,65 1,6	KR 80 PPAKRV 80 PPANUKR 80 A
	30 35 35	100 100 100	35 35 35	57,2 36,9 69,3	73,5 72 86,5	9,3 9 10,8	64 106 48	91,5 150 69,5	2 000 1 800 1 900	1,6 1,65 1,65	PWKR 80.2RSKRE 80 PPANUKRE 80 A
90	30 30 30	100 100 100	35 35 35	38 47,3 78,1	76,5 122 102	9,5 15 12,7	160 183 86,5	228 260 125	1 800 1 400 1 900	2 2 1,95	KR 90 PPAKRV 90 PPANUKR 90 A
	30 35 35	100 100 100	35 35 35	62,7 38 78,1	85 76,5 102	10,8 9,5 12,7	108 160 86,5	153 228 125	2 000 1 800 1 900	1,95 2,05 2	► PWKR 90.2RS KRE 90 PPA ► NUKRE 90 A

984 **5KF**.

[►] Popular item



NUKR A	NUKRE A	PWKR.	2RS
	1101112 1111		


ъ.				
υı	me	nsı	ons	

d	B ₁	B ₂	В ₃	C_1	d_1	G	G_1	М	M_1	SW	С	r _{1,2} min.
mm												
52	40,5	9	-	0,8	36,5	M 20x1,5	21	6	4	10	-	1
	40,5	9	-	0,8	36,5	M 20x1,5	21	6	4	10	-	1
	40,5	9	-	0,8	31	M 20x1,5	21	6	4	10	-	1
	40,5	9	-	0,8	31	M 20x1,5	21	6	4	10	-	1
	40,5	9	18	0,8	36,5	M 20x1,5	21	6	4	10	1	1
	40,5	9	18	0,8	31	M 20x1,5	21	6	4	10	1	1
62	49,5	11	-	0,8	44	M 24x1,5	25	8	4	14	-	1
	49,5	11	-	0,8	44	M 24x1,5	25	8	4	14	-	1
	49,5	11	-	1,3	38	M 24x1,5	25	8	4	14	-	1
	49,5	11	-	1,3	38	M 24x1,5	25	8	4	14	-	1
	49,5	11	22	0,8	44	M 24x1,5	25	8	4	14	1	1
	49,5	11	22	1,3	38	M 24x1,5	25	8	4	14	1	1
72	49,5	11	-	0,8	44	M 24x1,5	25	8	4	14	-	1,1
	49,5	11	-	0,8	44	M 24x1,5	25	8	4	14	-	1,1
	49,5	11	-	1,3	44	M 24x1,5	25	8	4	14	-	1,1
	49,5	11	-	1,3	44	M 24x1,5	25	8	4	14	-	1,1
	49,5	11	22	0,8	44	M 24x1,5	25	8	4	14	1	1,1
	49,5	11	22	1,3	44	M 24x1,5	25	8	4	14	1	1,1
80	63	15	-	1	53	M 30x1,5	32	8	4	14	-	1,1
	63	15	-	1	53	M 30x1,5	32	8	4	14	-	1,1
	63	15	-	1	47	M 30x1,5	32	8	4	14	-	1,1
	63	15	-	1	47	M 30x1,5	32	8	4	14	-	1,1
	63	15	29	1	53	M 30x1,5	32	8	4	14	1,5	1,1
	63	15	29	1	47	M 30x1,5	32	8	4	14	1,5	1,1
90	63	15	-	1	53	M 30x1,5	32	8	4	14	-	1,1
	63	15	-	1	53	M 30x1,5	32	8	4	14	-	1,1
	63	15	-	1	47	M 30x1,5	32	8	4	14	-	1,1
	63	15	-	1	47	M 30x1,5	32	8	4	14	-	1,1
	63	15	29	1	53	M 30x1,5	32	8	4	14	1,5	1,1
	63	15	29	1	47	M 30x1,5	32	8	4	14	1,5	1,1

Motor encoder units	988	Product table	
Designs and variants	989	17.1 Motor encoder units	10
Sensor technology	989		
Cable connection	990		
Lubrication	990		
Motor encoder units for extreme operating conditions.	990		
Product data	991		
Requirements for the receiving interface	991		
Electromagnetic compatibility	991		
High-performance filtering	991		
Bearing data	992		
(Dimension standards, tolerances, internal clearance)			
Loads	992		
Temperature limits	992		
Permissible speed	993		
Design considerations	993		
Cable outlet	993		
Motor encoder units in the non-locating bearing			
position	993		
Motor encoder units in the locating bearing position	993		
Motor encoder units in floating bearing arrangements.	993		
Mounting	994		
Mounting a unit on a shaft	994		
Mounting a unit into a housing	995		
Cable connection	995		
Designation system	995		
Roller encoder units	996		
Sensor technology	996		
Steering encoder units	997		
Sensor technology and electrical data	998		
Units providing absolute position information	998		
Rotor positioning sensor bearing units	998		
Units for sine wave or vector control	998		
Rotor positioning bearings	1000		
Applications	1000		

5KF 987

More information

General bearing knowledge	17
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Seat tolerances for standard	
conditions	148
Selecting internal clearance or	
preload	182
Sealing, mounting and	
dismounting	193

Mounting instructions for individual bearings → skf.com/mount SKF sensor bearing units are used to monitor accurately the status of rotating or linear components and are:

- compact
- robust and reliable
- simple and ready-to-mount

Sensor-integrated solutions engineered by SKF have been well proven in a variety of industrial and automotive applications, such as electric motors, electric vehicles, road rollers, tractors, forklifts and conveyors. Typical uses include:

- motor management
- steering
- speed and position sensing
- measurement of angular position

Motor encoder units

Monitoring the status of rotating components accurately is essential for many applications. This is particularly true for AC motors that require encoders to measure the speed and the direction of rotation continuously.

SKF motor encoder units (fig. 1) combine active sensor technology with an SKF Explorer deep groove ball bearing and are:

- able to provide a signal resolution ranging from 32 to 80 digital pulses per revolution
- compact only 6,2 mm wider than the corresponding standard deep groove ball bearing (fig. 2)
- ready-to-mount and can be mounted at either bearing position in an AC motor
- available for shaft diameters ranging from 15 to 45 mm

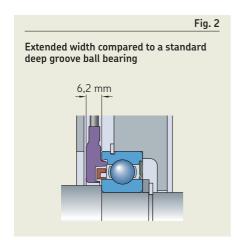
Designs and variants

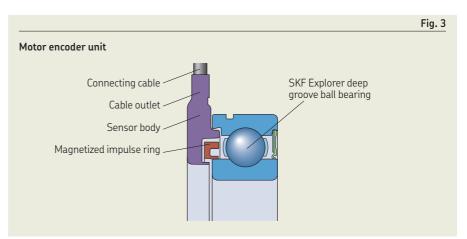
SKF motor encoder units are compact, integrated units consisting of (fig. 3):

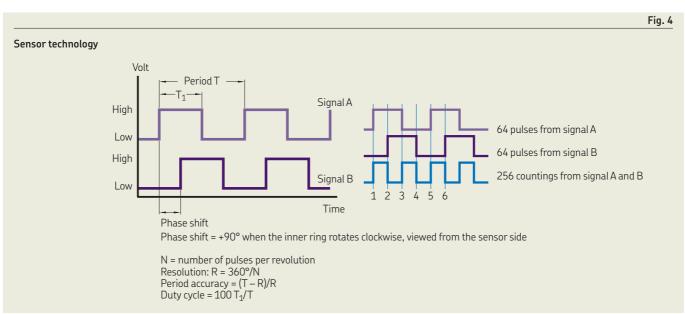
- an SKF Explorer deep groove ball bearing in the 62 series with a snap ring groove in the outer ring and an RS1 contact seal (Single row deep groove ball bearings, page 241)
- an impulse ring
- a sensor body
- · a connecting cable

The impulse ring, which attaches to the inner ring of the bearing, is a composite magnetized ring that contains between 32 and 80 north and south poles. The number of poles depends on the size of the bearing. The sensor body, which is attached to the outer ring, protects the patented SKF Hall effect cell. The multi-wire connecting cable extends in the radial direction.

The bearing is protected by a contact seal on one side. On the opposite side of the bearing, the impulse ring and sensor body create an effective labyrinth seal to keep lubricant in and solid contaminants out of the bearing.


Sensor technology


SKF motor encoder units use a compact and robust sensor that produces an incremental encoder signal. The sensor is accurate down to zero revolutions per minute. An integrated active circuit (requiring an external voltage supply) in the sensor body contains two Hall effect cells that produce an output signal consisting of two square waves (fig. 4).


The signals can be interpreted by motor controllers in different ways:

- The direction of rotation can be determined from the phase shift, when the rising edge of a signal first appears.
- Low speeds can be determined by measuring the time between two electrical events, such events being the rising and falling edge on either square wave.
- High speeds can be measured by counting the number of electrical events within a given time period.

The two square waves are 90° out of phase with each other. This phase shift changes sign with the direction of rotation. fig. 4 shows the general specifications of the signal. The presence of two signals in quadrature enables a processing unit to multiply the number of angular position increments per revolution. For example, using a standard SKF sensor bearing with 64 pulses per revolution and a standard electronic interface that can detect the rising (Low/High) and falling (High/Low) times of each of the two

signals, it is possible to obtain 256 electrical events per revolution, which translates to an angular resolution of 1,4° (fig. 4, page 989).

SKF motor encoder units provide accurate and reliable signals for effective motor control and are 100% tested for period accuracy, duty cycle and phase shift during manufacture.

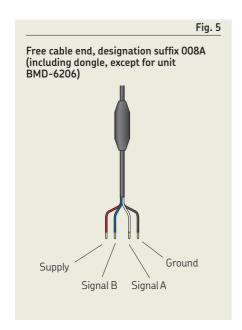
Cable connection

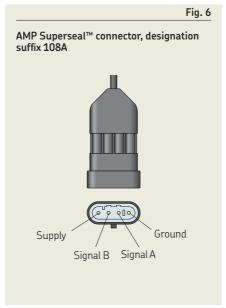
SKF motor encoder units are available as standard with one of the following:

- a free cable end with an output signal consisting of two square waves, designation suffix 008A (fig. 5)
- an AMP Superseal[™] connector (AMP Nos. 282106-1 and 282404-1), designation suffix 108A (fig. 6)

Standard cable lengths are listed in the **product table**, **page 1002**. For alternative connectors or cable lengths, contact SKF.

Lubrication


SKF motor encoder units are:


- filled, under clean conditions, with a high-quality grease (table 2, page 245) that is suitable for the most common operating conditions of electric motors
- virtually maintenance-free

The grease life in the bearing can be calculated according to the method described under *Grease life for capped bearings*, page 246.

Motor encoder units for extreme operating conditions

Magnetic sensors have temperature and motor power limits. For applications where magnetic sensors are not practical, high-performance inductive technology can be used instead. Inductive sensors use coils to sense the rotation of a specially designed induction tooth ring. For additional information about motor encoder units for extreme operating conditions, contact SKF.

Requirements for the receiving interface

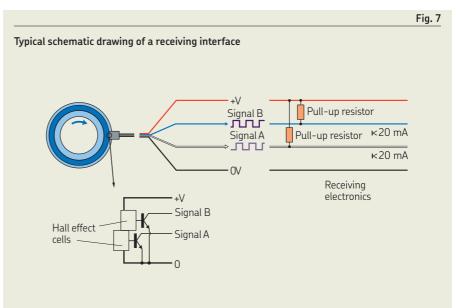
Product data

The receiving interface must be able to process the signals, which are provided via open collector circuits (fig. 7). Output signal features are listed in table 1. The phase shift is the delay between the two signals' rise events (fig. 4, page 989). It is 1/4 of the period, or 90 electric degrees. The duty cycle value is the high state of the signal compared to the full period (fig. 4). It is nominally 50%.

Power supply

SKF motor encoder units require a regulated voltage supply, which can range from 5 to 18 V DC. For applications above 18 volts, contact SKF.

Resistors


Pull-up resistors (table 2) should be placed between the voltage supply and the conductors for the output signals to limit the output current to 20 mA. The application load resistance between the ground line and the conductors for the output signals should be at least 10 times higher than the resistance of the pull-up resistor. This helps to keep the output signals readable.

Detecting direction of rotation

A positive phase shift corresponds to signal B rising before signal A and indicates the inner ring rotating clockwise when viewed from the sensor side.

Electromagnetic compatibility

SKF motor encoder units can be used in systems operating in very arduous electromagnetic environments as described in the international standard IEC 61000-6-2.

	Table 1
Output signal featur	es
Signal type	Digital square
Number of signals	2
Phase shift	90°
Duty cycle	50% of a period

		Table 2									
Recommended pull-up resistors											
Voltage supply	Resistance min.	Power									
V DC	Ω	W									
5 9 12	270 470 680	0,25 0,25 0,25									

High-performance filtering

All standard SKF motor encoder units are protected with high-performance filtering so that they can adapt to the electric environment typically found in industrial and automotive applications:

- Units with a free cable end have the filter included in the overmoulding on the cable.
- Units with an AMP Superseal™ connector have the filter integrated in the connector.

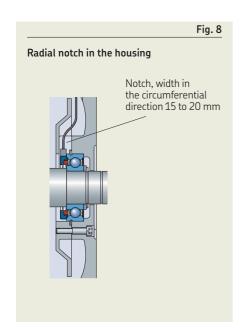
5KF. 991

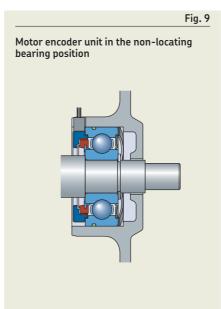
Bearing data

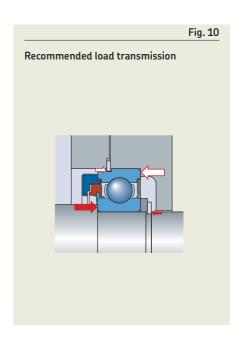
Dearing	uutu
Dimension	Boundary dimensions: ISO 15
standards	However, the width of the complete unit is 6,2 mm wider.
Tolerances	d ≤ 25 mm: P5
	d ≥ 30 mm: P6
For additional	
information	Values: ISO 492 (table 3, page 39, and fig. 4, page 989)
→ page 35	
Internal	C3
clearance	Values: ISO 5753-1 (fig. 6, page 990)
	Values are valid for unmounted bearings under zero measuring
For additional	load.
information	
→ page 182	

Loads

For information about minimum load and equivalent bearing loads, refer to *Loads*, page 254.


The required minimum load factor k_r and calculation factor f_0 are listed in the **product table**, page 1002.


Temperature limits


SKF motor encoder units have been tested successfully under various speeds and loads:

- 500 hours at 125 °C (255 °F), with intermittent peaks of up to 10 minutes at 150 °C (300 °F)
- 100 hours at -40 °C (-40 °F)

Where other temperatures are expected, contact SKF.

Permissible speed

The permissible operating speed is limited by the contact seal in the bearing. The sensor can accurately detect speeds from zero revolutions per minute up to the limiting speed listed in the **product table**, **page 1002**.

Design considerations

In principle, SKF motor encoder units can be incorporated in designs in the same way as SKF deep groove ball bearings. Some specific recommendations are described below. For additional information about electric motor applications, refer to the SKF handbook *Rolling bearings in electric motors and generators*.

Cable outlet

The cable emerges radially from the motor encoder unit. A sufficiently dimensioned cable duct must be provided in the bearing housing or housing cover. The radial notch in the housing should have a width in the circumferential direction of 15 to 20 mm (fig. 8).

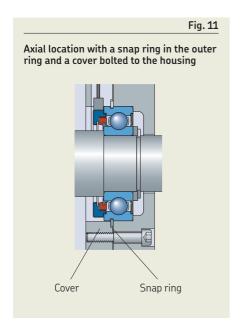
Motor encoder units in the non-locating bearing position

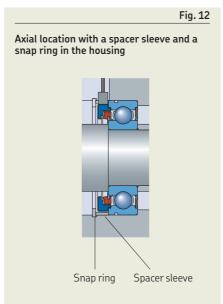
SKF recommends using motor encoder units in the non-locating bearing position (fig. 9). However, there is a risk that the outer ring can spin in the housing bore, especially if vibration is a factor. Therefore, SKF recommends placing an O-ring in the snap ring groove to help prevent the outer ring from spinning, which could otherwise damage the cable.

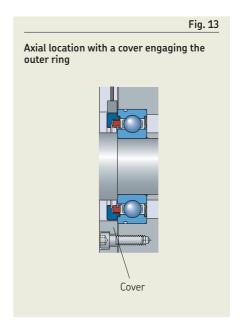
Motor encoder units in the locating bearing position

When using motor encoder units in the locating bearing position, the impulse ring, sensor body and connecting cable should not be subjected to any axial load, whenever possible. When the bearing is subjected to axial loads that act in both directions, the motor encoder unit should be mounted in such a way that the heavier axial load is transmitted to the bearing outer ring side face opposite the sensor (fig. 10).

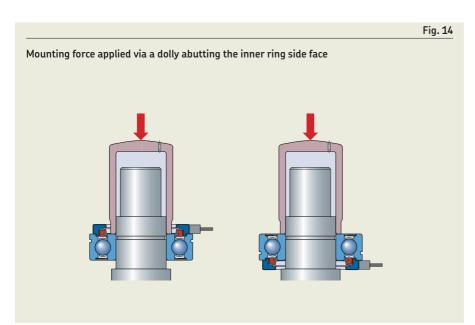
Motor encoder units can be located axially in the housing in different ways:

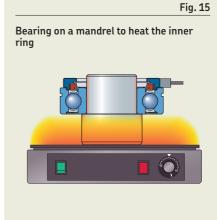

- with a snap ring in the outer ring and a cover bolted to the housing (fig. 11)
- with a spacer sleeve and a snap ring in the housing (fig. 12)
- with a cover engaging the outer ring (fig. 13)


Motor encoder units with $d \le 25$ mm can only be located axially via a snap ring in the outer ring.


Motor encoder units in floating bearing arrangements

When using motor encoder units in floating bearing arrangements (page 76), the outer ring should be prevented from spinning by placing an O-ring in the snap ring groove. The motor encoder unit should be mounted in such a way that the axial load acts on the bearing outer ring side face opposite the sensor


body or impulse ring.


On request, SKF can provide assistance in optimizing the mounting and connecting processes.

Mounting a unit on a shaft

Motor encoder units are typically mounted on a shaft with an interference fit. They can be pressed onto the shaft by applying a mounting force via a mounting sleeve or dolly abutting the inner ring side face (fig. 14). To facilitate mounting, the bearing inner ring can be heated:

- Use a temperature-controlled electric hotplate.
- Do not heat the unit above 80 °C (175 °F).
- Place the bearing on a mandrel to heat the inner ring effectively (fig. 15).
- Position the bearing so that the seal is in the lower position to avoid grease leaking out of the bearing.
- Do not use induction heaters as damage to the electronic components may result.

17

Mounting a unit into a housing

When motor encoder units have to be mounted into a housing with an interference fit, they can be pressed into the housing or the housing should be heated. The mounting force should be applied via a mounting sleeve or dolly abutting the outer ring side face or via a snap ring fitted on the outer ring (fig. 16).

In typical electric motor applications, the bearing can be moved into position by using bolts to pull the motor shield and cover together (fig. 17).

Cable connection

The cable should be protected by a duct to prevent it from making sharp turns, being pinched or making contact with any moving parts. To avoid any interference with the sensor signal, do not place the connector near other power cables or wires.

Designation system

Refer to Designation system, page 258.

The designation prefixes and suffixes used to identify motor encoder units are explained in the following.

Prefixes

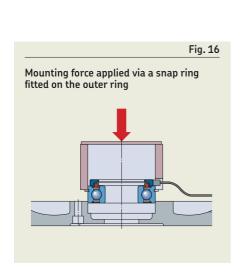
BMB- Motor encoder unit BMB series BMD- Motor encoder unit BMD series **BMO-** Motor encoder unit BMO series

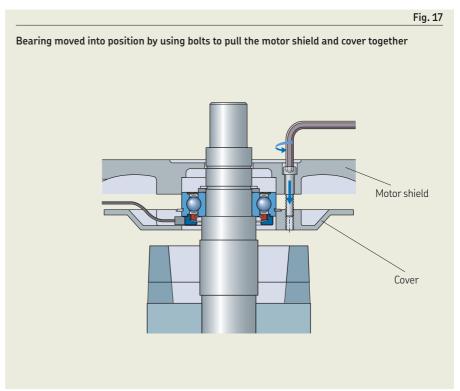
Suffixes

/032 32 digital pulses per revolution /048 48 digital pulses per revolution /064 64 digital pulses per revolution /080 80 digital pulses per revolution S2 Two signals

/U Sales area worldwide

Bearing with a stamped steel cage,


ball centred


В Bearing with a glass fibre reinforced PA66 cage, ball centred

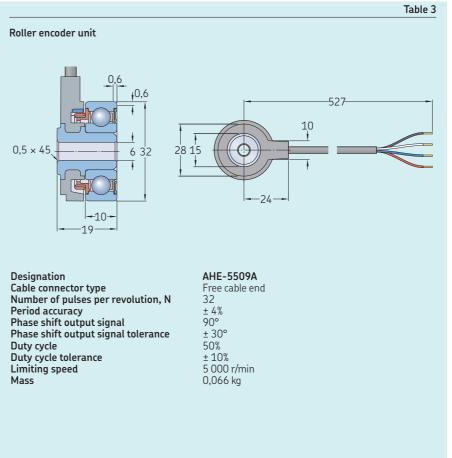
A800 Free cable end

108A AMP Superseal[™] connector (AMP

Nos. 282106-1 and 282404-1)

Roller encoder units

SKF roller encoder units (fig. 18, table 3) are plug-and-play sensor bearing units designed for applications with outer ring rotation.


The encoder units:

- incorporate a sealed 6201 SKF Explorer deep groove ball bearing, which is lubricated for the life of the bearing
- can be easily integrated into pulleys, cams, rollers, or wheels to provide a compact outer ring rotation encoder assembly
- can be supplied, on request, complete with customized gears, wheels or pulleys

Sensor technology

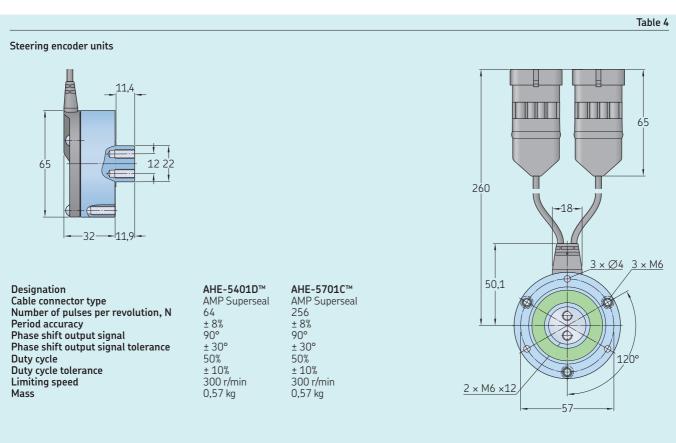
SKF roller encoder units use similar sensors as SKF motor encoder units (page 988). They provide two signals, which can be used to determine relative position, speed, acceleration and direction of movement. The requirements for the receiving interface are the same as for SKF motor encoder units.

996

SKF.

Steering encoder units

SKF steering encoder units (fig. 19, table 4) are steering input devices for steer-by-wire systems that combine reliable encoder technology with the simplicity of plug-and-play component packaging.


The detailed design of the units is based on well-proven SKF technologies. The units consist of:

- a sealed SKF Explorer deep groove ball bearing for long service life and reliable performance
- bearing encoder technology for precise monitoring
- a friction torque device, which provides feedback to the operator by providing adequate resistance in the steering wheel
- a mechanical interface for mounting
- a shaft to connect the steering wheel

The units reliably fulfil the demands of industrial and off-highway vehicle steer-by-wire systems and:

- do not require any adjustment
- do not require relubrication during their expected service life and are virtually maintenance-free
- are supplied ready-to-mount (connection to a steer-by-wire system is achieved by plugs)

SKF.

SKF steering encoder units use sensors to track the movement of a steering wheel. They contain two sets to provide redundancy. The sensors:

- are magnetic
- are non-contact and incremental
- do not wear
- are protected from external influences
- are designed to provide maximum service life

SKF steering encoder units comply with the safety requirements of safety-related control systems in accordance with ISO 13849.

SKF steering encoder units provide two independent sets of square wave signals (fig. 20) via open collector circuits. They require:

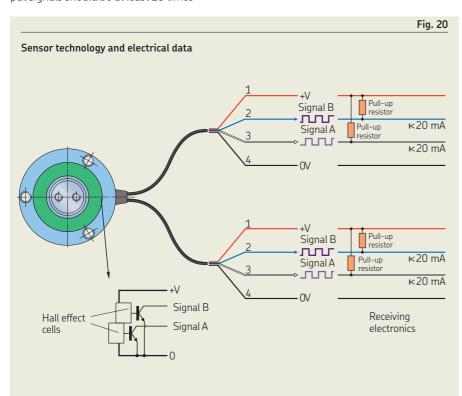
- a regulated voltage supply, which can range from 5 to 24 V DC
- pull-up resistors (table 2, page 991) that should be placed between the voltage supply and the conductors for the output signals to limit the output current to 20 mA

The application load resistance between the ground line and the conductors for the output signals should be at least 10 times

higher than the resistance of the pull-up resistor. This keeps the output signals readable.

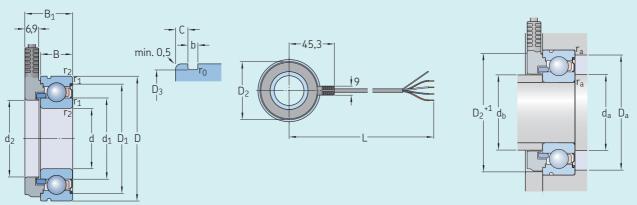
Units providing absolute position information

SKF can provide customized steering units for applications where a combination of absolute position information, variable steering feel, and active end stops are required. For additional information, contact SKF.


Rotor positioning sensor bearing units

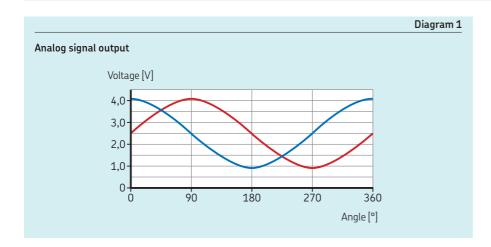
Synchronous motors require a sensor that provides the position of the rotor with a high accuracy, to enable accurate motor torque control and to achieve maximum efficiency and dynamics. These motors use either direct drive or sine wave control. SKF rotor positioning sensor bearing units (fig. 21, table 5) can contribute to optimized motor efficiency for both systems.

Units for sine wave or vector control


- provide the shaft angle position in real time throughout the entire motor speed range
- provide a signal (diagram 1) comparable to the one provided by a resolver and can therefore be used by the motor controller's software
- communicate the shaft angle position via a sine/cosine wave signal
- are more compact and cost-effective than inductive resolvers
- are easy to mount (Mounting, page 994)
- do not require special shaft or housing accuracy in comparison with inductive resolvers (*Design considerations*, page 993)

SKF can adapt the electronics to comply with the interface of the application.

Rotor positioning sensor bearing unit



Rora	diameter	r of and	cover >	$D_2 + 1 \text{ mm}$

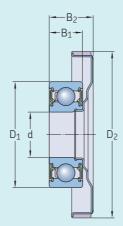
Dimension d	n s D	B ₁	В	d ₁ ≈	d ₂	D ₁ ≈	D ₂	D ₃	С	b	r ₀	r _{1,2} min		Abut d _a min.	d _{b.}	dimens d _b max.	D_a	r _a max.
mm														mm				
30	62	24.6	16	40.36	38.1	54.1	57.96	59.61	3.28	1.9	0.6	1	515 ±10	35	35	37.5	57	1

Designation
Cable connector type
Number of pulses per revolution, N
Angle error
Phase shift
Phase shift tolerance
Basic dynamic load rating, C
Basic static load rating, C
Fatigue load limit, P
Limiting speed
Calculation factor, k
Calculation factor, f
Mass
Associated snap ring

BMB-7052A Free cable end 1 ± 3.5° 90° ± 3° 0,0195 N 0,0112 N 0,000475 N 12 000 r/min 0,025 14 0,25 kg SP 62

SKF Rotor positioning bearings (fig. 22, table 6) are customized units with optimized mechanical integration between a magnetic impulse ring and a bearing in an application. The integrated units:

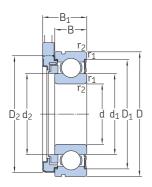
- allow the use of nearly all bearing types
- allow high speeds and temperatures
- generate strong magnetic impulses that are related to the rotor angular position
- can deliver the magnetic field in the axial or radial direction, on a through shaft or at the end of a shaft
- are very robust under severe operating conditions as a result of their high magnetic field strength

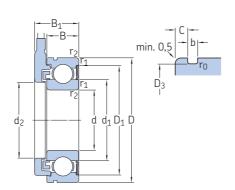

Applications

- absolute angular position information for electric motor control in, for example:
 - belt-driven starter generators
 - traction motors
 - e-superchargers and e-turbochargers
- shaft speed detection or low-resolution angular position in, for example:
 - crankshafts
 - transmission shafts

Table 6

Rotor positioning bearings


Designation	Bearing size	Princi	Principal dimensions					Limiting	Operating temperatures	
	Size	d	D_1	D_2	B_1	B ₂	pairs of poles	speed	temperatures	
-	-	mm					_	-	°C (°F)	
BMD-0123/ZJ6 BMD-0123/ZJ8	6202 6202	15 15	35 35	55 55	11 11	14,5 14,5	6 8	22 000 22 000	-40 to 150 (-40 to 300) -40 to 150 (-40 to 300)	


1000 **SKF**

17.1 Motor encoder units

d 15 - 45 mm

BMD

19

19

21,6

21,6

0,8

0,8

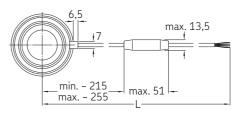
0,915

0,915

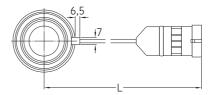
30,7

30,7

33,2


33,2

18


18

19

19

BMB ... 008A (Free cable end) BMO ... 008A (Free cable end)

BMB-6208/080S2/UB008A

BMB-6208/080S2/UB108A

BMB-6209/080S2/UB008A

BMB-6209/080S2/UB108A

BMB ... 108A (SupersealTM) BMO ... 108A (SupersealTM)

17.1	
	BMB BMO

40

45

80

80

85

85

Bearin	ng bal dime	ncione	Pasis la	ad ratings	Fatigue	Limiting	Sensor	unit Period	Phase	Cable	Mass	Designation
d	D D	В	dynamic C		load limit P _u	it speed pulses accur- shift length		length L ±10				
mm			kN		kN	r/min	_	%	0	mm	kg	-
15	35	11	7,8	3,75	0,16	13 000	32	±3	90 ±30	525	0,062	BMB-6202/032S2/UB008A
	35	11	7,8	3,75	0,16	13 000	32	±3	90 ±30	550	0,07	BMB-6202/032S2/UB108A
20	47	14	12,7	6,55	0,28	10 000	48	±3	90 ±20	535	0,13	BM0-6204/04852/UA008A
	47	14	12,7	6,55	0,28	10 000	48	±3	90 ±20	560	0,14	BM0-6204/04852/UA108A
25	52	15	14	7,8	0,335	8 500	48	±3	90 ±30	535	0,16	BM0-6205/04852/UA008A
	52	15	14	7,8	0,335	8 500	48	±3	90 ±30	560	0,17	BM0-6205/04852/UA108A
30	62	16	19,5	11,2	0,475	7 500	64	±4	90 ±30	540	0,22	BMD-6206/064S2/UA008A
	62	16	19,5	11,2	0,475	7 500	64	±4	90 ±30	565	0,24	BMD-6206/064S2/UA108A

80

80

80

80

±5

±5

±5

±5

90 ±30

90 ±30

90 ±30

90 ±30

545

570

545

570

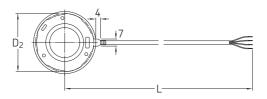
0,45

0,46

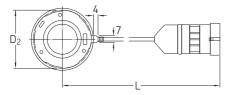
0,54

0,54

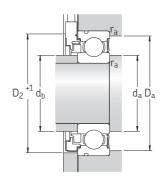
5 600

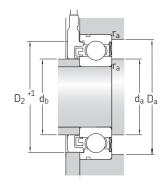

5 600

5 000

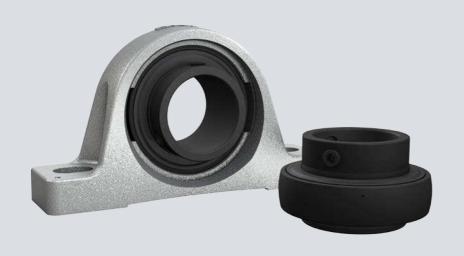

5 000

SKF. 1002




BMD ... 008A (Free cable end)

BMD ... 108A (SupersealTM)



BMB BMO Bore diameter of end cover $\geq D_2 + 1 \text{ mm}$

BMD Bore diameter of end cover $\geq D_2 + 1 \text{ mm}$

Dimen	sions										Abutm	ent and f	Calculation factors			
d	d ₁ ≈	d ₂	D ₁ ≈	D ₂	D_3	B ₁	b	С	r_0	r _{1,2} min.	d _a , d _b min.	d _b max.	D _a max.	r _a max.	k _r	f_0
mm											mm				_	
15	21,7 21,7	19,5 19,5	30,4 30,4	34,46 34,46	33,17 33,17	17,2 17,2	1,35 1,35	2,06 2,06	0,4 0,4	0,6 0,6	19 19	19,4 19,4	31 31	0,6 0,6	0,025 0,025	13 13
20	28,8 28,8	28,69 28,69	40,6 40,6	46,56 46,56	44,6 44,6	20,2 20,2	1,35 1,35	2,46 2,46	0,4 0,4	1	25 25	28,6 28,6	42 42	1 1	0,025 0,025	13 13
25	34,3 34,3	31,6 31,6	46,3 46,3	51,46 51,46	49,73 49,73	21,2 21,2	1,35 1,35	2,46 2,46	0,4 0,4	1 1	30 30	31,3 31,3	47 47	1 1	0,025 0,025	14 14
30	40,3 40,3	37,4 37,4	54,1 54,1	58,1 58,1	59,61 59,61	22,2 22,2	1,9 1,9	3,28 3,28	0,6 0,6	1	35 35	40 40	57 57	1 1	0,025 0,025	14 14
40	52,6 52,6	48 48	69,8 69,8	75,06 75,06	76,81 76,81	24,2 24,2	1,9 1,9	3,28 3,28	0,6 0,6	1,1 1,1	46,5 46,5	47,4 47,4	73 73	1 1	0,025 0,025	14 14
45	57,6 57,6	53 53	75,2 75,2	78,86 78,86	81,81 81,81	25,2 25,2	1,9 1,9	3,28 3,28	0,6 0,6	1,1 1,1	52 52	52 52	78 78	1	0,025 0,025	14 14

High temperature bearings

18

18 High temperature bearings

Deep groove ball bearings for high temperature	
applications	1008
Designs and variants	1008
Sealing solutions	1008
Insert bearings for high temperature applications	1010
Designs and variants	1010
Sealing solutions	1011
Bearing data(Dimension standards, tolerances, radial internal clearance, permissible misalignment, stabilization)	1011
Loads and selecting bearing size	1012
Design considerations	1013
Location of bearings	1013
Operating environment	1013
Axial displacement	1013
Relubrication and running in	1014
Mounting	1014
Designation system	1014
Product tables	
18.1 Single row deep groove ball bearings for high	
temperature applications	1016
18.2 Insert bearings for high temperature applications,	
metric shafts	1020
18.3 Insert bearings for high temperature applications,	4024
inch shafts	1021

5KF. 1005

18 High temperature bearings

More information

General bearing knowledge	1/
Bearing selection process	59
Bearing interfaces	139
Seat tolerances for standard	
conditions	148
Sealing, mounting and	
dismounting	193

Mounting instructions for individual bearings → skf.com/mount

SKF bearing maintenance handbook ISBN 978-91-978966-4-1

SKF high temperature bearings are designed to deliver increased reliability, reduced complexity and decreased environmental impact in operating temperatures up to 350 °C (660 °F). Because SKF high temperature bearings correspond to the ISO dimensions of grease-lubricated bearings, production efficiencies and cost savings can be realized with a simple change to the SKF bearing solution.

The environmental benefits of SKF high temperature bearings are so significant in many applications that they are included in the "SKF Beyond Zero" product portfolio.

Bearing benefits and features

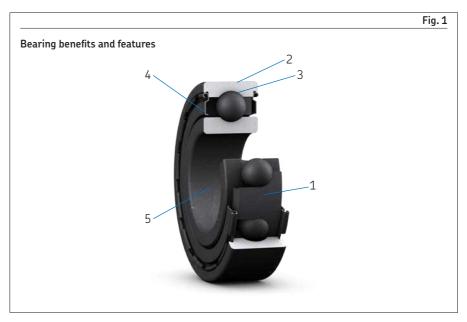
· Reduced total operating cost

The bearings are designed to maintain the radial clearance needed for high temperature operation and so will not seize, even

when they cool rapidly, and therefore provide a long service life.

Excellent performance under severe conditions:

- hot conditions
- dry environments
- low rotational speeds


· Reduced environmental impact

· Reduced machine design complexity

Additionally, the benefits and features of high temperature bearings include (fig. 1):

1 No need for relubrication

All variants, except open (without shields) VA201 deep groove ball bearings, are lubricated for the life of the bearing with graphite-based high temperature lubricants. Open VA201 bearings require relubrication (*Relubrication and running in*, page 1014).

1006 **SKF**

2 Simple replacement

The boundary dimensions are the same as those of standard bearings.

3 Operating temperature up to 350 °C (660 °F)

The internal radial clearance and the lubricant are optimized for operation at high temperatures.

4 Protection against solid contamination

- Shields (designation suffix 2Z) protect the deep groove ball bearing.
- Shields and flingers (designation suffix 2F) protect the insert bearing.

5 Improved running in

The entire bearing surface is manganese phosphate coated.

Lubrication solutions

SKF high temperature bearing designs and variants incorporate various graphite-based lubrication solutions, including:

- lubricating paste composed of a polyalkylene glycol/graphite mixture
- graphite cages (segmented or coronet)

For an overview of lubricant types, and other characteristics, for high temperature deep groove ball bearings and insert bearings, refer to table 1, page 1009, and table 2, page 1010.

During operation, the graphite maintains a very thin film on the bearing's raceways and rolling elements to reduce wear significantly. Graphite ages at a much higher temperature than oil and grease, and therefore does not lose its lubricating properties at the high temperatures at which it is recommended for use, so the need for relubrication is eliminated.

With many variants, all surfaces of the bearing and, where applicable, shields and flingers are manganese phosphate coated to enhance adhesion of the lubricant to the metal and provide some protection against corrosion.

Typical applications

- metals industry (cooling beds, roller tables, furnaces)
- food and beverage industry (continuous baking ovens, wafer baking ovens)
- automotive industry (paint lines, heat treatment ovens)
- glass industry (glass tableware or flat glass manufacturing processes)
- construction industry (tiles, mineral wool manufacturing)

Assortment

The SKF standard assortment of high temperature bearings and bearing units corresponding to ISO standards includes:

- Deep groove ball bearings (fig. 2)
- Insert bearings (Y-bearings, fig. 3)
- Ball bearing units (fig. 4, skf.com/go/17000-18)
 - Zinc chromate plummer block units
 - Zinc chromate square flanged units
 - Zinc chromate oval flanged units

The assortment includes variants that contain food-grade lubricants registered by NSF as category H1 (lubricant acceptable with incidental food contact, for use in and around food processing areas). The NSF registration confirms the lubricant fulfils the requirements listed in the US Food and Drug Administration's guidelines under 21 CFR section 178.3570.

These bearings are customized for use in applications such as:

- automatic wafer baking ovens in the food and beverage industry
- industrial furnaces

Customized bearings

• chains

For additional information, contact SKF.

Deep groove ball bearings for high temperature applications

SKF deep groove ball bearings for high temperature applications correspond in design to standard single row deep groove ball bearings of the same size. They have no filling slots and can accommodate axial loads in addition to radial loads (*Loads and selecting bearing size*, page 1012).

The entire surface of the bearing and shields are manganese phosphate coated to enhance adhesion of the lubricant to the metal and improve the running-in properties of the bearing.

The radial internal clearance is a multiple of C5 to prevent the bearings from seizing, even when they cool rapidly.

Designs and variants

The SKF assortment of deep groove ball bearings for high temperature applications (fig. 6) provides solutions for various combinations of operating temperature and speed.

The lubrication type, maximum operating temperature, limiting speed, maintenance requirements and all other primary characteristics of the variants within the assortment are listed in table 1.

Sealing solutions

High temperature deep groove ball bearings can be protected from contamination by either integrated shields, external shields or a combination of both.

For high temperature bearings, metallic shields are the primary recommendation where a capping device with low complexity is required. The shields:

- prevent the ingress of solid contaminants into the bearing
- are non-contacting
- generate no friction
- do not wear
- are particularly well suited for high temperatures because of their material and design

Integrated shields

High temperature deep groove ball bearings with designation suffix 2Z have integrated shields, but the VA201 variant is also available as an open bearing (fig. 6).

External shields

In some cases, integrated shields are insufficient and additional external shields should be considered, such as:

- Nilos rings (fig. 7)
- SKF sealing washers (fig. 8)

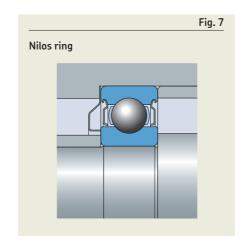
For additional information about sealing solutions, refer to *External sealing*, page 194, and *Seals* (skf.com/seals).

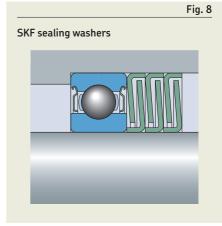
NOTE: Because of the large radial clearance for high temperature deep groove ball bearings, special attention should be given to the design of the sealing arrangement.

Custom-made seals

In cases where neither integrated nor external shields are applicable, SKF can provide custom-made seals for operating temperatures up to 250 °C (480 °F). These seals are usually made of PTFE (polytetrafluoroethylene) thermoplastics.

To further improve sealing systems that incorporate custom-made seals, it is preferable to use a wear sleeve such as the SKF Speedi-Sleeve (skf.com/seals). This improves the seal counterface condition without the need for re-machining. For additional information, contact SKF.


⚠ WARNING


PTFE seals exposed to an open flame or temperatures above 300 °C (570 °F) are a health and environmental hazard! They remain dangerous even after they have cooled.

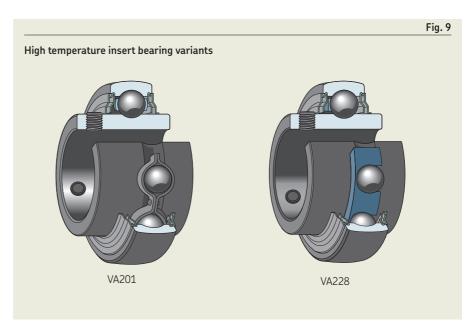
Read and follow the safety precautions on page 197.

Characteristics	Variants VA201, 2Z/VA201	2Z/VA208	2Z/VA228
ubrication type	Polyalkylene glycol/ graphite mixture	Segmented cage made of graphite	
Phosphated rings, rolling elements ind cages	•	~	~
ISF H1 food grade	×	✓	~
Shields (suffix 2Z)	optional	✓	✓
Relubrication-free	2Z variant	✓	~
Maximimum operating temperature	250 °C (480 °F)	350 °C (660 °F)	350°C (660°F)
imiting speed [r/min] ¹⁾	4 500 / d _m	4 500 / d _m	9 000 / d _m

Insert bearings for high temperature applications

Except for the cage and seals, SKF insert bearings (Y-bearings) for high temperature applications correspond in design to standard insert bearings with grub screws in the YAR 2-2F series (page 342).

The grub (set) screws in the inner ring enable quick and easy mounting/dismounting. The bearings have a shield and a flinger on both sides to prevent the ingress of solid contaminants into the bearing.


The entire surface of the bearing and the shields are manganese phosphated to enhance adhesion of the lubricant to the metal and improve the running-in properties of the bearing. The flingers are treated by pickling.

The radial internal clearance is a multiple of C5 to prevent the bearings from seizing, even when they cool rapidly.

Designs and variants

The SKF assortment of insert bearings for high temperature applications (fig. 9) provides solutions for various combinations of operating temperature and speed.

The lubrication type, maximum operating temperature, limiting speed, maintenance requirements and all other primary characteristics of the variants within the assortment are listed in table 2.

haracteristics	Variants VA201	VA228
ubrication type	Polyalkylene glycol/ graphite mixture	Coronet cage made of graphite
Phosphated rings, rolling elements and ages	v	✓
ISF H1 food grade	×	V
hields and flingers (suffix 2F)	✓	✓
Relubrication-free	~	✓
Maximimum operating temperature	250 °C (480 °F)	350 °C (660 °F)
imiting speed [r/min] ¹⁾	4 500 / d _m	9 000 / d _m

Sealing solutions

SKF high temperature insert bearings are capped on both sides with a shield and a flinger that create a narrow gap-type labyrinth seal (designation suffix 2F).

For high temperature bearings, metallic shields are the primary recommendation where a capping device with low complexity is required. The shields:

- prevent the ingress of solid contaminants into the bearing
- are non-contacting
- generate no friction
- do not wear
- are particularly well suited for high temperatures because of their material and design

Bearing data

_	,							
	Deep groove ball bearings	Insert bearings (Y-bearings)						
Dimension standards	Boundary dimensions: ISO 15 Series 10, 02, 03	Boundary dimensions: ISO 9628						
Tolerances	Normal	Normal, except the bore and outside diameter (table 3, page 1012)						
For additional information → page 35	be slight deviations from the stand	nes: ISO 492 (table 2, page 1010) ng to the special surface treatment of the bearings, there may elight deviations from the standard tolerances. These deviations not affect mounting or bearing operation.						
Radial internal clearance	Multiples of C5 Values (table 4, page 1012) are valid for unmounted bearings under zero measuring load.							
Permissible misalignment	≈ 20 to 30 minutes of arc Accommodate misalignment only when the bearings rotate slowly. Misalignment increases bearing noise and reduces bearing service life, and when it exceeds the guideline values, these effects become particularly noticeable.							
Stabilization	120 °C (250 °F) The rings, rolling elements and ca bearings undergo the same heat s vant standard bearing. As a result, tures, a certain amount of dimens Greater clearances accommodate material structural changes.	tabilization process as the rele- for higher operating tempera- ional change is to be expected.						

5KF 1011

Loads and selecting bearing size

The bearing size is selected based on the basic static load rating C_0 from the relevant product table.

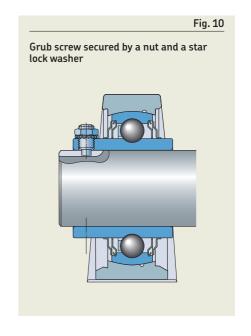
For an equivalent static bearing load P_0 , the selected bearing must have a C_0 value \geq the value of the requisite basic static load rating C_{Oreq} (table 5).

The values in table 5 are valid only when $P_0 = F_r$. That is, when:

- $F_a < 0.8 F_r$ $F_a < 0.15 C_0$

Symbols

 C_0 basic static load rating [kN] (product tables, page 1016 and page 1020)


 $\mathsf{C}_{\mathsf{Oreq}}$ requisite basic static load rating [kN] axial load [kN]

radial load [kN]

equivalent static bearing load [kN]

Tolerar	Table 3 Tolerances of insert bearings for high temperature applications												
Nomin d, D >	al diameter ≤	Bore diar Deviation U		Outside Deviation U	diameter n L								
mm		μm		μm									
18 30	30 50	+18 +21	0 0	_ 0	- -10								
50 80	80 120	+24 +28	0 0	0	-10 -15								
80		+28		0									

Bore diameter Radial internal clearance											
bore a ı d	ameter		ove ball bearings	Insert bea	arings						
>	≤	min.			max.						
mm		μm									
- 10 18	10 18 24	96 112 124	136 160 172	- - 56	- - 96						
24 30 40	30 40 50	136 172 192	192 236 272	60 80 90	106 128 146						
50 55 30	65 80 100	230 270 320	340 400 460	110 - -	180 - -						
100	120	370	540	-	-						

1012

Design considerations Location of bearings

Deep groove ball bearings

The selection of shaft and housing fits depends on the bearing operating condition and bearing size. An appropriate fit is needed to locate the shaft, provide satisfactory support and allow for thermal expansion up to the stated maximum operating bearing temperature (table 6).

Insert bearings

For moderate loads (0,035 C < P \leq 0,05 C), the shaft seats should be machined to an h7 \bigcirc tolerance. For light loads and low speeds, an h8 \bigcirc shaft tolerance is sufficient.

Symbols

- C basic dynamic load rating [kN] (page 1012)
- P equivalent dynamic bearing load [kN] (Loads for standard insert bearings, page 353)

Operating environment

SKF high temperature bearings are designed to provide solutions to common issues in high temperature applications. In addition to operations involving high temperatures and low rotational speeds, it is important to consider environmental conditions in the process area.

Since high temperature bearings are supplied without preservative oils and must be used without grease or oil lubrication, the anti-corrosion property of the bearings is limited. Therefore, the bearings should be used in a dry environment or with a proper sealing solution to keep the bearings dry.

Axial displacement

To accommodate axial displacement, the shaft at the non-locating bearing position of high temperature insert bearings should be provided with one or two grooves, 120° apart, to engage a modified grub screw:

Hexagon socket grub (set) screws with a
dog point, in accordance with ISO 4028,
but with a fine thread according to
table 10, page 357. The grub screw
should be secured by a nut and a spring or
star lock washer (fig. 10).

The screws and groove(s) accommodate changes in shaft length and prevent the shaft from turning independently of the bearing. The sliding surfaces between the shaft and inner ring and those in the shaft grooves should be coated with a lubricant paste suitable for the operating temperature.

Requisite basic static load rating for applied equivalent static bearing load									
Equivalent sta bearing load P	o load rating	basic static g C _{Oreq} for temperatures 350°C (660°F)							
kN	kN								
2	6	9							
4	11	18							
6	16	27							
8	22	36							
10	27	45							
15	40	67							
20	54	90							
25	67	120							
30	80	140							
40	110	180							
50	140	230							
60	160	270							
70	190	320							
80	220	360							
90	240	400							
100	270	450							
125	340	560							
150	400	670							
200	540	890							
300	800	1 400							
400	1100	1 800							
500 600	1 400 1 600	2 300							

Fits for high temperature deep groove b steel housings	all bearings on solid sto	eel shafts or in	cast iron or
Conditions	Shaft diameter	Shaft tolerance	Housing tolerance
-	mm	-	-
Rotating inner ring load	all	k6	F7
Stationary inner ring load	all	g6	J7

5KF. 1013

Relubrication and running in

Relubrication

All SKF high temperature bearings are lubricated for the life of the bearing, except open VA201 deep groove ball bearings, which require relubrication.

The general recommendation for an open VA201 bearing is to investigate the quality of the lubricating paste in the bearing every six months. If there is no longer a film of dry lubricant on the raceways, indicated by a bright metallic shiny track, remove residues of the old lubricant with a solvent and, when dried, replenish the bearing with lubricating paste.

Running in

VA201 bearings operating at temperatures below 200 °C (390 °F) and at speeds below 25% of the limiting speed (product tables, page 1016 and page 1020) require running in. Open VA201 deep groove ball bearings operating under these conditions also require running in after relubrication.

Running in requires the bearing to be operated at a temperature of at least 200 °C (390 °F) for a minimum of 48 hours.

Mounting

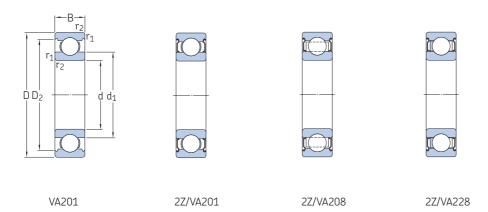
SKF high temperature deep groove ball bearings should always be hot mounted to reduce the mounting force and the risk of breaking the graphite lubricant (VA208 and VA228 variants). An induction heater is the preferred choice to heat the bearing during mounting.

Submerging the bearing in hot oil is not recommended because the oil remaining in the bearing might carbonize later during operation.

Do not use impact mounting methods that could damage the bearing and prevent proper functionality.

Designation system

Refer to the *Designation system* of the relevant standard bearing:

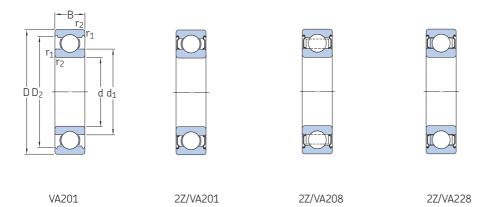

- deep groove ball bearings, page 258
- insert bearings, page 364

Designation suffixes used with SKF bearings for high temperature applications are explained in the following:

- -2F Insert bearing for high temperature applications, with grub screw locking, shield and flinger on both sides
- Deep groove ball bearing for high temperature applications, shield on both sides
- VA201 Bearing for high temperature applications, with a stamped steel cage, manganese phosphate coated rings and rolling elements, radial clearance of multiples of C5, and lubricated with a polyalkylene glycol/graphite mixture
- VA208 Bearing for high temperature applications, with a segmented cage made of graphite, manganese phosphate coated rings and rolling elements, and radial clearance of multiples of C5
- VA228 Bearing for high temperature applications, with a coronet cage made of graphite, manganese phosphate coated rings and rolling elements, and radial clearance of multiples of C5
- W Insert bearing for high temperature applications, without lubrication hole(s)

1014 **SKF**

18.1~ Single row deep groove ball bearings for high temperature applications d $\,12-55~\text{mm}$



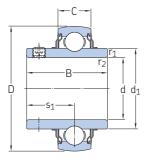
Dimen	sions					Basic static load rating	Limiting speed	Limiting temperature	Mass	Designation
d	D	В	d ₁ ≈	D ₂ ≈	r _{1,2} min.	C_0		T max.		
mm						kN	r/min	°C	kg	-
12	32	10	18,4	27,4	0,6	3,1	400	250	0,037	6201/VA201
	32	10	18,4	27,4	0,6	3,1	200	250	0,039	► 6201-2Z/VA201
	32	10	18,4	27,4	0,6	3,1	400	350	0,039	► 6201-2Z/VA228
15	35 35 35	11 11 11	21,7 21,7 21,7	30,4 30,4 30,4	0,6 0,6 0,6	3,75 3,75 3,75	360 180 360	250 250 350	0,045 0,048 0,048	6202/VA2016202-2Z/VA2016202-2Z/VA228
17	35	10	23	31,2	0,3	3,25	340	250	0,038	6003/VA201
	35	10	23	31,2	0,3	3,25	170	250	0,041	6003-2Z/VA201
	35	10	23	31,2	0,3	3,25	170	350	0,041	6003-2Z/VA208
	40	12	24,5	35	0,6	4,75	310	250	0,065	6203/VA201
	40	12	24,5	35	0,6	4,75	150	250	0,068	6203-2Z/VA201
	40	12	24,5	35	0,6	4,75	310	350	0,068	► 6203-2Z/VA228
	47	14	26,5	39,6	1	6,55	280	250	0,11	6303/VA201
	47	14	26,5	39,6	1	6,55	280	350	0,12	6303-2Z/VA228
20	42	12	27,2	37,2	0,6	5	290	250	0,067	6004/VA201
	42	12	27,2	37,2	0,6	5	140	250	0,071	6004-2Z/VA201
	42	12	27,2	37,2	0,6	5	140	350	0,071	► 6004-2Z/VA208
	47 47 47	14 14 14	28,8 28,8 28,8	40,6 40,6 40,6	1 1 1	6,55 6,55 6,55	260 130 260	250 250 350	0,031 0,11 0,11	6204/VA2016204-2Z/VA2016204-2Z/VA228
	52	15	30,3	44,8	1,1	7,8	250	250	0,14	► 6304/VA201
	52	15	30,3	44,8	1,1	7,8	120	250	0,15	6304-2Z/VA201
	52	15	30,3	44,8	1,1	7,8	120	350	0,15	► 6304-2Z/VA208
	52	15	30,3	44,8	1,1	7,8	250	350	0,15	6304-2Z/VA228
25	47	12	32	42,2	0,6	6,55	250	250	0,078	6005/VA201
	47	12	32	42,2	0,6	6,55	120	250	0,083	► 6005-2Z/VA201
	47	12	32	42,2	0,6	6,55	120	350	0,083	► 6005-2Z/VA208
	52	15	34,3	46,3	1	7,8	230	250	0,13	► 6205/VA201
	52	15	34,3	46,3	1	7,8	110	250	0,13	► 6205-2Z/VA201
	52	15	34,3	46,3	1	7,8	110	350	0,13	6205-2Z/VA208
	52	15	34,3	46,3	1	7,8	230	350	0,13	► 6205-2Z/VA228
	62	17	36,6	52,7	1,1	11,6	200	250	0,23	6305/VA201
	62	17	36,6	52,7	1,1	11,6	100	250	0,23	6305-2Z/VA201
	62	17	36,6	52,7	1,1	11,6	100	350	0,23	► 6305-2Z/VA208
	62	17	36,6	52,7	1,1	11,6	200	350	0,23	► 6305-2Z/VA228

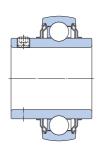
Dimen	sions					Basic static load rating	Limiting speed	Limiting temperature	Mass	Designation
d	D	В	d ₁ ≈	D ₂ ≈	r _{1,2} min.	C_0		T max.		
mm						kN	r/min	°C	kg	
30	55	13	38,2	49	1	8,3	100	350	0,12	► 6006-2Z/VA208
	62	16	40,3	54,1	1	11,2	190	250	0,2	► 6206/VA201
	62	16	40,3	54,1	1	11,2	90	250	0,21	► 6206-2Z/VA201
	62	16	40,3	54,1	1	11,2	90	350	0,21	► 6206-2Z/VA208
	62	16	40,3	54,1	1	11,2	190	350	0,21	► 6206-2Z/VA228
	72	19	44,6	61,9	1,1	16	170	250	0,35	6306/VA201
	72	19	44,6	61,9	1,1	16	80	350	0,36	► 6306-2Z/VA208
	72	19	44,6	61,9	1,1	16	170	350	0,36	6306-2Z/VA228
35	72	17	46,9	62,7	1,1	15,3	160	250	0,29	► 6207/VA201
	72	17	46,9	62,7	1,1	15,3	80	250	0,3	6207-2Z/VA201
	72	17	46,9	62,7	1,1	15,3	80	350	0,3	► 6207-2Z/VA208
	72	17	46,9	62,7	1,1	15,3	160	350	0,3	► 6207-2Z/VA228
	80	21	49,5	69,2	1,5	19	150	250	0,46	6307/VA201
	80	21	49,5	69,2	1,5	19	70	350	0,48	► 6307-2Z/VA208
40	68 80 80	15 18 18	49,2 52,6 52,6	61,1 69,8 69,8	1 1,1 1,1	11 19 19	80 150 70	350 250 250	0,2 0,37 0,38	6008-2Z/VA2086208/VA2016208-2Z/VA201
	80	18	52,6	69,8	1,1	19	70	350	0,38	► 6208-2Z/VA208
	80	18	52,6	69,8	1,1	19	150	350	0,38	► 6208-2Z/VA228
	90	23	56,1	77,7	1,5	24	130	250	0,63	6308/VA201
	90	23	56,1	77,7	1,5	24	60	250	0,65	6308-2Z/VA201
	90	23	56,1	77,7	1,5	24	60	350	0,65	► 6308-2Z/VA208
	90	23	56,1	77,7	1,5	24	130	350	0,65	6308-2Z/VA228
5	85	19	57,6	75,2	1,1	21,6	130	250	0,42	► 6209/VA201
	85	19	57,6	75,2	1,1	21,6	60	250	0,43	6209-2Z/VA201
	85	19	57,6	75,2	1,1	21,6	60	350	0,43	► 6209-2Z/VA208
	85	19	57,6	75,2	1,1	21,6	130	350	0,43	6209-2Z/VA228
	100	25	62,1	86,7	1,5	31,5	120	250	0,84	6309/VA201
	100	25	62,1	86,7	1,5	31,5	60	350	0,87	6309-2Z/VA208
0	80	16	59,7	72,8	1	15,6	60	350	0,27	6010-2Z/VA208
	90	20	62,5	81,7	1,1	23,2	120	250	0,45	► 6210/VA201
	90	20	62,5	81,7	1,1	23,2	60	250	0,47	6210-2Z/VA201
	90	20	62,5	81,7	1,1	23,2	60	350	0,47	► 6210-2Z/VA208
	90	20	62,5	81,7	1,1	23,2	120	350	0,47	► 6210-2Z/VA228
	110	27	68,7	95,2	2	38	110	250	1,1	6310/VA201
	110	27	68,7	95,2	2	38	50	250	1,1	6310-2Z/VA201
	110	27	68,7	95,2	2	38	50	350	1,1	► 6310-2Z/VA208
	110	27	68,7	95,2	2	38	110	350	1,1	6310-2Z/VA228
55	90	18	66,3	81,5	1,1	21,2	60	350	0,4	6011-2Z/VA208
	100	21	69	89,4	1,5	29	110	250	0,61	► 6211/VA201
	100	21	69	89,4	1,5	29	50	250	0,64	6211-2Z/VA201
	100	21	69	89,4	1,5	29	50	350	0,64	► 6211-2Z/VA208
	100	21	69	89,4	1,5	29	110	350	0,64	6211-2Z/VA228
	120	29	75,3	104	2	45	100	250	1,35	6311/VA201
	120	29	75,3	104	2	45	50	250	1,4	6311-2Z/VA201
	120	29	75,3	104	2	45	50	350	1,4	6311-2Z/VA208
	120	29	75,3	104	2	45	100	350	1,4	6311-2Z/VA228

[►] Popular item

18.1~ Single row deep groove ball bearings for high temperature applications d $\,60-120~\text{mm}$

Dimen	sions					Basic static load rating	Limiting speed	Limiting temperature	Mass	Designation
d	D	В	d ₁ ≈	D ₂ ≈	r _{1,2} min.	C_0		T max.		
mm						kN	r/min	°C	kg	-
60	110	22	75,5	98	1,5	36	100	250	0,78	► 6212/VA201
	110	22	75,5	98	1,5	36	50	250	0,81	6212-2Z/VA201
	110	22	75,5	98	1,5	36	50	350	0,81	► 6212-2Z/VA208
	110	22	75,5	98	1,5	36	100	350	0,81	6212-2Z/VA228
	130	31	81,8	113	2,1	52	90	250	1,7	6312/VA201
	130	31	81,8	113	2,1	52	40	350	1,8	6312-2Z/VA208
	130	31	81,8	113	2,1	52	90	350	1,8	6312-2Z/VA228
65	120	23	83,3	106	1,5	40,5	90	250	1	► 6213/VA201
	120	23	83,3	106	1,5	40,5	40	250	1,05	6213-2Z/VA201
	120	23	83,3	106	1,5	40,5	40	350	1,05	6213-2Z/VA208
	120	23	83,3	106	1,5	40,5	90	350	1,05	6213-2Z/VA228
	140	33	88,3	122	2,1	60	80	250	2,1	6313/VA201
	140	33	88,3	122	2,1	60	40	250	2,2	6313-2Z/VA201
	140	33	88,3	122	2,1	60	40	350	2,2	6313-2Z/VA208
	140	33	88,3	122	2,1	60	80	350	2,2	6313-2Z/VA228
70	125	24	87	111	1,5	45	90	250	1,1	6214/VA201
	125	24	87	111	1,5	45	40	250	1,15	6214-2Z/VA201
	125	24	87	111	1,5	45	40	350	1,15	► 6214-2Z/VA208
	125	24	87	111	1,5	45	90	350	1,15	6214-2Z/VA228
	150	35	94,9	130	2,1	68	80	250	2,55	6314/VA201
	150	35	94,9	130	2,1	68	40	350	2,65	6314-2Z/VA208
75	130	25	92	117	1,5	49	80	250	1,2	► 6215/VA201
	130	25	92	117	1,5	49	40	250	1,25	6215-2Z/VA201
	130	25	92	117	1,5	49	40	350	1,25	6215-2Z/VA208
	130	25	92	117	1,5	49	80	350	1,25	6215-2Z/VA228
	160	37	101	139	2,1	76,5	70	250	3,05	6315/VA201
	160	37	101	139	2,1	76,5	30	350	3,15	6315-2Z/VA208
80	140	26	101	127	2	55	40	350	1,55	6216-2Z/VA208
	170	39	108	147	2,1	86,5	30	350	3,75	6316-2Z/VA208
85	150 150	28 28	106 106	135 135	2 2	64 64	70 30	250 350	1,8 1,9	6217/VA201 6217-2Z/VA208
90	160	30	112	143	2	73,5	70	350	2,3	6218-2Z/VA228

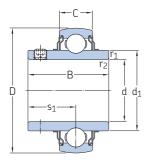

► Popular item

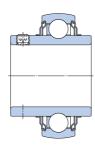

Dimensions				Basic static load rating				Designation		
d	D	В	d ₁ ≈	D ₂ ≈	r _{1,2} min.	C_0		T max.		
mm						kN	r/min	°C	kg	_
95	170 170 170	32 32 32	118 118 118	152 152 152	2,1 2,1 2,1	81,5 81,5 81,5	60 30 60	250 250 350	2,6 2,7 2,7	► 6219/VA201 ► 6219-2Z/VA201 ► 6219-2Z/VA228
100	150 180 180	24 34 34	115 124 124	139 160 160	1,5 2,1 2,1	54 93 93	30 60 30	350 250 350	1,35 3,15 3,25	6020-2Z/VA208 6220/VA201 6220-2Z/VA208
	180	34	124	160	2,1	93	60	350	3,25	6220-2Z/VA228
110	170	28	129	156	2	73,5	30	350	2,05	6022-2Z/VA208
120	180	28	139	166	2	80	30	350	2,2	6024-2Z/VA208

[►] Popular item

18.2 Insert bearings for high temperature applications, metric shafts

d **20 – 60** mm

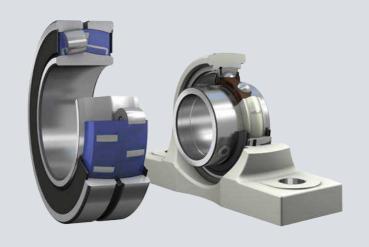

VA201 VA228


Dime	nsions						Basic lo dynami	oad ratings c static	Limiting speed	Limiting temperature	Mass	Designation
d	D	В	С	d ₁ ≈	s ₁	r _{1,2} min.	С	C_0		T max.		
mm							kN		r/min	°C	kg	_
20	47 47	31 31	14 14	28,2 28,2	18,3 18,3	0,6 0,6	12,7 12,7	6,55 6,55	130 260	250 350	0,14 0,14	YAR 204-2FW/VA201 ► YAR 204-2FW/VA228
25	52 52	34,1 34,1	15 15	33,7 33,7	19,8 19,8	0,6 0,6	14 14	7,8 7,8	110 230	250 350	0,17 0,17	YAR 205-2FW/VA201 YAR 205-2FW/VA228
30	62 62	38,1 38,1	18 18	39,7 39,7	22,2 22,2	0,6 0,6	19,5 19,5	11,2 11,2	90 190	250 350	0,28 0,28	YAR 206-2FW/VA201 ► YAR 206-2FW/VA228
35	72 72	42,9 42,9	19 19	46,1 46,1	25,4 25,4	1	25,5 25,5	15,3 15,3	80 160	250 350	0,41 0,41	YAR 207-2FW/VA201 YAR 207-2FW/VA228
40	80 80	49,2 49,2	21 21	51,8 51,8	30,2 30,2	1	30,7 30,7	19 19	70 150	250 350	0,55 0,55	YAR 208-2FW/VA201 YAR 208-2FW/VA228
45	85 85	49,2 49,2	22 22	56,8 56,8	30,2 30,2	1	33,2 33,2	21,6 21,6	60 130	250 350	0,6 0,6	YAR 209-2FW/VA201 YAR 209-2FW/VA228
50	90 90	51,6 51,6	22 22	62,5 62,5	32,6 32,6	1	35,1 35,1	23,2 23,2	60 120	250 350	0,69 0,69	YAR 210-2FW/VA201 YAR 210-2FW/VA228
55	100 100	55,6 55,6	25 25	69 69	33,4 33,4	1	43,6 43,6	29 29	50 110	250 350	0,94 0,94	YAR 211-2FW/VA201 YAR 211-2FW/VA228
60	110 110	65,1 65.1	26 26	75,6 75.6	39,7 39.7	1,5 1.5	52,7 52.7	36 36	50 100	250 350	1,35 1.35	YAR 212-2FW/VA201 YAR 212-2FW/VA228

${\bf 18.3}\;\; {\bf Insert\; bearings\; for\; high\; temperature\; applications,\; inch\; shafts}$

d 3/4 – 2 15/16 in.

19,05 - 74,613 mm



VA201 VA228

Dimensi	ons							oad ratings c static	Limiting speed	Limiting temperature	Mass	Designation
d	D	В	С	d ₁ ≈	s ₁	r _{1,2} min.	С	C_0		T max.		
in./mm	mm						kN		r/min	°C	kg	_
3/4	47	31	14	28,2	18,3	0,6	12,7	6,55	130	250	0,17	YAR 204-012-2FW/VA201
19,05	47	31	14	28,2	18,3	0,6	12,7	6,55	270	350	0,17	► YAR 204-012-2FW/VA228
1	52	34,1	15	33,7	19,8	0,6	14	7,8	110	250	0,19	YAR 205-100-2FW/VA201
25,4	52	34,1	15	33,7	19,8	0,6	14	7,8	230	350	0,19	► YAR 205-100-2FW/VA228
1 ³/16	62	38,1	18	39,7	22,2	0,6	19,5	11,2	90	250	0,31	YAR 206-103-2FW/VA201
30,163	62	38,1	18	39,7	22,2	0,6	19,5	11,2	190	350	0,31	► YAR 206-103-2FW/VA228
1 ¹/4	72	42,9	19	46,1	25,4	1	25,5	15,3	80	250	0,52	YAR 207-104-2FW/VA201
31,75	72	42,9	19	46,1	25,4		25,5	15,3	170	350	0,52	YAR 207-104-2FW/VA228
1 ³/8	72	42,9	19	46,1	25,4	1	25,5	15,3	80	250	0,46	YAR 207-106-2FW/VA201
34, 925	72	42,9	19	46,1	25,4	1	25,5	15,3	160	350	0,46	YAR 207-106-2FW/VA228
1 ⁷/16	72	42,9	19	46,1	25,4	1	25,5	15,3	80	250	0,42	YAR 207-107-2FW/VA201
36,513	72	42,9	19	46,1	25,4		25,5	15,3	160	350	0,42	► YAR 207-107-2FW/VA228
1 ¹/2	80	49,2	21	51,8	30,2	1	30,7	19	70	250	0,59	YAR 208-108-2FW/VA201
38,1	80	49,2	21	51,8	30,2		30,7	19	150	350	0,59	► YAR 208-108-2FW/VA228
1 ¹¹/16	85	49,2	22	56,8	30,2	1	33,2	21,6	70	250	0,75	YAR 209-111-2FW/VA201
42,863	85	49,2	22	56,8	30,2		33,2	21,6	140	350	0,75	YAR 209-111-2FW/VA228
1 ³/4	85	49,2	22	56,8	30,2	1	33,2	21,6	60	250	0,62	YAR 209-112-2FW/VA201
44,45	85	49,2	22	56,8	30,2		33,2	21,6	130	350	0,62	► YAR 209-112-2FW/VA228
1 ¹⁵/16	90	51,6	22	62,5	32,6	1	35,1	23,2	60	250	0,78	YAR 210-115-2FW/VA201
49, <i>213</i>	90	51,6	22	62,5	32,6		35,1	23,2	120	350	0,78	YAR 210-115-2FW/VA228
2	100	55,6	25	69	33,4	1	43,6	29	50	250	1,1	YAR 211-200-2FW/VA201
50,8	100	55,6	25	69	33,4		43,6	29	110	350	1,1	YAR 211-200-2FW/VA228
2 ³/16	100	55,6	25	69	33,4	1	25	29	50	250	1,05	YAR 211-203-2FW/VA201
55,563	100	55,6	25	69	33,4		25	29	110	350	1,05	YAR 211-203-2FW/VA228
2 ⁷/16	110	65,1	26	75,6	39,7	1,5	52,7	36	50	250	1,35	YAR 212-207-2FW/VA201
61,913	110	65,1	26	75,6	39,7	1,5	52,7	36	100	350	1,35	YAR 212-207-2FW/VA228
2 15/16	130	73,3	29	92	46,3	1,5	66,3	49	40	250	2,2	YAR 215-215-2FW/VA201
74,613	130	73,3	29	92	46,3	1,5	66,3	49	80	350	2,2	YAR 215-215-2FW/VA228

[►] Popular item

Solid Oil bearings

10

19 Bearings with Solid Oil

Designs and variants	1025
Solid Oil variants	1025
Sealed bearings	1025
Bearing data	1025
oads	1026
oad carrying capacity	1026
Temperature limits	1026
Speed limits	1026
riction characteristics	1027
Mounting	1027
Designation system	1027

5KF. 1023

More information

General bearing knowledge	17
Bearing selection process	59
Bearing interfaces	139
Seat tolerances for standard	
conditions	148
Selecting internal clearance or	
preload	182
Sealing, mounting and	
dismounting	193

Mounting instructions for individual bearings → skf.com/mount SKF bearings with Solid Oil are designed for use in applications where high levels of moisture and incidental contact with water and other contaminants are real issues. Bearings with Solid Oil are lubricated for the life of the bearing and cannot be relubricated.

Solid Oil:

19 Bearings with Solid Oil

- is an oil saturated, polymer material
 - moulded into the bearing, forming very narrow gaps between the rolling elements, raceways and cage(s), enabling the bearing to rotate freely
 - having a porous structure, with millions of micro-pores that retain the lubricating oil by surface tension
- virtually fills all of the free space in the
- releases oil into the narrow gaps, during operation, providing effective minimum quantity lubrication

Bearing features

Long service life

- An increase in operating temperature pushes the oil toward the surface of the polymer material, supporting consistent lubricant supply. During shutdown, any excess oil is re-absorbed back into the polymer material.

• Extended lubricant life

- With Solid Oil bearings, a large amount of oil is available (two to four times more compared to conventional grease fill).
- The Solid Oil polymer structure eliminates lubricant churning.
- Solid Oil is a high-quality synthetic oil that resists oxidation.

· Resists washout

- Solid Oil cannot be washed out and virtually fills all free space, limiting the amount of wet contamination that can enter the bearing.
- Water cannot mix with the oil or Solid Oil polymer.

· Virtually eliminates lubricant leakage

- Solid Oil retains oil in the bearing.
- Integral bearing seals further increase the oil retention.

· Protects against the ingress of contaminants

- Close osculation between Solid Oil and the rolling elements and raceways significantly reduces the ingress of contaminants.
- Solid Oil provides additional support for integral bearing seals.

19

Designs and variants

The SKF standard assortment of bearings and bearing units with Solid Oil (fig. 1) includes:

- Deep groove ball bearings
- Spherical roller bearings
- Insert bearings and ball bearing units
- Tapered roller bearings
- Cylindrical roller bearings
- Self-aligning ball bearings

On request, SKF can supply other bearing types with Solid Oil to meet the needs of a particular application, except for CARB toroidal roller bearings which are unsuitable for use with Solid Oil. Bearings fitted with a large-volume c age are not suitable for Solid Oil because there is too little free space inside the bearing.

Solid Oil variants

- Standard variant (designation suffix W64, table 1):
 - contains a high-quality synthetic oil
 - meets the needs of most applications
- Food-grade variant (designation suffix W64F, table 1):
 - contains an oil registered by NSF as category H1
 - meets the needs of food applications

Bearing data

Dimension standards, tolerances, internal clearance

Refer to *Bearing data* in the relevant product section of the standard bearing.

Sealed bearings

- with integral contact seals are strongly recommended in wet environments
- with Solid Oil increase the sealing effectiveness, as the Solid Oil supports the seals axially, preventing them from deflecting and opening under pressure

For information about sealing options, contact the SKF application engineering service.

Where carbon steel bearings are exposed to wet environments, additional external seals are recommended to protect the bearing's external surfaces from corrosion.

Characteristic	Standard variant	Food-grade variant
Designation suffix	W64	W64F
Base oil viscosity at 40 °C (<i>105 °F</i>) at 100 °C (<i>210 °F</i>)	150 mm²/s 20 mm²/s	220 mm²/s 25 mm²/s
NSF H1 food grade	no	yes
Operating temperature Minimum start-up temperature Maximum continuous Maximum intermittent	–50 °C (–60 °F) 85 °C (185 °F) 95 °C (205 °F)	–25 °C (−15 °F) 85 °C (185 °F) 95 °C (205 °F)
Relubrication-free	yes	yes
Polymer colour	blue	white

5KF. 1025

Temperature limits

The permissible operating temperature for bearings with Solid Oil can be limited by:

- the dimensional stability of the bearing rings and rolling elements
- the cage(s)
- the seals
- the Solid Oil

For limits of bearing rings, rolling elements, cage(s) and seals, refer to *Temperature limits* of the relevant product section of the standard bearing.

The relevant limits for Solid Oil are listed in table 1, page 1025.

Where temperatures outside the permissible range are expected, contact SKF.

Speed limits

The recommended speed values for bearings and bearing units with Solid Oil (table 2), operating in an ambient temperature of 20 °C (70 °F), are limited by the maximum continuous operating temperature of 85 °C (185 °F). Ambient temperature is the temperature closest to the bearing position, not necessarily room temperature.

For bearing types or variants not listed in **table 2**, contact the SKF application engineering service.

For ambient temperatures above 20 °C (70 °F), the speed limit should be reduced using the reduction factor f_T (diagram 1).

For bearings with integral seals, use 80% of the quoted speed limits.

Calculation example

A deep groove ball bearing 6208/W64 is to operate at an ambient temperature of 50 °C (120 °F). What is the reduced speed limit?

1 Recommended speed limit for 20 °C (70 °F) ambient temperature

- From table 2: speed value nd_m = 300 000 mm/min (single row deep groove ball bearing with a stamped metal cage)
- Dimensions: d = 40 mm, D = 80 mm
 n = 300 000 / d_m
 - $= 300\,000 / (0,5 (40 + 80))$
 - = 5000 r/min

2 Reduction for 50 °C (120 °F) ambient temperature

- From diagram 1: speed reduction factor $f_T \approx 0.53$ $n_{reduced} = 5000 f_T$ $= 5000 \times 0.53$ = 2650 r/min

Bearing type	Speed value nd _m
-	mm/min
Deep groove ball bearings	
– single row with a stamped metal cage	300 000
– single row with a polymer cage – double row	40 000 40 000
Angular contact ball bearings	
– with a stamped metal cage	150 000
– with a polymer cage	40 000
Self-aligning ball bearings	
– with a stamped metal cage – with a polymer cage	150 000 40 000
– with a polymer cage	40 000
Cylindrical roller bearings	
– with a stamped metal cage – with a polymer cage	150 000 40 000
– with a polymer cage	40 000
Tapered roller bearings	45 000
Spherical roller bearings	
– E design	42 500
– CC design	85 000
Insert bearings, ball bearing units	40 000
n = rotational speed [r/min]	
d _m = bearing mean diameter [mm] = 0,5 (d + D)	
= 0,5 (a + D)	

19

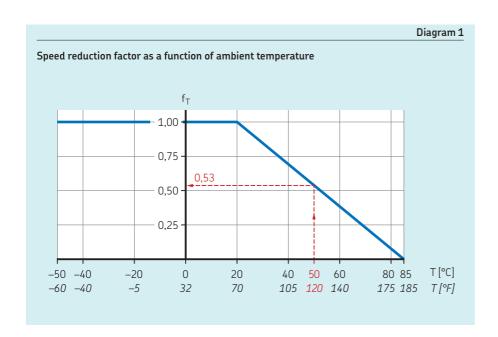
Friction characteristics

The friction characteristics of a bearing with Solid Oil correspond to the relevant SKF standard bearing except that the Solid Oil polymer filling adds a fixed friction.

Mounting

If a bearing with Solid Oil is to be hot mounted, it should be heated to a maximum of 120 °C (250 °F) by using an induction heater

Heating plates or heated oil baths should not be used.


Designation system

Refer to *Designation system* in the relevant product section of the standard bearing.

The designation suffixes used to identify bearings with Solid Oil are:

W64 Synthetic base oil type, standard variant

W64F Synthetic base oil type, NSF H1 approved for food applications

19



INSOCOAT bearings

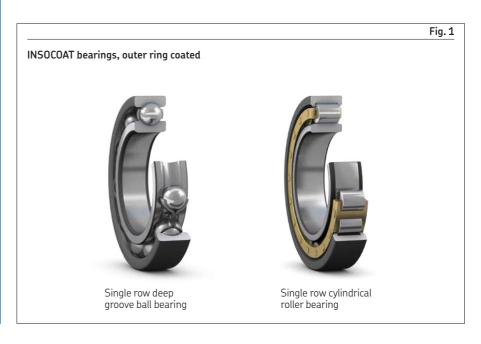
20 INSOCOAT bearings

Designs and variants	103
INSOCOAT bearings with a coated outer ring	103
INSOCOAT bearings with a coated inner ring	103
Capped bearings	103
Cages	103
Bearing data	103
Loads	103
Temperature limits	103
Permissible speed	103
Design considerations	103
Abutment dimensions	103
Mounting	103
Designation system	103
Product tables	
20.1 INSOCOAT deep groove ball bearings	103
20.2 INSOCOAT cylindrical roller bearings	103

20 INSOCOAT bearings

More information

General bearing knowledge	17
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Seat tolerances for standard	
conditions	148
Selecting internal clearance or	
preload	182
Sealing, mounting and	
dismounting	193


Mounting instructions for individual bearings → skf.com/mount

Electric motors, generators and associated equipment are at risk when an electric current passes through their bearings. This can damage the contact surfaces of rolling elements and raceways in the bearings (electrical erosion) and rapidly degrade the grease. An additional risk in electric motors and generators comes from high frequency currents caused by the inherent stray capacitance. The risk of damage increases where the application uses a frequency converter. INSOCOAT bearings:

- are designed to prevent electric current from passing through the bearing
- have the external surfaces of either their inner or outer ring coated with an insulating aluminium oxide layer, by applying a sophisticated plasma-spray process for an outstanding quality finish
- are a very cost-effective solution compared with other insulation methods

Bearing features

- Protection against electrical erosion With insulating properties integrated into the bearing, INSOCOAT bearings can improve reliability and increase machine uptime by virtually eliminating the problem of electrical erosion.
- High electrical resistance The aluminium oxide coating provides a minimum electrical resistance of 200 M Ω and can withstand voltages up to 3 000 V DC.
- Consistent electrical performance
 Plasma-spray coatings are normally
 hygroscopic and, therefore, vulnerable to
 penetration caused by condensation. To
 protect against this effect, INSOCOAT
 bearings are treated with a unique
 sealant.

1030

20

Assortment

The standard assortment of INSOCOAT bearings (fig. 1 and fig. 2) listed here constitutes the most commonly used sizes and variants of:

- single row deep groove ball bearings
- single row cylindrical roller bearings

For bearing types and sizes not listed in the product tables, contact SKF.

For applications where smaller bearings than those listed are needed, SKF recommends using SKF Hybrid bearings (*Hybrid bearings*, page 1043).

In addition to the standard assortment, SKF can supply special INSOCOAT bearings and bearing units with complex ring geometries (fig. 3), such as:

- four-point contact ball bearings
- flanged tapered roller bearings
- tapered roller bearing units (TBU)
- traction motor bearing units

For availability and detailed information, contact SKF.


Designs and variants

INSOCOAT bearings with a coated outer ring

INSOCOAT bearings typically have the external surfaces of the outer ring coated with aluminium oxide (fig. 1). These bearings are identified by the following designation suffixes:

- VL0241 standard layer
- VL0246 advanced layer for higher electrical resistance

For availability, contact SKF.

INSOCOAT bearings with a coated inner ring

INSOCOAT bearings that have the external surfaces of the inner ring coated with aluminium oxide (fig. 2, page 1031) provide enhanced protection against high frequency electric currents. These bearings are identified by the following designation suffixes:

- VL2071 standard layer
- VL2076 advanced layer for higher electrical resistance

For availability, contact SKF.

Capped bearings

Some INSOCOAT deep groove ball bearings can be supplied capped (*Capped bearings*, page 242). For availability, contact SKF.

Cages

SKF INSOCOAT deep groove ball bearings are fitted with one of the following cages:

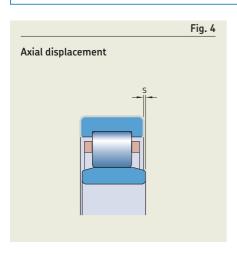
- a stamped steel cage, riveted, ball centred (no designation suffix)
- a machined brass cage, riveted, ball centred (designation suffix M)

For additional information, refer to *Cages*, page 249.

SKF INSOCOAT cylindrical roller bearings are fitted with one of the following cages:

- a glass fibre reinforced PA66 cage, window-type, roller centred (designation suffix P)
- a machined brass cage, riveted, roller centred (designation suffix M)
- a machined brass cage, window-type, inner or outer ring centred (depending on bearing design) (designation suffix ML)

For additional information, refer to *Cages*, page 502.


When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For additional information about the suitability of cages, refer to *Cages*, page 187.

Electrical properties		
Coating Designation suffix	Breakdown voltage (DC)	Minimum electrical resistance
_	V	ΜΩ
Standard layer VL0241, VL2071	3 000	200
Advanced layer VL0246, VL2076	3 000	400

Relative humidity rH ≤ 60%

Bearing data

3		
	Deep groove ball bearings	Cylindrical roller bearings
Dimension standards	Boundary dimensions: ISO 15	
Tolerances	Normal Tighter tolerances (up to P5) for some bearings on request	Normal
For additional	i i	
information	Values: ISO 492 (table 2, page 38, to table 4, page 40)	
→ page 35	The aluminium oxide layer on the external surfaces of eit	ther the inner or the outer ring does not affect accuracy.
Internal	C3	C3
clearance		Check availability of other clearance classes
For additional information	Values: ISO 5753-1 (table 6, page 252)	Values: ISO 5753-1 (table 3, page 506)
→ page 26	Values are valid for unmounted bearings under zero mea	isuring load.
Permissible	Identical to standard bearings	
misalignment	→ page 250	→ page 504
Permissible axial displacement	_	s _{max} → product tables, page 1036 NU design INSOCOAT bearings can accommodate axial displacement (fig. 4). Displacement of the shaft relative to the housing occurs within these bearings. As a result, there is virtually no increase in friction.
Electrical properties	table 1	

20

Loads

For recommendations about minimum load, axial load carrying capacity and equivalent bearing loads, refer to *Loads* of the relevant standard bearing:

- deep groove ball bearings, page 254
- cylindrical roller bearings, page 509

The required INSOCOAT bearing specific values and factors are listed in the relevant product tables:

- INSOCOAT deep groove ball bearings, page 1036
 - basic static load rating C₀
 - calculation factors f₀ and k_r
- INSOCOAT cylindrical roller bearings, page 1038
 - calculation factor k_r
 - reference speed

Temperature limits

The permissible operating temperature for INSOCOAT bearings can be limited by:

- the dimensional stability of the bearing rings and rolling elements
- the cage
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings and rolling elements

SKF INSOCOAT bearings are heat stabilized up to at least 150 °C (300 °F).

Cages

Steel or brass cages can be used at the same operating temperatures as the bearing rings and rolling elements. For temperature limits of PA66 cages, refer to *Polymer cages*, page 188.

Lubricants

For temperature limits of SKF greases, refer to Selecting a suitable SKF grease, page 116.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Permissible speed

The speed ratings in the product tables (INSOCOAT deep groove ball bearings, page 1036, and INSOCOAT cylindrical roller bearings, page 1038) indicate:

- the reference speed, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the **limiting speed**, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds

For additional information, refer to *Operating temperature and speed*, **page 129**.

SKF recommends oil lubrication for bearings with a ring centred cage (designation suffix ML). When these bearings are grease lubricated, the nd_m value is limited to $\leq 250\,000$ mm/min.

where

1034 **SKF**

20

Design considerations

Abutment dimensions

To maximize the effectiveness of the insulation, SKF recommends the following guidelines for dimensioning the shaft and housing shoulders (fig. 5):

- Bearings with a coated outer ring (designation suffix VL0241 or VL0246): housing abutment diameter ≥ D_{a min}
- Bearings with a coated inner ring (designation suffix VL2071 or VL2076): shaft abutment diameter ≤ d_{a max}

The values for $D_{a min}$ and $d_{a max}$ can be obtained from the product tables:

- INSOCOAT deep groove ball bearings, page 1036
- INSOCOAT cylindrical roller bearings, page 1038

Mounting

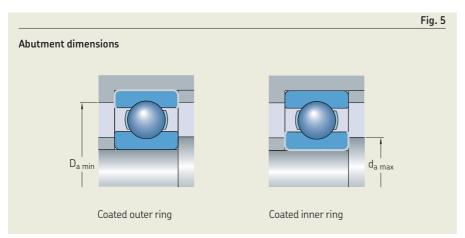
During mounting, INSOCOAT bearings should be handled in the same way as standard bearings.

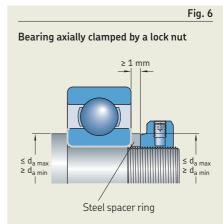
When using an induction heater for bearings with a coated inner ring (designation suffix VL2071 or VL2076), use a protective sleeve or an additional plastic support block.

In cases where springs are used to apply preload to deep groove ball bearings or lock nuts are used for axial clamping, SKF recommends inserting a steel spacer ring between the bearing and the preload or locking device (fig. 6).

The values for $d_{a min}$ and $d_{a max}$ can be obtained from the product tables:

- INSOCOAT deep groove ball bearings, page 1036
- INSOCOAT cylindrical roller bearings, page 1038

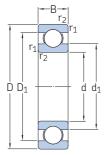

Designation system


Refer to *Designation system* of the relevant standard bearing:

- deep groove ball bearings, page 258
- cylindrical roller bearings, page 514

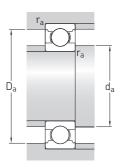
The designation suffixes used to identify INSOCOAT bearings are explained in the following.

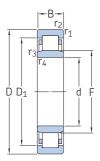
- **VL0241** External surfaces of the outer ring are coated standard layer.
- **VL0246** External surfaces of the outer ring are coated advanced layer.
- **VL2071** External surfaces of the inner ring are coated standard layer.
- **VL2076** External surfaces of the inner ring are coated advanced layer.



5KF. 1035

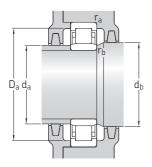
20.1 INSOCOAT deep groove ball bearings

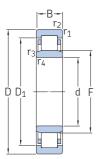

d **70 – 150** mm

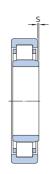

Princip			Basic lo	ad ratings static	Fatique load limit	load limit Reference Limiting			Designation
d	D	В	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	-
70	150	35	104	68	2,75	9 500	6 300	2,5	► 6314/C3VL0241
75	130 160	25 37	68,9 114	49 76,5	2,04 3	10 000 9 000	6 700 5 600	1,2 3,05	6215/C3VL02416315/C3VL0241
80	140 170	26 39	72,8 124	55 86,5	2,2 3,25	9 500 8 500	6 000 5 300	1,4 3,55	6216/C3VL02416316/C3VL0241
85	150 180	28 41	87,1 133	64 96,5	2,5 3,55	9 000 8 000	5 600 5 000	1,75 4,1	6217/C3VL02416317/C3VL0241
90	160 190	30 43	101 143	73,5 108	2,8 3,8	8 500 7 500	5 300 4 800	2,4 4,9	► 6218/C3VL0241 ► 6318/C3VL0241
95	170 200	32 45	114 153	81,5 118	3 4,15	8 000 7 000	5 000 4 500	2,5 5,65	► 6219/C3VL0241 ► 6319/C3VL0241
100	180 215	34 47	127 174	93 140	3,35 4,75	7 500 6 700	4 800 4 300	3,15 7	► 6220/C3VL0241 ► 6320/C3VL0241
110	200 240	38 50	151 203	118 180	4 5,7	6 700 6 000	4 300 3 800	4,4 9,65	► 6222/C3VL0241 ► 6322/C3VL0241
120	215 260	40 55	146 208	118 186	3,9 5,7	6 300 5 600	4 000 3 400	5,2 12,5	► 6224/C3VL0241 ► 6324/C3VL2071
130	230 280	40 58	156 229	132 216	4,15 6,3	5 600 5 000	3 600 3 200	5,75 15	6226/C3VL2071 ► 6326/C3VL2071
140	300	62	251	245	7,1	4 800	3 000	18,5	► 6328/C3VL2071
150	270 320	45 65	174 276	166 285	4,9 7,8	5 000 4 300	3 200 2 800	9,8 23	► 6230/C3VL2071 ► 6330/C3VL2071

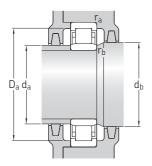
1036

Dimen	sions				Abutmo	Abutment and fillet dimensions					Calculation factors	
d	d ₁ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _{a.} min.	d _a max.	D _a min.	D _a max.	r _a max.	k _r	f_0	
mm					mm					-		
70	94,9	-	132	2,1	82	-	136	138	2	0,03	13	
75	92 101	-	118 141	1,5 2,1	84 87	_ _	121 146	121 148	1,5 2	0,03 0,03	15 13	
80	101 108	<u>-</u>	122 149	2 2,1	91 92	-	128 154	129 158	2 2	0,025 0,03	15 13	
85	106 114	- -	134 158	2 3	96 99		139 163	139 166	2 2,5	0,025 0,03	15 13	
90	112 121	- -	145 166	2 3	101 104		149 171	149 176	2 2,5	0,025 0,03	15 13	
95	118 127	- -	151 174	2,1 3	107 109	_ _	156 179	158 186	2 2,5	0,025 0,03	14 13	
100	124 135	- -	160 186	2,1 3	112 114	- -	165 191	168 201	2 2,5	0,025 0,03	14 13	
110	138 149	-	179 207	2,1 3	122 124	_ _	184 213	188 226	2 2,5	0,025 0,03	14 13	
120	150 164	- 215	189 -	2,1 3	132 134	- 158	194 -	203 246	2 2,5	0,025 0,03	14 14	
130	160 177	198 232	_	3 4	144 147	154 171	- -	216 263	2,5 3	0,025 0,03	15 14	
140	190	249	-	4	157	185	-	283	3	0,03	14	
150	190 205	228 264		3 4	164 167	185 200	- -	256 303	2,5 3	0,025 0,03	15 14	


d **50 – 95** mm


Principal dimensions		mensions Basic load ratings dynamic static			dynamic static load limit Reference Limiting				Designation	
d	D	В	С	C_0	P_{u}	speed	speed			
mm			kN		kN	r/min		kg	_	
50	80	16	47,3	57	7,2	9 500	9 500	0,27	NU 1010 ECP/C3VL0241	
	90	20	66	72	9,15	7 500	9 000	0,48	NU 210 ECM/C3VL0241	
	110	27	112	116	15,3	6 000	8 000	1,35	NU 310 ECM/C3VL0241	
55	90	18	57,2	69,5	9	8 500	13 000	0,4	NU 1011 ECP/C3VL0241	
	90	18	57,2	69,5	9	8 500	13 000	0,45	NU 1011 ECML/C3VL0241	
	100	21	85,8	100	12,9	7 000	8 000	0,78	NU 211 ECM/C3VL0241	
	120	29	138	146	19	5 600	7 000	1,75	NU 311 ECM/C3VL0241	
60	95	18	38	45,5	5,85	8 000	13 000	0,48	NU 1012 ML/C3VL0241	
	95	18	58,3	73,5	8,8	8 000	8 000	0,48	NU 1012 ECP/C3VL0241	
	110	22	96,8	106	14	6 300	7 500	0,97	► NU 212 ECM/C3VL0241	
	130	31	151	160	20,4	5 000	6 700	2,15	NU 312 ECM/C3VL0241	
65	100	18	62,7	81,5	10,6	7 500	7 500	0,45	NU 1013 ECP/C3VL0241	
	120	23	110	122	16	5 600	6 700	1,25	NU 213 ECM/C3VL0241	
	140	33	183	196	25,5	4 800	6 000	2,65	► NU 313 ECM/C3VL0241	
70	110	20	70,4	85	10,8	7 000	7 000	0,69	NU 1014 ECM/C3VL0241	
	110	20	76,5	93	12	7 000	7 000	0,62	NU 1014 ECP/C3VL0241	
	125	24	121	140	18,6	5 300	6 300	1,35	NU 214 ECM/C3VL0241	
	150	35	209	228	29	4 300	5 600	3,1	► NU 314 ECM/C3VL0241	
75	115	20	58,3	71	9,3	6 700	6 700	0,75	NU 1015 M/C3VL0241	
	130	25	132	160	21,2	5 300	6 000	1,5	NU 215 ECM/C3VL0241	
	160	37	242	270	34	4 000	5 300	3,9	NU 315 ECM/C3VL0241	
	160	37	242	270	34	4 000	5 300	3,9	► NU 315 ECP/VL0241	
80	125	22	99	127	16,3	6 000	6 000	1,05	NU 1016 ECM/C3VL0241	
	140	26	142	173	22	4 800	5 600	1,85	NU 216 ECM/C3VL0241	
	170	39	264	290	36	3 800	5 000	4,6	NU 316 ECM/C3VL0241	
85	130	22	72,1	91,5	11,6	6 000	6 000	1,1	NU 1017 M/C3VL0241	
	150	28	168	200	25,5	4 500	5 300	2,25	NU 217 ECM/C3VL0241	
	180	41	297	340	41,5	3 600	4 800	5,3	► NU 317 ECM/C3VL0241	
90	140	24	85,8	110	13,7	5 600	5 600	1,35	NU 1018 M/C3VL0241	
	160	30	187	224	28	4 300	5 000	2,75	NU 218 ECM/C3VL0241	
	190	43	319	360	44	3 400	4 500	6,25	► NU 318 ECM/C3VL0241	
95	145	24	88	116	14,3	5 300	5 300	1,4	NU 1019 ML/C3VL0241	
	170	32	224	270	33,5	4 000	4 800	2,85	NU 219 ECM/C3VL0241	
	200	45	341	390	46,5	3 200	4 300	7,25	► NU 319 ECM/C3VL0241	


► Popular item


Dimensions							Abutment and fillet dimensions							
d	D ₁ ≈	F	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b min.	D _a min.	D _a max.	r _a max.	r _b max.	k _r	
mm						mm							_	
50	70	57,5	1,1	0,6	1	53,2	56	60	74	75,4	1	0,6	0,1	
	78	59,5	1,1	1,1	1,5	57	57	62	83	83	1	1	0,15	
	92,1	65	2	2	1,9	61	63	67	96	99	2	2	0,15	
55	79	64,5	1,1	1	0,5	59,6	63	67	80	84	1	1	0,1	
	79	64,5	1,1	1	0,5	59,6	63	67	80	84	1	1	0,1	
	86,3	66	1,5	1,1	1	62	64	68	91	91	1,5	1	0,15	
	101	70,5	2	2	2	66	68	73	106	109	2	2	0,15	
60	81,6	69,5	1,1	1	2,9	64,6	68	72	85	89	1	1	0,1	
	81,6	69,5	1,1	1	1,7	64,6	68	72	85	89	1	1	0,1	
	95,7	72	1,5	1,5	1,4	69	70	74	101	101	1,5	1,5	0,15	
	110	77	2,1	2,1	2,1	72	74	79	115	118	2	2	0,15	
65	88,5	74	1,1	1	1	69,6	72	77	90	94	1	1	0,1	
	104	78,5	1,5	1,5	1,4	74	76	81	109	111	1,5	1,5	0,15	
	119	82,5	2,1	2,1	2,2	77	80	85	123	128	2	2	0,15	
70	97,5	79,5	1,1	1	1,3	74,6	78	82	101	104	1	1	0,1	
	97,5	79,5	1,1	1	1,3	74,6	78	82	101	104	1	1	0,1	
	109	83,5	1,5	1,5	1,2	79	81	86	115	116	1,5	1,5	0,15	
	127	89	2,1	2,1	1,8	82	86	91	131	138	2	2	0,15	
75	101	85	1,1	1	3	79,6	83	87	106	109	1	1	0,1	
	114	88,5	1,5	1,5	1,2	84	86	91	119	121	1,5	1,5	0,15	
	136	95	2,1	2,1	1,8	87	92	97	141	148	2	2	0,15	
	136	95	2,1	2,1	1,8	87	92	97	141	148	2	2	0,15	
80	109	91,5	1,1	1	1,5	86	90	94	114	119	1	1	120	
	123	95,3	2	2	1,4	91	93	98	128	129	2	2	0,15	
	144	101	2,1	2,1	2,1	92	98	104	149	158	2	2	0,15	
85	114	96,5	1,1	1	3,3	89,6	95	99	119	124	1	1	0,1	
	131	100,5	2	2	1,5	96	98	103	136	139	2	2	0,15	
	153	108	3	3	2,3	99	105	111	158	166	2,5	2,5	0,15	
90	122	103	1,5	1,1	3,5	96	101	106	128	133	1,5	1	0,1	
	140	107	2	2	1,8	101	104	110	144	149	2	2	0,15	
	162	113,5	3	3	2,5	104	110	116	167	176	2,5	2,5	0,15	
95	127	108	1,5	1,1	3,5	101	106	111	133	138	1,5	1	0,1	
	149	112,5	2,1	2,1	1,7	107	110	115	154	158	2	2	0,15	
	170	121,5	3	3	2,9	109	118	124	175	186	2,5	2,5	0,15	

20.2 INSOCOAT cylindrical roller bearings d 100 – 150 mm

Principal dimensions		Basic load ratings dynamic static		Fatique load limit	Speed rati Reference	Limiting	Mass	Designation		
d	D	В	С	C_0	P_{u}	speed	speed			
mm			kN		kN	r/min		kg	-	
100	150	24	89,7	122	15	5 000	5 000	1,45	NU 1020 M/C3VL0241	
	180	34	251	310	38	3 800	4 500	4	► NU 220 ECM/C3VL0241	
	215	47	391	440	51	3 000	3 800	8,65	NU 320 ECM/C3VL0241	
110	170 200 240	28 38 50	130 297 468	173 375 540	20,8 44 61	4 500 3 400 2 600	4 500 4 000 3 400	2,3 5,6 12	NU 1022 M/C3VL0241 ► NU 222 ECM/C3VL0241 ► NU 322 ECM/C3VL0241	
120	180	28	138	190	22,4	4 000	4 000	2,55	NU 1024 M/C3VL2071	
	215	40	341	440	50	3 000	3 600	6,65	NU 224 ECM/C3VL0241	
	260	55	539	620	69,5	2 400	3 200	15	► NU 324 ECM/C3VL0241	
130	200	33	168	232	27	3 800	5 600	3,85	NU 1026 M/C3VL2071	
	230	40	369	465	52	2 800	3 400	7,6	NU 226 ECM/C3VL2071	
	280	58	627	750	81,5	2 200	3 000	18,5	NU 326 ECM/C3VL2071	
140	210	33	179	255	29	3 600	3 600	4,05	NU 1028 M/C3VL2071	
	250	42	396	520	58,5	2 600	3 200	9	NU 228 ECM/C3VL2071	
	300	62	682	830	88	2 200	2 800	25	NU 328 ECM/C3VL2071	
150	225	35	194	275	18	3 200	3 200	4,9	NU 1030 M/C3VL2071	
	270	45	457	610	65,5	2 400	2 800	12	NU 230 ECM/C3VL2071	
	320	65	765	950	100	2 000	2 600	31	NU 330 ECM/C3VL2071	

Dimensions							Abutment and fillet dimensions						
d	D ₁ ≈	F	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b min.	D _a min.	D _a max.	r _a max.	r _b max.	k _r
mm						mm							_
100	132	113	1,5	1,1	3,5	106	111	116	138	143	1,5	1	0,1
	157	119	2,1	2,1	1,7	112	116	122	162	168	2	2	0,15
	182	127,5	3	3	2,9	114	124	130	192	201	2,5	2,5	0,15
110	149	125	2	1,1	3,8	116	123	128	155	161	2	1	0,1
	174	132,5	2,1	2,1	2,1	122	130	135	179	188	2	2	0,15
	201	143	3	3	3	124	139	146	207	226	2,5	2,5	0,15
120	159	135	2	1,1	3,8	126	133	138	-	171	2	1	0,1
	188	143,5	2,1	2,1	1,9	132	140	146	193	203	2	2	0,15
	219	154	3	3	3,7	134	150	157	225	246	2,5	2,5	0,15
130	175	148	2	1,1	4,7	136	145	151	-	191	2	1	0,1
	202	153,5	3	3	2,1	144	145	156	-	216	2,5	2,5	0,15
	236	167	4	4	3,7	147	156	170	-	263	3	3	0,15
140	185	158	2	1,1	4,4	146	155	161	-	201	2	1	0,1
	217	169	3	3	2,5	154	160	172	-	236	2,5	2,5	0,15
	252	180	4	4	3,7	157	168	183	-	283	3	3	0,15
150	198	169,5	2,1	1,5	4,9	157	167	173	_	215	2	1,5	0,1
	234	182	3	3	2,5	163	172	185	_	256	2,5	2,5	0,15
	270	193	4	4	4	167	182	196	_	303	3	3	0,15

Hybrid bearings

21

21 Hybrid bearings

Designs and variants	1045		
Hybrid deep groove ball bearings	1045		
Basic design bearings	1045		
Sealed bearings	1045		
XL hybrid bearings	1046		
Hybrid cylindrical roller bearings	1046		
Basic design bearings	1046		
Hybrid bearings with special steel rings and coatings	1046		
Cages	1046		
Bearing data (Dimension standards, tolerances, internal clearance, permissible misalignment, permissible axial displacement, electrical properties)	1047		
Loads	1048		
Axial preload	1048		
Temperature limits	1048		
Permissible speed	1048		
Designation system	1049	Other hybrid bearings	
		Hybrid super-precision bearings → s	kf.com/super-precision
Product tables		Hybrid angular contact ball bearings	→ contact SKF
21.1 Hybrid deep groove ball bearings	1050	Hybrid stainless steel deep groove ball bearing	s → contact SKF
21.2 Hybrid cylindrical roller bearings	1056	Hybrid bearing units	→ contact SKF

5KF. 1043

21 Hybrid bearings

More information

General bearing knowledge	1/
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Seat tolerances for standard	
conditions	148
Selecting internal clearance or	
preload	182
Sealing, mounting and	
dismounting	193

Mounting instructions for individual bearings \rightarrow skf.com/mount

SKF bearing maintenance handbook ISBN 978-91-978966-4-1 Hybrid bearings have rings made of bearing steel and rolling elements made of bearing grade silicon nitride (Si_3N_4), which make the bearings electrically insulating.

Bearing features

Silicon nitride rolling elements can extend bearing service life by offering enhanced bearing performance, even under difficult operating conditions. When compared to same-sized bearings with steel rolling elements, the benefits of hybrid bearings include:

Protection from electric current damage

Hybrid bearings are non-conductive and therefore suitable for applications such as AC and DC motors and generators, where electric currents are present.

· Higher speed capability

The density of a silicon nitride rolling element is 60% lower than a same-sized rolling element made of bearing steel. Lower weight and inertia translates into higher speed capability and superior behaviour during rapid starts and stops.

Long service life

The lower frictional heat generated in hybrid bearings, especially at high speeds, contributes to extended bearing service life and extended relubrication intervals.

• High wear-resistance

Silicon nitride rolling elements have a higher degree of hardness making hybrid bearings suitable under difficult conditions and contaminated environments.

· High bearing stiffness

With a high modulus of elasticity, hybrid bearings offer increased bearing stiffness.

· Reduced risk of smearing

Even under inadequate lubrication conditions, such as high speeds and rapid accelerations, or where there is an insufficient hydrodynamic film, the risk of smearing is reduced between silicon nitride and steel surfaces. For conditions where $\kappa < 1$, it is common to apply $\kappa = 1$ for hybrid bearing life calculations (Lubrication condition – the viscosity ratio, κ , page 102).

· Reduced risk of false brinelling

When subjected to vibration, hybrid bearings are significantly less susceptible to false brinelling (formation of shallow depressions in the raceways) between the silicon nitride and steel surfaces.

Less sensitivity to temperature gradients

Silicon nitride rolling elements have a lower coefficient of thermal expansion, which means they are more stable over temperature gradients within the bearing and provide more accurate preload/clearance control.

Assortment

The standard assortment of SKF hybrid bearings (fig. 1) comprises popular sizes for electric motors and generators. It includes:

- single row deep groove ball bearings
 - basic design
 - sealed design
 - XL hybrid design
- single row cylindrical roller bearings

Hybrid bearings provided in this catalogue constitute the basic SKF assortment and are only part of the total assortment. Other hybrid bearings include:

- hybrid super-precision bearings (skf.com/super-precision)
 - hybrid super-precision angular contact ball bearings
 - hybrid super-precision cylindrical roller bearings
 - hybrid super-precision angular contact thrust ball bearings, single and double direction
- hybrid angular contact ball bearings
- hybrid stainless steel deep groove ball bearings
- bearing units incorporating hybrid bearings

For availability and detailed information, contact SKF.

Designs and variants

Hybrid deep groove ball bearings

Deep groove ball bearings are the most widely used bearing type, especially in electric motors. SKF hybrid deep groove ball bearings (fig. 2):

- are non-separable
- are suitable for high speeds
- accommodate radial loads and axial loads in both directions because their uninterrupted raceway grooves have a close osculation with the balls
- are manufactured to SKF Explorer bearing quality (page 7)
- are available with a bore diameter ranging from 5 to 180 mm
- with a bore diameter d ≤ 45 mm, are most suitable for electric motors in the power range 0,15 to 15 kW as well as for power tools and high-speed drives

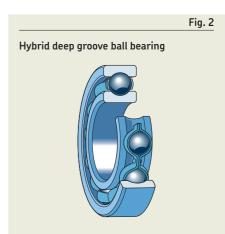
SKF hybrid deep groove ball bearings in this size range are the most cost-effective solution against electrical erosion.

Basic design bearings

 are available with a bore diameter d ≥ 10 mm

△ WARNING

Seals made of FKM (fluoro rubber) exposed to an open flame or temperatures above 300 °C (570 °F) are a health and environmental hazard! They remain dangerous even after they have cooled.


Read and follow the safety precautions on page 197.

Sealed bearings

- use the same seals as described under Capped bearings, page 242
- are lubricated for the life of the bearing and should not be washed or relubricated
- are virtually maintenance-free

When capped bearings must operate under certain conditions, such as very high speeds or high temperatures, grease may appear between the inner ring and capping device. For bearing arrangements where this would be detrimental, appropriate actions should be taken.

21 Hybrid bearings

Greases for sealed bearings

The standard grease, suitable for most common operating conditions of electric motors and generators, is indicated by the designation suffix WT (table 3, page 245).

For additional information about greases, refer to *Selecting a suitable grease*, page 116.

Grease life

The estimated grease life is typically at least twice as long as for same-sized bearings with steel balls (*Grease life for capped bearings*, page 246).

XL hybrid bearings

- are identified by the designation suffix VA970
- are designed to meet the application requirements for electric generators in larger wind turbines
- are available for the most commonly used generator sizes (product table, page 1050)

Hybrid cylindrical roller bearings

- are separable
- · are suitable for high speeds
- accommodate heavy radial loads
- accommodate axial displacement (fig. 4)
- are commonly used in electric motors, especially traction motors, and in applications running under severe operating conditions

Basic design bearings

The NU design cylindrical roller bearing, which has two integral flanges on the outer ring and no flanges on the inner ring, is the standard basic design for hybrid cylindrical roller bearings (fig. 3).

Hybrid bearings with special steel rings and coatings

For specific application requirements, hybrid bearings can be customized:

- bearing rings stabilized for temperatures
 ≤ 300 °C (570 °F)
- bearing rings made of through-hardened stainless steel for enhanced corrosion and wear-resistance and with good hightemperature properties
- bearing rings made of through-hardened stainless steel for cryogenic temperatures
- bearing rings made of high-temperature tool steel
- ring coating with zinc chromate or thin dense chromium for corrosion protection
- ring coating based on molybdenum for low friction, especially in vacuum or gas applications

For availability and detailed information, contact SKF.

SKF hybrid cylindrical roller bearings are fitted with one of the following cages:

- a glass fibre reinforced PA66 cage, window-type, roller centred (designation suffix P)
- a glass fibre reinforced PEEK cage, window-type, roller centred (designation suffix PH)
- a machined brass cage, riveted, roller centred (designation suffix M)
- a machined brass cage, window-type, inner or outer ring centred (depending on bearing design) (designation suffix ML)

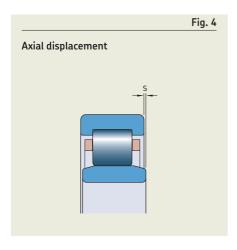
For additional information, refer to *Cages*, page 502.

When used at high temperatures, some lubricants can have a detrimental effect on polyamide cages. For additional information about the suitability of cages, refer to *Cages*, page 187.

Cages

SKF hybrid deep groove ball bearings are fitted with one of the following cages:

- a stamped steel cage, riveted, ball centred (no designation suffix)
- a glass fibre reinforced PA66 cage, snaptype, ball centred (designation suffix TN9)
- a glass fibre reinforced PEEK cage, snaptype, ball centred (designation suffix TNH)
- a machined brass cage, riveted, ball centred (designation suffix M)


For additional information, refer to *Cages*, page 249.

21

Bearing data

•		
	Deep groove ball bearings	Cylindrical roller bearings
Dimension standards	Boundary dimensions: ISO 15	
Tolerances	Normal	Normal P6 geometrical tolerance
For additional information → page 35	ISO 492 (table 2, page 38, and table 3, page 39)	<u> </u>
Internal clearance	C3 Check availability of other clearance classes	
For additional information	Values: ISO 5753-1 (table 6, page 252)	Values: ISO 5753-1 (table 3, page 506)
→ page 182	Values are valid for unmounted bearings under zer	o measuring load.
Permissible misalignment	Identical to standard bearings → page 250	Identical to standard bearings → page 504
Permissible axial displacement	_	s _{max} → product table, page 1056 NU design hybrid bearings can accommodate axial displacement (fig. 4). Displacement of the shaft relative to the housing occurs within these bearings. As a result, there is virtually no increase in friction.
Electrical properties	voltage peaks	providing good protection against high frequency current and h the seal-bearing contact of small hybrid deep groove ball

For recommendations about minimum load, axial load carrying capacity and equivalent bearing loads, refer to *Loads* of the relevant standard bearing:

- Deep groove ball bearings, page 254
- Cylindrical roller bearings, page 509

The required hybrid bearing specific values and factors are listed in the relevant product tables:

- Hybrid deep groove ball bearings, page 1050
 - basic static load rating C_0
 - calculation factors fo and kr
- Hybrid cylindrical roller bearings, page 1056
 - calculation factor k_r
 - reference speed

Axial preload

To provide low noise and high-speed operation, typically an axial preload to a bearing arrangement comprising two hybrid deep groove ball bearings is applied. Axial preload can be applied with spring washers, as described under *Preloading with springs*, page 186.

Temperature limits

The permissible operating temperature for hybrid bearings can be limited by:

- the dimensional stability of the bearing rings
- the cage
- the seals
- the lubricant

Where temperatures outside the permissible range are expected, contact SKF.

Bearing rings

The rings of SKF hybrid bearings are heat stabilized up to at least:

- 120 °C (250 °F) for basic design hybrid deep groove ball bearings
- 150 °C (300 °F) for hybrid cylindrical roller bearings and XL hybrid deep groove ball bearings

On request, SKF can supply hybrid bearings with rings stabilized for operating temperatures up to 300 °C (570 °F).

Cages

Steel, brass or PEEK cages can be used at the same operating temperatures as the bearing rings of standard hybrid bearings. For temperature limits of other polymer cages, refer to *Polymer cages*, page 188.

Seals

The permissible operating temperature for seals depends on the seal material:

- NBR: -40 to +100 °C (-40 to +210 °F) Temperatures up to 120 °C (250 °F) can be tolerated for brief periods.
- FKM: –30 to +200 °C (–20 to +390 °F) Temperatures up to 230 °C (445 °F) can be tolerated for brief periods.

Typically, temperature peaks are at the seal lip.

Lubricants

Temperature limits for the grease used in sealed SKF hybrid deep groove ball bearings are provided in **table 3**, **page 116**. For temperature limits of other SKF greases, refer to Selecting a suitable SKF grease, **page 116**.

When using lubricants not supplied by SKF, temperature limits should be evaluated according to the SKF traffic light concept (page 117).

Permissible speed

The speed ratings in the product tables (*Hybrid deep groove ball bearings*, page 1050 and *Hybrid cylindrical roller bearings*, page 1056) indicate:

- the reference speed, which enables a quick assessment of the speed capabilities from a thermal frame of reference
- the limiting speed, which is a mechanical limit that should not be exceeded unless the bearing design and the application are adapted for higher speeds

For additional information, refer to *Operating temperature and speed*, **page 129**.

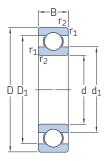
SKF recommends oil lubrication for bearings with a ring centred cage (designation suffix ML). When these bearings are grease lubricated, the nd_m value is limited to $\leq 250\,000$ mm/min.

where

d_m = bearing mean diameter [mm] = 0,5 (d + D) n = rotational speed [r/min]

21

Designation system

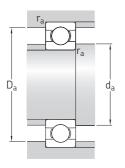

Refer to *Designation system* of the relevant standard bearing:

- single row deep groove ball bearings, page 258
- single row cylindrical roller bearings, page 514


Additional designation suffixes used with SKF hybrid bearings are explained in the following.

- C3P Displaced clearance range comprising the upper half of the C3 plus the lower half of the C4 clearance range
- **F1** Grease fill 10–15% of the free space in the bearing
- **HC5** Rolling elements made of silicon nitride
- Bearing rings heat stabilized for operating temperatures ≤ 150 °C (300 °F)
- **VA970** Special design deep groove ball bearing for wind turbine generators
- VC444 Bearing rings made of high nitrogen steel

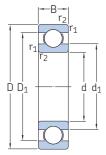
21.1 Hybrid deep groove ball bearings d 5 – 25 mm

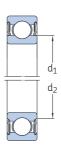

Sealed (2RZ)


Sealed (2RSL)

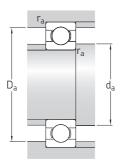
Principal dimensions		sions		oad ratings c static	Fatique load limit	Speed rati Reference speed	ngs Limiting speed	Mass	Designation
d	D	В	С	C_0	P_u	эрсси	Speed		
mm			kN		kN	r/min		kg	-
5	16	5	1,14	0,38	0,016	125 000	67 000	0,005	► 625-2RZTN9/HC5C3WTF1
5	19	6	2,34	0,95	0,04	100 000	45 000	0,008	626-2RSLTN9/HC5C3WTF1
7	19 22	6 7	2,34 3,45	0,95 1,37	0,04 0,057	100 000 85 000	45 000 40 000	0,007 0,012	607-2RSLTN9/HC5C3WTF1627-2RSLTN9/HC5C3WTF1
3	22	7	3,45	1,37	0,057	85 000	40 000	0,01	► 608-2RSLTN9/HC5C3WTF1
10	26 26 30	8 8 9	4,75 4,75 5,4	1,96 1,96 2,36	0,083 0,083 0,1	70 000 70 000 65 000	32 000 45 000 30 000	0,018 0,019 0,032	6000-2RSLTN9/HC5C3WT 6000/HC5C36200-2RSLTN9/HC5C3WT
	30	9	5,4	2,36	0,1	65 000	40 000	0,032	6200/HC5C3
12	28 28 32	8 8 10	5,4 5,4 7,28	2,36 2,36 3,1	0,1 0,1 0,132	65 000 65 000 60 000	30 000 40 000 26 000	0,022 0,021 0,037	6001-2RSLTN9/HC5C3WT 6001/HC5C36201-2RSLTN9/HC5C3WT
	32	10	7,28	3,1	0,132	60 000	36 000	0,037	6201/HC5C3
15	32 32 35	9 9 11	5,85 5,85 8,06	2,85 2,85 3,75	0,12 0,12 0,16	56 000 56 000 50 000	24 000 34 000 22 000	0,03 0,03 0,044	▶ 6002-2RSLTN9/HC5C3WT 6002/HC5C3▶ 6202-2RSLTN9/HC5C3WT
	35	11	8,06	3,75	0,16	50 000	32 000	0,045	6202/HC5C3
17	35 35 40	10 10 12	6,37 6,37 9,95	3,25 3,25 4,75	0,137 0,137 0,2	50 000 50 000 45 000	22 000 30 000 20 000	0,038 0,038 0,059	6003-2RSLTN9/HC5C3WT 6003/HC5C36203-2RSLTN9/HC5C3WT
	40	12	9,95	4,75	0,2	45 000	28 000	0,065	6203/HC5C3
20	42 42 47	12 12 14	9,95 9,95 13,5	5 5 6,55	0,212 0,212 0,28	40 000 40 000 38 000	19 000 26 000 17 000	0,062 0,067 0,097	6004-2RSLTN9/HC5C3WT 6004/HC5C36204-2RSLTN9/HC5C3WT
	47	14	13,5	6,55	0,28	38 000	24 000	0,11	6204/HC5C3
25	47 47 52	12 12 15	11,9 11,9 14,8	6,55 6,55 7,8	0,275 0,275 0,335	36 000 36 000 32 000	16 000 22 000 15 000	0,073 0,078 0,13	6005-2RSLTN9/HC5C3WT 6005/HC5C36205-2RSLTN9/HC5C3WT
	52	15	14,8	7,8	0,335	32 000	20 000	0,13	6205/HC5C3

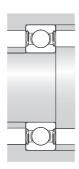
► Popular item




Dimen	sions					Abutmo	ent and fille	et dimensio	ons	Calculat	ion factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm		,		_	
5	8,4	_	_	13,3	0,3	7,4	8,3	13,6	0,3	0,025	8,4
6	_	9,5	_	16,5	0,3	7,4	9,4	16,6	0,3	0,025	13
7	_	9,5 10,6	- -	16,5 19,2	0,3 0,3	9 9,4	9,4 10,5	17 19,6	0,3 0,3	0,025 0,025	13 12
8	-	10,6	-	19,2	0,3	10	10,5	20	0,3	0,025	12
10	_ 14,8 _	13 - 15,2	_ 21,2 _	22,6 - 24,8	0,3 0,3 0,6	12 12 14,2	12,5 - 15	24 24 25,8	0,3 0,3 0,6	0,025 0,025 0,025	12 12 13
	17	_	23,2	-	0,6	14,2	_	25,8	0,6	0,025	13
12	_ 17 _	15,2 - 16,6	_ 23,2 _	24,8 - 27,4	0,3 0,3 0,6	14 14 16,2	15 - 16,5	26 26 27,8	0,3 0,3 0,6	0,025 0,025 0,025	13 13 12
	18,4	_	25,7	-	0,6	16,2	_	27,8	0,6	0,025	12
15	_ 20,5 _	18,7 - 19,4	_ 26,7 _	28,2 - 30,4	0,3 0,3 0,6	17 17 19,2	18,5 - 19,4	30 30 30,8	0,3 0,3 0,6	0,025 0,025 0,025	14 14 13
	21,7	_	29	-	0,6	19,2	_	30,8	0,6	0,025	13
17	- 23 -	20,7 - 22,2	- 29,2 -	31,4 - 35	0,3 0,3 0,6	19 19 21,2	20,5 - 22	33 33 35,8	0,3 0,3 0,6	0,025 0,025 0,025	14 14 13
	24,5	_	32,7	-	0,6	21,2	_	35,8	0,6	0,025	13
20	- 27,2 -	24,9 - 26,3	- 34,8 -	37,2 - 40,6	0,6 0,6 1	23,2 23,2 25,6	24,5 - 26	38,8 38,8 41,4	0,3 0,3 1	0,025 0,025 0,025	14 14 13
	28,8	_	38,5	-	1	25,6	_	41,4	1	0,025	13
25	- 32 -	29,7 - 31,8	- 40 -	42,2 - 46,3	0,6 0,6 1	28,2 28,2 30,6	29,5 - 31,5	43,8 43,8 46,4	0,3 0,3 1	0,025 0,025 0,025	14 14 14
	34,3	_	44	-	1	30,6	_	46,4	1	0,025	14

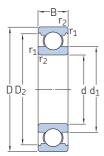
21.1 Hybrid deep groove ball bearings d 30 - 65 mm




Sealed (2RZ)

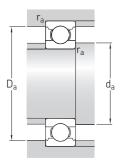
Sealed (2RS1)

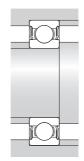
Princi	pal dimens	sions		oad ratings c static	Fatique load limit	Speed rat Reference	Limiting	Mass	Designation
d	D	В	С	C_0	P_{u}	speed	speed		
mm			kN		kN	r/min		kg	-
30	55 55 62	13 13 16	13,8 13,8 20,3	8,3 8,3 11,2	0,355 0,355 0,475	30 000 30 000 28 000	16 000 19 000 15 000	0,11 0,12 0,18	▶ 6006-2RZTN9/HC5C3WT 6006/HC5C3▶ 6206-2RZTN9/HC5C3WT
35	62 62 72	14 14 17	16,8 16,8 27	10,2 10,2 15,3	0,44 0,44 0,655	26 000 26 000 24 000	14 000 17 000 13 000	0,15 0,15 0,26	6007-2RZTN9/HC5C3WT 6007/HC5C36207-2RZTN9/HC5C3WT
	72	17	27	15,3	0,655	24 000	15 000	0,29	6207/HC5C3
40	68 68 80	15 15 18	17,8 17,8 32,5	11 11 19	0,49 0,49 0,8	24 000 24 000 20 000	12 000 15 000 11 000	0,19 0,19 0,34	6008-2RZTN9/HC5C3WT 6008/HC5C36208-2RZTN9/HC5C3WT
	80	18	32,5	19	0,8	20 000	13 000	0,37	6208/HC5C3
45	75 85 85	16 19 19	22,1 35,1 35,1	14,6 21,6 21,6	0,64 0,915 0,915	20 000 20 000 20 000	13 000 10 000 12 000	0,24 0,42 0,37	6009/HC5C3 ► 6209-2RZTN9/HC5C3WT 6209/HC5C3
	100	25	55,3	31,5	1,34	-	4 500	0,15	► 6309-2RS1TN9/HC5C3WT
50	90 90 110	20 20 27	37,1 37,1 65	23,2 23,2 38	0,98 0,98 1,6	- 18 000 -	4 800 11 000 4 300	0,44 0,45 0,99	6210-2RS1/HC5C3WT 6210/HC5C36310-2RS1/HC5C3WT
	110	27	65	38	1,6	16 000	10 000	1,1	6310/HC5C3
55	100 100 120	21 21 29	46,2 46,2 74,1	29 29 45	1,25 1,25 1,9	- 16 000 -	4 300 10 000 3 800	0,59 0,61 1,4	6211-2RS1/HC5C3WT 6211/HC5C36311-2RS1/HC5C3WT
	120	29	74,1	45	1,9	14 000	9 000	1,35	6311/HC5C3
60	110 110 130	22 22 31	55,3 55,3 81,9	36 36 52	1,53 1,53 2,2	- 15 000 -	4 000 9 500 3 400	0,71 0,78 1,75	6212-2RS1/HC5C3WT 6212/HC5C36312-2RS1/HC5C3WT
	130	31	85,2	52	2,2	13 000	8 500	1,7	6312/HC5C3
65	120 120 140	23 23 33	58,5 58,5 97,5	40,5 40,5 60	1,73 1,73 2,5	- 14 000 -	3 600 8 500 3 200	0,92 1 2,15	6213-2RS1/HC5C3WT 6213/HC5C36313-2RS1/HC5C3WT



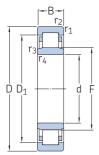
Dimen	sions					Abutmo	ent and fillo	et dimensio	ons	Calculat	ion factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm				_	
30	38,2 38,2 40,3	- - -	- 46,8 -	49 - 54,1	1 1 1	34,6 34,6 35,6	38,1 - 40,3	50,4 50,4 56,4	0,3 0,3 1	0,025 0,025 0,025	15 15 14
35	43,7 43,7 46,9	- - -	- 53,3 -	55,6 - 62,7	1 1 1,1	39,6 39,6 42	43,7 - 46,8	57,4 57,4 65	0,3 0,3 1	0,025 0,025 0,025	15 15 14
	46,9	-	60	-	1,1	42	-	65	1	0,025	14
40	49,2 49,2 52,6	- - -	- 58,8 -	61,1 - 69,8	1 1 1,1	44,6 44,6 47	49,2 - 52,5	63,4 63,4 73	0,3 0,3 1	0,025 0,025 0,025	15 15 14
	52,6	_	67,4	-	1,1	47	_	73	1	0,025	14
45	54,7 57,6 56,6	- - -	65,3 - 72,4	- 75,2 -	1 1,1 1	50 52 52	- 57,5 -	70 78 78	0,3 1 1	0,025 0,025 0,025	15 14 14
	_	54	-	86,7	1,5	54	62,1	91	1,5	0,025	13
50	62,5 62,5 68,7	- - -	- - -	81,6 81,6 95,2	1,1 1,1 2	57 57 61	62,4 - -	83 83 99	1 1 1,5	0,025 0,025 0,025	14 14 13
	68,7	-	-	95,2	2	61	-	99	2	0,025	13
55	69 69 75,3	- - -	- - -	89,4 89,4 104	1,5 1,5 2	64 64 66	69 - -	91 91 109	1,5 1,5 2	0,025 0,025 0,025	14 14 13
	75,3	_	-	104	2	66	-	109	2	0,025	13
60	75,5 75,5 81,8	- - -	- - -	98 98 112	1,5 1,5 2,1	69 69 72	75,4 - -	101 101 118	1,5 1,5 2	0,025 0,025 0,025	14 14 13
	81,8	_	-	112	2,1	72	-	118	2	0,025	13
65	83,3 83,3 88,3	- - -	- - -	106 106 121	1,5 1,5 2,1	74 74 77	83,2 - 88,3	111 111 128	1,5 1,5 2	0,025 0,025 0,025	15 15 13

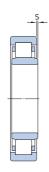
21.1 Hybrid deep groove ball bearings d 70 – 180 mm


Sealed (2RS1)

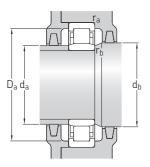

VA970

Princip	al dimens	sions	Basic loa dynamic	d ratings static	Fatique load limit	Speed ration Reference	Limiting	Mass	Designation
d	D	В	С	C_0	P_u	speed	speed		
mm			kN		kN	r/min		kg	-
70	125 125 150	24 24 35	63,7 63,7 111	45 45 68	1,9 1,9 2,75	- 13 000 11 000	3 400 8 500 7 000	1 1,1 2,55	► 6214-2RS1/HC5C3WT 6214/HC5C3 6314/HC5C3
75	130 130 160	25 25 37	68,9 68,9 119	49 49 76,5	2,04 2,04 3	- 12 000 11 000	3 200 8 000 7 000	1,05 1,2 3,05	► 6215-2RS1/HC5C3WT 6215/HC5C3 6315/HC5C3
80	140 170	26 39	72,8 130	55 86,5	2,2 3,25	11 000 10 000	7 000 6 300	1,3 3,65	6216/HC5C3 6316/HC5C3
85	150 180	28 41	87,1 140	64 96,5	2,5 3,55	11 000 9 500	70 000 6 000	1,8 4,25	6217/HC5C3 6317/HC5C3
90	160 190	30 43	101 151	73,5 108	2,8 3,8	10 000 9 000	6 300 5 600	1,95 4,95	6218/HC5C3 6318/HC5C3
95	170 200	32 45	114 159	81,5 118	3 4,15	9 500 8 500	6 000 5 600	2,65 5,75	6219/HC5C3 6319/HC5C3
100	180 215	34 47	127 182	93 140	3,35 4,75	9 000 9 000	5 600 5 000	3,2 6,15	6220/HC5C3 6320/HC5C3
110	240	50	197,291	175,334	4,15	8 000	4 300	9,1	► 6322/HC5C3S0VA970
120	260	55	210,618	199,897	4,55	7 000	4 000	12,5	► 6324/HC5C3S0VA970
130	280	58	223,245	223,442	4,9	6 700	3 800	15,5	► 6326/HC5C3S0VA970
140	300	62	279,21	265,927	7,1	6 300	3 600	15,5	► 6328/HC5C3S0VA970
150	320	65	303,174	306,454	7,8	6 000	3 200	20,5	► 6330/HC5C3S0VA970
160	340	68	347,528	391,111	7,65	5 300	2 800	24	► 6332/HC5C3S0VA970
170	360	72	347,528	391,111	7,65	5 300	2 800	30	► 6334/HC5C3S0VA970
180	380	75	330,979	391,111	7,65	5 300	2 800	36,5	► 6336/HC5C3PS0VA970

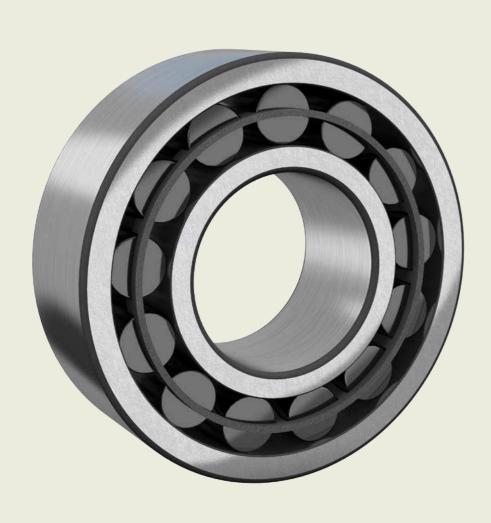




Dimen	sions					Abutm	ent and fill	et dimensio	ons	Calculat	ion factors
d	d ₁ ≈	d ₂ ≈	D ₁ ≈	D ₂ ≈	r _{1,2} min.	d _a min.	d _a max.	D _a max.	r _a max.	k _r	f_0
mm						mm					
70	87 87 94,9	- - -	- - -	111 111 130	1,5 1,5 2,1	79 79 82	87 - -	116 116 138	1,5 1,5 2	0,025 0,025 0,025	15 15 13
75	92 92 101	- - -	- - -	117 117 138	1,5 1,5 2,1	84 84 87	92 - -	121 121 148	1,5 1,5 2	0,025 0,025 0,025	15 15 13
80	101 108	- -	_ _	127 147	2 2,1	91 92	_ _	129 158	2 2	0,025 0,03	15 13
85	106 114	- -	_ _	135 155	2	96 99	- -	139 166	2 2,5	0,025 0,03	15 13
90	112 121	- -		143 164	2	101 104	_	149 176	2 2,5	0,025 0,03	15 13
95	118 127	- -	_ _	151 172	2,1 3	107 109	_ _	158 186	2 2,5	0,025 0,03	14 13
100	124 135	- -	_ _	160 184	2,1 3	112 114		168 201	2 2,5	0,025 0,03	14 13
110	160	_	198		3	124	-	226	2,5	0,03	15
120	175	-	216	-	3	134	-	246	2,5	0,03	15
130	189	-	228	-	4	147	-	263	3	0,03	15
140	189	-	250	-	4	157	-	283	3	0,03	14
150	205	-	264	-	4	167	-	303	3	0,03	14
160	236	-	295	-	4	177	-	323	3	0,03	14
170	236	_	295	_	4	187	-	343	3	0,03	14
180	236	_	295	_	4	197	_	363	3	0,03	14


21.2 Hybrid cylindrical roller bearings d 40 – 100 mm

Princip	al dimensi	ons	Basic loa dynamic	ad ratings static	Fatique load limit	Speed rati Reference speed	ngs Limiting speed	Mass	Designation
d	D	В	С	C_0	P_u	speed	speeu		
mm			kN		kN	r/min		kg	-
40	68	15	25,1	26	3	13 000	22 000	0,21	► NU 1008 ML/HC5C3
45	75	16	44,6	52	6,3	12 000	13 000	0,19	► NU 1009 ECP/HC5C3
50	80 90 110	16 20 27	46,8 64,4 110	56 69,5 112	6,7 7,5 15	11 000 9 000 7 000	12 000 11 000 10 000	0,23 0,49 0,93	 NU 1010 ECP/HC5C3 NU 210 ECM/HC5C3 NU 310 ECM/HC5C3
55	90 100 120	18 21 29	57,2 84,2 138	69,5 95 143	8,3 12,2 18,6	10 000 8 000 6 700	11 000 10 000 9 000	0,4 0,54 1,15	 NU 1011 ECM/HC5C3 NU 211 ECM/HC5C3 NU 311 ECM/HC5C3
60	95 110 130	18 22 31	37,4 93,5 173	44 102 160	5,3 13,4 21,2	9 500 7 500 6 000	10 000 9 000 8 000	0,44 0,64 1,45	NU 1012 M/HC5C3NU 212 ECM/HC5C3NU 312 ECM/HC5C3
65	100 120 140	18 23 33	62,7 106 183	81,5 118 196	9,8 15,6 7,1	9 000 6 700 5 600	9 500 8 500 7 500	0,38 0,83 1,75	 NU 1013 ECP/HC5C3 NU 213 ECM/HC5C3 NU 313 ECM/HC5C3
70	110 125 150	20 24 35	76,5 119 205	93 137 228	12 18 7,1	8 000 6 300 5 300	8 500 8 000 7 000	0,53 1,1 2,15	 NU 1014 ECP/HC5C3 NU 214 ECM/HC5C3 NU 314 ECM/HC5C3
75	115 130	20 25	58,3 130	71 156	8,5 20,4	7 500 6 000	8 500 7 500	0,61 1,2	 NU 1015 M/HC5C3 NU 215 ECM/HC5C3
80	125 140	22 26	99 138	127 166	16,3 21,2	7 000 5 600	7 500 7 000	0,88 1,5	NU 1016 ECM/HC5C3NU 216 ECM/HC5C3
85	130 150	22 28	68,2 165	86,5 200	10,8 5,5	6 700 5 300	7 500 6 700	0,95 1,75	NU 1017 M/HC5C3NU 217 ECM/HC5C3
90	140 160	24 30	80,9 183	104 220	12,7 27	6 300 5 000	7 000 6 300	1,2 2,1	NU 1018 M/HC5C3NU 218 ECM/HC5C3
95	145	24	84,2	110	13,2	6 000	10 000	1,3	► NU 1019 ML/HC5C3
100	150	24	85,8	114	13,7	6 000	6 300	1,3	► NU 1020 M/HC5C3


Dimen	sions					Abutm	ent and fi	let dimen	sions			Calculation factor
d	D ₁ ≈	F	r _{1,2} min.	r _{3,4} min.	s max.	d _a min.	d _a max.	d _b min.	D _a max.	r _a max.	r _b max.	k _r
mm						mm						-
40	57,6	47	1	0,6	2,4	43,2	45	49	63	1	1	0,15
45	65,3	52,5	1	0,6	0,9	48,2	51	54	70	1	0,6	0,1
50	70 78 92,1	57,5 59,5 65	1 1,1 2	0,6 1,1 2	1 1,5 1,9	53,2 57 61	56 57 63	60 62 67	75 83 99	1 1 2	1 1 2	0,1 0,15 0,15
55	79 86,3 101	64,5 66 70,5	1,1 1,5 2	1 1,1 2	0,5 1 2	59,6 62 66	63 64 68	67 68 73	84 91 109	1 1,5 2	1 1,5 2	0,1 0,15 0,15
60	81,6 95,7 110	69,5 72 77	1,1 1,5 2,1	1 1,5 2,1	2,9 1,4 2,1	64,6 69 72	68 70 74	72 74 79	89 101 118	1 1,5 2	1 1,5 2	0,1 0,15 0,15
65	88,5 104 119	74 78,5 82,5	1,1 1,5 2,1	1 1,5 2,1	1 1,4 2,2	69,6 74 77	72 76 80	77 81 85	94 111 127	1 1,5 2	1 1,5 2	0,1 0,15 0,15
70	97,5 109 127	79,5 83,5 89	1,1 1,5 2,1	1 1,5 2,1	1,3 1,2 1,8	74,6 79 82	78 81 86	82 86 92	104 116 137	1 1,5 2	1 1,5 2	0,1 0,15 0,15
75	101 114	85 88,5	1,1 1,5	1 1,5	3 1,2	79,6 84	83 86	87 91	109 121	1 1,5	1 1,5	0,1 0,15
80	109 123	91,5 95,3	1,1 2	1 2	3,3 1,4	86 91	90 93	94 98	119 129	1 2	1 2	0,1 0,15
85	114 131	96,5 100,5	1,1 2	1 2	3,3 1,5	89,6 96	95 98	99 103	124 139	1 2	1 2	0,1 0,15
90	122 140	103 107	1,5 2	1,1 2	3,5 1,8	96 101	101 104	106 110	133 149	1,5 2	1 2	0,1 0,15
95	127	108	1,5	1,1	3,5	101	106	111	138	1,5	1	0,15
100	132	113	1,5	1,1	3,5	106	111	116	143	1,5	1	0,1

NoWear coated bearings

22 NoWear coated bearings

CagesCages	1061 1061
Bearing data	1062
Bearing service life	1062
Loads Minimum load. Load carrying capacity, equivalent bearing loads	1062 1062 1062
Temperature limits	1062
Permissible speed	1062
Lubrication	1062
Designation system	1062

22

5KF 1059

22

22 NoWear coated bearings

More information

General bearing knowledge	17
Bearing selection process	59
Lubrication	109
Bearing interfaces	139
Seat tolerances for standard	
conditions	148
Selecting internal clearance or	
preload	182
Sealing, mounting and	
dismounting	193

NoWear is a wear-resistant carbon coating that can be applied to the rolling elements and inner ring raceway(s) of a bearing (designation suffix L7DA) or only the rolling elements (designation suffix L5DA) (fig. 1).

A physical vapour deposition process applies the wear-resistant carbon coating. Thickness of the coating ranges from 1 to 3 μ m, depending on the size of the bearing. The hardness of the coating is 1 200 HV10.

NoWear coated bearing surfaces retain the toughness of the underlying material while adopting the hardness, improved friction properties and wear-resistance of the coating.

During the running-in period, minute amounts of the coating material are transferred to the counter-surfaces. This coating reduces friction and improves resistance against wear and smearing, even in bearings where only the rolling elements are coated.

Bearing features

- · Long service life
- Withstand severe operating conditions
 - increased risk of smearing
 - insufficient lubricating film
 - sudden load variations
 - light loads
 - rapid speed changes
 - vibration and oscillations

Applications

NoWear coated bearings may provide new possibilities for existing applications operating under severe conditions. They can provide new design possibilities while requiring no major design changes. Typical applications

where NoWear coated bearings are used include:

- paper machines
- marine and offshore applications
- fans
- compressors
- hydraulic pumps
- gearboxes
- · hydraulic motors

NoWear coated bearings are not intended for vacuum or other completely dry running applications. The coating does not act as a barrier against oxygen and is therefore not recommended as a corrosion inhibitor.

1060

22

			Tabl
NoWear coated Bearing type Symbol	bearings – standard assortment Range	Availabl	e variants
	Deep groove ball bearings d = 15 to 140 mm	L5DA	L7DA
	Angular contact ball bearings d = 15 to 140 mm	L5DA	L7DA
	Cylindrical roller bearings d = 15 to 220 mm d > 220 mm	L5DA L5DA	L7DA -
	Needle roller bearings d = 15 to 220 mm d > 220 mm	L5DA L5DA	L7DA -
	Spherical roller bearings d = 15 to 220 mm d > 220 mm	L5DA L5DA	L7DA -
	CARB toroidal roller bearings d = 15 to 220 mm d > 220 mm	L5DA L5DA	L7DA -
	Thrust ball bearings d = 15 to 110 mm	L5DA	-
	Spherical roller thrust bearings all sizes	L5DA	_

Designs and variants

The most commonly used NoWear coated bearings have a coating on only the rolling elements (designation suffix L5DA). They are recommended for applications where the bearing load is light to normal, or where vibration and oscillating movements occur.

NoWear coated bearings that have the inner ring raceway(s) and rolling elements coated (designation suffix L7DA) are recommended for any of the following operating conditions:

- abrasive contaminants that can cause premature wear
- heavy loads
- unusual lubrication conditions such as bearings lubricated by the process media

Most SKF rolling bearings can be supplied as NoWear coated bearings. For variants not listed in **table 1**, contact SKF.

Cages

Refer to *Cages* in the relevant product section of the standard bearing.

The ranges are general guidelines only and may vary between the dimension series. For additional information, contact SKF.

5KF 1061

Bearing data

Dimension standards, tolerances, internal clearance, permissible misalignment

Refer to *Bearing data* in the relevant product section of the standard bearing.

Bearing service life

The extended bearing service life that NoWear can provide in high-speed, lightly loaded applications is difficult to calculate and depends on a variety of factors. However, experience has shown a multifold improvement in bearing service life.

For greased bearings that operate at speeds near or above the permissible speed, or at high temperatures that shorten the grease life, using NoWear potentially extends relubrication intervals.

When operating under marginal lubrication conditions, NoWear can extend bearing service life.

Loads

Minimum load

Owing to the material combination of NoWear/steel in the contact area, the risk of smearing damage is reduced. NoWear coated bearings are recommended for applications with light loads in combination with high speeds, where smearing damage is an issue.

Load carrying capacity, equivalent bearing loads

Refer to *Loads* in the relevant product section of the standard bearing.

Temperature limits

For temperature limits of the bearing, refer to *Temperature limits* in the relevant product section of the standard bearing.

The NoWear coating withstands temperatures up to 350 °C (660 °F).

Permissible speed

Refer to *Permissible speed* in the relevant product section of the standard bearing.

Lubrication

In general, the same lubrication guidelines are valid for NoWear coated bearings as for standard bearings (*Lubrication*, page 110). However, NoWear coated bearings can operate reliably even where adequate surface separation cannot be achieved. NoWear acts as a protective layer and may reduce the need for EP and AW additives in the lubricant

Designation system

Refer to *Designation system* in the relevant product section of the standard bearing.

The designation suffixes used to identify NoWear coated bearings are:

L5DA Coated rolling elements
L7DA Coated rolling elements and inner
ring raceway(s)

22

Adapter sleeves

23 Adapter sleeves

Designs and variants	1067
Sleeves for oil injection	1068
Sleeves for CARB toroidal roller bearings	1069
Sleeves for sealed bearings	1069
Product data	1070
Designation system	1071
Product tables	
23.1 Adapter sleeves for metric shafts	1072
23.2 Adapter sleeves with inch dimensions	1076

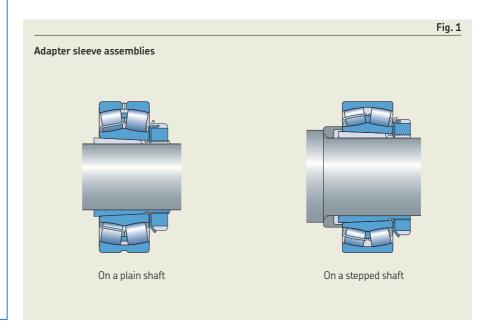
23

5KF 1065

23 Adapter sleeves

More information

SKF maintenance


products \rightarrow <u>skf.com/mapro</u>

SKF bearing maintenance handbook ISBN 978-91-978966-4-1 Adapter sleeves are the most commonly used components for locating bearings with a tapered bore onto a cylindrical seat as they can be used on (fig. 1):

- plain shafts
- stepped shafts

They are easy to install and require no additional location on the shaft:

- When used on plain shafts, the bearing can be located at any position on the shaft.
- When used on stepped shafts together with an L-shaped spacer ring, the bearing can be accurately positioned axially, thereby facilitating bearing mounting and dismounting.

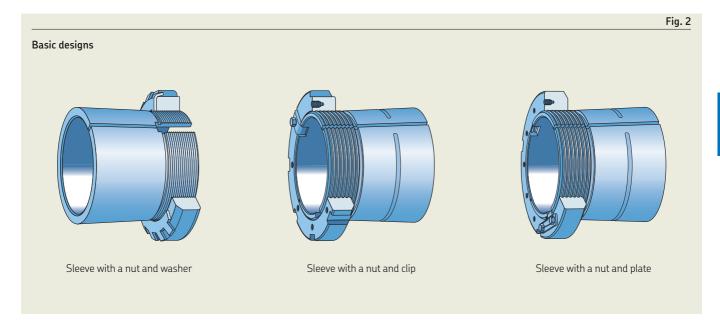
Designs and variants

SKF supplies:

- metric adapter sleeves
 - with a metric bore
 - with an inch bore

 These sleeves are not listed in this catalogue, but can be found online at skf.com/go/17000-23-3.
- inch adapter sleeves

The sleeves are slit and are supplied complete with a lock nut and locking device (fig. 2):


- Smaller sizes have a nut and a lock washer.
- Larger sizes have a nut and a locking clip or locking plate.

Metric sleeves:

- with a bore diameter ≤ 180 mm (size ≤ 40) are phosphated
- with a bore diameter > 180 mm are coated with a solventless rust inhibitor

Inch sleeves are coated with a solventless rust inhibitor.

Adapter sleeves listed in the **product tables**, **page 1072**, constitute the standard SKF assortment and are only part of the complete assortment. For larger sizes (bore diameter ≥ 1060 mm) and variants not listed, contact SKF.

Sleeves for oil injection

- enable use of the oil injection method to mount and dismount bearings
- are equipped with the necessary oil supply ducts and distribution grooves
 - as standard for metric sleeves with a bore diameter ≥ 200 mm (size ≥ 44)
 - on request for metric sleeves with a bore diameter ≥ 140 mm to < 200 mm
 - on request for inch sleeves with a bore diameter $\geq 4.5/16$ inches (size ≥ 26)
- include OH (metric) series, and OSNW and OSNP (inch) series

Thread details for the oil supply ducts and the appropriate hydraulic nut designations are listed in the **product tables**, **page 1072**. For information about oil injection equipment, refer to the catalogue *SKF Maintenance and Lubrication Products* or online at skf.com/mapro.

SKF manufactures sleeves for oil injection in four variants (table 1). Those with a designation suffix H are the SKF standard.

	OH H OSNW H OSNP H	0H 0SNW 0SNP	OH B OSNW B OSNP B	OH HB OSNW HB OSNP HB
Designation suffix	Н	None	В	НВ
No. of oil supply ducts¹) for: all sleeves with a bore diameter < 200 mm metric sleeves with a bore diameter ≥ 200 mm inch sleeves with a bore diameter ≥ 4 5/16 inches (made to order)	1 1 1	1 1 1	1 2 2	1 2 2
Position of oil supply duct(s)	At the threaded end of the sleeve	At the end opposite the threaded section	At the end opposite the threaded section	At the threaded end of the sleeve
Position of distribution proove(s)	In the outside surface	In the outside surface	In the bore and in the outside surface	In the bore and in the outside surface

23

Sleeves for CARB toroidal roller bearings

 are specially designed to prevent the locking device from interfering with the cage

SKF manufactures sleeves for CARB toroidal roller bearings in three variants (fig. 3):

• Sleeves with the designation suffix E

- are supplied with a KMFE lock nut in place of the standard KM lock nut and MB lock washer
- are supplied with an HME lock nut in place of the standard HM 30 or HM 31 lock nut

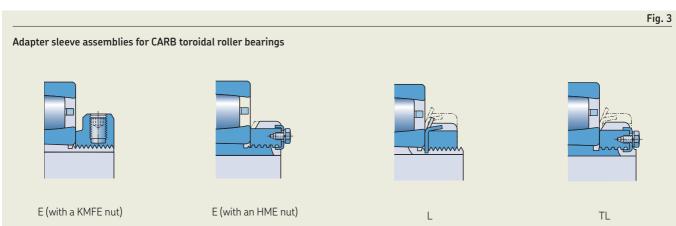
· Sleeves with the designation suffix L

 are supplied with a KML lock nut and MBL lock washer, both with low cross-sectional height, in place of the standard KM lock nut and MB lock washer

• Sleeves with the designation suffix TL

 are supplied with an HM 30 lock nut and MS 30 locking clip, both with low cross-sectional height, in place of the standard HM .. T lock nut and MB lock washer

When using CARB bearings, check that there is sufficient space on both sides of the bearing to accommodate axial displacement.


Sleeves for sealed bearings

- are specially designed to prevent the locking device from interfering with the seals of sealed spherical roller bearings and sealed self-aligning ball bearings
- have the designation suffixes E, EL, EH, L, and TL (fig. 3 and fig. 4)

Adapter sleeve assemblies with the designation suffix EL or EH are supplied with one of the following, respectively:

- a KMFE .. L lock nut, which has a lower abutment diameter than the standard KMFE lock nut
- a KMFE .. H lock nut, which has a higher abutment diameter than the standard KMFE lock nut

Product data

	Metric series	Inch series								
Dimension standards	ISO 2982-1, except for the bore diameter of sleeves for inch shafts	ANSI/ABMA Std. 8.2								
Tolerances	Bore diameter: JS9 Width: h15									
External taper	1:12 as standard 1:30 as standard in the 40 and 41 dimension series									
Thread	Bore diameter < 200 mm (size ≤ 40): metric thread in accordance with ISO 965-3, matching the included SKF lock nut	Bore diameter ≤ 12 in. (size ≤ 64): Unified Special Form ANSI/ASME B1.1								
	Bore diameter ≥ 200 mm (size ≥ 44): metric trapezoidal thread in accordance with ISO 2903, matching the included SKF lock nut	Bore diameter ≥ 12 7/16 in. (size ≥ 68): ACME thread class 3G								
Shaft tolerances	haft tolerances h9© Total radial run-out: IT5/2 – ISO 1101 Adapter sleeves adjust to the shaft diameter so that wider diameter tolerances can be permitted compar seat of a bearing with a cylindrical bore. However, the geometrical tolerances must be kept within narrow as they directly affect the shaft positioning and vibration.									

Designation system

Product type

H Adapter sleeve, dimensions in accordance with ISO standard, basic design

HA Adapter sleeve, dimensions in accordance with ISO standard, except the bore, in 1/16 in. Adapter sleeve, dimensions in accordance with ISO standard, except the bore, in 1/4 in. Adapter sleeve, dimensions in accordance with ISO standard, except the bore, in 1/8 in. Adapter sleeve, dimensions in accordance with ISO standard, prepared for oil injection OSNP Adapter sleeve, dimensions in accordance with ANSI standard, prepared for oil injection, with a locking plate

OSNW Adapter sleeve, dimensions in accordance with ANSI standard, prepared for oil injection,

with a lock washer

SNP Adapter sleeve, dimensions in accordance with ANSI standard, with a locking plate SNW Adapter sleeve, dimensions in accordance with ANSI standard, with a lock washer

KH Unthreaded sleeve, basic design

KOH Unthreaded sleeve, prepared for oil injection

Size identification

Listed in the product tables, page 1072

Suffixes

B For adapter sleeves for oil injection: One or two oil supply ducts at the end opposite the

threaded section

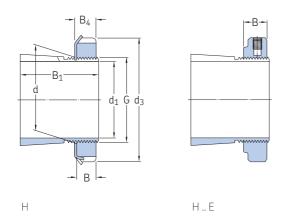
For adapter sleeves for inch shafts: Whitworth thread

Sleeve split in two halves

E Adapter sleeve without key slot, with a KMFE lock nut or standard adapter sleeve with an

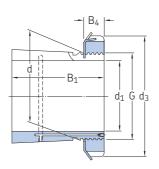
HMÉ lock nut

EH Adapter sleeve without key slot, with a KMFE .. H lock nut
EL Adapter sleeve without key slot, with a KMFE .. L lock nut
G Thread diameter changed according to revised ISO standard

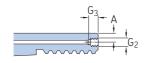

H One oil supply duct at the threaded end
HB One or two oil supply ducts at the threaded end

L Adapter sleeve with a lock nut with lower cross-sectional height

TL Same as L, but with key slot positions for a locking clip

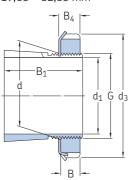

Prin	cipal di	mensio	ns								Mass		Designations Adapter sleeve		Associated	
d_1	d	d_3	B ₁	В	B ₄	B ₅	G	G ₂	G_3	Α			assembly	lock nut	locking device	hydraulic nut
mm											kg		_			
17	20 20 20	32 32 38	24 28 28	6 6 10,5	7 7 -	- - -	M 20x1 M 20x1 M 20x1	- - -	- - -	- - -	0,036 0,04 0,047	•	H 204 H 304 H 304 E	KM 4 KM 4 KMFE 4	MB 4 MB 4	- - -
20	25 25 25	38 38 38	26 29 29	7 7 10,5	8 8 -	- - -	M 25x1,5 M 25x1,5 M 25x1,5	- - -	_ _ _	- - -	0,064 0,071 0,076		H 205 H 305 H 305 E	KM 5 KM 5 KMFE 5	MB 5 MB 5 -	- - -
25	30 30 30	45 45 45	27 31 31	7 7 10,5	8 8 -	- - -	M 30x1,5 M 30x1,5 M 30x1,5	- - -	- - -	- - -	0,086 0,095 0,11		H 206 H 306 H 306 E	KM 6 KM 6 KMFE 6	MB 6 MB 6	- - -
30	35 35 35	52 52 52	29 35 35	8 8 11,5	9 9 -	- - -	M 35x1,5 M 35x1,5 M 35x1,5	- - -	- - -	_ _ _	0,12 0,14 0,15		H 207 H 307 H 307 E	KM 7 KM 7 KMFE 7	MB 7 MB 7 -	- - -
35	40 40 40	58 58 58	31 36 36	9 9 13	10 10 -	- - -	M 40x1,5 M 40x1,5 M 40x1,5	- - -	- - -	- - -	0,16 0,17 0,19	•	H 208 H 308 H 308 E	KM 8 KM 8 KMFE 8	MB 8 MB 8	- - -
40	45 45 45	65 65 65	33 39 39	10 10 13	11 11 -	- - -	M 45x1,5 M 45x1,5 M 45x1,5	- - -	- - -	- - -	0,21 0,23 0,24	•	H 209 H 309 H 309 E	KM 9 KM 9 KMFE 9	MB 9 MB 9 -	- - -
45	50 50 50	70 70 70	35 42 42	11 11 14	12 12 -	- - -	M 50x1,5 M 50x1,5 M 50x1,5	- - -	- - -	- - -	0,24 0,27 0,3	•	H 210 H 310 H 310 E	KM 10 KM 10 KMFE 10	MB 10 MB 10 -	HMV 10E HMV 10 E HMV 10 E
50	55 55 55	75 75 75	37 45 45	11 11 14	12,5 12,5 -	- - -	M 55x2 M 55x2 M 55x2	- - -	- - -	- - -	0,28 0,32 0,34	•	H 211 H 311 H 311 E	KM 11 KM 11 KMFE 11	MB 11 MB 11 -	HMV 11E HMV 11 E HMV 11 E
55	60 60 60	80 80 80	38 47 47	11 11 14	13 13 -	- - -	M 60x2 M 60x2 M 60x2	- - -	- - -	- - -	0,31 0,36 0,4	•	H 212 H 312 H 312 E	KM 12 KM 12 KMFE 12	MB 12 MB 12 -	HMV 12E HMV 12 E HMV 12 E
60	65 65 65	85 85 85	40 50 50	12 12 15	13,5 13,5 -	- - -	M 65x2 M 65x2 M 65x2	- - -	- - -	- - -	0,36 0,42 0,43	•	H 213 H 313 H 313 E	KM 13 KM 13 KMFE 13	MB 13 MB 13	HMV 13E HMV 13 E HMV 13 E
	65 70 70	85 92 92	65 52 52	15 12 15	- 13,5 -	- - -	M 65x2 M 70x2 M 70x2	_ _ _	- - -	- - -	0,53 0,67 0,67	•	H 2313 E H 314 H 314 E	KMFE 13 KM 14 KMFE 14	_ MB14 _	HMV 13 E HMV 14 E HMV 14 E
65	75 75 75	98 98 98	43 55 55	13 13 16	14,5 14,5 -	- - -	M 75x2 M 75x2 M 75x2	- - -	- - -	- - -	0,66 0,78 0,82	٠	H 215 H 315 H 315 E	KM 15 KM 15 KMFE 15	MB 15 MB 15	HMV 15E HMV 15 E HMV 15 E


► Popular item


Princ	ipal dir	mensio	ns								Mass		Designations Adapter sleeve assembly	Included pr	oducts locking device	Associated hvdraulic nut
d ₁	d	d ₃	В1	В	B ₄	B ₅	G	G_2	G_3	Α			assembly	tockriac	tocking device	riyaradiic nac
mm											kg		-			
70	80 80 80	105 105 105	46 59 59	15 15 18	17 17 -	- - -	M 80x2 M 80x2 M 80x2	- - -	- - -	- - -	0,81 0,95 1	•	H 216 H 316 H 316 E	KM 16 KM 16 KMFE 16	MB 16 MB 16 -	HMV 16E HMV 16 E HMV 16 E
75	85 85 85	110 110 110	50 63 63	16 16 19	18 18 -	- - -	M 85x2 M 85x2 M 85x2	- - -	- - -	- - -	0,94 1,1 1,15	•	H 217 H 317 H 317 E	KM 17 KM 17 KMFE 17	MB 17 MB 17 -	HMV 17E HMV 17 E HMV 17 E
80	90 90 90	120 120 120	52 65 65	16 16 19	18 18 -	- - -	M 90x2 M 90x2 M 90x2	- - -	- - -	- - -	1,1 1,3 1,45	•	H 218 H 318 H 318 E	KM 18 KM 18 KMFE 18	MB 18 MB 18 -	HMV 18E HMV 18 E HMV 18 E
85	95 95 95	125 125 125	55 68 68	17 17 20	19 19 -	- - -	M 95x2 M 95x2 M 95x2	- - -	- - -	- - -	1,25 1,4 1,45		H 219 H 319 H 319 E	KM 19 KM 19 KMFE 19	MB 19 MB 19 -	HMV 19E HMV 19 E HMV 19 E
90	100 100 100	130 130 130	58 71 71	18 18 21	20 20 -	- - -	M 100x2 M 100x2 M 100x2	- - -	- - -	- - -	1,4 1,6 1,7	•	H 220 H 320 H 320 E	KM 20 KM 20 KMFE 20	MB 20 MB 20 –	HMV 20E HMV 20 E HMV 20 E
	100 100 100	130 130 130	76 76 97	18 21 21	20 - -	- - -	M 100x2 M 100x2 M 100x2	- - -	- - -	- - -	1,8 1,8 2	٠	H 3120 H 3120 E H 2320 E	KM 20 KMFE 20 KMFE 20	MB 20 - -	HMV 20 E HMV 20 E HMV 20 E
100	110 110 110	145 145 145	63 77 77	19 19 21,5	21 21 -	- - -	M 110x2 M 110x2 M 110x2	- - -	- - -	- - -	1,8 2,05 2,1	•	H 222 H 322 H 322 E	KM 22 KM 22 KMFE 22	MB 22 MB 22 –	HMV 22E HMV 22 E HMV 22 E
	110 110 110	145 145 145	81 81 105	19 21,5 21,5	21 - -	- - -	M 110x2 M 110x2 M 110x2	- - -	- - -	- - -	2,1 2,15 2,75	٠	H 3122 H 3122 E H 2322 E	KM 22 KMFE 22 KMFE 22	MB 22 - -	HMV 22 E HMV 22 E HMV 22 E
110	120 120 120	155 155 155	72 88 112	26 20 26	- 22 -	- - -	M 120x2 M 120x2 M 120x2	- - -	- - -	- - -	1,85 2,5 3,1	٠	H 3024 E H 3124 H 2324 E	KMFE 24 KM 24 KMFE 24	– MB 24 –	HMV 24 E HMV 24 E HMV 24 E
115	130 130	165 165	80 92	28 21	- 23	_	M 130x2 M 130x2	_	- -	_	2,9 3,45	•	H 3026 E H 3126	KMFE 26 KM 26	_ MB 26	HMV 26 E HMV 26 E
125	140 140	180 180	82 97	28 22	- 24	_ _	M 140x2 M 140x2	_ _	_ _	_ _	3,05 4,1	•	H 3028 E H 3128	KMFE 28 KM 28	_ MB 28	HMV 28 E HMV 28 E
135	150 150 150	195 195 195	87 111 111	30 24 30	- 26 -	- - -	M 150x2 M 150x2 M 150x2	- - -	- - -	- - -	3,75 5,25 4,7	•	H 3030 E H 3130 H 3130 E	KMFE 30 KM 30 KMFE 30	_ MB 30 _	HMV 30 E HMV 30 E HMV 30 E
140	160 160 160	210 210 210	93 119 119	32 25 32	- 28 -	- - -	M 160x3 M 160x3 M 160x3	- - -	- - -	- - -	5,1 7,25 7,35	•	H 3032 E H 3132 H 3132 E	KMFE 32 KM 32 KMFE 32	– MB 32 –	HMV 32 E HMV 32 E HMV 32 E
150	170 170 170	220 220 220	101 122 122	33 26 33	- 29 -	- - -	M 170x3 M 170x3 M 170x3	- - -	- - -	- - -	5,9 8,1 8,1	•	H 3034 E H 3134 H 3134 E	KMFE 34 KM 34 KMFE 34	_ MB 34 _	HMV 34 E HMV 34 E HMV 34 E
160	180 180	230 230	109 131	34 27	- 29,5	_	M 180x3 M 180x3	_	_	_	6,7 9,15	•	H 3036 E H 3136	KMFE 36 KM 36	_ MB 36	HMV 36 E HMV 36 E
170	190	240	141	28	30,5	_	M 190x3	-	-	-	10,5	•	H 3138	KM 38	MB 38	HMV 38 E
180	200	250	150	29	31,5	-	M 200x3	_	_	_	12	•	H 3140	KM 40	MB 40	HMV 40 E

[►] Popular item

$\begin{array}{ccc} \textbf{23.1} & \textbf{Adapter sleeves for metric shafts} \\ & \textbf{d}_1 & \textbf{200-500} \ mm \end{array}$

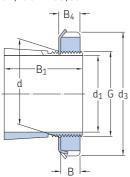


Princ	ipal dir	mensio	ns								Mass		Designations Adapter sleeve	Included pro	oducts	Associated
d_1	d	d_3	B ₁	В	B ₄	B ₅	G	G ₂	G_3	Α			assembly	lock nut	locking device	hydraulic nut
mm											kg		_			
200	220 220	260 280	126 161	30 32	- 35	41 -	Tr 220x4 Tr 220x4	M 6 M 6	9	6,5 4,2	9,9 15		OH 3044 H OH 3144 H	HM 3044 HM 44 T	MS 3044 MB 44	HMV 44E HMV 44E
220	240 240	290 300	133 172	34 34	- 37	46 -	Tr 240x4 Tr 240x4	M 6 M 6	9 9	4,2 4,2	12 16,5		OH 3048 H OH 3148 H	HM 3048 HM 48 T	MS 3052-48 MB 48	HMV 48E HMV 48E
240	260 260	310 330	145 190	34 36	- 39	46 -	Tr 260x4 Tr 260x4	M 6 M 6	9 9	4,2 4,2	13,5 21		OH 3052 H OH 3152 H	HM 3052 HM 52 T	MS 3052-48 MB 52	HMV 52E HMV 52E
260	280 280	330 350	152 195	38 38	- 41	50 -	Tr 280x4 Tr 280x4	M 6 M 6	9 9	6,5 4,2	16 23		OH 3056 H OH 3156 H	HM 3056 HM 56 T	MS 3056 MB 56	HMV 56E HMV 56E
280	300 300 300	360 380 380	168 208 240	42 40 40	- - -	54 53 53	Tr 300x4 Tr 300x4 Tr 300x4	M 6 M 6 M 6	9 9 9	6,5 4,2 4,2	20,5 29 32	•	OH 3060 H OH 3160 H OH 3260 H	HM 3060 HM 3160 HM 3160	MS 3060 MS 3160 MS 3160	HMV 60E HMV 60E HMV 60E
300	320 320 320	380 400 400	171 226 258	42 42 42	- - -	55 56 56	Tr 320x5 Tr 320x5 Tr 320x5	M 6 M 6 M 6	9 9 9	6,5 4 4	22 32 35		OH 3064 H OH 3164 H OH 3264 H	HM 3064 HM 3164 HM 3164	MS 3068-64 MS 3164 MS 3164	HMV 64E HMV 64E HMV 64E
320	340 340 340	400 440 440	187 254 288	45 55 55	- - -	58 72 72	Tr 340x5 Tr 340x5 Tr 340x5	M 6 M 6 M 6	9 9 9	6,5 4 4	27 50 51,5	•	OH 3068 H OH 3168 H OH 3268 H	HM 3068 HM 3168 HM 3168	MS 3068-64 MS 3172-68 MS 3172-68	HMV 68E HMV 68E HMV 68E
340	360 360 360	420 460 460	188 259 299	45 58 58	- - -	58 75 75	Tr 360x5 Tr 360x5 Tr 360x5	M 6 M 6 M 6	9 9 9	6,5 4 4	29 56 60,5		OH 3072 H OH 3172 H OH 3272 H	HM 3072 HM 3172 HM 3172	MS 3072 MS 3172-68 MS 3172-68	HMV 72E HMV 72E HMV 72E
360	380 380 380	450 490 490	193 264 310	48 60 60	- - -	62 77 77	Tr 380x5 Tr 380x5 Tr 380x5	M 6 M 6 M 6	9 9 9	6,5 4 4	35,5 61,5 69,5		OH 3076 H OH 3176 H OH 3276 H	HM 3076 HM 3176 HM 3176	MS 3080-76 MS 3176 MS 3176	HMV 76E HMV 76E HMV 76E
380	400 400 400	470 520 520	210 272 328	52 62 62	- - -	66 82 82	Tr 400x5 Tr 400x5 Tr 400x5	M 6 M 6 M 6	9 9 9	6,5 4 4	40 73 87	•	OH 3080 H OH 3180 H OH 3280 H	HM 3080 HM 3180 HM 3180	MS 3080-76 MS 3184-80 MS 3184-80	HMV 80E HMV 80E HMV 80E
400	420 420 420	490 540 540	212 304 352	52 70 70	- - -	66 90 90	Tr 420x5 Tr 420x5 Tr 420x5	M 6 M 6 M 6	9 9 9	6,5 4 4	47 80 96	•	OH 3084 H OH 3184 H OH 3284 H	HM 3084 HM 3184 HM 3184	MS 3084 MS 3184-80 MS 3184-80	HMV 84E HMV 84E HMV 84E
410	440 440 440	520 560 560	228 307 361	60 70 70	- - -	77 90 90	Tr 440x5 Tr 440x5 Tr 440x5	M 8 M 8 M 8	12 12 12	6,5 6,5 6,5	65 95 117		OH 3088 H OH 3188 H OH 3288 H	HM 3088 HM 3188 HM 3188	MS 3092-88 MS 3192-88 MS 3192-88	HMV 88E HMV 88E HMV 88E
430	460 460	540 580	234 326	60 75	_	77 95	Tr 460x5 Tr 460x5	M 8 M 8	12 12	6,5 6,5	71 119	•	OH 3092 H OH 3192 H	HM 3092 HM 3192	MS 3092-88 MS 3192-88	HMV 92E HMV 92E

► Popular item

Principal dimensions									Mass	Designations Adapter sleeve	Included pro	Associated			
d_1	d	d_3	B ₁	В	B ₄	B ₅	G	G ₂	G_3	А		assembly	lock nut	locking device	hydraulic nut
mm											kg	_			
450	480 480	560 620	237 335	60 75		77 95	Tr 480x5 Tr 480x5	M 8 M 8	12 12	6,5 6,5	75 135	OH 3096 H OH 3196 H	HM 3096 HM 3196	MS 30/500-96 MS 3196	HMV 96E HMV 96E
500	530	630	265	68	-	90	Tr 530x6	M 8	12	6,5	105	0H 30/530 H	HM 30/530	MS 30/600-530	HMV 106E

23.2 Adapter sleeves with inch dimensions d_1 3/4 - 3 1/4 in. 19,05-82,55 mm


Principal	Principal dimensions							Threads	Mass	Designations Adapter sleeve	Included products		
d_1	d	d ₃ max.	B ₁	В	B ₄	B ₅	G	per inch		assembly	lock nut	locking device	hydraulic nut
in./mm	mm	in.					in.	_	kg	-			
3/4 19,05	25	1,568	1,259	0,416	0,456	-	0,969	32	0,11	► SNW 5x3/4	N 05	W 05	-
15/₁₆ 23,813	30	1,755	1,343	0,416	0,456	-	1,173	18	0,14	► SNW 6x15/16	N 06	W 06	-
1 25,4	30	1,755	1,343	0,416	0,456	-	1,173	18	0,13	► SNW 6x1	N 06	W 06	-
1 ¹/8 28,575	35	2,068	1,449	0,448	0,488	-	1,376	18	0,16	► SNW 7x1.1/8	N 07	W 07	-
1 ³/16 30,163	35	2,068	1,449	0,448	0,488	-	1,376	18	0,16	► SNW 7x1.3/16	N 07	W 07	-
1 ¹/ ₄ 31,75	35 40	2,068 2,255	1,449 1,494	0,448 0,448	0,488 0,496	_	1,376 0,496	18 18	0,16 0,19	SNW 7x1.1/4 ► SNW 8x1.1/4	N 07 N 08	W 07 W 08	- -
1 5/16 33,338	40 45	2,255 2,536	1,494 1,574	0,448 0,448	0,496 0,496		1,563 1,767	18 18	0,19 0,28	SNW 8x1.5/16 SNW 9x1.5/16	N 08 N 09	W 08 W 09	-
1 ³/8 34,925	40 45	2,255 2,536	1,494 1,574	0,448 0,448	0,496 0,496		1,563 1,767	18 18		► SNW 8x1.3/8 ► SNW 9x1.3/8	N 08 N 09	W 08 W 09	
	45	2,536	2,123	0,448	0,496	_	1,767	18	0,32	SNW 109x1.3/8	N 09	W 09	_
1 7/16 36,513	45 45	2,536 2,536	1,574 1,574	0,448 0,448	0,496 0,496		1,767 1,767	18 18		► SNW 9x1.7/16 ► SNW 109x1.7/16	N 09 N 09	W 09 W 09	
1 ½ 38,1	45 45 50	2,536 2,536 2,536	1,574 2,123 1,755	0,448 0,448 0,448	0,496 0,496 0,558	- - -	1,767 1,767 1,967	18 18 18	0,28 0,32 0,33	SNW 9x1.1/2 SNW 109x1.1/2 SNW 10x1.1/2	N 09 N 09 N 09	W 09 W 09 W 10	- HMVC 10E
1 5/8 41,275	50 55	2,693 2,693	1,755 2,384	0,51 0,51	0,558 0,558	- -	1,967 1,967	18 18	0,33 0,39	SNW 10x1.5/8 SNW 110x1.5/8	N 10 N 10	W 10 W 10	HMVC 10E HMVC 10E
1 ¹¹/₁₆ 42,863	50 50	2,693 2,693	1,755 2,384	0,51 0,51	0,558 0,558	_ _	1,967 1,967	18 18		 SNW 10x1.11/16 SNW 110x1.11/1 		W 10 W 10	HMVC 10E HMVC 10E
1 3/4 44,45	50 55 55	2,693 2,693 2,974	1,755 2,384 1,835	0,51 0,51 0,51	0,558 0,558 0,563	_ _ _	1,967 1,967 2,157	18 18 18		SNW 10x1.3/4 SNW 110x1.3/4 SNW 11x1.3/4	N 10 N 10 N 11	W 10 W 10 W 11	HMVC 10E HMVC 10E HMVC 11E
1 ¹³/16 46,038	55	2,974	1,835	0,51	0,563	-	2,157	18	0,36	► SNW 11x1.13/16	N 11	W 11	HMVC 11E

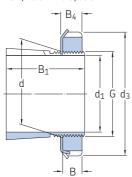
► Popular item

Principal	Principal dimensions						Thread	Thread Threads		Designations Adapter sleeve	Included n	Included products		
d_1	d	d ₃ max.	B ₁	В	B ₄	B ₅	G	per inch		assembly		locking device	Associated hydraulic nut	
in./mm	mm	in.					in.	_	kg	_	,			
1 7/8 47,625	55 55	2,974 2,974	1,835 2,506	0,51 0,51	0,563 0,563		2,157 2,157	18 18	0,36 0,43	► SNW 11x1.7/8 SNW 111x1.7/8	N 11 N 11	W 11 W 11	HMVC 11E HMVC 11E	
1 ¹⁵/16 49,213	55 55	2,974 2,974	1,835 2,506	0,51 0,51	0,563 0,563	-	2,157 2,157	18 18	0,36 0,43	SNW 11x1.15/16SNW 111x1.15/16	N 11 N 11	W 11 W 11	HMVC 11E HMVC 11E	
2 50,8	55 55 65	2,974 2,974 3,38	1,835 2,506 2,09	0,51 0,51 0,573	0,563 0,563 0,573	- - -	2,157 2,157 2,548	18 18 18	0,36 0,43 0,64	► SNW 11x2 SNW 111x2 ► SNW 13x2	N 11 N 11 N 13	W 11 W 11 W 13	HMVC 11E HMVC 11E HMVC 13E	
2 ¹/16 52,388	60	3,161	2,649	0,541	0,594	-	2,36	18	0,73	► SNW 112x2.1/16	N 12	W 12	HMVC 12E	
2 1/8 53,975	65 65	3,38 3,38	2,09 2,09	0,573 0,573	0,626 0,626		2,548 2,548	18 18	0,64 0,79	SNW 13x2.1/8 SNW 113x2.1/8	N 13 N 13	W 13 W 13	HMVC 13E HMVC 13E	
2 ³/16 55,563	65 65	3,38 3,38	2,09 2,761	0,573 0,573	0,626 0,626	-	2,548 2,548	18 18	0,64 0,79	► SNW 13x2.3/16 ► SNW 113x2.3/16	N 13 N 13	W 13 W 13	HMVC 13E HMVC 13E	
2 ¹/ ₄ 57,15	65 65	3,38 3,38	2,09 2,761	0,573 0,573	0,626 0,626	- -	2,548 2,548	18 18	0,64 0,79	► SNW 13x2.1/4 ► SNW 113x2.1/4	N 13 N 13	W 13 W 13	HMVC 13E HMVC 13E	
2 5/16 58,738	65	3,38	2,09	0,573	0,626	-	2,548	18	0,64	► SNW 13x2.5/16	N 13	W 13	HMVC 13E	
2 ³ / ₈ 60,325	75 75	3,88 3,88	2,286 3,074	0,604 0,604	0,666 0,666	_ _	2,933 2,933	12 12	1 1,35	► SNW 15x2.3/8 SNW 115x2.3/8	AN 15 AN 15	W 15 W 15	HMVC 15E HMVC 15E	
27/16 61,913	75 75	3,88 3,88	2,286 3,074	0,604 0,604	0,666 0,666	<u>-</u>	2,933 2,933	12 12	1 1,35	► SNW 15x2.7/16 ► SNW 115x2.7/16	AN 15 AN 15	W 15 W 15	HMVC 15E HMVC 15E	
2 ¹/₂ 63,5	75 75	3,88 3,88	2,286 3,074	0,604 0,604	0,666 0,666	- -	2,933 2,933	12 12	1 1,35	SNW 15x2.1/2 SNW 115x2.1/2	AN 15 AN 15	W 15 W 15	HMVC 15E HMVC 15E	
2 5/8 66,675	80 80	4,161 4,161	2,366 3,194	0,604 0,604	0,666 0,666	- -	3,137 3,137	12 12	1,1 1,45	SNW 16x2.5/8 SNW 116x2.5/8	AN 16 AN 16	W 16 W 16	HMVC 16E HMVC 16E	
2 ¹¹/₁₆ 68,263	80 80	4,161 4,161	2,366 3,194	0,604 0,604	0,666 0,666	<u>-</u>	3,137 3,137	12 12	1,1 1,45	► SNW 16x2.11/16 ► SNW 116x2.11/16	AN 16 AN 16	W 16 W 16	HMVC 16E HMVC 16E	
2 3/4 69,85	80 80	4,161 4,161	2,366 3,194	0,604 0,604	0,666 0,666	<u>-</u>	3,137 3,137	12 12	1,1 1,45	► SNW 16x2.3/4 SNW 116x2.3/4	AN 16 AN 16	W 16 W 16	HMVC 16E HMVC 16E	
2 ¹³/₁₆ 71,438	85 85	4,411 4,411	2,476 3,302	0,635 0,635	0,697 0,697	_	3,34 3,34	12 12	1,3 1,55	SNW 17x2.13/16 SNW 117x2.13/16	AN 17 AN 17	W 17 W 17	HMVC 17E HMVC 17E	
2 7/8 73,025	85 85	4,411 4,411	2,476 3,302	0,635 0,635	0,697 0,697	- -	3,34 3,34	12 12	1,3 1,55	SNW 17x2.7/8 SNW 117x2.7/8	AN 17 AN 17	W 17 W 17	HMVC 17E HMVC 17E	
2 ¹⁵/₁₆ 74,613	85 85	4,411 4,411	2,476 3,302	0,635 0,635	0,697 0,697		3,34 3,34	12 12	1,3 1,55	► SNW 17x2.15/16 ► SNW 117x2.15/16	AN 17 AN 17	W 17 W 17	HMVC 17E HMVC 17E	
3 76,2	85 85	4,411 4,411	2,476 3,302	0,635 0,635	0,697 0,697		3,34 3,34	12 12	1,3 1,55	► SNW 17x3 ► SNW 117x3	AN 17 AN 17	W 17 W 17	HMVC 17E HMVC 17E	
3 ¹/16 77,788	90 90	4,661 4,661	2,636 3,543	0,698 0,698	0,782 0,782		3,527 3,527	12 12	1,4 1,8	► SNW 18x3.1/16 SNW 118x3.1/16	AN 18 AN 18	W 18 W 18	HMVC 18E HMVC 18E	
3 ¹/8 79,375	90 90	4,661 4,661	2,636 3,543	0,698 0,698	0,782 0,782	- -	3,527 3,527	12 12	1,4 1,8	SNW 18x3.1/8 SNW 118x3.1/8	AN 18 AN 18	W 18 W 18	HMVC 18E HMVC 18E	
3 3/16 80,963	90 90	4,661 4,661	2,636 3,543	0,698 0,698	0,782 0,782	- -	3,527 3,527	12 12	1,4 1,8	SNW 18x3.3/16 SNW 118x3.3/16	AN 18 AN 18	W 18 W 18	HMVC 18E HMVC 18E	
3 ¹/ ₄ 82,55	90 90	4,661 4,661	2,636 3,543	0,698 0,698	0,782 0,782		3,527 3,527	12 12	1,4 1,8	SNW 18x3.1/4 SNW 118x3.1/4	AN 18 AN 18	W 18 W 18	HMVC 18E HMVC 18E	
			•	•			•							

[►] Popular item

23.2 Adapter sleeves with inch dimensions d₁ 3 5/16 - 5 1/4 in. 84,138 - 133,35 mm

Principal dimensions							Thread	Threads	Mass		Designations Adapter sleeve	Included products		Associated	
d_1	d	d ₃ max.	B ₁	В	B ₄	B ₅	G	per inch			assembly	lock nut	locking device	hydraulic nut	
in./mm	mm	in.					in.	-	kg		-				
3 5/16 84,138	95 95 100	4,943 4,943 5,193	2,75 3,692 2,859	0,729 0,729 0,76	0,813 0,813 0,844	- - -	3,73 3,73 3,918	12 12 12	1,85 1,85 2		SNW 19x3.5/16 SNW 119x3.5/16 SNW 20x3.5/16	AN 19 AN 19 AN 20	W19 W19 W20	HMVC 19E HMVC 19E HMVC 20E	
	100	3,918	3,961	0,76	0,844	-	3,918	12	2,85		SNW 120x3.5/16	AN 20	W 20	HMVC 20E	
3 ³/8 85,725	100 100	5,193 5,193	2,859 3,961	0,76 0,76	0,844 0,844		3,918 3,918	12 12	2 2,85		SNW 20x3.3/8 SNW 120x3.3/8	AN 20 AN 20	W 20 W 20	HMVC 20E HMVC 20E	
3 7/₁₆ 87,313	100 100	5,193 5,193	2,859 3,961	0,76 0,76	0,844 0,844	_ _	3,918 3,918	12 12	2 2,85		SNW 20x3.7/16 SNW 120x3.7/16	AN 20 AN 20	W 20 W 20	HMVC 20E HMVC 20E	
3 1/2 88,9	100 100	5,193 5,193	2,859 3,961	0,76 0,76	0,844 0,844		3,918 3,918	12 12	2 2,85		SNW 20x3.1/2 SNW 120x3.1/2	AN 20 AN 20	W 20 W 20	HMVC 20E HMVC 20E	
3 ¹¹/₁₆ 93,663	105 105 110	5,443 5,443 5,724	2,977 4,157 3,196	0,76 0,76 0,791	0,844 0,844 0,906	_ _ _	4,122 4,122 4,325	12 12 12	2,05 2,25 2,25		SNW 21x3.11/16 SNW 121x3.11/16 SNW 22x3.11/16	AN 21 AN 21 AN 22	W 21 W 21 W 22	HMVC 21E HMVC 21E HMVC 22E	
	110	5,724	4,338	0,791	3,693	-	4,325	6	3		SNW 122x3.11/16	AN 22	W 22	HMVC 22E	
3 ³/4 95,25	110	5,724	4,338	0,791	0,906	-	4,325	12	2,95		SNW 122x3.3/4	AN 22	W 22	HMVC 22E	
3 ¹³/₁₆ 96,838	110 110	5,724 5,724	3,196 4,338	0,791 0,791	0,906 0,906		4,325 4,325	12 12	2,25 2,95		SNW 22x3.13/16 SNW 122x3.13/16	AN 22 AN 22	W 22 W 22	HMVC 22E HMVC 22E	
3 7/8 98,425	110 4,338	5,724 5,724	3,196 4,338	0,791 0,791	0,906 0,906	_	4,325 4,325	12 12	2,25 2,95		SNW 22x3.7/8 SNW 122x3.7/8	AN 22 AN 22	W 22 W 22	HMVC 22E HMVC 22E	
3 ¹⁵/16 100,013	110 110	5,724 5,724	3,196 4,338	0,791 0,791	0,906 0,906		4,325 4,325	12 12	2,25 2,95		SNW 22x3.15/16 SNW 122x3.15/16	AN 22 AN 22	W 22 W 22	HMVC 22E HMVC 22E	
4 101,6	110 110 120	5,724 5,724 6,13	3,196 4,338 2,937	0,791 0,791 0,823	0,906 0,906 0,938	- - -	4,325 4,325 4,716	12 12 12	2,25 2,95 2,8	٠	SNW 22x4 SNW 122x4 SNW 3024x4	AN 22 AN 22 AN 24	W 22 W 22 W 24	HMVC 22E HMVC 22E HMVC 24E	
	120 120	6,13 6,13	3,456 4,638	0,823 0,823	0,938 0,938	- -	4,716 4,716	12 12	3 3,55		SNW 24x4 SNW 124x4	AN 24 AN 24	W 24 W 24	HMVC 24E HMVC 24E	
4 1/16 103,188	120 120 120	5,693 6,13 6,13	2,937 3,456 4,638	0,823 0,823 0,823	0,938 0,938 0,938	_ _ _	4,716 4,716 4,716	12 12 12	2,8 3 3,55		SNW 3024x4.1/16 SNW 24x4.1/16 SNW 124x4.1/16	N 024 AN 24 AN 24	W 024 W 24 W 24	HMVC 24E HMVC 24E HMVC 24E	
4 1/8 104,775	120 120 120	5,693 6,13 6,13	2,937 3,456 4,638	0,823 0,823 0,823	0,938 0,938 0,938	- - -	4,716 4,716 4,716	12 12 12	2,8 3 3,55		SNW 3024x4.1/8 SNW 24x4.1/8 SNW 124x4.1/8	N 024 AN 24 AN 24	W 024 W 24 W 24	HMVC 24E HMVC 24E HMVC 24E	

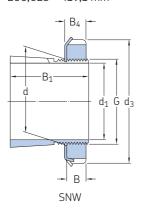

► Popular item

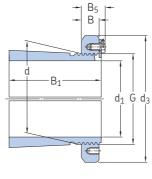
d_1							Thread	Threads	Mass		Designations Adapter sleeve	Included p	roducts	Associated
	d	d ₃ max.	B ₁	В	B ₄	B ₅	G	per inch			assembly	lock nut	locking device	hydraulic nut
in./mm	mm	in.					in.	_	kg		-			
4 3/16 106,363	120 120 120	5,693 5,693 6,13	2,937 3,456 3,456	0,823 0,823 0,823	0,938 0,938 0,938	- - -	4,716 4,716 4,716	12 12 12	2,8 2,65 3		SNW 3024x4.3/16 SNW 3124x4.3/16 SNW 24x4.3/16	N 024 N 024 AN 24	W 024 W 024 W 24	HMVC 24E HMVC 24E HMVC 24E
	120	6,13	4,638	0,823	0,938	-	4,716	12	3,55	•	SNW 124x4.3/16	AN 24	W 24	HMVC 24E
4 1/4 107,95	120 120 120	5,693 5,693 6,13	2,937 3,456 3,456	0,823 0,823 0,823	0,938 0,938 0,938	- - -	4,716 4,716 4,716	12 12 12	2,8 2,65 3		SNW 3024x4.1/4 SNW 3124x4.1/4 SNW 24x4.1/4	N 024 N 024 AN 24	W 024 W 024 W 24	HMVC 24E HMVC 24E HMVC 24E
	120	6,13	4,638	0,823	0,938	-	4,716	12	3,55		SNW 124x4.1/4	AN 24	W 24	HMVC 24E
4 5/16 109,538	130 130 130	6,13 6,755 6,755	3,227 3,752 4,972	0,885 0,885 0,885	1 1 1	- - -	5,106 5,106 5,106	12 12 12	3,4 4,4 5,65		SNW 3026x4.5/16 SNW 26x4.5/16 SNW 126x4.5/16	N 026 AN 26 AN 26	W 026 W 26 W 26	HMVC 26E HMVC 26E HMVC 26E
4 ³/₈ 111,125	130 130 130	6,13 6,755 6,755	3,227 3,752 4,972	0,885 0,885 0,885	1 1 1	- - -	5,106 5,106 5,106	12 12 12	3,4 4,4 5,65		SNW 3026x4.3/8 SNW 26x4.3/8 SNW 126x4.3/8	N 026 AN 26 AN 26	W 026 W 26 W 26	HMVC 26E HMVC 26E HMVC 26E
4 ⁷/16 112,713	130 130 130	6,13 6,13 6,755	3,227 3,752 3,752	0,885 0,885 0,885	1 1 1	- - -	5,106 5,106 5,106	12 12 12	3,4 3,8 4,4	•	SNW 3026x4.7/16 SNW 3126x4.7/16 SNW 26x4.7/16	N 026 N 026 AN 26	W 026 W 026 W 26	HMVC 26E HMVC 26E HMVC 26E
	130 140	6,755 7,099	4,972 5,313	0,885 0,948	1	-	5,106 5,497	12 12	5,65 5,9	٠	SNW 126x4.7/16 SNW 128x4.7/16	AN 26 AN 28	W 26 W 28	HMVC 26E HMVC 28E
4 1/2 114,3	130 130 130	6,13 6,13 6,755	3,227 3,752 3,752	0,885 0,885 0,885	1 1 1	- - -	5,106 5,106 5,106	12 12 12	3,4 3,8 4,4	•	SNW 3026x4.1/2 SNW 3126x4.1/2 SNW 26x4.1/2	N 026 N 026 AN 26	W 026 W 026 W 26	HMVC 26E HMVC 26E HMVC 26E
	130	6,755	4,972	0,885	1	-	5,106	12	5,65		SNW 126x4.1/2	AN 26	W 26	HMVC 26E
4 13/16 122,238	140 140 140	6,505 7,099 7,099	3,33 3,971 5,313	0,948 0,948 0,948	1,063 1,063 1,063	- - -	5,497 5,497 5,497	12 12 12	3,8 4,75 5,9		SNW 3028x4.13/16 SNW 28x4.13/16 SNW 128x4.13/16	N 028 AN 28 AN 28	W 028 W 28 W 28	HMVC 28E HMVC 28E HMVC 28E
4 7/8 123,825	140 140 140	6,505 7,099 7,099	3,33 3,971 5,313	0,948 0,948 0,948	1,063 1,063 0,906	- - -	5,497 5,497 5,497	12 12 12	3,8 4,75 5,9		SNW 3028x4.7/8 SNW 28x4.7/8 SNW 128x4.7/8	N 028 AN 28 AN 28	W 028 W 28 W 28	HMVC 28E HMVC 28E HMVC 28E
4 15/16 125,413	140 140 140	6,505 6,505 7,099	3,33 3,971 3,971	0,948 0,948 0,948	1,063 1,063 1,063	- - -	5,888 5,497 5,497	12 12 12	3,8 4 4,75	•	SNW 3028x4.15/16 SNW 3128x4.15/16 SNW 28x4.15/16	N 028 N 028 AN 28	W 028 W 028 W 28	HMVC 28E HMVC 28E HMVC 28E
	140	7,099	5,313	0,948	1,063	_	5,497	12	5,9	•	SNW 128x4.15/16	AN 28	W 28	HMVC 28E
5 127	140 140 140	6,505 6,505 7,099	3,33 3,971 3,971	0,948 0,948 0,948	1,063 1,063 1,063	- - -	5,497 5,497 5,497	12 12 12	3,8 4 4,75	•	SNW 3028x5 SNW 3128x5 SNW 28x5	N 028 N 028 AN 28	W 028 W 028 W 28	HMVC 28E HMVC 28E HMVC 28E
	140	7,099	5,313	0,948	0,906	_	5,497	12	5,9		SNW 128x5	AN 28	W 28	HMVC 28E
5 ¹/8 130,175	150 150 150	7,13 7,693 7,693	3,482 4,231 5,611	0,979 0,979 0,979	1,094 1,125 1,125	- - -	5,888 5,888 5,888	12 12 12	4,45 7,25 8,15		SNW 3030x5.1/8 SNW 30x5.1/8 SNW 130x5.1/8	N 030 AN 30 AN 30	W 030 W 30 W 30	HMVC 30E HMVC 30E HMVC 30E
5 3/16 131,763	150 150 150	7,13 7,13 7,693	3,482 4,231 4,231	0,979 0,979 0,979	1,094 1,094 1,125	- - -	5,888 5,888 5,888	12 12 12	4,45 6,2 7,25	١	SNW 3030x5.3/16 SNW 3130x5.3/16 SNW 30x5.3/16	N 030 N 030 AN 30	W 030 W 030 W 30	HMVC 30E HMVC 30E HMVC 30E
	150	7,693	5,611	0,979	1,125	-	5,888	12	8,15	•	SNW 130x5.3/16	AN 30	W 30	HMVC 30E
5 1/4 133,35	150 150 150	7,13 7,693 7,693	3,482 4,231 5,611	0,979 0,979 0,979	1,094 1,125 1,125	- - -	5,888 5,888 5,888	12 12 12	4,45 7,25 8,15	•	SNW 3030x5.1/4 SNW 30x5.1/4 SNW 130x5.1/4	N 030 AN 30 AN 30	W 030 W 30 W 30	HMVC 30E HMVC 30E HMVC 30E

[►] Popular item

23.2 Adapter sleeves with inch dimensions

d₁ 5 5/16 - 7 13/16 in. 134,938 - 198,438 mm



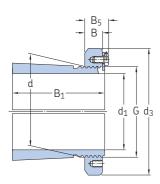

Principal dimensions						Thread	Threads			Designations Adapter sleeve	Included		Associated	
d_1	d	d ₃ max.	B ₁	В	B ₄	B ₅	G	per inch			assembly	lock nut	locking device	hydraulic nut
in./mm	mm	in.					in.	_	kg		_			
5 ⁵/16 134,938	150 150 180	7,693 7,693 9,068	4,231 5,611 6,446	0,979 0,979 1,104	1,125 1,125 1,104	- - -	5,888 6,284 7,066	12 12 8	7,25 8,15 10	•	SNW 30x5.5/16 SNW 130x5.5/16 SNW 136x5.5/16	AN 30 AN 30 AN 36	W 30 W 30 W 36	HMVC 30E HMVC 30E HMVC 36E
5 ³/8 136,525	150 150 160	7,693 7,693 7,505	4,231 5,611 3,701	0,979 0,979 1,041	1,125 1,125 1,156	- - -	5,888 6,284 6,284	12 12 8	7,25 8,15 5,45		SNW 30x5.3/8 SNW 130x5.3/8 SNW 3032x5.3/8	AN 30 AN 30 N 032	W 30 W 30 W 032	HMVC 30E HMVC 30E HMVC 32E
	160 160 180	8,068 8,068 9,068	4,568 5,91 6,446	1,041 1,041 1,104	1,187 1,187 1,104	- - -	6,284 6,284 7,066	8 8 8	7,05 8,15 10		SNW 32x5.3/8 SNW 132x5.3/8 SNW 136x5.3/8	AN 32 AN 32 AN 36	W 32 W 32 W 36	HMVC 32E HMVC 32E HMVC 36E
5 7/16 138,113	160 160 160	7,505 7,505 8,068	3,701 4,568 4,568	1,041 1,041 1,041	1,156 1,156 1,187	- - -	6,284 6,284 6,284	8 8 8	5,45 6,1 7,05	•	SNW 3032x5.7/16 SNW 3132x5.7/16 SNW 32x5.7/16	N 032 N 032 AN 32	W 032 W 032 W 32	HMVC 32E HMVC 32E HMVC 32E
	160	8,068	5,91	1,041	1,187	-	6,284	8	8,15	٠	SNW 132x5.7/16	AN 32	W 32	HMVC 32E
5 1/2 139,7	160 160 160	7,505 8,068 8,068	3,701 8,068 5,91	1,041 1,041 1,041	1,156 1,187 1,187	- - -	6,284 6,284 6,284	8 8 8	5,45 7,05 8,15		SNW 3032x5.1/2 SNW 32x5.1/2 SNW 132x5.1/2	N 032 AN 32 AN 32	W 032 W 32 W 32	HMVC 32E HMVC 32E HMVC 32E
5 3/4 146,05	160	8,068	4,568	1,041	1,187	-	6,284	8	7,05	٠	SNW 32x5.3/4	AN 32	W 32	HMVC 32E
5 ¹³/₁₆ 147,638	170 170 170	7,88 8,661 8,661	4,009 4,837 6,178	1,073 1,073 1,073	1,188 1,219 1,219	- - -	6,659 6,659 6,659	8 8 8	6,1 8,85 9,55		SNW 3034x5.13/16 SNW 34x5.13/16 SNW 134x5.13/16	N 034 AN 34 AN 34	W 034 W 34 W 34	HMVC 34E HMVC 34E HMVC 34E
5 7/8 149,225	170 170 170	7,88 8,661 8,661	4,009 4,837 6,178	1,073 1,073 1,073	1,188 1,219 1,219	- - -	6,659 6,659 6,659	8 8 8	6,1 8,85 9,55		SNW 3034x5.7/8 SNW 34x5.7/8 SNW 134x5.7/8	N 034 AN 34 AN 34	W 034 W 34 W 34	HMVC 34E HMVC 34E HMVC 34E
5 15/16 150,813	170 170 170	7,88 7,88 8,661	4,009 4,837 4,837	1,073 1,073 1,073	1,188 1,188 1,219	- - -	6,659 6,659 6,659	8 8 8	6,1 7,3 8,85	٠	SNW 3034x5.15/16 SNW 3134x5.15/16 SNW 34x5.15/16	N 034 N 034 AN 34	W 034 W 034 W 34	HMVC 34E HMVC 34E HMVC 34E
	170	8,661	6,178	1,073	1,219	-	6,659	8	9,55	•	SNW 134x5.15/16	AN 34	W 34	HMVC 34E
6 152,4	170 170 170	7,88 7,88 8,661	4,009 4,837 8,661	1,073 1,073 1,073	1,188 1,188 1,219	- - -	6,659 6,659 6,659	8 8 8	6,1 7,3 8,85	•	SNW 3034x6 SNW 3134x6 SNW 34x6	N 034 N 034 AN 34	W 034 W 034 W 34	HMVC 34E HMVC 34E HMVC 34E
	170	8,661	6,178	1,073	1,219	-	6,659	8	9,55	٠	SNW 134x6	AN 34	W 34	HMVC 34E
6 5/16 160,338	180 180 180	8,255 9,068 9,068	4,327 5,028 6,446	1,104 1,104 1,104	1,219 1,25 6,3175	- - -	7,066 7,066 7,066	8 8 8	6,8 9,3 8,5		SNW 3036x6.5/16 SNW 36x6.5/16 SNW 136x6.5/16	N 036 AN 36 AN 36	W 036 W 36 W 36	HMVC 36E HMVC 36E HMVC 36E

► Popular item

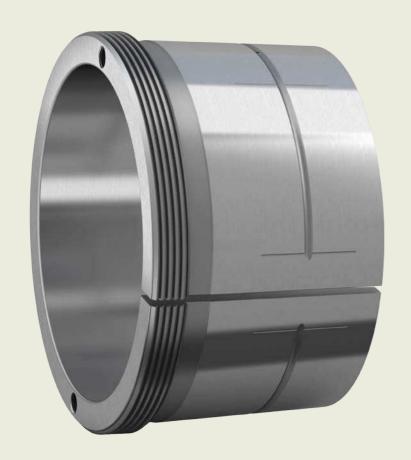
Principal (dimens	ions					Thread	Threads	Mass		Designations Adapter sleeve	Included p		Associated
d_1	d	d ₃ max.	B ₁	В	B ₄	B ₅	G	per inch			assembly	lock nut	locking device	hydraulic nut
in./mm	mm	in.					in.	_	kg		_			
6 ³/8 161,925	180 180 180	8,255 9,068 9,068	4,327 5,028 6,446	1,104 1,104 1,104	1,219 1,25 1,104	- - -	7,066 7,066 7,066	8 8 8	6,8 9,3 10		SNW 3036x6.3/8 SNW 36x6.3/8 SNW 136x6.3/8	N 036 AN 36 AN 36	W 036 W 36 W 36	HMVC 36E HMVC 36E HMVC 36E
6 ⁷/16 163,513	180 180 180	8,255 8,255 9,068	4,327 5,028 5,028	1,104 1,104 1,104	1,219 1,219 1,25	_ _ _	7,066 7,066 7,066	8 8 8	6,8 7,75 9,3	•	SNW 3036x6.7/16 SNW 3136x6.7/16 SNW 36x6.7/16	N 036 N 036 AN 36	W 036 W 036 W 36	HMVC 36E HMVC 36E HMVC 36E
	180	9,068	6,446	1,104	1,25	-	7,066	8	10	•	SNW 136x6.7/16	AN 36	W 36	HMVC 36E
6 ¹/2 165,1	180 180 180	8,255 8,255 9,068	4,327 5,028 5,028	1,104 1,104 1,104	1,219 1,219 1,25	- - -	7,066 7,066 7,066	8 8 8	6,8 7,75 9,3	•	SNW 3036x6.1/2 SNW 3136x6.1/2 SNW 36x6.1/2	N 036 N 036 AN 36	W 036 W 036 W 36	HMVC 36E HMVC 36E HMVC 36E
	180	9,068	6,446	1,104	1,104	_	7,066	8	10		SNW 136x6.1/2	AN 36	W 36	HMVC 36E
6 ¹³/₁₆ 173,038	190 190 190	8,693 9,474 9,474	4,402 5,251 6,748	1,135 1,135 1,135	1,25 1,281 1,281	- - -	7,472 7,472 7,472	8 8 8	7,5 10,5 12,5		SNW 3038x6.13/16 SNW 38x6.13/16 SNW 138x6.13/16	N 038 AN 38 AN 38	W 038 W 38 W 38	HMVC 38E HMVC 38E HMVC 38E
6 ⁷/8 174,625	190 190 190	8,693 9,474 9,474	4,402 5,251 6,748	1,135 1,135 1,135	1,25 1,281 1,281	- - -	7,472 7,472 7,472	8 8 8	7,5 10,5 12,5		SNW 3038x6.7/8 SNW 38x6.7/8 SNW 138x6.7/8	N 038 AN 38 AN 38	W 038 W 38 W 38	HMVC 38E HMVC 38E HMVC 38E
6 ¹⁵/16 176,213	180 190 190	9,068 8,693 8,693	6,446 4,402 5,251	1,104 1,135 1,135	1,104 1,25 1,25	- - -	7,066 7,472 7,472	8 8 8	10 7,5 8,95		SNW 136x6.15/16 SNW 3038x6.15/16 SNW 3138x6.15/16	AN 36 N 038 N 038	W 36 W 038 W 038	HMVC 36E HMVC 38E HMVC 38E
	190 190	9,474 9,474	5,251 6,748	1,135 1,135	1,281 1,281	- -	7,472 7,472	8	10,5 12,5		SNW 38x6.15/16 SNW 138x6.15/16	AN 38 AN 38	W 38 W 38	HMVC 38E HMVC 38E
7 177,8	190 190 190	8,693 8,693 9,474	4,402 5,251 5,251	1,135 1,135 1,135	1,25 1,25 1,281	- - -	7,472 7,472 7,472	8 8 8	7,5 8,95 10,5	٠	SNW 3038x7 SNW 3138x7 SNW 38x7	N 038 N 038 AN 38	W 038 W 038 W 38	HMVC 38E HMVC 38E HMVC 38E
	190	9,474	6,748	1,135	1,281	_	7,472	8	12,5	•	SNW 138x7	AN 38	W 38	HMVC 38E
7 ¹/8 180,975	20 200 200	9,849 9,443 9,849	7,085 4,74 5,474	1,198 1,198 1,198	1,344 1,313 1,344	- - -	7,847 7,847 7,847	8 8 8	16 8,85 14		SNW 140x7.1/8 SNW 3040x7.1/8 SNW 40x7.1/8	AN 40 N 040 AN 40	W 40 W 040 W 40	HMVC 40E HMVC 40E HMVC 40E
7 3/16 182,563	200 200 200	9,443 9,443 9,849	4,74 5,474 5,474	1,198 1,198 1,198	1,313 1,313 1,344	- - -	7,847 7,847 7,847	8 8 8	8,85 13 14	•	SNW 3040x7.3/16 SNW 3140x7.3/16 SNW 40x7.3/16	N 040 N 040 AN 40	W 040 W 040 W 40	HMVC 40E HMVC 40E HMVC 40E
	200 220	9,849 11,005	7,085 7,227	1,198 1,26	1,344 1,406		7,847 8,628	8	16 21	٠	SNW 140x7.3/16 SNW 144x7.3/16	AN 40 N 44	W 40 W 44	HMVC 40E HMVC 44E
7 1/4 184,15	20 200 200	9,849 9,443 9,849	7,085 4,74 5,474	1,198 1,198 1,198	1,344 1,313 1,344	- - -	7,847 7,847 7,847	8 8 8	16 8,85 14		SNW 140x7.1/4 SNW 3040x7.1/4 SNW 40x7.1/4	AN 40 N 040 AN 40	W 40 W 040 W 40	HMVC 40E HMVC 40E HMVC 40E
7 7/16 188,913	200	9,443	4,74	1,198	1,313	-	7,847	8	8,85		SNW 3040x7.7/16	N 040	W 040	HMVC 40E
7 ¹/2 190,5	220 220	11,005 11,005	5,891 7,227	1,26 1,26	1,406 1,406	- -	8,628 8,628	8	14,5 21		SNW 44x7.1/2 SNW 144x7.1/2	N 44 N 44	W 44 W 44	HMVC 44E HMVC 44E
7 ¹³/₁₆ 198,438	200 220 220	9,849 10,255 11,005	7,085 5,12 5,891	1,198 1,26 1,26	1,344 1,375 1,406	- - -	7,847 8,628 8,628	8 8 8	16 11 14,5		SNW 140x7.13/16 SNW 3044x7.13/16 SNW 44x7.13/16	AN 40 N 044 N 44	W 40 W 044 W 44	HMVC 40E HMVC 44E HMVC 44E
	220	11,005	7,227	1,26	1,406	_	8,628	8	21		SNW 144x7.13/16	N 44	W 44	HMVC 44E

[►] Popular item

>	INI	Н


Principal (dimens	ions					Thread	Threads	Mass	Designations Adapter sleeve		products	Associated
d_1	d	d ₃ max.	B ₁	В	B ₄	B ₅	G	per inch		assembly	lock nut	locking device	hydraulic nut
in./mm	mm	in.					in.	_	kg	_			
7 7/8 200,025	200 220 220	9,849 10,255 11,005	7,085 5,12 5,891	1,198 1,26 1,26	1,344 1,375 1,406	- - -	7,847 8,628 8,628	8 8 8	16 11 14,5	SNW 140x7.7/8 SNW 3044x7.7/8 SNW 44x7.7/8	AN 40 N 044 N 44	W 40 W 044 W 44	HMVC 40E HMVC 44E HMVC 44E
	220	11,005	7,227	1,26	1,406	_	8,628	8	21	SNW 144x7.7/8	N 44	W 44	HMVC 44E
7 15/16 201,613	220 220 220	10,255 10,255 11,005	5,12 5,891 5,891	1,26 1,26 1,26	1,375 1,375 1,406	- - -	8,628 8,628 8,628	8 8 8	13	➤ SNW 3044x7.15/16 ➤ SNW 3144x7.15/16 ➤ SNW 44x7.15/16		W 044 W 044 W 44	HMVC 44E HMVC 44E HMVC 44E
	220	11,005	7,277	1,26	1,406	-	8,628	8	21	SNW 144x7.15/16	N 44	W 44	HMVC 44E
8 203,2	200 220 220	9,849 10,255 10,255	7,085 5,12 5,891	1,198 1,26 1,26	1,344 1,375 1,375	- - -	7,847 8,628 8,628	8 8 8	16 11 13	SNW 140x8 ➤ SNW 3044x8 ➤ SNW 3144x8	AN 40 N 044 N 044	W 40 W 044 W 044	HMVC 40E HMVC 44E HMVC 44E
	220 220	11,005 11,005	5,891 7,227	1,26 1,26	1,406 1,406		8,628 8,628	8	14,5 21	SNW 44x8 SNW 144x8	N 44 N 44	W 44 W 44	HMVC 44E HMVC 44E
8 7/16 214,313	240	11,443	5,422	1,354	-	1,698	9,442	6	14,5	SNP 3048x8.7/16	N 048	PL 48	HMVC 48E
8 1/2 215,9	240	11,443	5,422	1,354	-	1,698	9,442	6	14,5	SNP 3048x8.1/2	N 048	PL 48	HMVC 48E
8 ¹⁵/₁₆ 227,013	240 240 240	11,443 11,443 11,443	5,422 6,628 8,099	1,354 1,354 1,354	- - -	1,698 1,698 1,698	9,442 9,442 9,442	6 6 6	17	➤ SNP 3048x8.15/16 ➤ SNP 3148x8.15/16 ➤ SNP 148x8.15/16	N 048 N 048 N 048	PL 48 PL 48 PL 48	HMVC 48E HMVC 48E HMVC 48E
9 228,6	240 240 260	11,443 12,193 12,193	5,422 8,764 8,764	1,354 1,416 1,416	- - -	1,698 1,76 1,76	9,442 10,192 10,192	6 6 6	14,5 17 25	SNP 3048x9 SNP 3152x9 SNP 152x9	N 048 N 052 N 052	PL 48 PL 52 PL 52	HMVC 48E HMVC 52E HMVC 52E
9 7/16 239,713	260 260 260	12,193 12,193 12,193	6,009 8,764 8,764	1,416 1,416 1,416	- - -	1,76 1,76 1,76	10,192 10,192 10,192	6 6 6	20	➤ SNP 3052x9.7/16 ➤ SNP 3152x9.7/16 ➤ SNP 152x9.7/16	N 052 N 052 N 052	PL 52 PL 52 PL 52	HMVC 52E HMVC 52E HMVC 52E
9 1/2 241,3	260 260	12,193 12,193	6,009 8,764	1,416 1,416	_ _	1,76 1,76	10,192 10,192	6 6	- , -	➤ SNP 3052x9.1/2 ➤ SNP 3152x9.1/2	N 052 N 052	PL 52 PL 52	HMVC 52E HMVC 52E

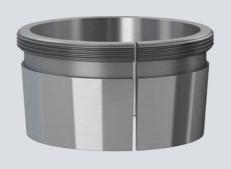
Principal (dimens	ions					Thread	Threads	Mass		Designations Adapter sleeve	Included p	roducts	Associated
d_1	d	d ₃ max.	B ₁	В	B ₄	B ₅	G	per inch			assembly	lock nut	locking device	hydraulic nut
in./mm	mm	in.					in.	_	kg		_			
9 15/16 252,413	280 280	13,005 13,005	6,181 7,756	1,51 1,51		1,854 1,854	11,004 11,004	6	20,5 21	٠	SNP 3056x9.15/16 SNP 3156x9.15/16	N 056 N 056	PL 56 PL 56	HMVC 56E HMVC 56E
10 254	280 280	13,005 13,005	6,181 7,756	1,51 1,51	_	1,854 1,854	11,004 11,004	6 6	20,5 21		SNP 3056x10 SNP 3156x10	N 056 N 056	PL 56 PL 56	HMVC 56E HMVC 56E
10 7/16 265,113	280 280 280	13,005 13,005 13,005	6,181 7,756 8,937	1,51 1,51 1,51	- - -	1,854 1,854 1,854	11,004 11,004 11,004	6 6 6	20,5 21 27		SNP 3056x10.7/16 SNP 3156x10.7/16 SNP 3256x10.7/16	N 056 N 056 N 056	PL 56 PL 56 PL 56	HMVC 56E HMVC 56E HMVC 56E
10 ¹/2 266,7	280 280	13,005 13,005	6,181 7,756	1,51 1,51		1,854 1,854	11,004 11,004	6 6	20,5 21	٠	SNP 3056x10.1/2 SNP 3156x10.1/2	N 056 N 056	PL 56 PL 56	HMVC 56E HMVC 56E
10 ¹⁵/16 277,813	300 300 300	14,193 14,193 14,193	6,717 8,37 9,63	1,573 1,573 1,573	- - -	1,948 1,948 1,948	11,785 11,785 11,785	6 6 6	31 27 31	•	SNP 3060x10.15/16 SNP 3160x10.15/16 SNP 3260x10.15/16	N 060	PL 60 PL 60 PL 60	HMVC 60E HMVC 60E HMVC 60E
11 279,4	300 300	14,193 14,193	6,717 9,63	1,573 1,573	_	1,948 1,948	11,785 11,785	6 6	31 31		SNP 3060x11 SNP 3260x11	N 060 N 060	PL 60 PL 60	HMVC 60E HMVC 60E
11 ⁷/16 290,513	320	15,005	6,936	1,666	_	2,041	12,562	6	29,5		SNP 3064x11.7/16	N 064	PL 64	HMVC 64E
11 ¹/2 292,1	320	15,005	6,936	1,666	-	2,041	12,562	6	29,5	٠	SNP 3064x11.1/2	N 064	PL 64	HMVC 64E
11 ¹⁵/16 303,213	320 320 320	15,005 15,005 15,005	6,936 9,101 10,361	1,666 1,666 1,666	- - -	2,041 2,041 2,041	12,562 12,562 12,562	6 6 6	29,5 33,5 44,5		SNP 3064x11.15/16 SNP 3164x11.15/16 SNP 3264x11.15/16	N 064	PL 64 PL 64 PL 64	HMVC 64E HMVC 64E HMVC 64E
12 304,8	320 320 320	15,005 15,005 15,005	6,936 9,101 10,361	1,666 1,666 1,666	- - -	2,041 2,041 2,041	12,562 12,562 12,562	6 6 6	29,5 33,5 44,5	•	SNP 3064x12 SNP 3164x12 SNP 3264x12	N 064 N 064 N 064	PL 64 PL 64 PL 64	HMVC 64E HMVC 64E HMVC 64E
12 7/16 315,913	340 340 340	15,755 15,755 15,755	7,533 9,777 11,116	1,791 1,791 1,791	- - -	2,166 2,166 2,166	13,303 13,303 13,303	5 5 5	35,5 42,5 47,5	•	SNP 3068x12.7/16 SNP 3168x12.7/16 SNP 3268x12.7/16	N 068 N 068 N 068	PL 68 PL 68 PL 68	HMVC 68E HMVC 68E HMVC 68E
13 7/16 341,313	360 360 360	16,505 16,505 16,505	7,569 9,852 11,427	1,791 1,791 1,791	- - -	2,166 2,166 2,166	14,17 14,17 14,17	5 5 5	39 54,5 61,5	•	SNP 3072x13.7/16 SNP 3172x13.7/16 SNP 3272x13.7/16	N 072 N 072 N 072	PL 72 PL 72 PL 72	HMVC 72E HMVC 72E HMVC 72E
13 ¹⁵/16 354,013	360 360 380	16,505 17,755 17,755	7,569 11,867 7,733	1,791 1,916 1,916	- - -	2,166 2,353 2,353	14,17 14,921 14,921	5 5 5	39 66 43		SNP 3072x13.15/16 SNP 3276x13.15/16 SNP 3076x13.15/16	N 076	PL 72 PL 76 PL 76	HMVC 72E HMVC 76E HMVC 76E
	380	17,755	10,056	1,916	-	2,353	14,921	5	57	•	SNP 3176x13.15/16	N 076	PL 76	HMVC 76E
14 355,6	360 380 380	17,755 17,755 17,755	11,867 7,733 10,056	1,916	- - -	2,353 2,353 2,353	14,921 14,921 14,921	5 5 5	66 43 57	•	SNP 3276x14 SNP 3076x14 SNP 3176x14	N 076 N 076 N 076	PL 76 PL 76 PL 76	HMVC 76E HMVC 76E HMVC 76E
14 ^{15/}16 379,413	400	18,505	10,449	2,073	-	2,5	15,709	5	63,5		SNP 3180x14.15/16	N 080	PL 80	HMVC 80E
15 381	400 400 400	18,505 18,505 18,505	8,401 10,449 12,654		- - -	2,5 2,5 2,5	15,709 15,709 15,709	5 5 5	45,5 63,5 75	•	SNP 3080x15 SNP 3180x15 SNP 3280x15	N 080 N 080 N 080	PL 80 PL 80 PL 80	HMVC 80E HMVC 80E HMVC 80E
15 ³/4 400,05	420 420 420	19,318 19,318 19,318	8,488 11,402 13,292		- - -	2,5 2,5 2,5	16,496 16,496 16,496	5 5 5	47,5 66 75	•	SNP 3084x15.3/4 SNP 3184x15.3/4 SNP 3284x15.3/4	N 084 N 084 N 084	PL 84 PL 84 PL 84	HMVC 84E HMVC 84E HMVC 84E
16 ^{1/2} 419,1	440 440 440	20,505 20,505 20,505	9,1 11,817 13,943	,	- - -	2,906 2,906 2,906	17,283 17,283 17,283	5 5 5	59,5 68,5 86,5	•	SNP 3088x16.1/2 SNP 3188x16.1/2 SNP 3288x16.1/2	N 088 N 088 N 088	PL 88 PL 88 PL 88	HMVC 88E HMVC 88E HMVC 88E

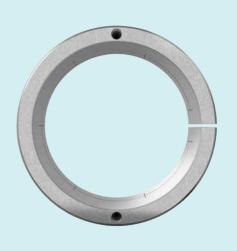

[►] Popular item

23.2 Adapter sleeves with inch dimensions

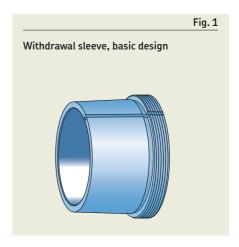
d₁ **17 – 19 ¹/2** in. 431,8 – 495,3 mm

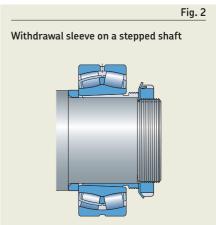


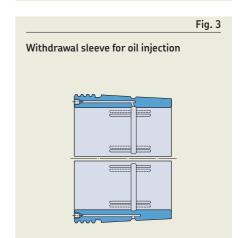

Principal dimensions						Thread	Threads	Mass	Designations Adapter sleeve	Included	l products	Associated		
d_1	d	d ₃ max.	B ₁	В	B ₄	B ₅	G	per inch		assembly	lock nut	locking device	hydraulic nut	
in./mm	mm	in.					in.	_	kg	_				
17 431,8	460 460	21,255 21,255	9,336 12,368	2,385 2,385	- -	2,906 2,906	18,071 18,071	5 5	71,5 95	► SNP 3092x17 ► SNP 3192x17	N 092 N 092	PL 92 PL 92	HMVC 92E HMVC 92E	
18 457,2	480 480	22,068 22,068	12,714 12,714		_ _	2,937 2,937	18,858 18,858	5 5	75 91,5	► SNP 3096x18 ► SNP 3196x18	N 096 N 096	PL 96 PL 96	HMVC 96E HMVC 96E	
18 ¹/2 46 9, 9	500	22,818	9,838	2,703	-	3,25	19,646	5	91	► SNP 30/500x18.1	2 N 500	PL 500	HMVC 100E	
19 ¹/2 495,3	530	24,818	10,579	2,703	-	3,25	20,827	4	120	► SNP 30/530x19.1	2 N 530	PL 530	HMVC 106E	



Withdrawal sleeves

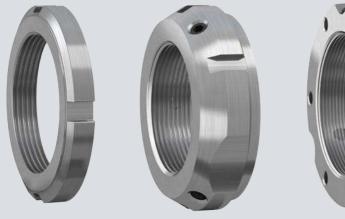

24 Withdrawal sleeves

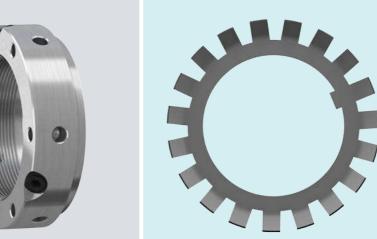

Withdrawal sleeves are slit tapered sleeves (fig. 1), which can be used to mount bearings with a tapered bore onto a cylindrical seat of stepped shafts (fig. 2). The sleeves are pressed into the bore of the bearing inner ring, which abuts a shaft shoulder or similar fixed component. They are located on the shaft by a nut or an end plate.


The standard assortment of SKF withdrawal sleeves is available online at skf.com/go/17000-24-1 and comprises:

- basic design sleeves (fig. 1)
- sleeves for oil injection (fig. 3)
- sleeves for shaft diameters up to 1 000 mm

Withdrawal sleeves are not listed in this catalogue. Comprehensive information about SKF withdrawal sleeves is available online at skf.com/go/17000-24.




24

Lock nuts

25 Lock nuts

Designs and variants	1090
Lock nuts requiring a keyway	1093
KM, KML and HM T metric lock nuts	1093
N and AN inch lock nuts	1093
HM and HME metric lock nuts	1094
The locking principles	1094
Lock nuts with integral locking	1095
KMFE lock nuts	1095
KMK lock nuts	1095
The locking principle	1095
Precision lock nuts with locking pins	1096
The locking principle	1097
Precision lock nuts with axial locking screws	1097
The locking principle	1097
Product data	1098
(Dimension standards, tolerances, mating shaft threads,	
loosening torque)	
Installation and removal	1100
Lock nuts requiring a keyway	1100
Using lock nuts with lock washer to lock a bearing	1100
Using lock nuts with locking clips to lock a bearing	1100
Lock nuts with integral locking	1101
Mounting	1101
Dismounting	1101
Precision lock nuts with locking pins	1102
Installation	1102
Adjustment	1102
Removal	1102
Designation system	1103
Product tables	
25.1 KM(L) and HM T lock nuts	1104
25.2 MB(L) lock washers	1106
25.3 HM lock nuts	1108
25.4 MS locking clips	1110
25.5 KMFE lock nuts with a locking screw	1112
25.6 KMT precision lock nuts with locking pins	1114
2E 7 KMTA procision lock puts with locking pins	1116

25 Lock nuts

Lock nuts are used to locate bearings onto a shaft. Additionally, they can be used to mount bearings with a tapered bore onto tapered shaft seats and adapter sleeves, and to dismount bearings from withdrawal sleeves. Lock nuts are also frequently used to secure gears, belt pulleys and other machine components.

Lock nuts have to be secured to prevent unintentional loosening by:

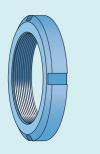
- a locking device that engages a keyway in the shaft or key slot in the adapter sleeve, or
- a locking mechanism integrated in the nut

When choosing or replacing a lock nut, there are a number of factors that should be taken into consideration. They include, but are not limited to:

- Space axial and radial
- Shaft rotation one or both directions
- Axial loads
- Dynamic behaviour of the application
- Cost and downtime of machining keyways in shafts vs. other locking methods
- Ease and frequency of assembly and disassembly
- Precision

Designs and variants

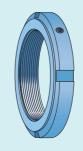
SKF lock nuts provide a variety of ways to secure the nut onto a shaft. The lock nuts listed here constitute the basic SKF assortment. Lock nuts with other locking methods can be supplied on request. For additional information, contact SKF.

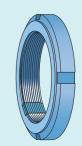

The following tables provide an overview over the basic SKF assortment:

- table 1 for SKF industrial lock nuts
- table 2, page 1092 for SKF precision lock

Lock nuts with integral locking reduce the cost of the shaft as no keyway is required. Installation is quicker and easier because no separate locking device is necessary. However, the loosening torque of these lock nuts requires more attention. For information on loosening torque, refer to *Product data*, page 1098.

SKF industrial lock nuts


KM, KML, HM .. T, AN and N Lock nuts with a lock washer


HM and HME Lock nuts with a locking clip

Lock nuts with a locking plate

KMFE Lock nuts with an integral locking screw

KMK Lock nuts with an integral locking device

KM and KML: thread 10 to 200 mm (sizes 0 to 40)

HM .. T: thread 210 to 280 mm (sizes 42 to 56)

AN and N: thread 0.391 to 8.628 in. (sizes: N 00 to N 14, AN 15 to AN 40 and N 022 to N 044) These lock nuts are not listed in this catalogue, but can be found onl

thread 220 to 1 120 mm (sizes 44 to /1120)

HME design lock nuts are not listed in this catalogue, but can be found online at skf.com/ao/17000-25-3.

thread 9.442 to 37.410 in. (sizes 056 to 950)

These lock nuts are not listed in this catalogue, but can be found online at skf.com/go/17000-25-8.

thread 20 to 200 mm (sizes 4 to 40)

thread 10 to 100 mm (sizes 0 to 20)

These lock nuts are not listed in this catalogue, but can be found online at skf.com/go/17000-25-5.

As fa

of.com/go/17000-25-8.	
simple, stable and reliable	A simple, stable and rel
stening element	fastening element

A simple, stable and reliable	
fastening element	f

Reusable with new locking

A simple, stable and reliable fastening element

Fastened with an integral locking screw and front face adapted for use with certain CARB and sealed bearings

Simple to install and robust

For shaft threads without

locking

keyways

Fastened with a threaded steel insert and a grub screw

Reusable with new locking device Simple to install and

Simple to install and
remove

device

Keyway in shaft thread required for locking clip

Reusable with new locking device Simple to install and

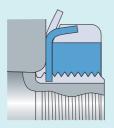
Keyway in shaft thread required for locking plate

remove

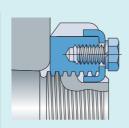
Reusable

Reusable

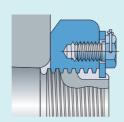
Simple to install

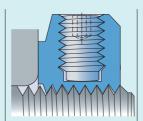

For shaft threads without keyways

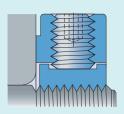
Locking principle


Keyway in shaft thread

required for lock washer


remove


Locks with a separate lock washer engaged in a keyway in the shaft thread and having a tab that is bent over into one of the slots in the nut


Locks with a separate locking clip that is attached to the nut and engages with a keyway in the shaft thread and one of the slots in the nut

Locks with a locking plate that engages with a keyway in the shaft thread and is secured to the nut by two screws and locking wire

Locks by tightening the grub screw to press the lock nut thread against the shaft thread

Locks by tightening the grub screws to press a threaded steel insert in the lock nut against the shaft thread

SKF precision lock nuts

KMT	KMTA
Precision lock nuts with locking pins	

KMD Preci

Precision lock nuts with axial locking screws

thread 10 to 200 mm (sizes 0 to 40) Larger sizes on request thread 25 to 200 mm (sizes 5 to 40)

thread 20 to 105 mm (sizes 4 to21) These lock nuts are not listed in this catalogue, but can be found online at $\frac{1}{2000}$ skf.com/go/17000-25-6.

Maximum axial run-out between the locating face and thread: 0,005 \mbox{mm}

Maximum axial run-out between the locating face and thread: 0,005 mm

Can be adjusted to compensate for slight angular deviations

Effective axial locking, simple to position

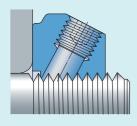
Reusable

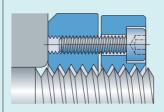
Reusable

Simple to install and remove

Simple to install and remove

For shaft threads without keyways


For shaft threads without keyways


Designed for frequent installation and removal

Designed for frequent installation and removal

High axial load capacity

Locking principle

Locks to the shaft thread by friction generated by tightening three radial locking pins with grub screws against its unloaded flanks

Locks to the shaft thread by friction generated by tightening four axial screws that press the rear part of the nut against the unloaded thread flanks

25

Lock nuts requiring a keyway

KM, KML and HM .. T metric lock nuts

KM and KML lock nuts (fig. 1):

- have metric threads
- are designed to be used with lock washers
- have four equally-spaced slots located around their circumference to accommodate a hook or impact spanner (fig. 2)
- are also referred to as shaft or withdrawal nuts
- are available for thread M 10x0,75 to M 200x3 (sizes 0 to 40)
- can be locked with either the MB lock washer (fig. 3) or with a stronger, MB .. A lock washer

KML lock nuts have a lower cross-sectional height than KM lock nuts.

HM .. T lock nuts (fig. 1):

- have metric trapezoidal threads
- are also referred to as removal nuts
- are available for thread Tr 210x4 to Tr 280x4 (sizes 42 to 56)

For some sizes, no lock washer is available because these nuts are intended to dismount bearings with a tapered bore from a withdrawal sleeve.

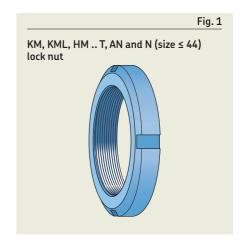
KM, KML and HM...T lock nuts can be reused, provided they are not damaged. A new lock washer should be used each time the corresponding lock nut is installed.

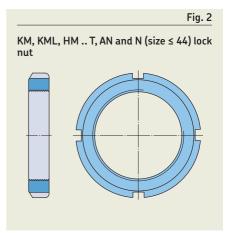
Features and benefits

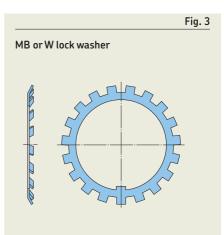
- Simple, stable and reliable fastening
- Wide range of sizes
- Easy to install and remove
- Thread diameters ranging from 10 to 280 mm

N and AN inch lock nuts

N and AN inch lock nuts (fig. 1):


- using a W lock washer (fig. 3) are available up to and including size 44 (thread diameter 8.628 in.)
- using a locking plate (fig. 4) are lowprofile-series lock nuts for nominal thread diameters ranging from 9.442 to 37.410 in. (sizes N 048 to N 950)
- have four, equally spaced slots around their circumference to accommodate a hook or impact spanner (fig. 2)
- are also referred to as shaft or withdrawal nuts
- N 00 to N 14, AN 15 to AN 40 and N 44 lock nuts are normal series lock nuts commonly used together with bearings in the 12, 13, 222, 223 and 232 series up to size 23244, mounted directly to the shaft or via an adapter sleeve.
- N 022 to N 044 lock nuts are low-profileseries lock nuts commonly used together with bearings in the 230 series. They can also be used to secure other bearing types and other machine components.
- N lock nuts with a locking plate are commonly used with bearings in the 230, 231 and 232 series (sizes ≥ 48), but can also be used to retain any suitable bearing or other machine component.


N and AN lock nuts can be reused, provided they are not damaged. A new lock washer or locking plate should be used each time the corresponding lock nut is installed.


Features and benefits

- Simple, stable and reliable fastening element
- Wide range of sizes
- Easy to install and remove
- Lock washers available for thread 0.391 to 8.628 in. (sizes 00 to 44)
- Locking plates available for thread 9.442 to 18.894 in. (sizes 048 to 096) and for thread 19.682 to 37.410 in. (sizes 500 to 950)

These lock nuts are not listed in this catalogue, but can be found online at skf.com/go/17000-25-8.

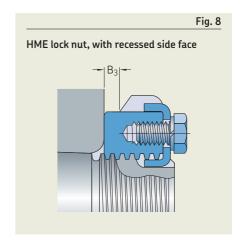
HM and HME metric lock nuts

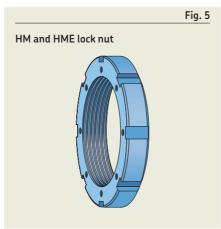
HM and HME lock nuts (fig. 5):

- have metric trapezoidal threads
- have eight equally-spaced slots located around their circumference to accommodate an impact spanner (fig. 6)
- are located on the shaft by MS locking clips (fig. 7)

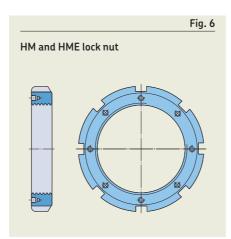
When compared to HM lock nuts, HME lock nuts have a recessed side face to accommodate axial displacement of CARB toroidal roller bearings (fig. 8).

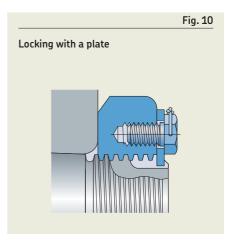
HM and HME lock nuts can be reused, provided they are not damaged. A new locking clip should be used each time the corresponding lock nut is reinstalled.

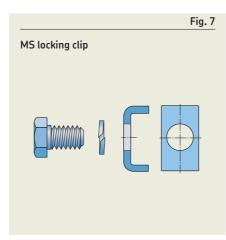

Features and benefits

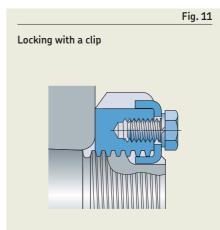

- Simple, stable and reliable fastening element
- Wide range of sizes
- Easy to install and remove
- Available for thread Tr 220x4 to Tr 1120x8 (sizes 44 to /1120)

The locking principles


Lock washers, locking clips and locking plates are simple, stable and reliable fastening elements.


- Lock washers (fig. 3, page 1093) engage a keyway in a shaft, or adapter sleeve thread. The washer locks the nut in position when one of the washer tabs is bent into one of the slots on the nut's outside diameter (fig. 9).
- Locking plates (fig. 4, page 1093) engage
 a keyway in a shaft or adapter sleeve and
 are attached to the side face of the nut by
 two bolts secured with locking wire. A
 locking plate consists of a plate, two hexagonal head bolts with drilled heads and
 lock wire to secure them (fig. 10).
- Locking clips (fig. 7) engage a keyway in a shaft or adapter sleeve and one of the slots in the outside diameter of the lock nut. Locking clips are attached to the nut by a bolt (fig. 11).





Lock nuts with integral locking

Lock nuts with integral locking reduce the cost of the shaft as no keyway is required. Installation is guicker and easier because no separate locking device is necessary.

KMFE lock nuts

KMFE lock nuts (fig. 12):

- are designed to locate CARB toroidal roller bearings, sealed spherical roller bearings and sealed self-aligning ball bearings axially on a shaft
- have appropriate contact faces for the intended bearings
- are available for thread M 20x1 to M 200x3 (sizes 4 to 40)

KMFE lock nuts should not be used on shafts with a keyway. They should only be used with special adapter sleeves with a narrow slot. Damage to the nut can result if the grub screw aligns with a keyway or wide slot. KMFE lock nuts can be reused, provided they are not damaged.

Features and benefits

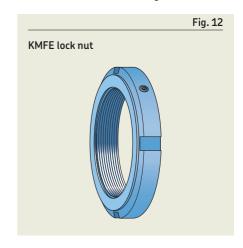
- Maximum axial run-out between the locating face and thread: 0,02 to 0,03 mm
- No keyway required
- Simple to install
- Simple and robust locking
- Reusable
- Appropriate contact faces for intended bearings
- Equipped with visual marks for the use of tightening angles

KMK lock nuts

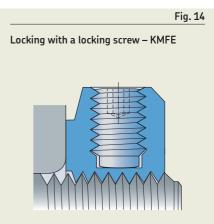
KMK lock nuts (fig. 13):

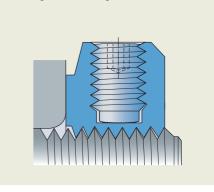
- are intended to locate radial bearings in less demanding applications
- are available for thread M 10x0.75 to M 100x2 (sizes 0 to 20)

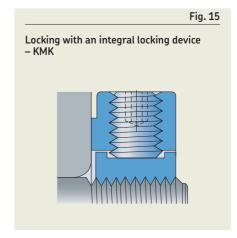
KMK lock nuts should not be used on shafts with keyways or adapter sleeves with key slots. Damage to the locking device can result if it aligns with a keyway or slot. KMK lock nuts can be reused, provided they are not damaged.


These lock nuts are not listed in this catalogue, but can be found online at skf.com/go/17000-25-5.

The locking principle


Lock nuts with integral locking are locked by friction. The friction is sufficient to lock the nut in place.


KMFE lock nuts have an integral grub (set) screw, to lock the nut in place. When the grub screw is tightened, it causes the nut thread to deform and press against the shaft or sleeve thread (fig. 14).

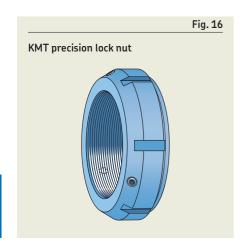

KMK have a threaded steel insert in their bore. The threads on the insert match the lock nut threads. The insert acts as a pressure plate when a grub screw, which runs through the body of the lock nut, is tightened

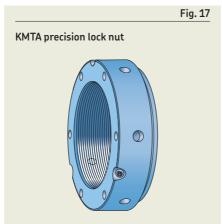
Precision lock nuts with locking pins

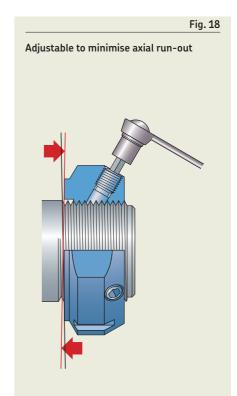
KMT and KMTA lock nuts are intended for applications where high precision, simple assembly and reliable locking are required¹). The three equally-spaced locking pins enable these lock nuts to be accurately positioned at right angles to the shaft. However, they can also be adjusted to compensate for slight angular deviations of adjacent components.

KMT lock nuts (fig. 16):

- are available for thread M 10x0,75 to M 200x3 (sizes 0 to 40)
- are available on request for thread Tr 220x4 to Tr 420x5 (sizes 44 to 84)


KMTA lock nuts (fig. 17):


- are available for thread M 25x1,5 to M 200x3 (sizes 5 to 40)
- have a cylindrical outside surface and, for some sizes, a different thread pitch than KMT lock nuts
- are intended primarily for applications where space is limited and the cylindrical outside surface can be used as an element of a gap-type seal


Features and benefits

- Maximum axial run-out between the locating face and thread (sizes ≤ 40): 0,005 mm
- Adjustable to compensate for slight angular deviations (fig. 18)
- Fine thread pitch
- Withstands high axial loads
- Reliable, effective locking mechanism
- Simple installation and removal
- No keyway required¹⁾
- Reusable
- Designed for frequent installation and removal

¹⁾ KMT and KMTA lock nuts should not be used on shafts with keyways in the thread or adapter sleeves. Damage to the locking pins can result if they align with either.

1096

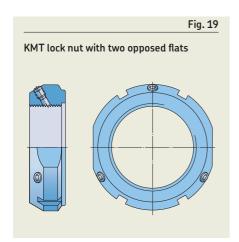
The locking principle

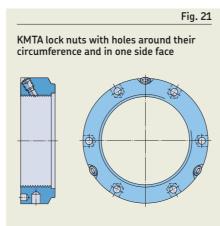
KMT and KMTA series precision lock nuts have three locking pins equally spaced around their circumference (fig. 19 to fig. 21) that can be tightened with grub screws to lock the nut onto the shaft. The end face of each pin is machined to match the shaft thread. The holes for the locking pins and grub screws are drilled with their axis parallel to the loaded flanks of the shaft thread (fig. 22). The locking screws, when tightened to the recommended torque, provide sufficient friction between the ends of the pins and the unloaded thread flanks to prevent the nut from loosening under normal operating conditions (Loosening torque, page 1098). Because the locking pins are tightened against the unloaded flanks of the shaft thread, they are not subjected to any application loads imposed on the nut.

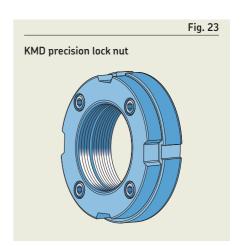
Precision lock nuts with axial locking screws

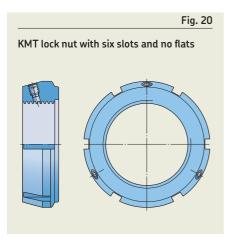
KMD lock nuts (fig. 23) were designed specifically for screw compressors but can be used in other applications where high precision, simple assembly and reliable locking are required. Once the four locking screws are tightened, the lock nut will be accurately positioned at right angles to the shaft thread. The locking screws, when tightened to the recommended tightening torque, preload the lock nut and shaft threads and generate sufficient friction to prevent the nut from loosening under normal operating conditions. The locking screws do not carry any part of the supported load in service.

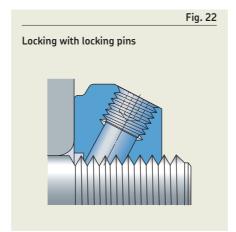
KMD lock nuts are available for thread M 20x1 to M 105x2 (sizes 4 to 21).

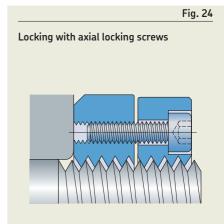

Features and benefits


- Maximum axial run-out between the locating face and thread: 0,005 mm
- Adjustable for precise axial positioning
- Effective locking prevents the nut from loosening under normal operating conditions
- Simple installation and removal
- No keyway required
- Reusable
- Designed for frequent installation and removal


These lock nuts are not listed in this catalogue, but can be found online at skf.com/go/17000-25-6.


The locking principle


KMD lock nuts are locked with axial locking screws (fig. 24). The front of the lock nut locates the component on the shaft. The rear is tightened against the unloaded flanks of the shaft thread by axial locking screws, creating sufficient friction to prevent the lock nut from loosening under normal operating conditions.



Product data

	Lock nuts requiring a keyway KM, KML, HM T, HM and HME	Lock nuts with integral locking KMFE and KMK
Dimension standards	ISO 2982-2	ISO 2982-2, except for the lock nut width and the outside diameter of the clamp face
		Grub screws: • KMFE → ISO 4028, material class 45H • KMK → ISO 4026, material class 45H
Tolerances	KM and KML Metric thread, 5H: ISO 965-3 Maximum axial run-out locating face/thread: 0,02 to 0,06 mm, depending on the lock nut size Mounting slots according to DIN 981 HM, HME and HM T Metric trapezoidal thread, 7H: ISO 2903 Maximum axial run-out locating face/thread: 0,06 to 0,16 mm, depending on the lock nut size	Metric thread, 5H: ISO 965-3
Mating shaft threads (recommendation)	KM and KML Metric thread, 6g: ISO 965-3 HM, HME and HM T Metric trapezoidal thread, 7e: ISO 2903	Metric thread, 6g: ISO 965-3
Loosening torque		KMFE and KMK lock nuts are locked on the shaft (sleeve) by friction. The friction, and therefore the loosening torque, varies as a result of the accuracy of the tightening torque of the grub (set) screw, the surface finish of the shaft (sleeve) thread, the amount of lubricant on the thread, etc. The lock nuts should be properly mounted to threads that are dry or only have a minimum amount of lubricant on them. KMFE and KMK lock nuts provide sufficient locking for intended bearing applications.

25

Precision lock nuts with locking pins KMT and KMTA
Metric thread: ISO 965-3
Metric thread, 5H: ISO 965-3 Maximum axial run-out locating face/thread (sizes ≤ 40): 0,005 mm
Metric thread, 6g: ISO 965-3 Trapezoidal thread, 7e: ISO 2903
KMT and KMTA lock nuts are locked on the shaft (sleeve) by friction. The friction, and therefore the loosening torque, varies as a result of the accuracy of the tightening torque of the grub screw, the surface finish of the shaft thread, the amount of lubricant on the thread, etc. KMT and KMTA lock nuts should be properly mounted to threads that are dry or only have a minimum amount of lubricant on them. Providing that they are properly mounted to a dry or minimally lubricated thread, experience has shown that SKF KMT and KMTA lock nuts have sufficient locking for typical super-precision and general rolling bearing applications.

Installation and removal

Lock nuts requiring a keyway

Lock nuts requiring a keyway are easy to install. Each nut is provided with four equally-spaced slots around their circumference to accommodate a hook or impact spanner. The designations of the associated spanners are listed in the relevant product tables.

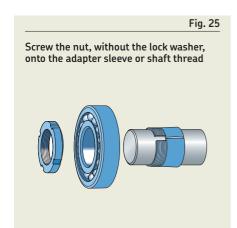
Lock nuts requiring a keyway can be reused, provided they are not damaged. A new lock washer, locking clip or locking plate should be used each time the corresponding lock nut is reinstalled.

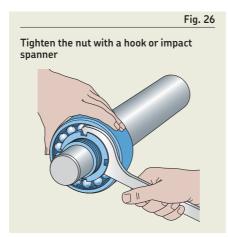
Using lock nuts with lock washer to lock a bearing

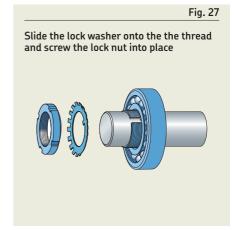
Mounting bearings and components on a cylindrical shaft

- **1** Put the bearing in place onto the cylindrical shaft.
- **2** Go ahead with step 5 below *Locking the bearing*.

Mounting bearings on an adapter sleeve or tapered seat


- **1** Slide the bearing onto the adapter sleeve or tapered seat.
- 2 With the chamfer facing the bearing, screw the nut (without the lock washer) onto the adapter sleeve or shaft thread (fig. 25).
- **3** Tighten the nut with a hook or impact spanner until the correct clearance in the bearing is obtained (fig. 26).
- 4 Remove the nut. Go to step 5.


Locking the bearing


- 5 Slide the lock washer onto the thread until it touches the bearing. With the chamfer facing the bearing, screw the lock nut into place (fig. 27).
- 6 Tighten the nut firmly against the lock washer and bearing with a hook or impact spanner, making sure to not over tighten the nut. For bearings on adapter sleeves or tapered shafts, make sure that the bearing is not driven up any further on its seat.
- 7 Lock the nut in place by bending one of the lock washer tabs down into one of the slots on the nut (fig. 28). Do not bend the tab to the bottom of the slot.

Using lock nuts with locking clips to lock a bearing

- **1** With the bearing or component in position, screw the lock nut into place.
- 2 Tighten the nut against the bearing or component with an impact spanner (fig. 29), aligning one of the slots in its outside diameter with the keyway in the shaft thread and making sure to not over tighten it.
- **3** Place the spring washer and locking clip onto the attachment bolt.
- 4 Position the locking clip in the keyway in the shaft thread, and the slot in the nut outside diameter, and secure with the attachment bolt and spring washer. Align the bolt with one of the threaded holes on the side face of the lock nut.
- 5 Tighten the bolt with an appropriate wrench (fig. 30).

1100 **5KF**.

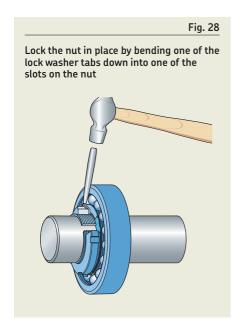
Lock nuts with integral locking

Lock nuts with integral locking are easy to install. Each nut is provided with four equally spaced slots around its circumference to accommodate a hook spanner. The designations of the associated spanners are listed in the product table, page 1112.

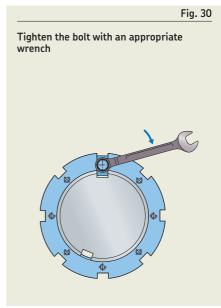
Lock nuts with integral locking can be reused, provided they are not damaged.

Mounting

Mounting bearings on a tapered seat or special adapter sleeve


- **1** Slide the bearing onto its tapered seat.
- **2** With the contact face toward the bearing, screw the nut onto the shaft.
- 3 Tighten the nut with a hook or impact spanner, until the required internal clearance in the bearing is obtained.
- **4** Tighten the grub (set) screw to the torque value listed in the **product table**.

Locking bearings on a cylindrical seat


- **1** With the bearing in position, screw the lock nut into place.
- 2 Tighten the nut against the bearing with a hook spanner, making sure to not over tighten it.
- **3** Tighten the grub (set) screw to the torque value listed in the **product table**.

Dismounting

- 1 To remove the lock nut, loosen the grub screw. Even when the grub screw is removed, the lock nut will generate a limited locking torque.
- 2 In order to completely release the locking system and facilitate the reuse of the lock nut, tap the areas near the grub screw with a hammer and soft bar. Do not damage the threaded bores for the grub screw.
- **3** Unscrew the lock nut using a hook spanner.

Precision lock nuts with locking pins

KMT precision lock nuts have slots around their circumference to accommodate a hook or impact spanner (fig. 19, page 1097, and fig. 20, page 1097). The designations of the associated spanners are listed in the product table, page 1114. KMT precision lock nuts with a thread \leq 75 mm (sizes \leq 15) have additionally to the slots two opposed flats to accommodate a spanner. Those lock nuts with a thread \geq 80 mm (sizes \geq 16) have six slots and no flats.

KMTA precision lock nuts have holes around their circumference and in one side face (fig. 21, page 1097). They can be tightened with a pin wrench or a pin-type face spanner. Associated spanners in accordance with DIN 1810 are listed in the product table, page 1116.

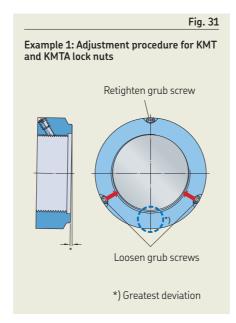
Precision lock nuts with locking pins are designed for frequent installation and removal, provided they are not damaged.

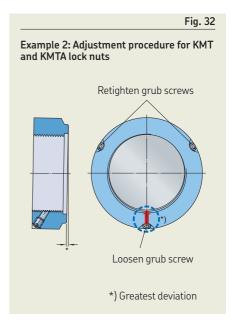
Installation

- **1** With the bearing in position, screw the lock nut into place.
- 2 Tighten the nut with a hook or impact spanner making sure not to over tighten it.
- **3** Tighten the grub screws carefully until the locking pins engage the shaft thread.
- 4 Tighten the grub screws alternately with a torque wrench until the recommended torque value, listed in the product tables, is achieved.

Precision lock nuts with locking pins should not be used to drive a bearing up onto a tapered seat.

Adjustment


Precision lock nuts with locking pins are adjustable. The three equally-spaced locking pins enable these lock nuts to be accurately positioned at right angles to the shaft. However, they can also be adjusted to compensate for slight angular deviations of adjacent components.


Adjustments can be made using the following procedure (fig. 31 and fig. 32):

- **1** Loosen the grub screw(s) at the position showing the greatest deviation.
- 2 Tighten the remaining screw(s) equally.
- **3** Retighten the screw(s) that were loosened.
- **4** Check that the alignment of the nut, relative to the shaft, is currently as required.
- **5** Repeat the procedure if necessary.

Removal

When removing precision lock nuts with locking pins, the locking pins can still engage the shaft thread even after the grub screws have been loosened. Using a rubber hammer, tap the nut lightly in the vicinity of the pins to loosen them.

Designation system

Product type

AN Lock nut, dimensions in accordance with ANSI standard, normal series

HM Lock nut with a trapezoidal thread

HME HM lock nut with a recessed outside diameter

HML HM lock nut, light series

HMLL
 KM
 Lock nut dimensions in accordance with ISO standard
 KMD
 Two-part precision lock nut with axial locking screws

KMFE Lock nut with an integral locking screw, contact face designed for CARB toroidal roller bearings, sealed

spherical roller bearings and sealed self-aligning ball bearings

KMK Lock nut with an integral locking device
KML Lock nut with a lower cross-sectional height

KMT Precision lock nut with locking pins

KMTA Precision lock nut with locking pins and with cylindrical outside surface (some with different thread

pitch to KMT nuts)

N Lock nut, dimensions in accordance with ANSI standard

N lock nuts are available in two series; N 00 normal series and N 000 low profile series

MB Lock washer, dimensions in accordance with ISO standard for a KM lock nut Lock washer, dimensions in accordance with ISO standard for a KML lock nut Locking clip, dimensions in accordance with ISO standard for an HM or HME lock nut Locking plate, dimensions in accordance with ANSI standard

W Lock washer, dimensions in accordance with ANSI standard

W lock washers are available in two series; W 00 for lock nuts in normal series (AN and N) and W 000

for lock nuts in low profile series (N 0) without an axial tab

Size identification

for metric dimensions

10 mm thread diameter
12 mm thread diameter
15 mm thread diameter
17 mm thread diameter
(x5) 20 mm thread diameter

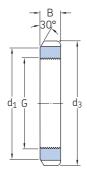
to to

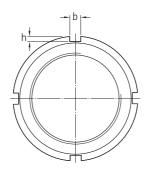
96 (x5) 480 mm thread diameter/500 to 500 mm thread diameterto to/1120 mm thread diameter

for inch dimensions

0 0.391 in. thread diameter 1 0.469 in. thread diameter 2 0.586 in. thread diameter 3 0.664 in. thread diameter 4 0.781 in. thread diameter to to 96 18.894 in. thread diameter 500 19.682 in. thread diameter

950 37.410 in. thread diameter


Suffixes


A Increased plate thickness for MB lock washers

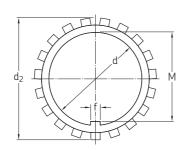
B Whitworth thread
 H Bigger contact diameter
 L Smaller contact diameter
 P Sintered material
 T Trapezoidal thread

25.1 KM(L) and HM .. T lock nuts M 10x0,75 – M 200x3

Tr 210x4 – Tr 280x4

Dimensions						Axial load carrying	Mass	Designation Lock nut	Associated	
G	d_1	d_3	В	b	h	capacity static			lock washer	spanner
mm						kN	kg	_		
M 10x0,75	13,5	18	4	3	2	9,8	0,004	► KM 0	MB 0	HN 0
M 12x1	17	22	4	3	2	11,8	0,006	► KM 1	MB1	HN1
M 15x1	21	25	5	4	2	14,6	0,009	► KM 2	MB 2	HN 2-3
M 17x1	24	28	5	4	2	19,6	0,012	► KM 3	MB3	HN 2-3
M 20x1	26	32	6	4	2	24	0,025	► KM 4	MB 4	HN 4
M 25x1,5	32	38	7	5	2	31,5	0,028	► KM 5	MB 5	HN 5-6
M 30x1,5	38	45	7	5	2	36,5	0,039	► KM 6	MB 6	HN 5-6
M 35x1,5	44	52	8	5	2	50	0,059	► KM 7	MB 7	HN 7
M 40x1,5	50	58	9	6	2,5	62	0,078	► KM 8	MB 8	HN 8-9
M 45x1,5	56	65	10	6	2,5	78	0,11	► KM 9	MB 9	HN 8-9
M 50x1,5	61	70	11	6	2,5	91,5	0,14	► KM 10	MB 10	HN 10-11
M 55x2	67	75	11	7	3	91,5	0,15	► KM 11	MB 11	HN 10-11
M 60x2	73	80	11	7	3	95	0,16	► KM 12	MB 12	HN 12-13
M 65x2	79	85	12	7	3	108	0,19	► KM 13	MB 13	HN 12-13
M 70x2	85	92	12	8	3,5	118	0,23	► KM 14	MB 14	HN 14
M 75x2	90	98	13	8	3,5	134	0,27	► KM 15	MB 15	HN 15
M 80x2	95	105	15	8	3,5	173	0,36	► KM 16	MB 16	HN 16
M 85x2	102	110	16	8	3,5	190	0,41	► KM 17	MB 17	HN 17
M 90x2	108	120	16	10	4	216	0,51	► KM 18	MB 18	HN 18-20
M 95x2	113	125	17	10	4	236	0,55	► KM 19	MB 19	HN 18-20
M 100x2	120	130	18	10	4	255	0,64	► KM 20	MB 20	HN 18-20
M 105x2	126	140	18	12	5	290	0,79	► KM 21	MB 21	HN 21-22
M 110x2	133	145	19	12	5	310	0,87	► KM 22	MB 22	HN 21-22

Dimensions			5			Axial load carrying capacity	Mass	Designations Lock nut	Associated lock washer	spanner
G	d ₁	d ₃	В	b	h	static				
mm						kN	kg	_		,
M 115x2	137	150	19	12	5	315	0,91	► KM 23	MB 23	TMFN 23-30
M 120x2	135 138	145 155	20 20	12 12	5 5	265 340	0,69 0,97	► KML 24 ► KM 24	MBL 24 MB 24	HN 21-22 TMFN 23-30
M 125x2	148	160	21	12	5	360	1,1	► KM 25	MB 25	TMFN 23-30
M 130x2	145 149	155 165	21 21	12 12	5 5	285 365	0,8 1,1	► KML 26 ► KM 26	MBL 26 MB 26	TMFN 23-30 TMFN 23-30
M 135x2	160	175	22	14	6	430	1,4	► KM 27	MB 27	TMFN 23-30
M 140x2	155 160	165 180	22 22	12 14	5 6	305 430	0,92 1,4	► KML 28 ► KM 28	MBL 28 MB 28	TMFN 23-30 TMFN 23-30
M 145x2	171	190	24	14	6	520	1,8	► KM 29	MB 29	TMFN 23-30
M 150x2	170 171	180 195	24 24	14 14	5 6	390 530	1,25 1,9	► KML 30 ► KM 30	MBL 30 MB 30	TMFN 23-30 TMFN 23-30
M 155x3	182	200	25	16	7	540	2,1	► KM 31	MB 31	TMFN 30-40
M 160x3	180 182	190 210	25 25	14 16	5 7	405 585	1,4 2,3	► KML 32 ► KM 32	MBL 32 MB 32	TMFN 23-30 TMFN 30-40
M 165x3	193	210	26	16	7	570	2,3	► KM 33	MB 33	TMFN 30-40
M 170x3	190 193	200 220	26 26	16 16	5 7	430 620	1,55 2,35	► KML 34 ► KM 34	MBL 34 MB 34	TMFN 30-40 TMFN 30-40
M 180x3	200 203	210 230	27 27	16 18	5 8	450 670	1,8 2,8	► KML 36 ► KM 36	MBL 36 MB 36	TMFN 30-40 TMFN 30-40
M 190x3	210 214	220 240	28 28	16 18	5 8	475 695	1,85 3,05	► KML 38 ► KM 38	MBL 38 MB 38	TMFN 30-40 TMFN 30-40
M 200x3	222 226	240 250	29 29	18 18	8	625 735	2,6 3,35	► KML 40 ► KM 40	MBL 40 MB 40	TMFN 30-40 TMFN 30-40
Tr 210x4	238	270	30	20	10	Contact SKF	5,1	► HM 42 T	_1)	TMFN 40-52
Tr 220x4	250	280	32	20	10	Contact SKF	4,75	► HM 44 T	MB 44	TMFN 40-52
Tr 230x4	260	290	34	20	10	Contact SKF	5,45	HM 46 T	_1)	TMFN 40-52
Tr 240x4	270	300	34	20	10	Contact SKF	5,6	► HM 48 T	MB 48	TMFN 40-52
Tr 250x4	290	320	36	20	10	Contact SKF	7,45	HM 50 T	_1)	TMFN 40-52
Tr 260x4	300	330	36	24	12	Contact SKF	7,55	► HM 52 T	MB 52	TMFN 52-64
Tr 280x4	320	350	38	24	12	Contact SKF	8,65	► HM 56 T	MB 56	TMFN 52-64

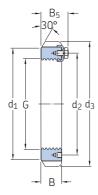


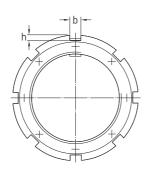
Popular item

1) HM .. T nuts having no associated lock washer are intended only for removal purposes.

25.2 MB(L) lock washers MB 0 – MB 56

Designation	Dime	nsions					Mass	Dimensions						Mass	
	d	d_1	d ₂	В	f	М			d	d_1	d_2	В	f	М	
_	mm						kg		mm						kg
MB 0	10	13,5	21	1	3	8,5	0,001	► MB 16 MB 16 A	80	95 95	112 112	1,75 2,5	10 10	76,5 76,5	0,046 0,066
MB1 MB1A	12	17 17	25 25	1 1,2	3	10,5 10,5	0,002 0,0025	► MB 17 MB 17 A	85	102 102	119 119	1,75 2,5	10 10	81,5 81,5	0,053 0,076
MB 2 MB 2 A	15	21 21	28 28	1 1,2	4 4	13,5 13,5	0,003 0,0035	MB 17 A • MB 18 MB 18 A	90	102 108 108	126 126	1,75 2.5	10 10 10	86,5	0,061
MB 3 MB 3 A	17	24 24	32 32	1 1,2	4 4	15,5 15,5	0,003 0,0035	► MB 19	95	113	133	1,75	10	86,5 91,5	0,087
MB 4 MB 4 A	20	26 26	36 36	1 1,2	4 4	18,5 18,5	0,004 0,005	MB 19 A ► MB 20	100	113	133 142	2,5 1,75	10	91,5 96,5	0,094
MB 5 MB 5 A	25	32 32	42 42	1,25 1,8	5 5	23 23	0,006 0,0085	MB 20 A ► MB 21	105	120 126	142 145	2,5 1,75	12 12	96,5 100,5	0,11 0,083
MB 6 MB 6 A	30	38 38	49 49	1,25 1,8	5 5	27,5 27,5	0,008 0,011	► MB 22	110	133	154	1,75	12	105,5	0,091
MB 7 MB 7 A	35	44 44	57 57	1,25 1,8	6	32,5 32,5	0,011 0,016	► MB 23 ► MBL 24	115120	137 135	159 152	2	12 14	110,5 115	0,11
MB 8 MB 8 A	40	50 50	62 62	1,25 1,8	6	37,5 37,5	0,013 0,018	► MB 24 ► MB 25	125	138 148	164 170	2	14 14	115 120	0,11
MB 9 MB 9 A	45	56 56	69 69	1,25 1,8	6	42,5 42,5	0,015 0,021	MBL 26 ► MB 26	130	145 149	161 175	2 2	14 14	125 125	0,08 0,12
MB 10 MB 10 A	50	61 61	74 74	1,25 1.8	6	47,5 47,5	0,016 0,023	► MB 27	135	160	185	2	14	130	0,14
MB 11 MB 11 A	55	67 67	81 81	1,5 2,5	8	52,5 52,5	0,022 0,037	► MBL 28 ► MB 28	140	155 160	172 192	2	16 16	135 135	0,09 0,14
MB 12	60	73 73	86	1,5	8	57,5	0,024	► MB 29	145	172	202	2	16	140	0,17
MB 12 A	65	79	92 93	2,5 1,5	8	57,5 62,5	0,04	► MBL 30 ► MB 30	150	170 171	189 205	2 2	16 16	145 145	0,1 0,18
MB 13 A MB 14	70	79 85	92 98	2,5 1,5	8	62,5 66,5	0,05 0,032	► MB 31 ► MBL 32	155160	182 180	212 199	2,5 2,5	16 18	147,5 154	0,2 0,14
MB 14 A	75	85 90	98 104	2,5	8	66,5	0,053	► MB 32	165	182	217	2,5	18 18	154 157 5	0,22
MB 15 MB 15 A	75	90 90	104 104	1,5 2,5	8 8	71,5 71,5	0,035 0,058	► MB 33	165	193	222	2,5	18	157,5	(

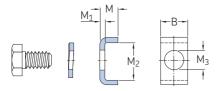

► Popular item


25.2

	Designation	Dimen	sions					Mass
		d	d_1	d ₂	В	f	М	
	_	mm						kg
•	MBL 34 MB 34	170	190 193	211 232	2,5 2,5	18 18	164 164	0,15 0,24
	MBL 36 MB 36	180	200 203	222 242	2,5 2,5	20 20	174 174	0,16 0,26
•	MBL 38 MB 38	190	210 214	232 252	2,5 2,5	20 20	184 184	0,17 0,26
•	MBL 40 MB 40	200	222 226	245 262	2,5 2,5	20 20	194 194	0,22 0,28
•	MB 44	220	250	292	3	24	213	0,35
•	MB 48	240	270	312	3	24	233	0,45
•	MB 52	260	300	342	3	28	253	0,65
•	MB 56	280	320	362	3	28	273	0,7

[►] Popular item

25.3 HM lock nuts Tr 280x4 – Tr 1120x8

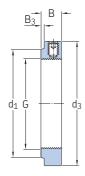

Dimensions								Designations Lock nut	Associated		1. 15	
G	d_1	d ₂	d_3	В	B ₅	b	h			locking clip	spanner	eye bolt
mm								kg	_			
Tr 280x4	310	293	330	38	50	24	10	5,75	► HM 3056	MS 3056	TMFN 52-64	-
Tr 300x4	336 340	316 326	360 380	42 40	54 53	24 24	12 12	8,35 11,5	► HM 3060 ► HM 3160	MS 3060 MS 3160	TMFN 52-64 TMFN 52-64	_
Tr 320x5	356 360	336 346	380 400	42 42	55 56	24 24	12 12	9 13	► HM 3064 ► HM 3164	MS 3068-64 MS 3164	TMFN 52-64 TMFN 52-64	- -
Tr 340x5	376 400	356 373	400 440	45 55	58 72	24 28	12 15	11 24	► HM 3068 ► HM 3168	MS 3068-64 MS 3172-68	TMFN 52-64 TMFN 64-80	- M 10
Tr 360x5	394 420	375 393	420 460	45 58	58 75	28 28	13 15	11,5 26,5	► HM 3072 ► HM 3172	MS 3072 MS 3172-68	TMFN 64-80 TMFN 64-80	- M 10
Tr 380x5	422 440	399 415	450 490	48 60	62 77	28 32	14 18	15 32	► HM 3076 ► HM 3176	MS 3080-76 MS 3176	TMFN 64-80 TMFN 64-80	- M 10
Tr 400x5	442 460	419 440	470 520	52 62	66 82	28 32	14 18	17 38	► HM 3080 ► HM 3180	MS 3080-76 MS 3184-80	TMFN 64-80 TMFN 64-80	- M 10
Tr 420x5	462 490	439 460	490 540	52 70	66 90	32 32	14 18	18,5 45	► HM 3084 ► HM 3184	MS 3084 MS 3184-80	TMFN 64-80 TMFN 80-500	_ M 10
Tr 440x5	490 510	463 478	520 560	60 70	77 90	32 36	15 20	26 46,5	► HM 3088 ► HM 3188	MS 3092-88 MS 3192-88	TMFN 64-80 TMFN 80-500	M 10 M 10
Tr 460x5	510 540	483 498	540 580	60 75	77 95	32 36	15 20	27 50,5	► HM 3092 HM 3192	MS 3092-88 MS 3192-88	TMFN 80-500 TMFN 80-500	M 10 M 10
Tr 480x5	560	528	620	75	95	36	20	62	HM 3196	MS 3196	TMFN 80-500	M 10
Tr 500x5	550	523	580	68	85	36	15	33,5	► HM 30/500	MS 30/500-96	TMFN 500-600	M 10
Tr 530x6	590	558	630	68	90	40	20	42,5	► HM 30/530	MS 30/600-530	TMFN 500-600	M 10
Tr 560x6	610	583	650	75	97	40	20	44,5	► HM 30/560	MS 30/560	TMFN 500-600	M 10
Tr 600x6	660	628	700	75	97	40	20	52,5	► HM 30/600	MS 30/600-530	TMFN 500-600	M 10
Tr 630x6	690	658	730	75	97	45	20	55	► HM 30/630	MS 30/630	TMFN 500-600	M 10
Tr 670x6	740	703	780	80	102	45	20	68,5	► HM 30/670	MS 30/670	TMFN 600-750	M 10
Tr 710x7	780	742	830	90	112	50	25	91,5	► HM 30/710	MS 30/710	TMFN 600-750	M 12
Tr 750x7	820	782	870	90	112	55	25	94	► HM 30/750	MS 30/800-750	TMFN 600-750	M 12

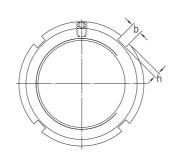
25.3

Dimensions								Mass	Designations Lock nut	Associated		
G	d_1	d ₂	d_3	В	B ₅	b	h			locking clip	spanner	eye bolt
mm								kg	_			
Tr 800x7	870	832	920	90	112	55	25	99,5	► HM 30/800	MS 30/800-750	TMFN 600-750	M 12
Tr 850x7	925	887	980	90	115	60	25	115	► HM 30/850	MS 30/900-850	-	M 12
Tr 900x7	975	937	1 030	100	125	60	25	131	► HM 30/900	MS 30/900-850	-	M 16
Tr 950x8	1 025	985	1 080	100	125	60	25	139	► HM 30/950	MS 30/950	-	M 16
Tr 1000x8	1 085	1 040	1140	100	125	60	25	157	► HM 30/1000	MS 30/1000	-	M 16
Tr 1060x8	1 145	1 100	1 200	100	125	60	25	166	► HM 30/1060	MS 30/1000	-	M 16
Tr 1120x8	1 205	1160	1 260	100	125	60	25	175	► HM 30/1120	MS 30/1000	-	M 16

[►] Popular item

Designations Locking clip	Included		Dimer	nsions			Mass		
Locking cup	hexagonal head bolt	spring washer in accordance with DIN 128	В	М	M ₁	M ₂	M ₃		
-			mm					kg	
MS 3044	M 6x12	A 6	20	12	4	13,5	7	0,022	
MS 3052-48	M 8x16	A8	20	12	4	17,5	9	0,024	
MS 3056	M 8x16	A 8	24	12	4	17,5	9	0,03	
MS 3060	M 8x16	A 8	24	12	4	20,5	9	0,033	
MS 3068-64	M 8x16	A 8	24	15	5	21	9	0,046	
MS 3072	M 8x16	A 8	28	15	5	20	9	0,051	
MS 3080-76	M 10x20	A10	28	15	5	24	12	0,055	
MS 3084	M 10x20	A10	32	15	5	24	12	0,063	
MS 3092-88	M 12x25	A12	32	15	5	28	14	0,067	
MS 30/500-96	M 12x25	A12	36	15	5	28	14	0,076	
MS 30/560	M 16x30	A16	40	21	7	29	18	0,15	
MS 30/600-530	M 16x30	A16	40	21	7	34	18	0,14	
MS 30/630	M 16x30	A16	45	21	7	34	18	0,17	
MS 30/670	M 16x30	A16	45	21	7	39	18	0,19	
MS 30/710	M 16x30	A16	50	21	7	39	18	0,21	
MS 30/800-750	M 16x30	A16	55	21	7	39	18	0,23	
MS 30/900-850	M 20x40	A 20	60	21	7	44	22	0,26	
MS 30/950	M 20x40	A 20	60	21	7	46	22	0,26	
MS 30/1000	M 20x40	A 20	60	21	7	51	22	0,28	
MS 3160	M 10x20	A10	24	12	4	30,5	12	0,04	
MS 3164	M 10x20	A10	24	15	5	31	12	0,055	
MS 3172-68	M 12x25	A12	28	15	5	38	14	0,069	
MS 3176	M 12x25	A12	32	15	5	40	14	0,083	
MS 3184-80	M 16x30	A16	32	15	5	45	18	0,089	

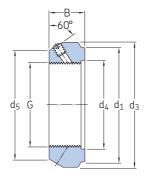


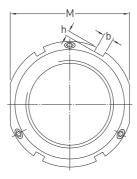

► Popular item

Designations Locking clip	Included		Mass						
Locking clip	hexagonal head bolt	spring washer in accordance with DIN 128	В	М	M ₁	M ₂	M ₃		
_			mm					kg	
MS 3192-88	M 16x30	A16	36	15	5	43	18	0,097	
MS 3196	M 16x30	A16	36	15	5	53	18	0,11	
MS 31/500	M 16x30	A16	40	15	5	45	18	0,11	
MS 31/530	M 20x40	A 20	40	21	7	51	22	0,19	
MS 31/600-560	M 20x40	A 20	45	21	7	54	22	0,22	
MS 31/630	M 20x40	A 20	50	21	7	61	22	0,27	
MS 31/670	M 20x40	A 20	50	21	7	66	22	0,28	
MS 31/710	M 24x50	A 24	55	21	7	69	26	0,32	
MS 31/800-750	M 24x50	A 24	60	21	7	70	26	0,35	
MS 31/850	M 24x50	A 24	70	21	7	71	26	0,41	
MS 31/900	M 24x50	A 24	70	21	7	76	26	0,41	
MS 31/950	M 24x50	A 24	70	21	7	78	26	0,42	
MS 31/1000	M 24x50	A 24	70	21	7	88	26	0,5	

[►] Popular item

25.5 KMFE lock nuts with a locking screw M 20x1 – M 200x3

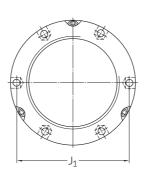

M 20x1 M 25x1,5 M 30x1,5 M 35x1,5 M 40x1,5 M 45x1,5	26 31 36	d ₃	В	B ₃	b	h	carrying capacity static		Lock nut	Associated spanner	Size	Recommended tightening
M 20x1 M 25x1,5 M 30x1,5 M 35x1,5 M 40x1,5 M 45x1,5	31 36	32	0.5									torque
M 25x1,5 M 30x1,5 M 35x1,5 M 40x1,5 M 45x1,5	31 36	32	0.5				kN	kg	_		_	Nm
M 30x1,5 M 35x1,5 M 40x1,5 M 45x1,5	36		9,5	1	4	2	24	0,034	► KMFE 4	HN 4	M5	4,5
M 35x1,5 M 40x1,5 M 45x1,5		38	10,5	2	5	2	31,5	0,049	► KMFE 5	HN 5-6	M5	4,5
M 40x1,5 M 45x1,5	/ 2 E	45	10,5	2	5	2	36,5	0,066	► KMFE 6	HN 5-6	M5	4,5
M 45x1,5	42,5	52	11,5	3	5	2	50	0,092	► KMFE 7	HN 7	M5	4,5
ŕ	47	58	13	3	6	2,5	62	0,12	► KMFE 8	HN 8-9	M6	8
M 50x1,5	53	65	13	3	6	2,5	78	0,15	► KMFE 9	HN 8-9	M6	8
	57,5	70	14	3	6	2,5	91,5	0,18	► KMFE 10	HN 10-11	M6	8
M 55x2	64	75	14	3	7	3	91,5	0,21	► KMFE 11	HN 10-11	M6	8
M 60x2	69	80	14	3	7	3	95	0,22	► KMFE 12	HN 12-13	M6	8
M 65x2	76	85	15	3	7	3	108	0,26	► KMFE 13	HN 12-13	M6	8
M 70x2	79	92	15	3	8	3,5	118	0,3	► KMFE 14	HN 14	M6	8
M 75x2	84	98	16	3	8	3,5	134	0,36	► KMFE 15	HN 15	M6	8
M 80x2	91,5	105	18	3	8	3,5	173	0,48	► KMFE 16	HN16	M8	18
M 85x2	98	110	19	4	8	3,5	190	0,53	► KMFE 17	HN 17	M8	18
M 90x2	102	120	19	4	10	4	216	0,66	► KMFE 18	HN 18-20	M8	18
M 95x2	110	125	20	4	10	4	236	0,75	► KMFE 19	HN 18-20	M8	18
M 100x2	112	130	21	4	10	4	255	0,81	► KMFE 20	HN 18-20	M8	18
M 110x2	121	145	21,5	4	12	5	310	1,05	► KMFE 22	HN 21-22	M8	18
M 120x2	130	155	26	6	12	5	340	1,3	► KMFE 24	TMFN 23-30	M10	35
M 130x2	141	165	28	7	12	5	365	1,5	► KMFE 26	TMFN 23-30	M10	35
M 140x2	152	180	28	7	14	6	440	1,85	► KMFE 28	TMFN 23-30	M10	35
M 150x2	162	195	30	9	14	6	495	2,25	► KMFE 30	TMFN 23-30	M10	35
M 160x3	173	210	32	11	16	7	540	2,8	► KMFE 32	TMFN 30-40	M10	35


► Popular item

Dimension	s d ₁	d ₃	В	В ₃	b	h	Axial load carrying capacity static	Mass	Designation Lock nut	Associated spanner	Grub (s Size	set) screw Recommended tightening torque
mm							kN	kg	_		_	Nm
M 170x3	184	220	33	12	16	7	550	3	► KMFE 34	TMFN 30-40	M10	35
M 180x3	194	230	34	12	18	8	590	3,3	► KMFE 36	TMFN 30-40	M10	35
M 190x3	207	240	34	12	18	8	610	3,55	► KMFE 38	TMFN 30-40	M10	35
M 200x3	217	250	34	12	18	8	625	3,7	► KMFE 40	TMFN 30-40	M10	35

25.6 KMT precision lock nuts with locking pins M 10x0,75 – M 200x3

Dimensions									Axial load carrying capacity	Mass Design Lock no		ions Associated spanner	Grub (set) screw Size Recommended tightening	
G	d_1	d_3	d_4	d ₅	В	М	b	h	static			эраппет		torque
mm									kN	kg	_		-	Nm
M 10x0,75	23	28	11	21	14	24	4	2	35	0,045	► KMT 0	HN 2-3	M 5	4,5
M 12x1	25	30	13	23	14	27	4	2	40	0,05	► KMT1	HN 4	M 5	4,5
M 15x1	28	33	16	26	16	30	4	2	60	0,075	► KMT 2	HN 4	M 5	4,5
M 17x1	33	37	18	29	18	34	5	2	80	0,1	► KMT 3	HN 5-6	M 6	8
M 20x1	35	40	21	32	18	36	5	2	90	0,11	► KMT 4	HN 5-6	M 6	8
M 25x1,5	39	44	26	36	20	41	5	2	130	0,13	► KMT 5	HN 5-6	M 6	8
M 30x1,5	44	49	32	41	20	46	5	2	160	0,16	► KMT 6	HN 7	M 6	8
M 35x1,5	49	54	38	46	22	50	5	2	190	0,19	► KMT 7	HN 7	M 6	8
M 40x1,5	59	65	42	54	22	60	6	2,5	210	0,3	► KMT 8	HN 8-9	M 8	18
M 45x1,5	64	70	48	60	22	65	6	2,5	240	0,33	► KMT 9	HN 10-11	M 8	18
M 50x1,5	68	75	52	64	25	70	7	3	300	0,4	► KMT 10	HN 10-11	M 8	18
M 55x2	78	85	58	74	25	80	7	3	340	0,54	► KMT 11	HN 12-13	M 8	18
M 60x2	82	90	62	78	26	85	8	3,5	380	0,61	► KMT 12	HN 12-13	M 8	18
M 65x2	87	95	68	83	28	90	8	3,5	460	0,71	► KMT 13	HN 15	M 8	18
M 70x2	92	100	72	88	28	95	8	3,5	490	0,75	► KMT 14	HN 15	M 8	18
M 75x2	97	105	77	93	28	100	8	3,5	520	0,8	► KMT 15	HN 16	M 8	18
M 80x2	100	110	83	98	32	-	8	3,5	620	0,9	► KMT 16	HN 17	M 8	18
M 85x2	110	120	88	107	32	-	10	4	650	1,15	► KMT 17	HN 18-20	M 10	35
M 90x2	115	125	93	112	32	-	10	4	680	1,2	► KMT 18	HN 18-20	M 10	35
M 95x2	120	130	98	117	32	-	10	4	710	1,25	► KMT 19	HN 18-20	M 10	35
M 100x2	125	135	103	122	32	-	10	4	740	1,3	► KMT 20	HN 21-22	M 10	35
M 110x2	134	145	112	132	32	_	10	4	800	1,45	► KMT 22	HN 21-22	M 10	35


Dimension	s								Axial load	Mass	Designati	ons	Grub (set) screw
G	d_1	d ₃	d ₄	d ₅	В	М	b	h	carrying capacity static		Lock nut	Associated spanner	Size	Recommended tightening torque
mm									kN	kg	_		_	Nm
M 120x2	144	155	122	142	32	_	10	4	860	1,6	► KMT 24	HN 21-22	M10	35
M 130x2	154	165	132	152	32	_	12	5	920	1,7	► KMT 26	TMFN 23-30	M 10	35
M 140x2	164	175	142	162	32	_	14	5	980	1,8	► KMT 28	TMFN 23-30	M 10	35
M 150x2	174	185	152	172	32	_	14	5	1 040	1,95	► KMT 30	TMFN 23-30	M 10	35
M 160x3	184	195	162	182	32	-	14	5	1 100	2,1	► KMT 32	TMFN 23-30	M 10	35
M 170x3	192	205	172	192	32	-	14	5	1 160	2,2	► KMT 34	TMFN 30-40	M 10	35
M 180x3	204	215	182	202	32	-	16	5	1 220	2,3	► KMT 36	TMFN 30-40	M 10	35
M 190x3	214	225	192	212	32	_	16	5	1 280	2,4	► KMT 38	TMFN 30-40	M 10	35
M 200x3	224	235	202	222	32	_	18	5	1 340	2,5	► KMT 40	TMFN 30-40	M 10	35

25.6

[►] Popular item

25.7 KMTA precision lock nuts with locking pins M 25x1,5 – M 200x3

Dimension	ıs								Axial load carrying	Mass	Designat i Lock nut	ons Associated	Grub (s Size	set) screw Recommended
G	d_1	d_3	d ₄	В	J_1	J ₂	N_1	N ₂	capacity static			spanner		tightening torque
mm									kN	kg	_		_	Nm
M 25x1,5	35	42	26	20	32,5	11	4,3	4	130	0,13	► KMTA 5	B 40-42	M 6	8
M 30x1,5	40	48	32	20	40,5	11	4,3	5	160	0,16	► KMTA 6	B 45-50	M 6	8
M 35x1,5	47	53	38	20	45,5	11	4,3	5	190	0,19	► KMTA 7	B 52-55	M 6	8
M 40x1,5	52	58	42	22	50,5	12	4,3	5	210	0,23	► KMTA 8	B 58-62	M 6	8
M 45x1,5	58	68	48	22	58	12	4,3	6	240	0,33	► KMTA 9	B 68-75	M 6	8
M 50x1,5	63	70	52	24	61,5	13	4,3	6	300	0,34	► KMTA 10	B 68-75	M 6	8
M 55x1,5	70	75	58	24	66,5	13	4,3	6	340	0,37	► KMTA 11	B 68-75	M 6	8
M 60x1,5	75	84	62	24	74,5	13	5,3	6	380	0,49	► KMTA 12	B 80-90	M 8	18
M 65x1,5	80	88	68	25	78,5	13	5,3	6	460	0,52	► KMTA 13	B 80-90	M 8	18
M 70x1,5	86	95	72	26	85	14	5,3	8	490	0,62	► KMTA 14	B 95-100	M 8	18
M 75x1,5	91	100	77	26	88	13	6,4	8	520	0,66	► KMTA 15	B 95-100	M 8	18
M 80x2	97	110	83	30	95	16	6,4	8	620	1	► KMTA 16	B 110-115	M 8	18
M 85x2	102	115	88	32	100	17	6,4	8	650	1,15	► KMTA 17	B 110-115	M 10	35
M 90x2	110	120	93	32	108	17	6,4	8	680	1,2	► KMTA 18	B 120-130	M 10	35
M 95x2	114	125	98	32	113	17	6,4	8	710	1,25	► KMTA 19	B 120-130	M 10	35
M 100x2	120	130	103	32	118	17	6,4	8	740	1,3	► KMTA 20	B 120-130	M 10	35
M 110x2	132	140	112	32	128	17	6,4	8	800	1,45	► KMTA 22	B 135-145	M 10	35
M 120x2	142	155	122	32	140	17	6,4	8	860	1,85	► KMTA 24	B 155-165	M 10	35
M 130x3	156	165	132	32	153	17	6,4	8	920	2	► KMTA 26	B 155-165	M 10	35
M 140x3	166	180	142	32	165	17	6,4	10	980	2,45	► KMTA 28	B 180-195	M 10	35
M 150x3	180	190	152	32	175	17	6,4	10	1 040	2,6	► KMTA 30	B 180-195	M 10	35
M 160x3	190	205	162	32	185	17	8,4	10	1 100	3,15	► KMTA 32	B 205-220	M 10	35

► Popular item

SKF. 1116

Dimensior	n s d ₁	d ₃	d ₄	В	J ₁	J ₂	N ₁	N_2	Axial load carrying capacity static	Mass	Designatio Lock nut	ons Associated spanner	Grub (s Size	set) screw Recommended tightening torque
mm									kN	kg	_		-	Nm
M 170x3	205	215	172	32	195	17	8,4	10	1 160	3,3	► KMTA 34	B 205-220	M 10	35
M 180x3	215	230	182	32	210	17	8,4	10	1 220	3,9	► KMTA 36	B 230-245	M 10	35
M 190x3	225	240	192	32	224	17	8,4	10	1 280	4,1	► KMTA 38	B 230-245	M10	35
M 200x3	237	245	202	32	229	17	8,4	10	1 340	3,85	► KMTA 40	B 230-245	M 10	35

25.7

Index

Text index	1120
Product index	1136

5KF. 1119

Text index

A	with inch dimensions 1067, 1076–1084 ADB 514	contact angle 79, 384, 385–386, 392–393 designation system 404–405
	additives	designs and variants 385–391
A	in grease 117, 118	dimensional stability 81, 402
angular contact ball bearings 404	in oil 121	dimension standards 392
cam followers 965, 967, 976	adjusted bearing arrangements	double row bearings 386, 424–429
cylindrical roller bearings 514	bearing selection chart 73–74	fixed section bearings 384
deep groove ball bearings 258	bearing selection considerations 76	for universal matching 385–386, 392–395, 403
lock nuts and locking devices 1093, 1103	adjusted reference speed 135	four-point contact ball bearings 387, 430–435
motor encoder units 995	adjusting bearings	internal clearance 392–397
support rollers 946, 952	angular contact ball bearings 385–386, 392,	loads 78–79, 384, 398–401, 403
tapered roller bearings 692	402–403 for operating clearance 203	lubrication 389, 402
AA 258	tapered roller bearings 687	matched bearings 405 misalignment 392–393
AB 404	agricultural applications	NoWear coated bearings 1061
abutments	and insert bearings 342–346	preload 392, 395, 403
accuracy requirements 144	specification life 88	product tables 406–435
design considerations 178	Agri Hub 191	sealing solutions 388–389, 402
AC 386, 392, 404	AH 365	SKF Explorer bearings 385, 387
accelerations and minimum load 106	alignment bearings 80-81	speeds 116, 402
and spherical roller bearings 779	alignment needle roller bearings	temperature limits 389, 402
acceleration sensing 996	cages 597–598, 608	tolerances 392–393
accessories	designs and variants 588	with a two-piece inner ring 386-387
adapter sleeves 1065–1085	dimension standards 598-599	with locating slots 387, 403
bearing selection chart 73–74	fits and tolerance classes 603	with Solid Oil 1026
lock nuts and locking devices 1089–1117	internal clearance 598-599	angular contact thrust ball bearings 79
AC current 1044, 1047	loads 606	angular misalignment. See misalignment
acids 118	misalignment 598–599	angular positioning 1000
AC motors 988	mounting 611	annular grooves
adapters 968-970	operating clearance 598-599	in cylindrical roller bearings 500
adapter sleeves 1065–1085	product tables 648-651	in needle roller bearings 587, 596
associated hydraulic nuts 1072–1085	seating rings 588	in self-aligning ball bearings 440–441
bearing selection considerations 82	temperature limits 608	in spherical roller bearings 776
coatings 1067	tolerances 598–599	in tapered roller bearings 674–675
designation system 1071	Allen wrenches. See hexagonal keys alloys	ANSI standards 32
designs and variants 1067–1069	cage types 25	anti-fretting agents 201 anti-rotation pins 179
dimension standards 1070	effect on internal clearance 185	applications
dismounting methods and tools 202, 209	alternating loads 142	bearing selection data sheet 1144
for axial location 178–179	aluminium oxide coating	grease selection chart 125
for CARB toroidal roller bearings 852–853,	on cylindrical roller bearings 515	requirements 65–67
868–870, 1069 for inch shafts 1070–1071	on INSOCOAT bearings 1030–1032, 1033	specification life 88
for insert bearings 341, 344, 378–379	aluminium rings 202	AS 612
for metric shafts 1072–1077	ambient temperature	asperities 102, 132
for oil injection 1068	effect on bearing shelf life 57	ASR 612
for sealed bearings 1069	heat dissipation/generation 132-134	associated components
for self-aligning ball bearings 439, 446–447,	ammonia 188	abutments and fillets 178–179
458–461	AMP Superseal TM 990, 991, 995, 997	accuracy measurements 200
for spherical roller bearings 784, 787, 824-831	angle rings 496–497	and test running 206–207
locking devices 1067, 1069	angular contact ball bearings 383–435	for axial location 178–179
lock nuts 1067, 1069	adjustment during mounting 203, 385–386,	automatic lubricators 114, 120
mounted with a spacer ring 1066	402–403	automotive applications
mounting methods and tools 202-204	assortment 385	and high temperature bearings 1007
product tables 1072–1085	bearing arrangements 70–76	and sensor bearing units 988
shaft tolerances 152, 1070	bearing selection chart 73–74	and tapered roller bearings 669
tapers 1070	cages 390–391, 402	availability 82
threads 1070	combined with a needle roller bearing 588–	AW additives
tolerances 1070	589, 652–653	and NoWear coated bearings 1062

effect on viscosity ratio 102 in greases 118	spalling 211 time to failure 211	C
in oils 121	wear 211	
axial clamping 185	bearing failure 88, 211	С
axial clamp seals 198	bearing fitting tools 201–202, 209	deep groove ball bearings 258
axial displacement bearing selection chart 73–74	bearing height series 28–31	insert bearings 365
considerations when selecting fits 143	terminology 22	tapered roller bearings 674, 692, 693
in bearing arrangements 70–75	bearing life	deep groove ball bearings 253, 259
axial drive-up. See drive-up	calculations 89–104	ISO clearance class 27
axial internal clearance 26, 182–185	definitions 88	C2
axial loads 21	specification life per machine type 88–89	angular contact ball bearings 396–397, 405
radially free bearings 179 suitable bearing types 78–79	testing 107 under variable operating conditions 90	CARB toroidal roller bearings 847–848, 855
axial location 70–71, 178	unit conversion table 91	cylindrical roller bearings 506, 515 deep groove ball bearings 252–253, 259
axial run-out. See run-out	bearing mean diameter 102	ISO clearance class 27
axleboxes	bearings	needle roller bearings 603, 613
and cylindrical roller bearings 515	bore diameter tolerances 154–165	self-aligning ball bearings 444, 449
specification life 89	cleaning 200, 212 handling 200	spherical roller bearings 782–783, 791
	outside diameter tolerances 166–175	C2H 405
	popular items 82	C2L 405 C3
	selection chart 73–74	angular contact ball bearings 396–397, 405
D	size categories 201, 207	CARB toroidal roller bearings 847–848, 855
В	storage and shelf life 57	cylindrical roller bearings 506, 515
	terminology 22–23 types 20–32, 69–83	deep groove ball bearings 252–253, 259
В	bearing seats	ISO clearance class 27
adapter sleeves 1068	accuracy requirements 144–145	needle roller bearings 603, 613 self-aligning ball bearings 444, 449
angular contact ball bearings 392, 404	position and width of tolerance classes 140-141	spherical roller bearings 782–783, 791
cam followers 966, 976 cylindrical roller bearings 514	resultant fits 153–175	C3P 1049
insert bearings 345, 364	surface roughness 147	C4
lock nuts and locking devices 1103	tolerances for housing seats 151–152 tolerances for shaft seats 148–150	angular contact ball bearings 396–397, 405
sensor bearing units 995	bearing selection	CARB toroidal roller bearings 847–848, 855
tapered roller bearings 692	application data sheet 1144	cylindrical roller bearings 506, 515 deep groove ball bearings 252–253, 259
backing bearings 495	centrifugal pump example 228-235	ISO clearance class 27
back-to-back arrangements adjusting for preload 186	process 59–63	needle roller bearings 613
with angular contact ball bearings 386, 394–	rope sheave example 222–227	spherical roller bearings 782–783, 791
395, 402	vibrating screen example 216–221 bearing series 28–30	CS
with combined needle roller bearings 589, 590,	bearing size	CARB toroidal roller bearings 847–848, 855 cylindrical roller bearings 506, 515
592	and its dependencies 131	deep groove ball bearings 252–253, 259
with deep groove ball bearings 249 with tapered roller bearings 76, 670, 687,	considerations 86–87	ISO clearance class 27
754–759	effect on relubrication interval 115	spherical roller bearings 782–783, 791
ball and cage assemblies	selection based on rating life 88–89 selection based on static load 104–106	C08
in angular contact ball bearings 386	bearing systems 86–87	CARB toroidal roller bearings 846, 855 spherical roller bearings 791
in thrust ball bearings 467	bearing units. See ball bearing units	C083 791
ball bearings compared to roller bearings 20, 78, 79	bearing washers	C084 791
designation system 30	in cylindrical roller thrust bearings 878-880,	CA
ball bearing units	882, 884 in needle roller thrust bearings 898, 900, 903,	angular contact ball bearings 385, 392, 394, 40
for high temperature applications 1007	904	deep groove ball bearings 250, 253, 259
with insert bearings 341	in spherical roller thrust bearings 914, 918	spherical roller bearings 775, 790 CAC 790
with Solid Oil 1025, 1026	materials 24	cages
balls bearing terminology 23	bearing width	bearing terminology 23
materials 24	series 28–31 terminology 22	effect of lubricants on PA66_188–189
raceway contact 20	Belleville washers 198, 590, 592	lubrication considerations 112–113 types 25, 187–188
base oils	belt drives 93	calculation tools 61–63
compatibility chart 119 in oils 120–121	BF 612	cam drives
in SKF greases 124–125, 126–127	black oxide coating	and cam followers 964
base oil viscosity 118, 125, 126–127	and other coatings 27, 189 on cylindrical roller bearings 498	and cam rollers 932
basic dynamic load rating 91	on insert bearings 343	and support rollers 944
basic rating life 89–90	BMB 995	cam followers 963–985 attachment holes 974
basic static load rating 104	BMD 995	cages 968, 974
BC 780, 790 bearing arrangements	BMO 995	designation system 976–977
adjusted (cross-located) 76	bore diameter 22, 28	designs and variants 965–968
bearing selection chart 73–74	boundary dimensions 28–29 boundary lubrication	dimensional stability 974
floating (cross-located) 76	effect on frictional moment 132	dimension standards 968, 972
locating/non-locating 70-75	lubrication conditions 102–103	grease fittings 966–967, 968–970, 971 hexagonal nuts and keys 968–970, 974, 975
bearing damage	brass cages 25, 188	internal clearance 972
electrical erosion 1030, 1045 false brinelling 207, 1044	BS2 781, 790	loads 973
metal fatigue 88		lubrication 933, 968, 970, 971, 974
smearing 102, 106, 1044, 1060, 1062		mounting 966–967, 975

plugs 975	CC(J) 775, 790	ConCentra insert bearings. See SKF ConCentra
running surface 964, 965, 972, 976	CCJA 778, 790 centralized lubrication systems	insert bearings condensation
sealing solutions 967, 974 speeds 974	and cam followers 968, 970, 971	corrosion protection 117
spring washers 975	types 120–121	storage and shelf life 57
support surfaces 974	centrifugal pumps 228–235	condition monitoring 211
temperature limits 974	centrifuges 88	conditions of rotation 142
tolerances 972 with an axial sliding ring 966	centring flanges in needle roller bearings 586–587	cones 669 connecting rods 142, 584
cam rollers 931–941	in needle roller thrust bearings 897, 910–911	consistency
cages 934, 936	ceramics. See silicon nitride	effect of mixing greases 118
designation system 937	chamfer dimensions 22, 28	effect of temperature changes 117
designs and variants 933–934	chamfers	mechanical stability 117
dimensional stability 936 dimension standards 934	bearing terminology 23 dimension limits 53–54	NLGI grades 116 contact angle
double row bearings 932–937, 940–941	dimension standards 37	bearing terminology 21, 22–23
guide flanges 936	special-shaped chamfers 190	effect on load carrying capability 79
internal clearance 934	chromium coating 1046	in angular contact ball bearings 384, 385-386
loads 935	churning 132	in four-point contact ball bearings 392–393
lubrication 933, 936 pins 936	circulating oil effect on frictional power loss 134	in tapered roller bearings 666 contact seals
product tables 938–941	overview 122–123	external sealing 197–198
running surface 932, 933, 934	CJ 790	integral sealing 26
sealing solutions 933, 936, 937	CL00 692	contact stresses 104
speeds 936	CLO 692 CL7A 693	contamination and bearings with Solid Oil 1024
support surfaces 936 temperature limits 936	CL7A 693 CL7C 669, 693	and NoWear coated bearings 1061
tolerances 934	clamping. See axial clamping	effect on initial grease fill 113
capped bearings	cleanliness. See contamination	effect on oil change interval 121
bearing selection considerations 82	clearance 153	effect on relubrication interval 115
components 24	clearance reduction and selecting initial clearance 183	levels of cleanliness 105 sealing solutions 195–198
heating 203 storage and shelf life 57	caused by interference fits 184	contamination factor 104–105
washing 200	caused by temperature differences 184–185	continuous casters
capping devices	measuring with a feeler gauge 205	and CARB toroidal roller bearings 845
bearing terminology 23	values for CARB toroidal roller bearings 854	and spherical roller bearings 780
types 26 carbon coating 1060	values for spherical roller bearings 789 CLN 693	continuous lubrication 114 conveyor systems
CARB toroidal roller bearings 841–875	CN	and cam followers 964
assortment 844	cylindrical roller bearings 515	and cam rollers 932
axial displacement 842-843, 846, 850-851	deep groove ball bearings 259	and insert bearings 341
bearing arrangements 71–75	needle roller bearings 613	and sensor bearing units 988
cages 844–845, 850 clearance reduction 205, 850, 854	CNL 405 coatings	and support rollers 944 specification life 88
contact angle 79	aluminium oxide 1030, 1031–1032, 1033	cooling 134
designation system 855	black oxide 343, 498	copper corrosion test 126-127
designs and variants 844–845	chromium 1046	coronet cages 1007, 1009, 1010, 1014
dimensional stability 81, 850	defining final variant 189 manganese phosphate 1007, 1008, 1014	corrosion inhibitor 1060 corrosion protection
dimension standards 846 drive-up data 854	molybdenum 1046	and bearing storage 57
free space 852	NoWear (carbon) 1060	of greases 117
full complement bearings 844-845, 849, 850	overview 27	of oils 120–121
housings 852	phosphate 1067	technical specifications (SKF greases) 126–127
internal clearance 846–848, 850 in vertical shaft arrangements 853	polytetrafluoroethylene (PTFE) 778 rust inhibitor 1067	with hybrid bearings 1046 with initial grease fill 113
loads 79, 849	zinc 341–343	cranes 88
lock nut tightening angle 854	zinc chromate 1046	crankpins 584
lubrication 845, 850	cold dismounting 207	crankshafts 1000
misalignment 842–843, 846, 851–852	cold mounting 201	creep 142–143 crushers 88
mounting 205–206, 852, 853–854 NoWear coated bearings 1061	combined loads 21, 78–79 combined needle roller bearings	cryogenic temperatures 1046
on an adapter sleeve 852–853, 868–871	abutment dimensions 609	CS 776, 790
on a withdrawal sleeve 852–853, 872–875	bearing selection chart 73-74	CS2 776, 790
on start-up 849	cages 597–598, 608	CS5
preload 853 product tables 856–875	designs and variants 588–593 dimension standards 600	CARB toroidal roller bearings 845, 855 spherical roller bearings 776, 790
sealing solutions 844–845	internal clearance 600, 603	cups 669
SKF Explorer bearings 842, 844	loads 606-607	cup springs. See Belleville washers
speeds 116, 850	lubrication 596	customized bearings 32
suitable adapter sleeves 1069	misalignment 600	CV 514
suitable lock nuts 1091, 1094, 1095 temperature limits 845, 850	product tables 652–659 sealing solutions 594–595	cylindrical roller and cage thrust assemblies 880, 885
tolerances 846	tolerances 600	cylindrical roller bearings 493–579
vibration 842–843	composite housings 362	axial displacement 496-501, 504-505
carrying tools 200	compressors	bearing arrangements 70–77
car wash systems 341 case-hardening 27	and NoWear coated bearings 1060 specification life 88	bearing selection chart 73–74 cages 115, 502–503, 511
CB 385, 392, 394, 404	suitable cage types 188	coatings 498
CC 385, 392, 394, 404	<u> </u>	-

1122

combined with a four-point contact ball bearing	deep groove ball bearings 239–337	in hub bearing units 385
403	bearing arrangements 70-75	internal clearance 392–393, 396
contact angle 79	bearing selection chart 73-74	loads 79, 398–399
designation system 514–515	cages 248–249, 256	lubrication 389, 402
designs and variants 496–503	contact angle 79	misalignment 392–393
dimensional stability 81, 511	designation system 258–259	sealing solutions 388–389, 402, 428–429
dimension standards 504–505	designs and variants 241–249	SKF Explorer bearings 386, 387
dismounting 202, 208	dimensional stability 81, 256	speeds 402
double row bearings 499, 500–502, 504–505	dimension standards 250–251	temperature limits 389, 402
flanges 494–497, 500–501, 512	double row bearings 242, 334–337	tolerances 392–393
full complement bearings 500-502, 504-505,	for high temperature applications 1008-1009,	double row cam rollers
554–579	1016–1019	cages 934, 936
high-capacity bearings 498-499, 502-503,	grease life 246	designation system 937
504, 550–553	hybrid bearings 1044–1055	designs and variants 933-934
hybrid bearings 1044–1049, 1056–1057	in ICOS oil sealed bearing units 244, 308–309	dimensional stability 936
INSOCOAT bearings 1030–1035, 1038–1041	in insert bearings 340–381	dimension standards 934
internal clearance 504–508	in sensor bearing units 988–1003	internal clearance 934
loads 78–79, 510	INSOCOAT bearings 1030–1035, 1036–1037	loads 935
lubrication 115, 501–503, 511	internal clearance 250–253	lubrication 933, 936
matched bearings 502	loads 78–79, 254–255	product table 940–941
misalignment 504–505	lubrication 244–246, 256	running surface 932, 933, 934
mounting 201-202, 512	matched bearings 249, 254–255	sealing solutions 936, 937
NoWear coated bearings 1061	misalignment 250–251	speeds 936
product tables 516-579	NoWear coated bearings 1061	temperature limits 936
sealing solutions 501-503, 511, 576-579	product tables 260-337, 1016-1019	tolerances 934
SKF Explorer bearings 502	sealing solutions 242–247, 256	double row cylindrical roller bearings 495
speeds 116, 511	SKF Explorer bearings 248	double row deep groove ball bearings
temperature limits 511	SKF Quiet running bearings 248	cages 248–249, 256
tolerances 504–505	speeds 116, 256	designation system 258–259
with an angle ring 496–497	stainless steel bearings 241, 243–257, 316–327	designs and variants 242
with a retaining ring 500-501	temperature limits 245, 256	dimensional stability 256
with a snap ring groove 498	tolerances 250–251	dimension standards 250-251
with locating slots 498	with a flanged outer ring 247	internal clearance 250–252
with Solid Oil 1025, 1026	with a snap ring groove 247, 310-315	loads 242, 254–255
cylindrical roller thrust bearings 877-893	with filling slots 241, 328-333	misalignment 250-251
abutment dimensions 885	with Solid Oil 1025, 1026	product table 334–337
bearing selection chart 73–74	defect frequencies. See skf.com/bearingcalculator	speeds 256
cages 881, 884	designation systems 29–32	temperature limits 256
combined with a needle roller bearing 592,	DF	tolerances 250–251
	angular contact ball bearings 386, 405	
600, 658–659		with Solid Oil 1026
contact angle 79	deep groove ball bearings 249, 259	double row needle roller bearings
designation system 886	tapered roller bearings 693	drawn cup needle roller bearings 585, 596
designs and variants 879-881	dial indicators 203, 206	needle roller and cage assemblies 583, 596
dimensional stability 81	diameter series 28–31, 37, 52	with machined rings 587, 596
dimension standards 881	differentials 669	double row tapered roller bearings 671–674
double direction bearings 879	dimensional stability 27, 81	DR 502, 515
fits and tolerance classes 885	dimensional tolerances	drag losses 132
loads 79, 884	accuracy measurements 200	drawn cup needle roller bearings
misalignment 881	for seats and abutments 144–145	assortment 584
product table 888–893	dimension series 28–31	bearing selection chart 73–74
single direction bearings 879	direct drive control 998	cages 597–598, 608
speeds 884	dismounting 207–210	designs and variants 584–586
•	bearing selection considerations 82	3
temperature limits 884	3	dimensional stability 608
tolerances 881–883	cold 207	dimension standards 598
washers 879–880, 882, 884	considerations when selecting fits 143	double row bearings 585, 596
with raceways on shafts and in housings 885	design provisions 176–177	fits and tolerance classes 602
cylindrical seats 202	from a cylindrical shaft seat 207–208	loads 606
	from an adapter sleeve 209	lubrication 585, 595
	from a tapered shaft seat 208	misalignment 598
	from a withdrawal sleeve 210	mounting 611
	methods and tools 202	operating clearance 598
	using heat 208	product table 618-623
1)	using the oil injection method 207-210	sealing solutions 594
	distance rings 178–179	temperature limits 608
	distortion 143	tolerances 598
D	DO 674–675	drifts 207
adapter sleeves 1071	double direction bearings	drive-up
angular contact ball bearings 386, 404		•
deep groove ball bearings 258	cylindrical roller thrust bearings 879	mounting bearings with a tapered bore 203,
needle roller bearings 612	needle roller thrust bearings 897	206
tapered roller bearings 674, 692	thrust ball bearings 466-468, 486-491	values for CARB toroidal roller bearings 854
D2 674	double row angular contact ball bearings	values for self-aligning ball bearings 448
	assortment 386	values for spherical roller bearings 789
D3 674	bearing selection chart 73–74	drive-up method. See SKF Drive-up Method
DA 514	cages 390–391, 402	dropping point
DB	contact angle 79, 392–393	high temperature limit 117
angular contact ball bearings 386, 405	designation system 404–405	technical specifications (SKF greases) 126-127
deep groove ball bearings 249, 259	designs and variants 385, 386	drying cylinders
tapered roller bearings 693	dimensional stability 402	and CARB toroidal roller bearings 852
DC current 1044, 1047	dimension standards 392–393	and heat generation 131
	שוווכווטוויטוויטוועמועט טוב טוט	and near generation 101

dry lubricant. See graphite dry running 1060 DS 612	in self-aligning ball bearings 440–441, 446, 462–463 external forces 91, 93	five-lip (5-lip) seals 342-344, 346, 349, 355 fixed section bearings 384 flanged bearings
DT 012	external sealing 194–197	angular contact ball bearings 385
angular contact ball bearings 386, 405	extreme pressure additives. See EP additives	deep groove ball bearings 247
deep groove ball bearings 249, 259	extreme temperature bearings. See high temper-	tapered roller bearings 670, 742–743, 1031
tapered roller bearings 693	ature bearings	flange rings
dust 242	eye bolts	in cam followers 965, 966–967, 973
duty intervals 90–92	for large bearings 190, 200–201	in support rollers 944, 945–947, 951
dynamic load rating. See basic dynamic load	in spherical roller bearings 791	flanges
rating	in spherical roller thrust bearings 921	in cylindrical roller bearings 494-497, 500-501
dynamic misalignment 80		512
		in needle roller bearings 612
		in spherical roller bearings 775
		in tapered roller bearings 667
	Г	flingers
	F	for oil lubrication 196–197
E		in insert bearings 342–347
	F	floating bearing arrangements
E	angular contact ball bearings 390, 404	bearing selection chart 73–74
adapter sleeves 1069, 1071	high temperature bearings 1007, 1010–1011,	bearing selection considerations 76–77
angular contact ball bearings 404	1014	fluctuating loads 90
deep groove ball bearings 258	insert bearings 342-345, 365	fluoro rubber (FKM) in deep groove ball bearings 244
self-aligning ball bearings 446, 447, 449	spherical roller bearings 790	in hybrid bearings 1045
spherical roller bearings 775-776, 790	spherical roller thrust bearings 921	in needle roller bearings 594
spherical roller thrust bearings 915, 921	thrust ball bearings 468, 471	in spherical roller bearings 776
tapered roller bearings 674, 692	F1 1049	in tapered roller bearings 672
EC 514	F3 921	safety precautions 197
eccentric collars 964–965, 974, 975	FA	food and beverage industry
eccentric locking collars 341, 343, 372–375	angular contact ball bearings 404	and bearings with Solid Oil 1025
EGS 612	spherical roller bearings 790	and high temperature bearings 1007
EH 1069, 1071 EJA 778, 790	face-to-face arrangements adjusting for preload 186	and insert bearings 341, 342, 362
EL 1069, 1071	with angular contact ball bearings 76, 386,	food-grade lubricants
elastic deformation 81	394–395, 402	for bearings with Solid Oil 1025
electrical erosion. See electrical insulation	with deep groove ball bearings 249	for high temperature bearings 1007, 1009, 1010
electrical insulation	with tapered roller bearings 670, 672, 683,	for insert bearings 342, 348
with hybrid bearings 1044-1045, 1047	744–753	grease selection chart (SKF greases) 124–125 forklifts 988
with INSOCOAT bearings 1030-1032	failure probability 88–90	form tolerances. See geometrical tolerances
electrical resistance. See electrical insulation	false brinelling	four-point contact ball bearings
electric generators	and machines on standby 207	assortment 387
and deep groove ball bearings 248	prevention with hybrid bearings 1044	bearing selection chart 73–74
and hybrid bearings 1046	fans	cages 390–391, 402
and INSOCOAT bearings 1030	and CARB toroidal roller bearings 842	contact angle 79
electric motors and hybrid bearings 1044, 1045, 1046	and insert bearings 341	design 385, 387
and INSOCOAT bearings 1044, 1045, 1046	and NoWear coated bearings 1060 and self-aligning ball bearings 438	designation system 404-405
and sensor bearing units 988, 993, 1000	specification life 88	dimensional stability 81, 402
noise reduction 186	fatigue. See metal fatigue	dimension standards 392–393
protection during standstill 187	fatigue life 88–89	INSOCOAT bearings 1031
shaft accuracy example 145	fatigue load limit 104	internal clearance 392–393, 397 loads 79, 398–399, 403
specification life 88	faults 211	locating slots 191
electric vehicles 988	feeler gauges 205	misalignment 392–393
electromagnetic environments 991	felt seals 198–199	product table 430–435
encoder units	fillets 178–179	SKF Explorer bearings 387
motor encoder units 988–995, 1002–1003	filling grade. See grease fills	speeds 402
roller encoder units 996	filling slot bearings cages 248–249, 256	temperature limits 402
steering encoder units 997–998 end plates	designs and variants 241	tolerances 392–393
for axial location 178	dimensional stability 256	used as a thrust bearing 403
terminology 22	dimension standards 250–251	with locating slots 387, 403
envelope requirement 148	internal clearance 250–252	four-row cylindrical roller bearings 495
EP additives	loads 241, 254–255	four-row tapered roller bearings 668, 674 FR 514
and NoWear coated bearings 1062	misalignment 250-251	frequency converters 1030
effect on polymer cages 189	product table 328–333	fretting corrosion
effect on viscosity ratio 102	sealing solutions 244	and conditions of rotation 142
in greases 118, 125	speeds 256	and PTFE coatings 778
in oils 121	temperature limits 256	technical specifications (SKF greases) 126-127
technical specifications (SKF greases) 126–127	tolerances 250–251	friction
equivalent dynamic bearing load 91–92	with a snap ring groove 241	and its dependencies 132
equivalent mean load 92	filtration 94	bearing selection chart 73–74
equivalent static bearing load 105 escape holes. See grease escape holes	fits based on load and operating conditions 142	bearing selection considerations 79
esters 120–121	for housings 143, 166–175	in ball and roller bearings 20
e-turbo(super)chargers 1000	for shafts 154–165	SKF model of bearing friction 132
exciters 779	position and width of tolerance classes 140–141	frictional moment estimation 132
extended inner rings	selection criteria 140–143	starting torque 133
in insert bearings 341-346	fitting slots 362	sta. ting torque 100

1124

frictional power loss 132–134	in high temperature bearings 1007, 1009,	hammers 209
full complement bearings	1010	hardening 27
bearing selection chart 73–74	gravitational forces 91	hardness
CARB toroidal roller bearings 844–845, 849,	grease escape holes 114	of bearing rings 91
850	grease fills	of seal counterfaces 197
combined needle roller bearings 590, 595	initial fill 112–113	HB 1068, 1071
compared to bearings with a cage 78, 81	replenishment 113, 114	HB1
cylindrical roller bearings \$500–502, 504–505,	grease fittings 966–967, 968–970	
		cylindrical roller bearings 515
554–579	grease life	cylindrical roller thrust bearings 886
drawn cup needle roller bearings 584–585	and the SKF traffic light concept 118	tapered roller bearings 692
full film lubrication	estimating the relubrication interval 111	HB2 692 HB3 515
effect on frictional moment 132	technical specifications (SKF greases) 126–127	
lubrication conditions 102–103	grease lubrication	HC5 1049
furnaces 88	initial fill 112–113	heat dissipation 132, 133
	relubrication 111–115	heaters 202
	running-in period 113	heat generation 131
	selecting a suitable grease 116–119	heating rings 208
	versus oil lubrication 110–111	heat stabilization. See dimensional stability
	grease performance factor 245–246	heat treatment 27
G	greases	hexagonal keys
	additives 117, 118	for cam followers 966–967, 975
G	base oil viscosity 125, 126–127	for insert bearings 360, 362
	consistency grades 116	hexagonal nuts 968–969, 974
adapter sleeves 1071	corrosion protection 117	high-capacity bearings 498–499, 550–553
angular contact ball bearings 385, 392, 394, 404	inspection and monitoring 212-213	high temperature bearings 1005-1021
insert bearings 365	load carrying ability 118	applications 1006, 1007, 1013
tapered roller bearings 674, 692	load ranges 116	assortment 1007
G2 598, 601, 604, 613	miscibility 118–119	axial displacement 1013
GA	selection chart (SKF greases) 124-125	coatings 1007, 1008, 1014
angular contact ball bearings 385, 392, 395,	SKF traffic light concept 117-118	deep groove ball bearings 1008-1009,
404	speed ranges 116	1016–1019
deep groove ball bearings 250, 253, 259	technical specifications (SKF greases) 126-127	designation system 1014
gap-type seals 196	temperature ranges 116	designs and variants 1008, 1010
gaskets 195	grinding spindles 187	dimensional stability 1011
gauges	grub screw locking	dimension standards 1011
feeler gauges 205	with high temperature bearings 1010–1013	fits and tolerance classes 1013
for checking associated components 200	with insert bearings 341–344, 356, 366–370	insert bearings 1010–1011, 1020–1021
for needle rollers 601, 611	grub screws 360, 362	internal clearance 1008, 1010, 1011–1012
pressure gauges 206	GS	loads 1012–1013
taper gauges 147, 200	cylindrical roller thrust bearings 880, 882, 885,	lubrication 1007, 1009, 1010, 1014
GB 385, 392, 395, 404	886	misalignment 1011
GC 385, 392, 395, 404	needle roller thrust bearings 898, 904	mounting 1014
GE2	gudgeon pins 584	product tables 1016–1021
angular contact ball bearings 389, 405	guide flanges 23, 936	running in 1007, 1014
deep groove ball bearings 245, 259	guide rings 774–775	sealing solutions 1008–1009, 1010–1011
gears	guiding sleeves 201	speeds 1009, 1010, 1014
and cylindrical roller bearings 498	GWF 389, 405	temperature limits 1007, 1008–1011, 1013,
and NoWear coated bearings 1060	GXN 389	1014
and spherical roller bearings 779, 780	gym equipment 341	
and tapered roller bearings 671	gym equipment 341	tolerances 1011–1012
load conditions 93		HN1 515
specification life 88		HN3 692
GEM9		hollow shafts 143, 146
CARB toroidal roller bearings 845, 855		hook spanners
spherical roller bearings 776, 791	Ш	for dismounting bearings 210
general plans. See ISO, general plans	П	for insert bearings 361
generators		for mounting bearings 202–203
and hybrid bearings 1044, 1045–1046, 1049	Н	hot dismounting 208
and sensor bearing units 1000	adapter sleeves 1068, 1071	hot mounting 203
specification life 88	lock nuts and locking devices 1103	hotplates 203
Geometrical Product Specification (GPS) 36	needle roller bearings 613	housing bore diameter 22
geometrical tolerances	HA1	housing covers
accuracy measurements 200	cylindrical roller bearings 515	for axial location 178
for seats and abutments 144–145	cylindrical roller thrust bearings 886	terminology 22
geometric centres 683–684	deep groove ball bearings 259	housings
GFJ	tapered roller bearings 692	bearing selection chart 73–74
deep groove ball bearings 244–245, 259	HA2	considerations when selecting fits 143
insert bearings 348	cylindrical roller bearings 515	for CARB toroidal roller bearings 852
GJN	tapered roller bearings 692	for self-aligning ball bearings 447
angular contact ball bearings 389	HA3	for spherical roller bearings 788
deep groove ball bearings 244–245, 259	CARB toroidal roller bearings 855	terminology 22
glass fibre reinforced polymers 188	cylindrical roller bearings 515	housing seats
glass industry 1007	spherical roller bearings 515	accuracy requirements 144–145
GLE 776, 791		position and width of tolerance classes 141
gloves 197, 200	tapered roller bearings 692 HA4 692	terminology 22
go-karts 341	HA5 692	tolerances and resultant fits 166–175
GR 365	HA6 692	tolerances for radial bearings 151
	HA6 692 HA7 692	tolerances for thrust bearings 152
graphite	Hall effect cells 989, 991, 998	housing washers
as a solid lubricant additive 118	1 1all E118Cl CEllS 707, 771, 770	

bearing terminology 23	induction-hardening 27	designs and variants 1031–1032
in cylindrical roller thrust bearings 880, 882, 885	induction heaters	dimension standards 1033
in needle roller thrust bearings 898, 903, 904 in spherical roller thrust bearings 914, 918, 920	for dismounting bearings 202, 208 for motor encoder units 994	electrical properties 1032 four-point contact ball bearings 1031
in thrust ball bearings 467–468, 470	for mounting bearings 202–203	internal clearance 1033
HT 244–245, 259	inductive sensors 990	loads 1034
hub bearing units	inertial forces 91	lubrication 1034
with angular contact ball bearings 385	initial clearance 182–185	misalignment 1033
with tapered roller bearings 668 humidity	initial grease fills 114 injection moulded cages 188	mounting 1035 sealing solutions 1032
effect on bearing shelf life 57	inlet shear heating 132	speeds 1034
effect on EP/AW additives 118	inner ring expansion 206	tapered roller bearings 1031
HV 342, 365	inner rings	temperature limits 1034
hybrid bearings 1043–1057	bearing terminology 23	tolerances 1033
assortment 1045 axial displacement 1047	for needle roller bearings 592–593, 601, 660–662	inspection 211–212 insulation. See electrical insulation
cages 1046, 1048	materials 24	integral sealing
coatings 1046	insert bearings 339–381	bearing selection chart 73–74
compared to all-steel bearings 79, 81, 1044,	applications 341	bearing selection considerations 82
1046	assortment 341	defining final variant 189
customized bearings 1046 cylindrical roller bearings 1045–1046,	axial displacement 344, 347, 356 bearing selection chart 73–74	types 26 interference 153
1056–1057	cages 346–347, 355	interference fits
deep groove ball bearings 1045–1046,	designation system 364–365	and clearance reduction 184
1050–1055	designs and variants 341–347	dismounting bearings 207
designation system 1049	dimensional stability 355	mounting bearings 201, 203
designs and variants 1045–1046 dimensional stability 1046, 1048	dimension standards 350 dismounting 359–362	position and width of tolerance classes 141 intermediate rings
dimension standards 1047	fits and tolerance classes 358–359	in needle roller bearings 609
electrical properties 1047	for agricultural applications 342–345	in tapered roller bearings 672–673
internal clearance 1047	for high temperature applications 1010-1011,	intermediate washers
loads 1048	1020–1021	in cylindrical roller thrust bearings 879
lubrication 1045–1046, 1048 misalignment 1047	for inch shafts 368-370, 374-375, 377, 379 for the food and beverage industry 341, 342	in needle roller thrust bearings 897 internal clearance
preload 1048	housings 347, 351, 362	selecting clearance or preload 182–185
sealing solutions 1045–1046, 1048	internal clearance 350, 352	types 26–27
SKF Explorer bearings 1045	key sizes 360, 362	internal gauges 200
speeds 1044–1045, 1048	loads 345, 348–349, 353–354	IS 593, 612
temperature limits 1046, 1048 tolerances 1047	locking methods 341 lubrication 348–349, 355	ISO clearance classes 27
hydraulic motors 1060	misalignment 340, 351, 362–363	dimension series 77
hydraulic mounting tools 202	mounting 359–362	general plans 28
hydraulic nuts	product tables 366–381	GPS 36
for adapter sleeves 1072–1085	sealing solutions 345–346, 355	reference speed 135
for dismounting bearings 202, 209–210 for mounting bearings 202, 203–204, 206	SKF ConCentra bearings 344, 358–359, 362–363, 376–377	tolerance classes 36 tolerance grades 145
safety precautions 210	speeds 355	tolerance system 140–141
hydraulic pullers 202, 208	temperature limits 347, 348, 355	viscosity grades 103
hydraulic pumps	tightening torques/angles 360-362	ISR 612
and NoWear coated bearings 1060	tolerances 350, 352	
for dismounting bearings 210 for mounting bearings 206	vibration 340, 344, 347 with an adapter sleeve 341, 344, 350, 358–361,	
hydrodynamic films 120	378–379	
nyaroaynamie minis 120	with an eccentric locking collar 341, 343, 355,	1
	372–375	J
	with an extended inner ring 341, 342–346	
	with an interference fit 341, 345 with a rubber seating ring 346–347, 351	J
	with a standard inner ring 345, 349, 358, 380	angular contact ball bearings 390, 404
1	with a tapered bore 344, 378–379	cylindrical roller bearings 502, 514
ICOS 258	with grub screws 341, 342–344, 355, 356,	spherical roller bearings 790 tapered roller bearings 692
ICOS oil sealed bearing units 244, 248, 308–309	366–371	J1 390, 404
impact loads 779	with Solid Oil 1025, 1026 with stainless steel components 342, 345, 348	JA
impact spanners 202, 203, 210	with zinc-coated rings 342, 343, 348	cylindrical roller bearings 502-503, 511, 514
impulse rings 989, 993, 994, 1000	insert bearing units. See ball bearing units	spherical roller bearings 790
inch bearings cylindrical roller bearings 496	INSOCOAT bearings 1029–1041	jaw pullers 202 JB 502–503, 511, 514
deep groove ball bearings 241	abutment dimensions 1035	JU 302-303, 311, 314
tapered roller bearings 676–678, 687–689, 691,	assortment 1031 axial displacement 1033	
714–741	cages 1032, 1034	
inch lock nuts 1093	coatings 27, 1030–1032, 1033	
inch shafts and adapter sleeves 1070–1071	cylindrical roller bearings 1030-1035,	K
and high temperature bearings 1021	1038–1041	[]
and insert bearings 368–370, 374–375, 377, 379	deep groove ball bearings 1030–1035, 1036–1037	
inch sleeves 1067, 1076–1084	defining final variant 189	K CARB toroidal roller bearings 844, 855
indentations 94	designation system 1035	cylindrical roller bearings 844, 855
indexing roller units 493		cymianicatroner bearings 470, 514

cylindrical roller thrust bearings 880, 882, 885, 886	locking methods 341 locking pins 1114–1117	M
insert bearings 365	locking plates	•
self-aligning ball bearings 449	designs 1093	M
spherical roller bearings 775, 790 K30	for adapter sleeves 1067 locking principle 1094	angular contact ball bearings 390–391, 404
CARB toroidal roller bearings 844, 855	lock nuts 1089–1117	CARB toroidal roller bearings 845, 855 cylindrical roller bearings 502, 514
spherical roller bearings 775, 790	designs and variants 1090-1094	cylindrical roller thrust bearings 881, 886
keys. See hexagonal keys	dimension standards 1098	deep groove ball bearings 248, 258
key slots 1071, 1095 keyways 1091, 1093, 1095	for axial location 178–179 for bearings mounted on sleeves 1067, 1069	hybrid bearings 1046
kilns. See ovens	for CARB toroidal roller bearings 1091, 1094,	INSOCOAT bearings 1032 self-aligning ball bearings 442, 449
kinematic replenishment/starvation 132	1095	spherical roller thrust bearings 921
kinematic viscosity. See viscosity	for sealed bearings 1091, 1095	thrust ball bearings 468, 471
	for self-aligning ball bearings 1095 for spherical roller bearings 1095	MA
	installation and removal 1100–1102	angular contact ball bearings 390–391, 402, 404 four-point contact ball bearings 390–391, 402,
	keyways 1091, 1093, 1095	404
1	locking principles 1091–1092, 1094, 1097	spherical roller bearings 790
L	loosening torque 1098 mating shaft threads 1098	machined cages 25
	precision lock nuts 1092, 1096–1097,	machine maintenance. See inspection machine tools
L adapter sleeves 1040, 1071	1096–1099	bearing selection considerations 81
adapter sleeves 1069, 1071 cylindrical roller bearings 502, 514	product tables 1104–1117	specification life 88
lock nuts and locking devices 1103	threads 1098–1099 tolerances 1098	magnetic sensors
L4B	with a locking clip 1091, 1094, 1108–1109	for motor encoder units 990 for steering encoder units 998
cylindrical roller bearings 498, 515 tapered roller bearings 692	with a lock washer 1091, 1104–1105	maintenance-free
L5B 515	with an integral locking device 1091, 1095	angular contact ball bearings 389
L5DA 1060, 1061, 1062	with an integral locking screw 1091, 1095, 1112–1113	CARB toroidal roller bearings 845
L7B 515	with inch dimensions 1093	deep groove ball bearings 244 hybrid bearings 1045
L7DA 1060, 1061, 1062 LA 502, 511, 514	with locking pins 1114–1117	self-aligning ball bearings 440
labyrinth seals 195, 196	lock nut tightening angle values for CARB toroidal roller bearings 854	spherical roller bearings 776
large bearings	values for insert bearings 361	mandrels 975
availability 82	values for self-aligning ball bearings 448	manganese phosphate coating 1007, 1008, 1014 marginal lubrication 1062
dismounting 207–210 effect on relubrication interval 115	values for spherical roller bearings 789	marine applications
handling 200	verifying the interference fit 205 lock washers	and NoWear coated bearings 1060
mounting 202-204	designs 1093	specification life 88 MA(S)
size category 201	for adapter sleeves 1067, 1069	cylindrical roller bearings 502, 511, 514
LB 502, 511, 514 LHT23 244–245, 259	installation and removal 1100	deep groove ball bearings 248, 258
life. See bearing life	locking principle 1094 product tables 1106–1107	matched bearings
life adjustment factor 89–90	logarithmic profile	angular contact ball bearings 405 bearing selection chart 73–74
life modification factor 94–99 lifting tackle 200	in cylindrical roller bearings 494–495	cylindrical roller bearings 502
lifts 88	in tapered roller bearings 667 loose fits 141	deep groove ball bearings 249, 254–255
limiting speed 135	low-friction bearings 669	tapered roller bearings 670–671, 682–684, 687, 744–761
line contact 20	low-friction seals	material handling applications 341
LL 502, 511, 514 load ratings	in deep groove ball bearings 242–243	materials
dynamic 91	integral seals 26 LS 514	of bearing components 24–25
static 104	LT 244–245, 259	of cages 25, 188–189 of shafts and housings 143
loads bearing selection chart 73–74	LT10 245, 259	mating surfaces 201
bearing selection considerations 78–79	LubeSelect 116 lubricants	MB
conditions of rotation 142	effect on cage materials 188–189	angular contact ball bearings 404 CARB toroidal roller bearings 845
effect on relubrication interval 118	greases 116–119	cylindrical roller bearings 502, 511, 514
external forces 91, 93 fluctuating 90	inspection and monitoring 212–213	MB(1) 855
peak 92–93, 104, 106	oils 120–121 Solid Oil 1024	MB(S) 248, 258
ranges for greases 116	lubricated for life	mean loads 92 mechanical mounting tools 202
requisite minimum load 106 rotating 92–93	high temperature bearings 1006, 1014	mechanical pullers 202, 207
locating bearings 70–71	insert bearings 349	mechanical seals 198–199
locating/non-locating bearing arrangements 70–75	lubrication 109–127 grease 116–120	mechanical speed limit 135
locating slots	grease selection chart (SKF greases) 124–125	medical applications 88 medium-size bearings
in cylindrical roller bearings 498 in deep groove ball bearings 258	in bearing life calculations 102-103	dismounting 202, 207–210
in four-point contact ball bearings 190–191,	oil 120–123	mounting 202–206
387, 403, 404	selecting grease or oil 110–111 lubrication conditions	size category 201 metal fatigue 88
locking clips	calculating the viscosity ratio 102-103	metal ratigue 88 metal seals 198–199
designs 1094 for adapter sleeves 1067, 1069	dependencies 131	metals industry 1007
installation and removal 1100–1101	effect on frictional moment 132	MH 502–503, 511, 514
locking principle 1094		micrometers 200 mills 88
product table 1110–1111		

mineral oils in greases 119 in oils 120–121	N	needle rollers in cam followers 966, 976 in needle roller bearings 593, 601, 604, 611
minimum load 106 mining applications and cylindrical roller bearings 498 and tapered roller bearings 671	N angular contact ball bearings 404 cylindrical roller bearings 498, 514 deep groove ball bearings 247, 258	in support rollers 944, 945–946, 946 needle roller thrust bearings 895–911 abutment dimensions 903 bearing selection chart 73–74
specification life 88 misalignment bearing selection chart 73–74 bearing selection considerations 80	tapered roller bearings 674 N1 angular contact ball bearings 404 cylindrical roller bearings 498, 514	cages 898–899, 902 combined with a needle roller bearing 586–587, 897 contact angle 79
types 80 miscibility 118–119 mixed lubrication 103, 132	deep groove ball bearings 476, 314 spherical roller thrust bearings 921 tapered roller bearings 674	designation system 904 designs and variants 896–898 dimensional stability 81, 902
ML cylindrical roller bearings 502, 511, 514 hybrid bearings 1046, 1048 INSOCOAT bearings 1032	N2 angular contact ball bearings 387, 404 cylindrical roller bearings 498, 514 spherical roller thrust bearings 921	dimension standards 899 double direction bearings 897 loads 79,902 lubrication 902
M/M 613 moisture 1024 molybdenum 1046	tapered roller bearings 674 needle roller and cage assemblies abutment dimensions 609	misalignment 899 needle roller and cage thrust assemblies 896– 897, 906–909
molybdenum disulfide 118 motor encoder units axial location 993 bearing arrangements 993	bearing selection chart 73–74 cages 597–598, 608 designs and variants 583	product tables 906–911 raceways on shafts and in housings 903 speeds 902 temperature limits 902
bearings 989 cable connection 989–991, 993–995 cages 995	dimensional stability 608 dimension standards 598 double row bearings 583, 596 fits and tolerance classes 601	tolerances 899–901 washers 898, 900, 903, 904 with a centring flange 897, 900, 903, 904,
designation system 995 designs and variants 989–990 dimension standards 992	loads 606 misalignment 598 mounting 611	910–911 Nilos rings 1008–1009 nitrogen steel 1049
electromagnetic compatibility 991 filtering 991 for extreme operating conditions 990 internal clearance 992	operating clearance 598 product table 614–617 temperature limits 608 tolerances 598	NLGI grades consistency classification 116 grease selection chart (SKF greases) 124–125 technical specifications (SKF greases) 126–127
loads 992 lubrication 990 mounting 993, 994–995	needle roller and cage thrust assemblies designation system 904 designs and variants 896–897	N/M 613 noise and CARB toroidal roller bearings 842–843
output signal features 991 power supply 991 product table 1002–1003 receiving interface requirements 991	fits and tolerance classes 903 product table 906–909 tolerances 900	and insert bearings 340, 344, 347, 355 and self-aligning ball bearings 438 and tapered roller bearings 667 monitoring 206, 211
sealing solutions 989, 993 sensor technology 989–990 speeds 993	needle roller bearings 581–663 abutment dimensions 609 axial displacement 582–583, 586–595, 611 bearing selection chart 73–74	reduction by spring loading 186, 1048 non-contact seals external sealing 196
temperature limits 992 tolerances 992 voltage supply 989, 991 mounted clearance 182	cages 597–598, 608 combined with a cylindrical roller thrust bearing 592, 600, 658–659	integral sealing 26 non-locating bearings considerations when selecting fits 143 types 70–71
mounting 200–207 bearing selection chart 73–74 bearing selection considerations 82	combined with an angular contact ball bearing 588–589, 600, 652–653 combined with a needle roller thrust bearing 586–587, 897	non-separable bearings dismounting 207 mounting 201
bearings with a cylindrical bore 201–203 bearings with a tapered bore 203–206 cold 201 considerations when selecting fits 143	combined with a thrust ball bearing 590–591, 600, 654–657 contact angle 79	notches. See locating slots NoWear coated bearings 1059–1063 applications 1060, 1061, 1062 assortment 1061
design provisions 176–177 measuring the axial drive-up 203, 206 measuring the clearance reduction 205	designation system 612–613 designs and variants 583–596 dimensional stability 81, 608 dimension standards 598–601	cages 1061 designation system 1062 designs and variants 1061
measuring the inner ring expansion 206 measuring the lock nut tightening angle 205 methods and tools 202	dismounting 208 features 582 gauges 598–599, 611	dimension standards 1062 hardness 1060 internal clearance 1062
using heat 203 using the oil injection method 204 mounting dollys 611 mounting sleeves 512	inner rings 592–593, 601, 660–662 internal clearance 598–601, 602–603, 603 loads 79, 606–607 lubrication 585, 595–596, 608	loads 1062 lubrication 1062 misalignment 1062 speed 1062
MP 511, 514 MR 514 MT33	misalignment 598–601 mounting 201, 611 needle rollers 593, 601, 613	temperature limits 1062 tolerances 1062 NoWear coating 27, 189
angular contact ball bearings 389, 405 deep groove ball bearings 259 MT47 259	NoWear coated bearings 1061 product tables 614–663 sealing solutions 594–595, 608	NR angular contact ball bearings 386, 404 cylindrical roller bearings 514 deep groove ball bearings 247, 258
	shaft and housing raceway tolerances 610 speeds 608 temperature limits 608 tolerances 598–601	NS 845, 855 NSF H1 food-grade lubricants in bearings with Solid Oil 1025, 1027
	with machined rings 586–587, 595–596, 598–599, 624–647	in high temperature bearings 1007, 1009, 1010

\cap	INSOCOAT bearings 1032	polyetheretherketone (PEEK). See PEEK
U	lock nuts and locking devices 1103	polyglycols 120–121
«	P5	polymer cages 25, 188–189 popular items 82
off-highway vehicles 997	angular contact ball bearings 405 cylindrical roller thrust bearings 886	position sensing 996
offset mounting 852	deep groove ball bearings 250–251, 259	pour point 120–121
offshore applications 1060 ohmic resistance. See electrical resistance	ISO tolerance class 36	power generation plants 88
oil-air 122–123	needle roller bearings 613	power loss. See frictional power loss
oil bath 122–123	spherical roller bearings 791	PPA
oil distribution grooves	tapered roller bearings 692	cam followers 966, 976
dimensions 177	thrust ball bearings 471	support rollers 946, 952
in adapter sleeves 1068	P6	PPSK 966–967
oil injection method (dismounting) 207-210	angular contact ball bearings 405	PPSKA 971, 976 PPXA
oil injection method (mounting) 204	deep groove ball bearings 250–251, 259 ISO tolerance class 36	cam followers 966, 976
oil films 132	needle roller bearings 613	support rollers 946, 952
oil flow rate 134 oil injection method	spherical roller bearings 791	precision
dimensions for ducts, grooves, and holes 177	thrust ball bearings 471	and tolerance classes 187
for dismounting bearings 202, 207–210	P6CNL 405	bearing selection considerations 81
for mounting bearings 202, 203–204	P6CNR 613	considerations when selecting fits 143
shaft surface roughness 176	P52 259	precision lock nuts
with adapter sleeves 204, 1068	P62	designs and variants 1092, 1096–1097
with withdrawal sleeves 204, 210, 1087	angular contact ball bearings 405	dimension standards 1098–1099
oil jet 122–123	deep groove ball bearings 259 needle roller bearings 613	installation and removal 1102 loosening torque 1098–1099
oil lubrication	spherical roller bearings 791	mating shaft threads 1098–1099
for cooling 134	P63	product table 1114–1117
methods 122–123 oil change intervals 121–122	angular contact ball bearings 405	tolerances 1098–1099
oils 120–121	deep groove ball bearings 259	preload
versus grease lubrication 110–111	needle roller bearings 613	selecting preload 182–187
oil pick-up rings 122–123	P64 405	with springs 186–187
oils 120-121	PA 502, 511, 514	preservative oils 118, 200
oil supply ducts	PA46 (polyamide 46) 25, 188	pressure centres
dimensions 177	PA66 (polyamide 66) 25, 188–189	considerations for preload 186
in adapter sleeves 1068	paired mounting with angular contact ball bearings 386, 392,	in angular contact ball bearings 400 in tapered roller bearings 681, 683–684
oil injection method (dismounting) 207	400, 402	pressure-viscosity coefficient 120–121
oil injection method (mounting) 204	with deep groove ball bearings 249, 250,	protruding balls 446
open bearings heating 203	254–255	PTFE
storage and shelf life 57	with tapered roller bearings 670-671, 681-	and high temperature bearings 1008
operating clearance 182–183	684, 744–761	safety precautions 197
operating conditions 65–67	paper machines	PTFE coating 778–779
operating temperature 129–137	and CARB toroidal roller bearings 842, 845,	pullers 202, 207, 208
and its dependencies 131	852	pulling plates 208
effect on oil change interval 121	and customized bearings 191 and NoWear coated bearings 1060	pull-up resistors 991, 998 pumps
effect on relubrication interval 115	and spherical roller bearings 780	bearing selection example 228-235
estimation 133 heat dissipation 133	bearing selection example 222–227	specification life 88
thermal equilibrium 131	peak loads 92-93, 104, 106	push-out bolts 207
0-rings 195	PEEK 188	
oscillating movements	performance 65–67	
and NoWear coated bearings 1060, 1061	permanent deformation 86–87, 104, 106	
and static load 104	PEX	
definition 91	cylindrical roller bearings 515	\cap
grease selection chart (SKF greases) 124–125	tapered roller bearings 675, 693 PH	Q
load conditions 142 outer ring rotation	angular contact ball bearings 390, 404	
and roller encoder units 996	cylindrical roller bearings 502, 514	QR 502, 515
effect on relubrication interval 115	hybrid bearings 1046	quiet running 248
fits and tolerance classes 151	PHÁ 502, 511, 514	
load conditions 142	PHAS 390–391, 402, 404	
outer rings	phosphate coating 1067	
bearing terminology 23	pinion bearings 669	_
materials 24	pins in cam followers 964–965	R
outside diameter 22, 28	in cam rollers 936	11
ovens 1007	in support rollers 950	D
	pin-type cages 25	R cylindrical roller bearings 514
	pitch circle diameter 23	deep groove ball bearings 247, 258
	plain shafts 1066	needle roller bearings 612
5	plug-and-play 996, 997	support rollers 945, 952
P	plugs 968–969, 975	tapered roller bearings 692
•	plummer block housings	R505 791
P	fits and tolerance classes 143	raceways
angular contact ball bearings 390, 404	heat dissipation 133 point contact 20	bearing terminology 23
cylindrical roller bearings 502, 514	polyalkylene glycol 1007, 1009, 1010	for needle roller bearings 583–584, 586, 610
hybrid bearings 1046	polyalphaolefins 120–121	on shafts and in housings 179, 903 radial internal clearance 182–185

radial loads 21, 78–79	RSH 242–244, 258	self-aligning ball bearings 437–463
radial run-out. See run-out	RSH2 244, 258	bearing selection chart 73–74
radial shaft seals 195, 197 railway applications	RSL 242–243, 258 RST 242–243, 258	cages 442, 445 clearance reduction 447
and cylindrical roller bearings 493, 515	rubber seating rings. See seating rings	contact angle 79
and spherical roller bearings 779, 780	running accuracy 144	designation system 449
specification life 89	running in	designs and variants 439–442
rated viscosity 102	of high temperature bearings 1014	dimensional stability 81, 445
rating life 89	with grease lubrication 113	dimension standards 443
recesses 176	running surfaces	drive-up data 448
in capped deep groove ball bearings 242-244	in cam followers 964, 965, 972, 976	housings 447
in open deep groove ball bearings 241	in cam rollers 932, 933, 934	internal clearance 443–444
reference speed 135	in support rollers 944, 948, 952	loads 79, 445
reliability 89–90 relubrication	run-out bearing selection chart 73–74	lock nut tightening angle 448 lubrication 440–441, 445
continuous lubrication 120	of seats and abutments 144–145, 148–152	misalignment 438, 443
intervals and adjustments 111–116	rust inhibitors	mounting 201, 440, 446, 447–448
replenishment 114	in grease 117	on an adapter sleeve 439, 446–447, 458–461
relubrication-free	on adapter sleeves 1067	on a withdrawal sleeve 446-447
bearings with Solid Oil 1025	RZ	product tables 450–463
cylindrical roller bearings 501	angular contact ball bearings 388, 404	sealing solutions 439-441, 445
high temperature bearings 1009-1010	deep groove ball bearings 242–243, 258	speeds 116, 446
replenishment		suitable adapter sleeves 1069
calculations 113		suitable lock nuts 1095
procedures 114		temperature limits 445
resultant fits 153 retaining rings		tolerances 441, 443 with an extended inner ring 440–441, 446,
in spherical roller bearings 776	C	462–463
in cylindrical roller bearings 500–501	3	with protruding balls 446
in deep groove ball bearings 243		with Solid Oil 1025, 1026
retaining straps 512	S	self-aligning bearings
RF 342–343, 346, 365	needle roller bearings 613	bearing selection considerations 80
rigid bearings 80	tapered roller bearings 674 SO	CARB toroidal roller bearings 841-875
ring gauges	deep groove ball bearings 259	self-aligning ball bearings 437-463
for needle roller bearings 598, 602	hybrid bearings 1049	spherical roller bearings 773–839
for tapered shaft seats 200	needle roller bearings 613	spherical roller thrust bearings 913–929
road rollers 779, 988	S1	sensor bearing units 987–1003
roller bearings compared to ball bearings 20, 78, 79	angular contact ball bearings 405	motor encoder units 988–995, 1002–1003 product table 1002–1003
designation system 30	cylindrical roller bearings 515	roller encoder units 996
roller encoder units 996	deep groove ball bearings 259	rotor positioning bearings 1000
rollers 20	needle roller bearings 613	rotor positioning sensor bearing units 998–999
rolling contact fatigue 88-89	S2	steering encoder units 997–998
rolling contact permanent deformation. See per-	cylindrical roller bearings 515	SensorMount
manent deformation	needle roller bearings 613 sensor bearing units 995	and CARB toroidal roller bearings 206, 855
rolling frictional moment 132	S3	and spherical roller bearings 206, 790
rolling mills	CARB toroidal roller bearings 855	separable bearings
and tapered roller bearings 671, 690	needle roller bearings 613	bearing selection chart 73–74
specification life 88 roll necks 780	safety precautions	bearing selection considerations 82 dismounting 207
rope sheaves	for fluoro rubber (FKM) 197	mounting 201
and cylindrical roller bearings 501	for PTFE 197	needle roller bearings 582, 587, 588, 591–592
bearing selection example 222–227	when dismounting from a tapered seat 208	spherical roller thrust bearings 914
rotating discs 196	when dismounting hydraulic nuts 210	support rollers 945
rotating loads	when handling bearings 200	tapered roller bearings 668
conditions of rotation 142	salt water 126–127	thrust ball bearings 466
equivalent mean load 92–93	SB 364 seal counterfaces	service life 89
rotating outer ring	accuracy requirements 197–198	set screws. See grub screws
and spherical roller bearings 778–779	inspection 213	shaft deflection 80 shafts
housing tolerances 151 rotational speeds. See speeds	sealed bearings	hollow shafts 146
rotor positioning bearings 1000	heating 203	terminology 22
rotor positioning sensor bearing units 998–999	suitable adapter sleeves 1069	shaft seats
rounding 55	suitable lock nuts 1091, 1095	accuracy requirements 144–145
roundness 147	washing 200	hollow shafts 143
RS	with Solid Oil 1025	mounting/dismounting methods and tools 202
cam followers 965, 967, 976	sealing solutions	position and width of tolerance classes 141
needle roller bearings 594-595, 612	bearing selection considerations 82 counterfaces 197–198, 213	tapered shafts 147
spherical roller bearings 776, 790	external sealing 194–197	tolerances and resultant fits 154–165
support rollers 945–946, 952	integral sealing 26	tolerances for radial bearings 148–149
RS1 angular contact ball bearings 388, 404	selection criteria 195	tolerances for sleeves 152 tolerances for thrust bearings 150
cam rollers 933, 937	sealing washers 196, 1008-1009	shaft speed detection 1000
deep groove ball bearings 242–244, 258	seating rings	shaft washers
insert bearings 346, 365	for insert bearings 346–347, 351	in cylindrical roller thrust bearings 880, 882, 885
self-aligning ball bearings 439, 449	for needle roller bearings 588, 608	in needle roller thrust bearings 898, 903, 904
RS2 244, 258	seat washers 467–468, 470	in spherical roller thrust bearings 914, 918, 920
RS5 776, 790	bearing terminology 23	in thrust ball bearings 466, 467-468, 470
	segmented cages 1007, 1009, 1014	

sheet metal cages 25, 188	prevention with hybrid bearings 1044	NoWear coated bearings 1061
shelf life 57	snap ring grooves	on an adapter sleeve 784, 787, 824–831
shields	in angular contact ball bearings 386, 395, 404	on a withdrawal sleeve 787, 832–839
		product tables 792–839
heating 203	in cylindrical roller bearings 498	
integral sealing 26	in deep groove ball bearings 247, 310–315	sealing solutions 776–778, 785, 786
washing 200	snap rings	SKF Explorer bearings 775
shock loads. See impact loads	for axial location 178	speeds 116, 785
shoulder surfaces 23	in angular contact ball bearings 386, 395, 404	suitable adapter sleeves 1069
silicon nitride 1044	in deep groove ball bearings 247, 310-315	suitable lock nuts 1095
sine bars 200	solid additives 118	temperature limits 777, 785
sine wave control 998	Solid Oil 1024	tolerances 780-781, 781
single direction bearings	Solid Oil bearings and units 1023–1027	with a coated bore 778
cylindrical roller thrust bearings 879	assortment 1025	with eye bolts 791
thrust ball bearings 466, 467-468, 472-485	cages 1025, 1026	with Solid Oil 1025, 1026
single row angular contact ball bearings.	designation system 1027	spherical roller thrust bearings 913–929
See angular contact ball bearings	designs and variants 1025	abutment dimensions 918
single row cam rollers. See cam rollers	dimension standards 1025	axial clearance 918
single row cylindrical roller bearings. See cylindri-	features 1024	bearing selection chart 73-74
cal roller bearings	food-grade variant 1025	cages 915, 918, 919, 920
single row deep groove ball bearings. See deep	friction 1027	contact angle 79
groove ball bearings	internal clearance 1025	designation system 921
single row tapered roller bearings. See tapered	loads 1026	designs and variants 915
roller bearings	lubrication 1024, 1025	dimensional stability 81, 918
SKF Bearing Calculator 63	mounting 1027	dimension standards 916
SKF Bearing Select 63	seals 1025	in vertical shaft arrangements 916, 917, 919
SKF BEAST 62–63	speeds 1026–1027	loads 79, 914, 917, 918, 919
SKF ConCentra insert bearings	temperature limits 1026	lubrication 917, 918, 919
designs and variants 344	tolerances 1025	misalignment 914, 916, 918
fits and tolerance classes 358–359		
	with food-grade lubricant 1025	mounting 920
mounting 362–363	SORT 613	NoWear coated bearings 1061
product table 376–377	space 77	product table 922–929
SKF Drive-up Method	spacer rings 786, 1035, 1066	pumping effect 919
for CARB toroidal roller bearings 853	spacing collars 179	SKF Explorer bearings 915
for mounting bearings 202–203, 206	spalling	speeds 914, 918, 919
for self-aligning ball bearings 447	bearing life definition 88	temperature limits 918
for spherical roller bearings 788	time to failure 211	tolerances 916
SKF enveloped acceleration technology 211	specification life 88-89	washers 914, 918
SKF Explorer bearings	speed factor	with a recessed housing bore 918
angular contact ball bearings 387	calculating the viscosity ratio 102	with eye bolts 921
CARB toroidal roller bearings 844	limits for grease lubricated bearings 116	split cylindrical roller bearings 495
cylindrical roller bearings 502	Speedi-Sleeve 1008	split housings 143, 151
deep groove ball bearings 248	speeds	split inner rings. See two-piece inner rings
hybrid bearings 1045	above the reference or limiting speed 136	spring loading 186–187
life calculations 91	adjusted reference speed 135	spring washers
overview 7	and tolerance classes 187	for cam followers 975
spherical roller bearings 775	bearing selection chart 73-74	for hybrid bearings 1048
spherical roller thrust bearings 915	bearing selection considerations 79	stainless steel bearings
tapered roller bearings 668, 675	effect on relubrication interval 112	deep groove ball bearings 316-327
SKF greases	limiting speed 135	hybrid bearings 1046
selection chart 124–125	ranges for grease lubricated bearings 116	insert bearings 342, 345, 348-349
technical specifications 126–127	reference speed 135	stainless steel housings 362
SKF LubeSelect 63	speed sensing 996	standby 207
SKF Quiet running deep groove ball bearings 248	spherical roller bearings 773–839	starting torque
SKF rating life 89	abutment dimensions 786	calculations 133
SKF SensorMount 190	assortment 775	technical specifications (SKF greases) 126–127
SKF SimPro Expert 62–63	axial location 786	start-stop 102, 106
SKF SimPro Quick 62–63	bearing arrangements 70–75	start-ups
SKF traffic light concept 117–118	bearing selection chart 73–74	and operating temperature 135, 184–185
SKF WAVE seals 244	cages 775–776	effect on fits 143
	clearance reduction 205, 789	grease selection chart (SKF greases) 124–125
skidding 106		monitoring temperature 206, 212
sleeve mounting	contact angle 79 designation system 790–791	test running 206
bearing seat tolerances 152		
for axial location 178–179	designs and variants 775–779	starvation effects 132
sleeves	dimensional stability 81, 785	static load rating. See basic static load rating
adapter sleeves 1065–1085	dimension standards 781	static misalignment 80
bearing selection considerations 82	drive-up data 789	static safety factor 106–107
for mounting cylindrical roller bearings 512	for high-speed applications 780	stationary bearings 104
withdrawal sleeves 1087	for vibratory applications 778–779	stationary loads 142
sliding frictional moment 132	for wind energy applications 780	steady state 184
SM 613	free space 786	steels
small bearings	housings 788	cage types 25, 188
dismounting 207-210	internal clearance 781–783	for bearing components 24
mounting 201–203	in vertical shaft arrangements 788	steer-by-wire 997
size category 201	loads 79, 774, 779, 784	steering encoder units 997–998
smearing	lock nut tightening angle 789	stepped shafts 1066
and EP/AW additives 102	lubrication 776–778, 785	stepped sleeves 344, 363
and minimum load 106	misalignment 774, 780–781	stiffness
and NoWear coated bearings 1060, 1062	mounting 204-206, 775, 787, 788-789	bearing selection chart 73–74

bearing selection considerations 81	loads 78–79, 666–668, 680–685	NoWear coated bearings 1061
of greases 116	lubrication 685	product tables 472–491
storage 57	markings 690	seat washers 467–468, 470
straightness 147 stray capacitance 1030	matched bearings 670–671, 682–684, 687, 744–761	single direction bearings 466, 467–468, 472–485 speeds 116, 470
stray capacitance 1030 strong back pullers 202	misalignment 670, 676–677	temperature limits 470
studs. See cam followers	mounting 690	tolerances 469
sulphur-phosphorus 102	preload 670-673, 676-677, 687	with sphered housing washers 466-468, 482-
super-precision bearings 81, 495	product tables 694–771	485, 490–491
Superseal. See AMP Superseal TM	raceway profiles 667	thrust collars. See angle rings
support rollers 943–961	running-in 668	tilting moments
axial gap 951	sealing solutions 685	and angular contact ball bearings 386 and cam rollers 932–933
cages 947, 950 designation system 952–953	SKF Explorer bearings 668, 675 speeds 116, 686	and cylindrical roller bearings 501
designs and variants 945–947	temperature limits 685	and deep groove ball bearings 249
dimensional stability 950	tolerances 676–678	and tapered roller bearings 670-672
dimension standards 948	with a flanged outer ring 670, 742–743	TL 1069, 1071
internal clearance 948	with inch dimensions 714–740	TN
loads 949	with Solid 0il 1025, 1026	cylindrical roller thrust bearings 881, 886
lubrication 933, 950	tapered roller bearing units 1031	deep groove ball bearings 258 needle roller bearings 597, 612
mounting 951 pins 950	tapered seats bearing selection considerations 82	needle roller thrust bearings 899, 904
product tables 954–961	mounting/dismounting methods and tools 202	support rollers 947, 952
running surface 944, 948, 952	tolerances 147	TN9
sealing solutions 945–947, 950, 952	taper gauges 147, 200	angular contact ball bearings 390, 404
speeds 950	taper rate 147	CARB toroidal roller bearings 845, 855
support surfaces 951	temperature	deep groove ball bearings 248, 258
temperature limits 950	and bearing storage 57	hybrid bearings 1046
tolerances 948 with flange rings 944, 945–947, 951	dimensional stability 81 limits for PA66 cages 189	self-aligning ball bearings 442, 449 tapered roller bearings 674, 675, 692
surface roughness	monitoring 206, 212	TN9/VG1561 248, 258
of bearing seats 147–152	operating temperature 130–135	TNH
of seal counterfaces 198	ranges for greases 116	deep groove ball bearings 248, 258
surface treatment 27	SKF traffic light concept 117–118	hybrid bearings 1046
synchronous motors 998	temperature differences	tapered roller bearings 675, 692
synthetic oils	considerations when selecting fits 143	tolerance classes
in bearings with Solid Oil 1024, 1025, 1027	effect on clearance reduction 184	for bearings 36
in oils 120–121 SYSTEM 24 120	terminology 22–23 testing 107	position and width 141 related to precision and speed 187
SYSTEM MultiPoint 120	test running 206–207	tolerance grades 144–145
STOTEM MAKEN SINC 120	textile equipment 341	tolerances 35–55
	thermal equilibrium 131, 184	and resultant fits (housings) 166-175
	thermal expansion	and resultant fits (shafts) 154–165
	calculation 850	for housing seats 151–152
Т	in bearing arrangements 70, 76	for radial bearings 38–45
l	with CARB toroidal roller bearings 842 thermal speed limit 135	for shaft seats 148–150 for shafts (sleeve mounting) 152
	thickeners	for tapered bores 47–48
T	compatibility chart 119	for tapered shaft seats 147
lock nuts and locking devices 1103	grease selection chart (SKF greases) 124–125	for thrust bearings 46
tapered roller bearings 674, 692	selecting a suitable grease 116–119	tolerance system 140–141
tandem arrangements with angular contact ball bearings 386, 400	threaded holes	tolerance symbols 49–51
with deep groove ball bearings 249	for dismounting bearings 176	torque running 126–127
with tapered roller bearings 671, 681–682,	in bearing rings 190 threaded rings	starting 126–127, 133
760–761	adjustment during mounting 203	torus 842
tapered bores	for axial location 178	TR 502, 515
bearing selection chart 73–74	threads	track rollers
bearing selection considerations 82 bearings mounted on a cylindrical seat 1066	for lock nuts 1098–1099	cam followers 964–985
fits and tolerance classes 149, 152	on adapter sleeves 1070	cam rollers 932–941
tapered roller bearings 665–771	through-hardening 27	support rollers 943–961
adjustment during mounting 203, 687	thrust ball bearings 465–491 ball and cage assemblies 467	track runner bearings. See cam rollers, support rollers and cam followers
bearing arrangements 70, 76	bearing selection chart 73–74	traction motor bearing units 1031
bearing selection chart 73-74	cages 468, 470	traction motors
cages 673–674, 685	combined with a needle roller bearing 591-	and hybrid bearings 1046
contact angle 79, 672–673, 672–674, 691 designation system 691, 692–693	592, 596, 654–657	and sensor bearing units 1000
designs and variants 669–675	designation system 471	tractors 988
dimensional stability 81, 685	designs and variants 467–468	traffic light concept. See SKF traffic light concept
dimension standards 676–677	dimensional stability 81, 470 dimension standards 469	transition fits 141 transmission shafts 1000
double row bearings 671, 671-674	double direction bearings 466, 467–468,	troubleshooting 213
fits and tolerance classes 687–689	486–491	tunnelling machines 671
four-row bearings 674	fits 466	two-piece inner rings
friction 667–669 inch bearings 676–678, 687–689, 691, 714–741	loads 79, 466, 469	in double row angular contact ball bearings
INSOCOAT bearings 1031	lubrication 470	386, 404
intermediate rings 672–673	misalignment 469 mounting 470	in four-point contact ball bearings 387
internal clearance 676, 679	mounting 470	

U	VE552(E) 791 VE553(E) 791 VE710(E) 921	W
U	VE901 515	W
insert bearings 365 sensor bearing units 995	vector control 998 vertical shaft arrangements	deep groove ball bearings 258 high temperature bearings 1010, 1014
tapered roller bearings 692	and oil lubrication 123 effect on relubrication interval 115	insert bearings 342–344, 349, 365
unbalanced loads 92,142 unit conversion tables	grease selection chart (SKF greases) 124–125	spherical roller bearings 776, 791 tapered roller bearings 674, 692
for bearing life calculations 91	with CARB toroidal roller bearings 853	W20 776, 791
for general engineering 6 units. See ball bearing units	with spherical roller bearings 788 with spherical roller thrust bearings 916, 917,	W26 791 W33
universally matchable bearings	919	cylindrical roller bearings 515
adjustment 403 centrifugal pump example 228–235	VG052 613 VG114	spherical roller bearings 776, 791 W33X 791
designation system 404–405	CARB toroidal roller bearings 855	W64
designs and variants 385–386	spherical roller bearings 791 VG1561 . See TN9/VG1561	and bearings with Solid Oil 1025, 1027
internal clearance 392, 394 preload 392, 395	VGS 593, 612	self-aligning ball bearings 449 spherical roller bearings 791
universal washers	VH 514 vibrating screens	W64F 1025, 1027
in cylindrical roller thrust bearings 880, 882 in needle roller thrust bearings 898, 900, 903,	and spherical roller bearings 779	W77 791 W513 791
904	bearing selection example 216–221 vibration	washers. See bearing washers
	and bearing storage 57	washing capped bearings 200
	and CARB toroidal roller bearings 842–843	new bearings 200
	and insert bearings 340, 344, 347 and NoWear coated bearings 1060, 1061	washout and bearings with Solid Oil 1024
V	and spherical roller bearings 778-779	technical specifications (SKF greases) 126–127
•	effect on relubrication interval 115 grease selection chart (SKF greases) 124–125	water
V	monitoring 206, 211	and deep groove ball bearings 242 corrosion protection with grease 117
CARB toroidal roller bearings 855 cylindrical roller bearings 514	prevention with preloading 187 protection with hybrid bearings 1044	effect on oils 120–121
tapered roller bearings 674	under various load conditions 143	effect on Solid Oil 1024 resistance test (SKF greases) 126–127
V001 693 VA201 1006, 1008–1009, 1010, 1014	viscosity calculating the viscosity ratio 102–103	WAVE seals. See SKF WAVE seals
VA201 1000, 1000–1007, 1010, 1014 VA208 1009, 1014	of oils 120	wave springs 186 WBB1 258
VA228 1009, 1010, 1014	of SKF greases 124–125, 126–127	wear
VA301 515 VA305 515	viscosity grades ISO classification 103	and hybrid bearings 1044, 1046 and NoWear coated bearings 1060–1063
VA321 693	viscosity-temperature diagram 100	technical specifications (SKF greases) 126–127
VA350 515 VA380 515	viscosity index 100, 120–121 viscosity ratio 94, 102	time to failure 211 under various load conditions 142
VA405 778–779, 791	viscous losses 132	wet contamination 1024
VA406 778, 791 VA606 693	VL065 343, 365 VL0241 1031–1032, 1035	white spirit 118 WI 674
VA607 693	VL0246 1031–1032, 1035	wind energy applications
VA901 693 VA902 693	VL2071 1032,1035 VL2076 1032,1035	and cylindrical roller bearings 498
VA903 693	VM118 855	and spherical roller bearings 780 and XL hybrid bearings 1046, 1049
VA919 693 VA941 693	VP076 346, 365 VP274 345, 365	grease selection chart (SKF greases) 124-125
VA970 1046, 1049	VP311 244, 259	specification life 88 withdrawal sleeves 1087
VA991 780, 791 VA3091 515	VQ015 515	bearing seat tolerances 152
vacuum applications	VQ051 693 VQ117 693	bearing selection considerations 82 dismounting methods and tools 202, 210
and hybrid bearings 1046 and NoWear coated bearings 1060	VQ267 693	for axial location 178-179
variable loads	VQ424 791 VQ492 693	for CARB toroidal roller bearings 852–853, 872–875
and spherical roller bearings 779	VQ494 693	for self-aligning ball bearings 446–447
calculating bearing life 90 conditions of rotation 142	VQ495 693 VQ506 693	for spherical roller bearings 787, 832–839
VB022 693	VQ507 693	mounting methods and tools 202–204 withdrawal tools 176
VB026 693 VB061 693	VQ523 693 VQ601 693	W0 674
VB134 693	VQ658 248, 259	woodworking machines 88 wrist pins. See gudgeon pins
VB406 693 VB481 693	V-ring seals 198 VT113 389, 405	WS
VC025 515	VT143	cylindrical roller thrust bearings 880, 882, 886 needle roller thrust bearings 898, 904
VC027 693 VC068 693	CARB toroidal roller bearings 845, 855	WT
VC444 1049	spherical roller bearings 776–777, 791 VT143B 791	angular contact ball bearings 389, 405 deep groove ball bearings 244–245, 259
VE141 693 VE174 693	VT143C 791	hybrid bearings 1046
VE240 855	VT307 348 VT378 244, 259	
VE447(E) 921	VU029 918, 921	
VE495 342, 365		

X
cam followers 965, 976
deep groove ball bearings 250, 258
support rollers 945, 952
tapered roller bearings 674, 692
XA 976
XB 976
XD 674
XL hybrid bearings 1046, 1048, 1054–1055

Y angular contact ball bearings 390, 404 tapered roller bearings 674
Y2 674
Y-bearings. See insert bearings
Y-bearing units. See ball bearing units

Z

angular contact ball bearings 388, 404
cam rollers 933, 937
deep groove ball bearings 242–243, 258
high temperature bearings 1007, 1008–1009, 1014
needle roller bearings 590–592, 595, 596, 612
tapered roller bearings 674
ZE
CARB toroidal roller bearings 855
spherical roller bearings 790
zinc chromate coating
and other coatings 27
on ball bearing units 1007
on hybrid bearings 1046
zinc coating 342, 343, 348
ZL 947, 952
ZNBR 247, 258
ZNR 247, 258
ZS 242–243, 258
ZW 583, 612

Product index

10.. 303..

Designation	Product	tabl	duct e Page*	Designation	Product	Proc table No.	
10	Self-aligning ball bearings		450	229750 J/C3R505	Spherical roller bearings		792
111	Inch single row tapered roller bearings	8.2	714	23 230	Self-aligning ball bearings Spherical roller bearings		450 792
115	Inch single row tapered roller bearings	8.2	714	231 232	Spherical roller bearings Spherical roller bearings	9.1	792 792
12 13	Self-aligning ball bearings Self-aligning ball bearings	4.1	450 450	236	Inch single row tapered roller bearings		714
130 1380	Self-aligning ball bearings Inch single row tapered roller		450 714	238 239	Spherical roller bearings Spherical roller bearings	9.1	792 792
139 141	bearings Self-aligning ball bearings	4.1 8.2	450 714	240 241 247	Spherical roller bearings Spherical roller bearings	9.1	792 792 714
141 151	Inch single row tapered roller bearings			247	Inch single row tapered roller bearings	9.1	714
151 155	Inch single row tapered roller bearings Inch single row tapered roller	8.2	714 714	248 249 255	Spherical roller bearings Spherical roller bearings Inch single row tapered roller	9.1	792 792 714
160	bearings Single row deep groove ball bearings		260	258	bearings Inch single row tapered roller	8.2	714
16150/	Inch single row tapered roller bearings	8.2		278	bearings Inch single row tapered roller	8.2	714
172622RS1	Insert bearings with a standard inner ring, metric shafts	2.9	380	292	bearings Spherical roller thrust bearings		922
172632RS1	Insert bearings with a standard inner ring, metric shafts	2.9	380	293 294	Spherical roller thrust bearings Spherical roller thrust bearings	13.1	922
185	Inch single row tapered roller bearings	8.2	714	296	Inch single row tapered roller bearings	8.2	714
186	Inch single row tapered roller bearings	8.2	714	3	Single row deep groove ball bearings with filling slots	1.5	328
187	Inch single row tapered roller bearings	8.2	714	3 NR	Single row deep groove ball bearings with filling slots, a snap ring groove	1.5	328
198	Inch single row tapered roller bearings	8.2	714	32Z	and a snap ring Shielded single row deep groove ball	1.5	328
2	Single row deep groove ball bearings with filling slots			32ZNR	bearings with filling slots Shielded single row deep groove ball	1.5	328
2 NR	Single row deep groove ball bearings with filling slots, a snap ring groove	1.5	328	2 7	bearings with filling slots, a snap ring groove and a snap ring	4.5	220
22Z	and a snap ring Shielded single row deep groove ball	1.5	328	3Z 3ZNR	Shielded single row deep groove ball bearings with filling slots		328 328
22ZNR	bearings with filling slots Shielded single row deep groove ball bearings with filling slots, a snap ring	1.5	328	3ZNK	Shielded single row deep groove ball bearings with filling slots, a snap ring groove and a snap ring	1.5	320
2Z	groove and a snap ring Shielded single row deep groove ball	1.5	328	302	Metric single row tapered roller bearings	8.1	694
2ZNR	bearings with filling slots Shielded single row deep groove ball	1.5	328	302/DB	Matched tapered roller bearings arranged back-to-back	8.5	754 745
213	bearings with filling slots, a snap ring groove and a snap ring	01	792	302/DF 30208 R	Matched tapered roller bearings arranged face-to-face	8.4	745
213 22 222	Spherical roller bearings Self-aligning ball bearings	4.1	792 450 792	30208 R 303	Single row tapered roller bearings with a flanged outer ring	8.3	742 694
223	Spherical roller bearings Spherical roller bearings		792 792	303	Metric single row tapered roller bearings	0.1	074

^{*} Starting page of the product table.

1136 **SKF**.

303.. R 369..

Designation	Product	Proc table No.		Designation	Product	tabl	duct e Page*
303 R	Single row tapered roller bearings	8.3	742	330/DF	Matched tapered roller bear-	8.4	745
303/DB	with a flanged outer ring Matched tapered roller bearings	8.5	754	331	ings arranged face-to-face Metric single row tapered roller	8.1	694
303/DF	arranged back-to-back Matched tapered roller bear-	8.4	745	331/DB	bearings Matched tapered roller bearings	8.5	754
3057 C-2Z	ings arranged face-to-face Double row cam rollers		940	331/DF	arranged back-to-back Matched tapered roller bear-	8.4	745
3058 C-2Z 313	Double row cam rollers Metric single row tapered roller		940 694	33113 R	ings arranged face-to-face Single row tapered roller bearings	8.3	742
313 X/DB	bearings Matched tapered roller bearings	8.5	754	331158 A	with a flanged outer ring Double row tapered roller bearings,	8.8	766
313/DB	arranged back-to-back Matched tapered roller bearings	8.5	754	331197 A	TDI design Double row tapered roller bearings,	8.7	762
313/DF	arranged back-to-back Matched tapered roller bear-	8.4	745	331445	TDO design Double row tapered roller bearings,	8.8	766
3194 B-2LS	ings arranged face-to-face Sealed double row full complement	6.5	576	331527 C	TDI design Double row tapered roller bearings,	8.8	766
32 A	cylindrical roller bearings Double row angular contact ball	3.2	424	331606 A	TDI design Double row tapered roller bearings,	8.7	762
32 A-2RS1	bearings Sealed double row angular contact	3.3	428	331617	TDO design Double row tapered roller bearings,	8.8	766
32 A-2Z	ball bearings Shielded double row angular contact	3.3	428	331656	TDI design Double row tapered roller bearings,	8.7	762
320 X/DB	ball bearings Matched tapered roller bearings	8.5	754	331713 A	TDO design Double row tapered roller bearings,	8.8	766
320 X/DF	arranged back-to-back Matched tapered roller bear-	8.4	745	331713 B	TDI design Double row tapered roller bearings,	8.8	766
32008 XR	ings arranged face-to-face Single row tapered roller bearings	8.3	742	331714 B	TDI design Double row tapered roller bearings,	8.8	766
322	with a flanged outer ring Metric single row tapered roller	8.1	694	331775 B	TDI design Double row tapered roller bearings,	8.7	762
322 B	bearings Metric single row tapered roller bear-	8.1	694	331945	TDO design Double row tapered roller bearings,	8.7	762
322/DB	ings with a steep contact angle Matched tapered roller bearings	8.5	754	331951	TDO design Double row tapered roller bearings,	8.8	766
322/DF	arranged back-to-back Matched tapered roller bear-	8.4	745	331981	TDI design Double row tapered roller bearings,	8.7	762
323	ings arranged face-to-face Metric single row tapered roller	8.1	694	332	TDO design Metric single row tapered roller	8.1	694
323 B	bearings Metric single row tapered roller bear-	8.1	694	332/DB	bearings Matched tapered roller bearings	8.5	754
323 BR	ings with a steep contact angle Single row tapered roller bearings	8.3	742	332/DF	arranged back-to-back Matched tapered roller bear-	8.4	745
323/DF	with a flanged outer ring Matched tapered roller bear-	8.4	745	332068	ings arranged face-to-face Double row tapered roller bearings,	8.8	766
32311 BR	ings arranged face-to-face Single row tapered roller bearings	8.3	742	332168	TDI design Double row tapered roller bearings,	8.8	766
32317T132/DB	with a flanged outer ring Matched tapered roller bearings	8.5	754	332169 A	TDI design Double row tapered roller bearings,	8.8	766
329	arranged back-to-back Metric single row tapered roller	8.1	694	332169 AA	TDI design Double row tapered roller bearings,	8.8	766
329/DB	bearings Matched tapered roller bearings	8.5	754	332240 A	TDI design Double row tapered roller bearings,	8.8	766
329/DF	arranged back-to-back Matched tapered roller bear-	8.4	745	33281/	TDI design Inch single row tapered roller	8.2	714
33 A	ings arranged face-to-face Double row angular contact ball	3.2	424	33287/	bearings Inch single row tapered roller	8.2	714
33 A-2RS1	bearings Sealed double row angular contact	3.3	428	338	bearings Inch single row tapered roller	8.2	714
33 A-2Z	ball bearings Shielded double row angular contact	3.3	428	34	bearings Inch single row tapered roller	8.2	714
33 D	ball bearings Double row angular contact ball		424	358	bearings Inch single row tapered roller		714
33 DNR	bearings with a two-piece inner ring Double row angular contact ball		424	359	bearings Inch single row tapered roller		714
	bearings with a two-piece inner ring, a snap ring groove and a snap ring in			3612 R	bearings Single row cam rollers		1 938
330	the outer ring Metric single row tapered roller	81	694	368	Inch single row tapered roller bearings		714
	bearings			369	Inch single row tapered roller	8.2	714
330/DB	Matched tapered roller bearings arranged back-to-back	8.5	754		bearings		

^{*} Starting page of the product table.

5KF. 1137

37.. 62..-2RZ/HC5

Designation	Product	Prod table No.		Designation	Product	Prod table No.	
37	Inch single row tapered roller	8.2	714	60 NR	Single row deep groove ball bearings	1.3	310
38	bearings Inch single row tapered roller	8.2	714		with a snap ring groove and a snap ring		
39	bearings Inch single row tapered roller	8.2	714	60/HC5	Hybrid single row deep groove ball bearings	21.1	1050
418	bearings Inch single row tapered roller	8.2	714	60/VA201	Single row deep groove ball bearings for high temperature applications	18.1	1016
42 A	bearings Double row deep groove ball	1.6	334	602RS1	Sealed single row deep groove ball bearings	1.1	260
426	bearings Inch single row tapered roller	8.2	714	602RSH	Sealed single row deep groove ball bearings	1.1	260
43 A	bearings Double row deep groove ball	1.6	334	602RSL	Sealed single row deep groove ball bearings	1.1	260
458	bearings Inch single row tapered roller	8.2	714	602RSL/HC5	Sealed hybrid single row deep groove ball bearings	21.1	1050
462	bearings		714	602RZ	Sealed single row deep groove ball	1.1	260
	Inch single row tapered roller bearings			602RZ/HC5	bearings Sealed hybrid single row deep groove	21.1	1050
47487/	Inch single row tapered roller bearings	8.2	714	602Z	ball bearings Shielded single row deep groove ball	1.1	260
47678/ 4789	Inch single row tapered roller bearings Inch single row tapered roller	8.2	714 714	602Z/VA201	bearings Shielded single row deep groove ball bearings for high temperature	18.1	1016
482	bearings Inch single row tapered roller bearings	8.2	714	602Z/VA208	applications Shielded single row deep groove ball bearings for high temperature	18.1	1016
497/	Inch single row tapered roller bearings	8.2	714	602ZNR	applications Shielded single row deep groove ball	1.3	310
511 512	Single direction thrust ball bearings Single direction thrust ball bearings	5.1 5.1	472 472	con LLiiii	bearings with a snap ring groove and a snap ring	1.0	010
513 514	Single direction thrust ball bearings	5.1 5.1	472 472	60RS1	Sealed single row deep groove ball bearings	1.1	260
522	Single direction thrust ball bearings Double direction thrust ball bearings	5.3	486	60RSH	Sealed single row deep groove ball	1.1	260
523 524	Double direction thrust ball bearings Double direction thrust ball bearings	5.3	486 486	60RSL	bearings Sealed single row deep groove ball	1.1	260
526/	Inch single row tapered roller bearings	8.2	714	60RZ	bearings Sealed single row deep groove ball	1.1	260
528 R/	Inch single row tapered roller bearings	8.2	714	60Z	bearings Shielded single row deep groove ball	1.1	260
53178/	Inch single row tapered roller bearings	8.2	714	60ZNR	bearings Shielded single row deep groove ball	1.3	310
532	Single direction thrust ball bearings with a sphered housing washer	5.2	482		bearings with a snap ring groove and a snap ring		
533	Single direction thrust ball bearings with a sphered housing washer	5.2		617479 B	Double row tapered roller bearings, TDO design	8.7	762
534	Single direction thrust ball bearings with a sphered housing washer	5.2	482	618 619	Single row deep groove ball bearings Single row deep groove ball bearings		260 260
535/	Inch single row tapered roller bearings	8.2	714	62 62 N	Single row deep groove ball bearings Single row deep groove ball bearings	1.1	260 310
537/	Inch single row tapered roller bearings	8.2	714	62 NR	with a snap ring groove Single row deep groove ball bearings	1.3	310
539/	Inch single row tapered roller bearings	8.2	714		with a snap ring groove and a snap ring		
542	Double direction thrust ball bearings with sphered housing washers	5.4	490	62/C3VL0241	INSOCOAT single row deep groove ball bearings	20.1	1036
543	Double direction thrust ball bearings with sphered housing washers	5.4	490	62/C3VL2071	INSOCOAT single row deep groove ball bearings	20.1	1036
544	Double direction thrust ball bearings with sphered housing washers	5.4	490	62/HC5	Hybrid single row deep groove ball bearings	21.1	1050
544091/	Inch single row tapered roller bearings	8.2	714	62/VA201	Single row deep groove ball bearings for high temperature applications	18.1	1016
56	Inch single row tapered roller	8.2	714	622RS1	Sealed single row deep groove ball	1.1	260
575/	bearings Inch single row tapered roller	8.2	714	622RSH	bearings Sealed single row deep groove ball	1.1	260
580/	bearings Inch single row tapered roller	8.2	714	622RSL	bearings Sealed single row deep groove ball	1.1	260
59	bearings Inch single row tapered roller	8.2	714	622RSL/HC5	bearings Sealed hybrid single row deep groove	21.1	1050
60 60 N	bearings Single row deep groove ball bearings Single row deep groove ball bearings		260 310	622RZ/HC5	ball bearings Sealed hybrid single row deep groove ball bearings	21.1	1050

^{*} Starting page of the product table.

1138 **5KF**.

62..-2Z AS ..

Designation	Product	Prod table No.		Designation	Product	Prod table No.	
622Z	Shielded single row deep groove ball bearings			63ZNR	Shielded single row deep groove ball bearings with a snap ring groove and		310
622Z/VA201	Shielded single row deep groove ball bearings for high temperature applications	18.1	1016	6379/K-6320	a snap ring Inch single row tapered roller bearings	8.2	714
622Z/VA228	Shielded single row deep groove ball bearings for high temperature	18.1	1016	6386/K-6320	Inch single row tapered roller bearings	8.2	714
622ZNR	applications Shielded single row deep groove ball bearings with a snap ring groove and	1.3	310	6391/K-6320 64	Inch single row tapered roller bearings Single row deep groove ball bearings		714
62RSH	a snap ring Sealed single row deep groove ball	1.1	260	64 N	Single row deep groove ball bearings with a snap ring groove	1.3	310
62RSL	bearings Sealed single row deep groove ball bearings	1.1	260	64 NR	Single row deep groove ball bearings with a snap ring groove and a snap ring	1.3	310
62Z	Shielded single row deep groove ball bearings			64432/64708	Inch single row tapered roller bearings	8.2	714
62ZNR	Shielded single row deep groove ball bearings with a snap ring groove and	1.3	310	64450/64700	Inch single row tapered roller bearings		714
63 63	a snap ring Single row deep groove ball bearings Single row deep groove ball bearings		260 260	65 66	Inch single row tapered roller bearings Inch single row tapered roller		714 714
63 N	Single row deep groove ball bearings with a snap ring groove	1.3	310	67	bearings Inch single row tapered roller		714
63 NR	Single row deep groove ball bearings with a snap ring groove and a snap ring	1.3	310	68	bearings Inch single row tapered roller bearings	8.2	714
63/C3VL0241	INSOCOAT single row deep groove ball bearings	20.1	1036	70 B	Single row angular contact ball bearings	3.1	310
63/C3VL2071 63/HC5	INSOCOAT single row deep groove ball bearings Hybrid single row deep groove ball		1036 1050	72 AC 72 B	Single row angular contact ball bearings Single row angular contact ball		310 310
63/ HC5C3S0VA970	bearings			72 BE-2RZ	bearings Sealed single row angular contact		310
63/VA201	bearings Single row deep groove ball bearings			72212/	ball bearings Inch single row tapered roller	8.2	714
632RS1	for high temperature applications Sealed single row deep groove ball bearings	1.1	260	73 AC	bearings Single row angular contact ball bearings	3.1	310
632RSH	Sealed single row deep groove ball bearings	1.1	260	73 B	Single row angular contact ball bearings	3.1	310
632RSL 632RSL/HC5	Sealed single row deep groove ball bearings Sealed hybrid single row deep groove		260	73 BE-2RZ 749 A/	Sealed single row angular contact ball bearings	3.1	
632RZ	ball bearings Sealed single row deep groove ball bearings	1.1		749 A/ 798/	Inch single row tapered roller bearings Inch single row tapered roller		714 714
632Z	bearings Shielded single row deep groove ball			811	bearings Cylindrical roller thrust bearings	11.1	888
632Z	bearings Shielded single row deep groove ball bearings	1.1	260	812 877	Cylindrical roller thrust bearings Inch single row tapered roller bearings		888 714
632Z/VA201	Shielded single row deep groove ball bearings for high temperature	18.1	1016	893 894	Cylindrical roller thrust bearings Cylindrical roller thrust bearings	11.1	888
632Z/VA208	applications Shielded single row deep groove ball bearings for high temperature	18.1	1016	898/ 90381/	Inch single row tapered roller bearings Inch single row tapered roller		714 714
632Z/VA228	applications Shielded single row deep groove ball bearings for high temperature	18.1	1016	9285/	bearings Inch single row tapered roller bearings	8.2	714
632ZNR	applications Shielded single row deep groove ball	1.3	310	938/	Inch single row tapered roller bearings		714
63RSH	bearings with a snap ring groove and a snap ring Sealed single row deep groove ball	1.1	260	94700/ 95525/	Inch single row tapered roller bearings Inch single row tapered roller		714 714
63RSL	bearings Sealed single row deep groove ball		260	A 4059/	bearings Inch single row tapered roller		714
63RZ	bearings Sealed single row deep groove ball	1.1	260	AS	bearings Thin universal washers for needle roller and cage thrust assemblies	12.1	906
63Z	bearings Shielded single row deep groove ball bearings	1.1	260	AS	roller and cage thrust assemblies Thin universal washers for needle roller and cage thrust assemblies with a centring flange	12.2	910

^{*} Starting page of the product table.

5KF. 1139

Designation	Product	Prod table No.		Designation	Product	tabl	duct e Page*
AXK	Needle roller and cage thrust assemblies	12.1	906	BT2B 332603/HA1	Double row tapered roller bearings, TDO design	8.7	762
AXW	Needle roller and cage thrust assemblies with a centring flange	12.2	910	BT2B 332604/HA1	Double row tapered roller bearings, TDO design	8.7	762
BA BMB-62	Single direction thrust ball bearings Motor encoder units	5.1 17.1	472 1002	BT2B 332683/HA1	Double row tapered roller bearings, TDI design	8.8	766
BMD-62 BM0-62	Motor encoder units Motor encoder units	17.1	1002 1002	BT2B 332685/HA1	Double row tapered roller bearings, TDI design	8.8	766
BS2-22/VT143 BS2-23/VT143	Sealed spherical roller bearings Sealed spherical roller bearings	9.1 9.1	792	BT2B 332754	Double row tapered roller bearings, TDO design	8.7	762
BT2-8000/HA3	Double row tapered roller bearings, TDI design	8.8		BT2B 332767 A	Double row tapered roller bearings, TDO design	8.7	766
BT2-8009/HA3	Double row tapered roller bearings,	8.8	766	BT2B 332802 A	Double row tapered roller bearings,	8.7	762
BT2-8010/ HA3VA901	TDI design Double row tapered roller bearings,	8.8	766	BT2B 332830	TDO design Double row tapered roller bearings,	8.7	762
BT2B	TDI design Double row tapered roller bearings,	8.7	762	BT2B 332831	TDO design Double row tapered roller bearings,	8.7	762
BT2B 328130	TDO design Double row tapered roller bearings,	8.7	762	BT2B 332845/HA2	TDO design Double row tapered roller bearings,	8.7	762
BT2B 328283/HA1	TDO design Double row tapered roller bearings,	8.8	766	BT2B 332913/HB1	TDO design Double row tapered roller bearings,	8.8	766
BT2B 328383/HA1	TDI design Double row tapered roller bearings,	8.7	762	BT2B 332931	TDI design Double row tapered roller bearings,	8.8	766
BT2B 328389	TDO design Double row tapered roller bearings,	8.7	762	BT2B 334013/HA1	TDI design Double row tapered roller bearings,	8.8	766
BT2B 328410 C/HA1	TDO design Double row tapered roller bearings,	8.8	766	BT2B 334087/HA3	TDI design Double row tapered roller bearings,	8.8	766
BT2B 328466/HA1	TDI design Double row tapered roller bearings,	8.8	766	C 22	TDI design CARB toroidal roller bearings	10.1	856
BT2B 328523/HA1	TDI design Double row tapered roller bearings,	8.8	766	C 23 C 30	CARB toroidal roller bearings CARB toroidal roller bearings	10.1	856 856
BT2B 328580/HA1	TDI design Double row tapered roller bearings,		766	C 31 C 32	CARB toroidal roller bearings CARB toroidal roller bearings	10.1	856 856
BT2B 328615	TDI design	8.7		C 39 C 40	CARB toroidal roller bearings	10.1	856 856
	Double row tapered roller bearings, TDO design			C 41	CARB toroidal roller bearings CARB toroidal roller bearings	10.1	856
BT2B 328695 A/HA1	Double row tapered roller bearings, TDI design	8.8	766	C 49 C 5020 V	CARB toroidal roller bearings CARB toroidal roller bearings	10.1	856 856
BT2B 328699 G/HA1	Double row tapered roller bearings, TDI design	8.8	766	C 59 C 6006 V	CARB toroidal roller bearings CARB toroidal roller bearings	10.1	856
BT2B 328705/HA1	Double row tapered roller bearings, TDI design	8.8	766	C 69 V GS 811	CARB toroidal roller bearings Housing washers for cylindrical roller		L 856 L 888
BT2B 328874/HA1	Double row tapered roller bearings, TDI design	8.8	766	GS 811	thrust bearings Housing washers for needle roller	12.1	906
BT2B 328896/HA3	Double row tapered roller bearings, TDI design	8.8	766	GS 812	and cage thrust assemblies Housing washers for cylindrical roller	11.1	888
BT2B 328934/HA3	Double row tapered roller bearings, TDI design	8.8	766	GS 893	thrust bearings Housing washers for cylindrical roller		
BT2B 328957	Double row tapered roller bearings, TDO design	8.7	762	GS 894	thrust bearings Housing washers for cylindrical roller		
BT2B 331782	Double row tapered roller bearings, TDO design	8.7	762	H 2	thrust bearings Adapter sleeves, metric shafts		1072
BT2B 331836	Double row tapered roller bearings,	8.8	766	H 23 H 242649/	Adapter sleeves, metric shafts	23.1	1072
BT2B 331837	TDI design Double row tapered roller bearings,	8.8	766		Inch single row tapered roller bearings		714
BT2B 331840 C/HA1	TDI design Double row tapered roller bearings,	8.8	766	H 3 H 30	Adapter sleeves, metric shafts Adapter sleeves, metric shafts	23.1	1072
BT2B 332237 A/HA1	TDI design Double row tapered roller bearings,	8.7	762	H 31 H 715345/	Adapter sleeves, metric shafts Inch single row tapered roller		1072 714
BT2B 332468 A/HA1	TDO design Double row tapered roller bearings,	8.8	766	нн	bearings Inch single row tapered roller	8.2	714
BT2B 332504/HA2	TDI design Double row tapered roller bearings,	8.7	762	НЈ 10	bearings Angle rings for single row cylindrical	6.1	516
BT2B 332505/HA2	TDO design Double row tapered roller bearings,	8.7	762	HJ 2	roller bearings Angle rings for single row cylindrical		516
BT2B 332506/HA2	TDO design Double row tapered roller bearings,	8.7	762	HJ 22	roller bearings Angle rings for single row cylindrical		516
BT2B 332516 A/HA1	TDO design Double row tapered roller bearings,		762	HJ 23	roller bearings Angle rings for single row cylindrical		516
	TD0 design				roller bearings		
BT2B 332536/HA1	Double row tapered roller bearings, TDI design	8.8	/00	HJ 3	Angle rings for single row cylindrical roller bearings	0.1	210

^{*} Starting page of the product table.

1140 **SKF**.

HJ 4.. NJG 23..VH

Designation	Product	Prod table No.		Designation	Product	Prod table No.	
HJ 4	Angle rings for single row cylindrical	6.1	516	LS	Universal washers for needle roller	12.1	906
нк	roller bearings Drawn cup needle roller bearings with open ends	7.2	618	LS	and cage thrust assemblies Universal washers for needle roller and cage thrust assemblies with a	12.2	910
НМ	Inc h single row tapered roller bearings	8.2	714	M 126	centring flange Inch single row tapered roller	8.2	714
HM T	Lock nuts	25.1	1104	M 120	bearings		
HM 30	Lock nuts		1108	M 23	Inch single row tapered roller	8.2	714
HM 31 ICOS-D1B	Lock nuts ICOS oil sealed bearing units		1108 293	M 24	bearings Inch single row tapered roller	8.2	714
IR	Needle roller bearing inner rings	7.11	660		bearings		
JH 4156	Metric single row tapered roller bearings	8.1	694	М 336	Inch single row tapered roller bearings	8.2	714
JL 267	Metric single row tapered roller bearings	8.1	694	М 349	Inch single row tapered roller bearings	8.2	714
JL 693	Metric single row tapered roller bearings	8.1	694	М 802	Inch single row tapered roller bearings	8.2	714
JLM 1049	Metric single row tapered roller	8.1	694	M 845	Inch single row tapered roller	8.2	714
JLM 5087	bearings Metric single row tapered roller	8.1	694	М 866	bearings Inch single row tapered roller	8.2	714
JLM 7109	bearings Metric single row tapered roller	8.1	694	М 880	bearings Inch single row tapered roller	8.2	714
JM 2051	bearings Metric single row tapered roller	8.1	694	MB	bearings Lock washers	25.2	1106
	bearings .			MB A	Lock washers	25.2	1106
JM 5119	Metric single row tapered roller	8.1	694	MBL MS 30	Lock washers		1106
JM 7142	bearings Metric single row tapered roller	8.1	694	MS 30 MS 31	Locking clips Locking clips		1110 1110
	bearings			N 2	Single row cylindrical roller bearings	6.1	516
JM 7166	Metric single row tapered roller	8.1	694	N 3	Single row cylindrical roller bearings		
JM 7181	bearings Metric single row tapered roller	8.1	694	NA 222RS	Support rollers without flange rings, with an inner ring		
JM 7382	bearings Metric single row tapered roller	21	694	NA 48	Needle roller bearings with machined rings with flanges, with an inner ring	7.4	636
JN 7302	bearings	0.1	074	NA 49	Needle roller bearings with machined	7.4	636
JM 8220	Metric single row tapered roller bearings	8.1	694	NA 69	rings with flanges, with an inner ring Needle roller bearings with machined	7.4	636
K K811	Needle roller and cage assemblies Cylindrical roller and cage thrust		614 888	NATR	rings with flanges, with an inner ring Support rollers with flange rings,		956
K 812	assembly	11 1	000	NATV	with an inner ring	15 2	054
K 893	Cylindrical roller and cage thrust assembly Cylindrical roller and cage thrust		888 888	NAIV	Support rollers with flange rings, with an inner ring and a full comple- ment of needle rollers	15.2	956
1.075	assembly	11.1	000	NCF 18 V	Single row full complement cylindri-	6.3	554
K 894	Cylindrical roller and cage thrust	11.1	888	NCF 22 ECJB	cal roller bearings High-capacity cylindrical roller	4.2	550
KM	assembly Lock nuts	25.1	1104	NCF 22 ECJB	bearings	6.2	550
KMFE	Lock nuts with a locking screw		1108	NCF 22 V	Single row full complement cylindri-	6.3	554
KML KMT	Lock nuts Precision lock nuts with locking pins		1104 1114	NCF 23 ECJB	cal roller bearings High-capacity cylindrical roller	6.2	550
KMTA	Precision lock nuts with locking pins		1116	1101 25 2055	bearings	0.2	330
KR	Cam followers		978	NCF 28 V	Single row full complement cylindri-	6.3	554
KRE KRV	Cam followers with an eccentric collar Cam followers with a full complement of needle rollers			NCF 29 CV	cal roller bearings Single row full complement cylindri- cal roller bearings	6.3	554
L 3	Inch single row tapered roller bearings	8.2	714	NCF 29 V	Single row full complement cylindri- cal roller bearings	6.3	554
L 4	Inch single row tapered roller bearings	8.2	714	NCF 30 CV	Single row full complement cylindri- cal roller bearings	6.3	554
L 5	Inch single row tapered roller bearings	8.2	714	NCF 30 V	Single row full complement cylindri- cal roller bearings	6.3	554
L 681	Inch single row tapered roller bearings	8.2	714	NJ 10 NJ 18	Single row cylindrical roller bearings Single row cylindrical roller bearings		516 516
L 8	Inch single row tapered roller bearings	8.2	714	NJ 2 NJ 22	Single row cylindrical roller bearings Single row cylindrical roller bearings	6.1	516 516
LL 639	Inch single row tapered roller bearings	8.2	714	NJ 23 NJ 28	Single row cylindrical roller bearings Single row cylindrical roller bearings Single row cylindrical roller bearings	6.1	516 516
LM	Inch single row tapered roller	8.2	714	NJ 29	Single row cylindrical roller bearings		516
	bearings .			NJ 3	Single row cylindrical roller bearings	6.1	516
LR LS	Needle roller bearing inner rings Universal washers for cylindrical		660 888	NJ 4 NJG 23 VH	Single row cylindrical roller bearings Single row full complement cylindri-		516 554
LJ	roller thrust bearings	тт.Т	000	1430 Z3 VII	cal roller bearings	0.5	554

^{*} Starting page of the product table.

SKF. 1141

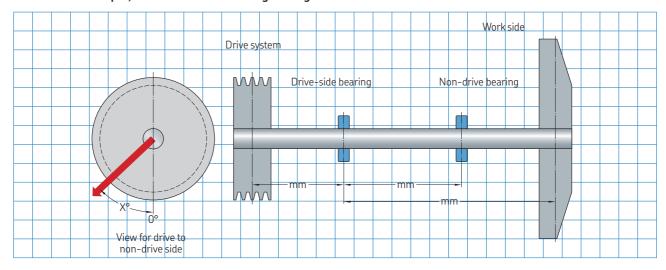
Designation	Product	Prod table No.		Designation	Product	Prod table No.	
						1	
NJG 3 VH	Single row full complement cylindri-	6.3	554	NUH 22 ECMH	High-capacity cylindrical roller	6.2	550
NK	cal roller bearings Needle roller bearings with machined rings with flanges, without an inner	7.3	624	NUH 23 ECMH	bearings High-capacity cylindrical roller bearings	6.2	550
NKI	ring Needle roller bearings with machined	7 /	626	NUKR NUKRE	Cam followers Cam followers with an eccentric collar		978
NNI	rings with flanges, with an inner ring	7.4	030	NUP 10	Single row cylindrical roller bearings	6.1	516
NKIA 59	Needle roller / angular contact ball	7.7	652	NUP 18	Single row cylindrical roller bearings		
NKIB 59	bearings Needle roller / angular contact ball	7.7	652	NUP 2 NUP 22	Single row cylindrical roller bearings Single row cylindrical roller bearings		516 516
NKIS	bearings	7 /	636	NUP 23	Single row cylindrical roller bearings		516 516
INNIS	Needle roller bearings with machined rings with flanges, with an inner ring	7.4	030	NUP 29 NUP 3	Single row cylindrical roller bearings Single row cylindrical roller bearings		516
NKS	Needle roller bearings with machined rings with flanges, without an inner ring	7.3	624	NUP 39 NUTR	Single row cylindrical roller bearings Support rollers with flange rings, with an inner ring	6.1	516 956
NKX	Needle roller / thrust ball bearings,	7.9	656	NX	Needle roller / thrust ball bearings,	7.8	654
NKXR	thrust bearing with a cage Needle roller / cylindrical roller thrust	7.10	658	OH 30	full complement thrust bearing Adapter sleeves for oil injection, met-	23.1	1072
NNC 48 CV	bearings Double row full complement cylindri-	6.4	564	OH 31	ric shafts Adapter sleeves for oil injection, met-	23.1	1072
NNC 49 CV	cal roller bearings			OH 32	ric shafts Adapter sleeves for oil injection, met-		
NNCF 48 CV	Double row full complement cylindri- cal roller bearings Double row full complement cylindri-			PNA	ric shafts Alignment needle roller bearings,		650
	cal roller bearings				with an inner ring		
NNCF 49 CV	Double row full complement cylindrical roller bearings	6.4	564	PWKR2RS PWTR2RS	Sealed cam followers Sealed support rollers with flange		978
NNCF 50 CV	Double row full complement cylindri-	6.4	564		rings, with an inner ring		
NNCL 48 CV	cal roller bearings Double row full complement cylindri-	6.4	564	QJ 2 QJ 3	Four-point contact ball bearings Four-point contact ball bearings	3.4	430 430
NNCL 49 CV	cal roller bearings Double row full complement cylindrical roller bearings	6.4	564	RNA 48.	Needle roller bearings with machined rings with flanges, without an inner ring	1 7.3	024
NNF 50 ADB-2LSV	Sealed double row full complement cylindrical roller bearings	6.5	576	RNA 49	Needle roller bearings with machined rings with flanges, without an inner	1 7.3	624
NNF 50 B-2LS	Sealed double row full complement	6.5	576	DNA 40	ring	. 7.0	
NU 10 NU 10/C3VL0241	cylindrical roller bearings Single row cylindrical roller bearings INSOCOAT single row cylindrical		516 1038	RNA 69	Needle roller bearings with machined rings with flanges, without an inner ring	1 /.3	624
NU 10/C3VL2071	roller bearings INSOCOAT single row cylindrical		1038	RPNA	Alignment needle roller bearings, without an inner ring	7.5	648
	roller bearings	24.2	4057	SNP	Adapter sleeves with inch dimensions		
NU 10/HC5	Hybrid single row cylindrical roller bearings	21.2	1056	SNP 30 SNP 31	Adapter sleeves with inch dimensions Adapter sleeves with inch dimensions		
NU 12	Single row cylindrical roller bearings	6.1	516	SNP 32	Adapter sleeves with inch dimensions	23.2	1076
NU 18 NU 19	Single row cylindrical roller bearings		516	SNW SNW 30	Adapter sleeves with inch dimensions Adapter sleeves with inch dimensions		
NU 19 NU 2	Single row cylindrical roller bearings Single row cylindrical roller bearings	6.1 6.1		SNW 30 SNW 31	Adapter sleeves with inch dimensions Adapter sleeves with inch dimensions		
NU 2/C3VL0241	INSOCOAT single row cylindrical roller bearings		1038	STO	Support rollers without flange rings, with an inner ring		
NU 2/C3VL2071	INSOCOAT single row cylindrical roller bearings	20.2	1038	T2DC	Metric single row tapered roller bearings	8.1	694
NU 2/HC5	Hybrid single row cylindrical roller	21.2	1056	T2DD	Metric single row tapered roller	8.1	694
NU 20 NU 22	bearings Single row cylindrical roller bearings Single row cylindrical roller bearings		516 516	T2ED	bearings Metric single row tapered roller bearings	8.1	694
NU 23	Single row cylindrical roller bearings	6.1	516	T2EE	Metric single row tapered roller	8.1	694
NU 28 NU 29	Single row cylindrical roller bearings Single row cylindrical roller bearings	6.1	516 516	T3FE	bearings Metric single row tapered roller	8.1	694
NU 3 NU 3/C3VL0241	Single row cylindrical roller bearings INSOCOAT single row cylindrical		516 1038	T4CB	bearings Metric single row tapered roller	8.1	694
NU 3/C3VL2071	roller bearings INSOCOAT single row cylindrical	20.2	1038	T4DB	bearings Metric single row tapered roller	8.1	694
NU 3/HC5	roller bearings Hybrid single row cylindrical roller	21.2	1056	T4EB	bearings Metric single row tapered roller	8.1	694
NU 30 NU 31	bearings Single row cylindrical roller bearings Single row cylindrical roller bearings	6.1	516 516	T4EE	bearings Metric single row tapered roller	8.1	694
NU 39 NU 4	Single row cylindrical roller bearings Single row cylindrical roller bearings Single row cylindrical roller bearings	6.1	516 516 516	T7FC	bearings Metric single row tapered roller bearings	8.1	694

^{*} Starting page of the product table.

T7FC../DT YSPAG 2..

Designation	Product	Proc table No.		Designation	Product	Proc table No.	
T7FC/DT	Matched tapered roller bearings	8.6	760	YAR 22RFGR/HV	Stainless steel insert bearings with	2.2	368
W 60	arranged in tandem Stainless steel deep groove ball	1.4	316		grub screws and a lubrication groove in the outside surface, inch shafts		
W 602RS1	bearings Sealed stainless steel deep groove	1.4	316	YARAG 2	Insert bearings with grub screws for agricultural applications, metric	2.1	366
W 602Z	ball bearings Shielded stainless steel deep groove	1.4	316	YARAG 2		2.2	368
W 61	ball bearings Stainless steel deep groove ball	1.4	316	YAT 2	agricultural applications, inch shafts Insert bearings with grub screws,	2.1	366
W 6182RS1	bearings Sealed stainless steel deep groove	1.4	316	YAT 2	metric shafts Insert bearings with grub screws,	2.2	368
W 6182Z	ball bearings Shielded stainless steel deep groove	1.4	316	YEL 22F	inch shafts Insert bearings with an eccentric	2.3	372
W 6192RS1	ball bearings Sealed stainless steel deep groove	1.4	316	YEL 22F	locking collar, metric shafts Insert bearings with an eccentric	2.4	374
W 6192Z	ball bearings Shielded stainless steel deep groove	1.4	316	YEL 22RF	locking collar, inch shafts Insert bearings with an eccentric	2.3	372
W 62	ball bearings Stainless steel deep groove ball	1.4	316	YELAG 2	locking collar, metric shafts Insert bearings with an eccentric	2.3	372
W 622RS1	bearings Sealed stainless steel deep groove	1.4	316	YELAG 2	locking collar for agricultural applications, metric shafts	2 /	27/
W 622Z	ball bearings Shielded stainless steel deep groove	1.4	316	YELAG Z	Insert bearings with an eccentric locking collar for agricultural applica-	2.4	374
W 622ZS	ball bearings Shielded stainless steel deep groove	1.4	316	YET 2	tions, inch shafts Insert bearings with an eccentric	2.3	372
W 63	ball bearings Stainless steel deep groove ball	1.4	316	YET 2	locking collar, metric shafts Insert bearings with an eccentric	2.4	374
W 632RS1	bearings Sealed stainless steel deep groove	1.4	316	YSA 22FK	locking collar, inch shafts Insert bearings with a tapered bore	2.7	378
W 632Z	ball bearings Shielded stainless steel deep groove	1.4	316	YSA 22FK	on an adapter sleeve, metric shafts Insert bearings with a tapered bore	2.8	378
WS 811	ball bearings Shaft washers for cylindrical roller	11.1	888	YSP 2 SB-2F	on an adapter sleeve, inch shafts SKF ConCentra insert bearings, met-	2.5	376
WS 811	thrust bearings Shaft washers for needle roller and	12.1	906	YSP 2 SB-2F	ric shafts SKF ConCentra insert bearings, inch	2.6	377
WS 811	cage thrust assemblies Shaft washers for needle roller and cage thrust assemblies with a cen-	12.2	910	YSPAG 2	shafts SKF ConCentra insert bearings for agricultural applications, metric	2.5	376
WS 812	tring flange Shaft washers for cylindrical roller	11.1	888	YSPAG 2	shafts SKF ConCentra insert bearings for	2.6	377
WS 893	thrust bearings Shaft washers for cylindrical roller	11.1	888		agricultural applications, inch shafts		
WS 894	thrust bearings Shaft washers for cylindrical roller	11.1	888				
YAR 22F	thrust bearings Insert bearings with grub screws,	2.1	366				
YAR 22F	metric shafts Insert bearings with grub screws,	2.2	368				
YAR 22FW/VA201	inch shafts Insert bearings for high temperature	18.2	1020				
YAR 22FW/VA201	applications, metric shafts Insert bearings for high temperature	18.3	1021				
YAR 22FW/VA228	applications, inch shafts Insert bearings for high temperature	18.2	1020				
YAR 22FW/VA228	applications, metric shafts Insert bearings for high temperature	18.3	1021				
YAR 22RF	applications, inch shafts Insert bearings with grub screws,	2.1	366				
YAR 22RF	metric shafts Insert bearings with grub screws,	2.2	368				
YAR 22RF/HV	inch shafts Stainess steel insert bearings with	2.1	366				
YAR 22RF/HV	grub screws, metric shafts Stainless steel insert bearings with	2.2	368				
YAR 22RF/VE495	grub screws, inch shafts Insert bearings with grub screws for	2.1	366				
YAR 22RF/VE495	the food industry, metric shafts Insert bearings with grub screws for	2.2	368				
YAR 22RFGR/HV	the food industry, inch shafts Stainless steel insert bearings with grub screws and a lubrication groove in the outside surface, metric shafts		366				

^{*} Starting page of the product table.



Application data sheet

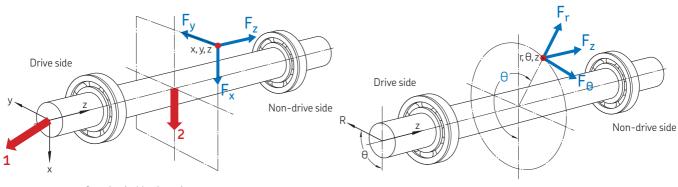
General information

Company name			
Contact name			
Telephone number			
Subject / reference			
E-mail address			
Date			
Type of request			
O New development	O Design verification	O Problem solving	
○ Other			
Application			
Description			
○ Continous	O Not continous, hours a day	h/day	

Sketch: For example, of an industrial bearing arrangement

For a different configuration, please add an assembly drawing with corresponding distance of the different components and orientation of the load.

Loads


For a single bearing only:

Radial load	kN
Axial load	kN

For a shaft and bearings:

Select one of the coordinates system below the loads on the shaft.

O Cartesian coordinates O Polar coordinates

Gravity in X-direction

Gravity in direction of $q = 0^{\circ}$

Loads	Position			External loads			
	X/r	Υ/θ	Z	Fx/Fr	Fx/Fr	Fx/Fr	
	mm	mm/°	mm	kN	kN	kN	
1							
2							

^{*} Supply information for additional loads in a separate document.

☐ Peak load	kΝ
☐ Alternating load	kN
☐ Moment load	kΝ

If load and/or speed change over time, provide details of the load/speed cycle.

Speed

Drive system kW Power ☐ White coupling Type of coupling Weight of coupling Ν ☐ With belt drive Type of belt Weight of pulley Ν Pitch diameter of pulley mm Direction of tension θ ☐ With geards (spur or helical) Nominal pressure angle αn Helix angle β Module m_n Number of teeth pinion z₁ Number of teeth wheel z_1 Centre distance pinion/wheel mm Gear O driving O driven Helix hand O none O left-had O right-hand Rotation O clockwise O counter-clockwise Oscillating application Oscillating angle β Frequency f min-1 Period t seconds Alternating load direction Alternating load freq min-1 If load and/or speed change over time, provide details of the load/speed cycle. Life requirement

Bearing

For a single bearing, provide details for the drive side only.

	Drive side			Non-drive side		
Bearing part number						
Locating bearing	0			0		
Operating temperature		/	°C		/	°C
	Inner ring Outer ring		Inner ring	Outer ring		
Temperature range	min.	°C		max.	°C	

Bearing interface

	Drive side	Non-drive side
Shaft material		
Housing material		
Tolerance shaft		
Tolerance housing		

Lubrication

Lubrication system		
☐ Grease lubrication		
Grease type (part number)		
Relubrication interval		h
Relubrication quantity		g
Shaft orientation	○ Horizontal	○ Vertical
Rotating ring	O Inner ring	O Outer ring
☐ Oil lubrication		
Oil type (part number		
□ Oil bath		
Oil bath temperature		°C
Oil level at standstill (x)		mm
☐ Oil circulation		
Oil temperature at sump		°C
Oil flow		○ I/mm

Sealing

Grease lubrication	
External sealing	
Seal bore diameter	mm
Seal outer diameter	mm
Seal width	mm
Medium to be sealed	
Internal	
External	
Pressure	bar
Add any other requirements for seals.	

Environment

Amb	ient te	mperature	
Yes	No		Comments
0	0	Dontaminaton	
0	0	Humidity/Moisture	
0	0	External heat source	
0	0	Cooling	
		Other	

